Numerical Approach to Real Algebraic Curves ...

Chapter 9
Barry H Dayton, (barryhdayton.space)

Proof of Harnack's Theorem for non-Singular Plane Curves

This proof got garbled in the original additions of this book, here is a correction for those with the fixed print
(paperback and Kindle) editions.

We will use three tools from earlier sections of the book:

1. At the end of Chapter 1, we showed that one can construct a curve of degree d through any affine

f (d+2) (d+1)

collection o - 1 points.

2. Properties 1, 2, and 3 from Section 8.5.
3. Bézout’s theorem from Chapter 5.

The following example will be a warm-up. In Chapter 7, we catalog all possible conics and cubics, but we will give a new
argument that a nonsingular cubic can have only two topological components.

Suppose a cubic has three topological components: two ovals and one pseudo-line. We pick one point on each oval, say p
and g. There is a unique line ¢ through p and g that, by Property 2 (Section 8.5), must meet the pseudo-line at a point r.

A plot might look like:
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¢ is the orange line. By a trivial application of Bézout’s theorem, a line can only intersect a cubic in three or fewer real
points, but this line also intersects the cubic in two other points on the ovals. Therefore, this configuration is impossible for
a cubic.
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Suppose f= 0 is a projective curve of degree d > 3, let

- = Clear[d];

(d-1)(d-2)
m=s = +1;
2
Suppose the associated projective curve has a simple closed path decomposition with m ovals Q,, Q,, ..., Q,, and one more

simple closed path I' (which might be an oval if d is even, or pseudo-line if d is odd). In the second case, T is certainly
infinite. We will assume our curve is not just a collection of isolated points and I’ is an oval (which is not an isolated point
and, therefore, infinite in the first case). We pick a random point on each oval Q; but not a singular point (therefore not on
any other Q).

. o dd- . . . PR . .
We now pick 42—12 — 1 - mrandom points on I'; this number is positive since d > 3. Again, choosing randomly ensures that
these points are not also on any of the Q;.

d(d-1
2

through these points. By our construction, f= 0 and g= 0 cannot share a common component, but by Property 1 (Section
8.5), the total intersection multiplicity of g= 0 with each oval Q,, ..., Q,, must be even, so g= 0 intersects each of these
ovals in at least two points.

So we have 1 points, and by our global interpolation method from Chapter 1, this is a curve g= 0 of degree d — 2

Altogether, by letting the Wolfram Language do the algebra, we have the following points of intersection of f=0, g=0:
- = Expand[2m+d (d=-1)/ 2-1-m]

ouf- =1-2d+d?
By Bézout’s theorem, we can have the following points:

inf- 1= Expand[d (d = 2)]

ouf- --2d+d?

We counted at least one more point than we were supposed to have, so our supposition above cannot be true.

This leads to Harnack’s theorem: let f= 0 be an algebraic curve of degree d, which is not a union of isolated points. The

d-1)(d-2
number of topological connected components of this curve in the real projective plane is less than or equal to —

Moreover, if singular f= 0 admits a decomposition into disjoint, except at the singularities, simple closed curves, satisfying

Property 3 (Section 8.5), then the number of simple closed curves in this decomposition is also less than or equal to

d-1)(d-2)
+ 1.
2

Our argument follows the argument in Bochnak’s book (1998) except—as noted above—we can slightly perturb a singular

curve to get our decomposition into ovals, satisfying our properties in Section 8.5, and the second part only requires these
properties.
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Other Issues

There are two other issues in this Chapter 9 which do not affect the fixed print editions but which will or have been cor-
rected in the notebook versions on my website, but possibly not in the notebooks on wolfram.com. There is also a correction
to the Chebyshev example in this chapter.

One is that the labeling primitives for infinite points of diamond diagrams no longer work in Mathematica 12. But it is
better and easier just to use the symbolic graphics primitive Text.

The other is that some small changes have been made in the software for Chapter 9. Diamond diagrams take an association
as input, these must include keys with values 0,1 for each pair {a, b} with |a|+|b|< d where d is the size of the diagram. The
function dDiagram now checks this condition and aborts with an error message if this condition is not satisfied. In
particular Viro Diagrams work only with full polynomials, that is polynomials in which every monomial of degree less than
or equal some fixed d has a non-zero coefficient. For sparse polynomials one uses instead a Gauss Diagram. The function
gaussDiagram has been added to the Global Functions notebook on my website to work in the sparse case. Here is an
example.

