
Surface Story
Part II

Barry H Dayton

barryhdayton.space

Table of Contents
1. Chapter 1 in Part I

2. Chapter 2 Quadric Surfaces in Projective Space

2.1. General Results 98

2.2. Strategy 103

2.3. Degenerate Case 106

2.4. Case of a Single Line 111

2.5. Case of No Real Line 118

2.6. Case of two Real Lines 121

2.7. Rationality of Quadric Surfaces 127

2.8. Transitivity of Symmetries of Smooth Quadric Surfaces 128

2.9. Affine and Projective Symmetries of Quadric Surfaces 131

3. Cubic Surfaces

3.1. A rational Cubic Surface 145

3.2. Lines on a Cubic Surface 150

3.3. The Theory 152

3.4. Example of Double 6 Construction 161

3.5. Additional lines 166

3.6. The implicit Cubic 167

3.7. Finding Lines on a Smooth Cubic, Example 1 170

3.8. Finding Lines and Eckardt points on Clebsch Diagonal Cubic 176

4. Fourth Degree and Related Surfaces

4.1. Geometric Point Groups and Applications 182

4.2. More on the Torus 198

4.3. Gluing Surfaces 216

4.4. Breakfast with Barry 219

References 223

The author makes no representations, express or implied, with respect to this documentation or so�ware it describes,

including, without limitation, any implied warranties of merchantability, interoperability or fitness for a particular

purpose, all of which are expressly disclaimed. Use of Mathematica and other related so�ware is subject to the terms

and conditions as described at www.wolfram.com/legal .

In addition to the forgoing, users should recognize that all complex so�ware systems and their documentation contain

errors and omissions. Barry H. Dayton and Wolfram Research a) shall not be responsible under any circumstances for

97 | SurfaceStoryPartII.nb

providing information or corrections to errors and omissions discovered at any time in this book or so�ware; b) shall

not be liable for damages of any kind arising out of the use of (or inability to use) this book or so�ware; c) do not

recommend the use of the so�ware for applications in which errors or omissions could threaten life, or cause injury

or significant loss.

Mathematica and Wolfram Language are trademarks of Wolfram Research Inc.

2 Quadric Surfaces in Projective Space
We will illustrate our transformations by discussing an important classical subject.

The standard coverage of this is uneven and misleading. For example the term hyperboloid of two

sheets is nonsense as all non-degenerate quadric surfaces are rationally parameterized surfaces and

hence of one sheet. The hyperboloid of 2 sheets is actually an ellipsoid. I will use some non-standard

terminology but suggest that it be widely adopted.

2.1 General Results

Quadric surfaces are defined from our affine point of view by an equation

a1 x
2 + a2 x y + a3 y

2 + a4 x z + a5 y z + a6 z
2 + a7 x + a8 y + a9 z + a10 = 0

where the coefficients ai are machine numbers with at least one of a1, a2, …, a6 not zero.

For example a random quadric might be f231 = 0

In[]:= f231 = 4.492182872989918` + 1.5027217857511275` x -

3.2932471474961034` x2 - 4.861394482747162` y + 3.21859207861387` x y -

5.401643964553532` y2 + 5.226019667264691` z - 0.8091107243142233` x z +

3.7145392742572234` y z + 5.269463158972744` z2

Out[]= 4.49218 + 1.50272 x - 3.29325 x2 - 4.86139 y + 3.21859 x y -

5.40164 y2 + 5.22602 z - 0.809111 x z + 3.71454 y z + 5.26946 z2

SurfaceStoryPartII.nb | 98

 One general comment is that since these actual surfaces are affine surfaces of degree 2 any line

transversal to these surfaces intersects the surface in 2 points by multiplicity. Thus these are all ori -

entable, that is 2 sided as projective surfaces. I will make some comments on the types .

Since we are looking at real points we could get an empty set or a zero or one dimensional set. Also

we could get a non-square free surface, that is a double plane with equation (ax + by + cz - d)2. These

are not surfaces, they have no regular points.

The degenerate quadrics are reducible, that is they may be factored, as such they are necessarily

singular. In affine space they could be the composite of two parallel planes, but then they meet in an

infinite line in projective space. Since we are working strictly with real quadrics we also should include

here empty quadrics, for example x2 + y2 + z2 + 1.

A cylinder is a quadric that is equivalent to a plane quadric where one of the variables x, y, z is absent.