Inf~ J=f=yA3=x"3-2X+3xy=-2;
Show[gaussDiagram[f, {1, 2, 4}, x, y], Graphics[{Black, Text["A", {1.75, 1.5}], Text["A", {-1.75, -1.5}]}]]

A

outf* J=
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A second example, which should be avoided, is

Show[gaussDiagram[x*4 -y*2, {1, 2, 4, 8}, x, yl,
Graphics[{Black, Text["{0,1,0}", {2, 2.7}], Text["{0,1,0}", {-2, 2.7}], Text["{o,1,0}", {2, -2.7}],
Text["{0,1,0}", {-2, -2.7}]}]]

A
0,1, W), 1,0}
R >,
e AN
// ‘ \ J/ ‘ ‘
R ==
\ | [ N
N\
N e
N |
{0,1, )\‘ |£0,1,0

N

Thus one should avoid curves with singularities or that contain the origin {0,0} or infinite points {1,0,0} or {0,1,0}.
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Here is the correction to the Chebyshev example which is sparse and singular. To make it numerical we first rotate it.

neszi- {ar, br, cr} = {0.3898838058945685" , 0.48542069774603913" , 0.49793752820382864"};

in2s3= Rrot = RotationMatrix[ar, {br, cr, 1}]

oursa- {{0.936873, -0.299821, 0.179935},
{0.324275, 0.937495, -0.126286}, {-0.130825, 0.176663, 0.975538}}

m)-f=1-8x"2+8x"4+3y=-4y"3
fn = FLT[f, Rrot, x, y]

outf ]—1—8x2+8x4+3y—4y3

ouf- - 1.24825 +1.96209 x - 5.67008 x> = 5.83276 x° +5.95115 x” +
2.26778y-1.84109 xy—4.03446 x* y+8.5237 x> y-3.55517 y* +
1.88663 Xy’ +5.1695 x> y* —2.78224y> +0.015189 x y° + 0.485854 y*

Comparing fwith fn, labeling points on fn using drawing tools:

- - {ContourPlot[ f= 0, {x, -4, 4}, {y, -3, 7}, ContourStyle - Blue, Axes - True],
Show[ContourPlot[fn = 0, {x, -4, 4}, {y, -3, 7}, ContourStyle —» Blue, Axes - False],
Graphics[{Black, Text["1", {-.8, 0}], Text["2", {1, .8}], Text["8", {0, 1}],
Text["5", {-1.9, 5.7}], Text["3", {.5, -1.2}], Text["6", {-.6, —-1.7}],
Text["9", {0, -.1}], Text["7", {.8, -.2}], Text["4", {2.1, —1}] }]I}

Now we find the Gauss diagram of the right-hand curve fn:
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inf- = AC = coefficientSigns[fn, {x, y}];
DC = dvAssoc[AC];
T = dDiagram[DC]
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This doesn’t look much like the contour plot of fi, but the axis points are counted correctly and Descartes is OK with this
(since the number of infinite points of fn, 0, is an even number less than the diagram).

Since we have a singular curve with normal crossings, we replace the ambiguous

squares with singular squares.

Then label infinite points and the singular points to get a Gauss Diagram

inf- = Show[T, pickSingularity[-2, 1], pickSingularity[0, 1], pickSingularity[0, -3],
Graphics[{Black, Text["4", {3.5, —.7}], Text["5", {2.5, —-1.8}],
Text["6", {1.8, -2.5}], Text["7", {.5, -3.8}], Text["4", {-3.7, .5}],
Text["5", {-2.7, 1.5}], Text["6", {-1.5, 2.7}], Text["7", {-.7, 3.5}],
Text["2", {.7, 1.7}], Text["1", {-1.3, 1.7}], Text["3", {.7, -2.3}],
Text["9", {-.4, —.5}], Text["8", {-.5, 1.7}]}]]
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outf* J=
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The surprise is that if we construct the projective Euler graph (Chapter 5) from the data from the contour plot or the data
from the diamond diagram above, then it is the same graph:
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- J-Graph{1»+5,552,257,753,396,6->5>1, 158,852,235 4,4-53,3-59,9->1},

VertexLabels - '"Name", DirectedEdges - False]

9

outf* J=

The diamond diagram above has the same projective topology as the curve but not the same affine topology.