For example the equation on the le� is x ^ 2 + y ^ 2 - 1 where that on the right is a rotation applied to

this first equation giving

In[]:= cyl = N[FLTNS [x^2 + y^2 - 1, m2TM [RotationMatrix [{{1, 0, 0}, {2, 1, 3}}]], {x, y, z}]]

Out[]= -1. + 0.357143 x2 - 0.223927 x y + 0.9805 y2 + 0.931785 x z + 0.162285 y z + 0.662357 z2

In[]:=  , 

In the le� we have a ruled surface of vertical lines, each of one has infinite point {0, 0, 1, 0}. Since all

these lines go through this one point it is a cone in projective space. Rotating it still gives a cone. Thus

in projective space a cylinder is just a cone with the vertex in the infinite plane.

In particular note that the projective transformation with transformation matrix

In[]:= CC3 = {{1, 0, 0, 0}, {0, 1, 0, 0}, {0, 0, 0, 1}, {0, 0, 1, 0}};

In[]:= CC3 // MatrixForm

Out[]//MatrixForm=

1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

99 | SurfaceStoryPartII.nb

In[]:= FLTNS [x^2 + y^2 - z^2, CC3, {x, y, z}]

Out[]= -1 + x2 + y2

takes our standard cone to the circular cylinder and inversely.

In[]:= FLTNS [x^2 + y^2 - 1, Inverse [CC3], {x, y, z}]

Out[]= x2 + y2 - z2

If we perform a FLT transform on the ellipsoid above which sends one point to an infinite point we get a

parabolic ellipsoid (called a paraboloid in the literature).

In[]:=

In[]:=

 On the other hand if we cut the ellipsoid with a plane which goes to infinity we get

In[]:=  , 

which wrongly was called a hyperboloid of 2 sheets but I call it a hyperbolic ellipsoid. Since every

hyperbolic ellipsoid and every parabolic ellipsoid are FLT images of the ellipsoid then the properties of

no non-null-homotopic (essential) ovals and two sided-ness are preserved for all of these.

I mention here that we will record here and in GlobalFunctions.nb a projective transformation matrix

taking the paraboloid z = x ^ 2 + y ^ 2 to the sphere x2 + y2 + z2 - 1. This will be used in our “proof” of

the chart as it is very easy to transform any type of ellipsoid to a paraboloid using iTransform.

In[]:= paraboloid2sphere

Out[]= 0, 0,
1

2
, -

1

2
, {1, 0, 0, 0}, {0, 1, 0, 0}, 0, 0,

1

2
,
1

2


SurfaceStoryPartII.nb | 100

In[]:= FLTNS [z - x^2 - y^2, paraboloid2sphere , {x, y, z}]

Out[]= 1 - x2 - y2 - z2

In the affine plane there are two hyperboloids. In addition to the one pictured above, and below le�

there is the elliptic hyperboloid otherwise known as just the hyperboloid. The below right is the

parabolic hyperboloid , otherwise known as the hyperbolic paraboloid or saddle surface . In the litera -

ture these are o�en considered to be different but again note

In[]:= Ht = {{1.421753448878254` , 2.4001312247824407` ,

-1.4217534488782626` , -2.4001312247824362` }, {-1.3682399203220887` ,

0.05585142943475707` , 0.7762628086454613` , 1.1281027939185155` },

{-2.550704470740892` , -1.499868080914514` , 0.08976727903245796` ,

2.957640849193627` }, {1.1547005383792515` , 0.5773502691896257` ,

-1.1547005383792515` , -0.5773502691896266` }};

Ht // MatrixForm

Out[]//MatrixForm=

1.42175 2.40013 -1.42175 -2.40013

-1.36824 0.0558514 0.776263 1.1281

-2.5507 -1.49987 0.0897673 2.95764

1.1547 0.57735 -1.1547 -0.57735

In[]:= FLTNS x2 + y2 - z2 - 1, Ht, {x, y, z}
Out[]= 1. x y - 1. z

In[]:= {ContourPlot3D [x^2 + y^2 - z^2 ⩵ 1, {x, -2, 2},

{y, -2, 2}, {z, -2, 2}, Mesh → None, Boxed → False, Axes → False],

ContourPlot3D [z ⩵ x y, {x, -8, 8}, {y, -8, 8}, {z, -5, 5}, Mesh → None,

Boxed → False, Axes → False], ContourPlot3D [9 x^2 + y^2 - z^2 - 5 x y - z ⩵ 15,

{x, -8, 8}, {y, -8, 8}, {z, -5, 5}, Mesh → None, Boxed → False, Axes → False]}

Out[]=  , , 

The two hyperboloids do share 4 important properties

1) These are doubly ruled surfaces .

2) The tangent plane at every point cuts the hyperboloid in two lines, one from each ruling.

3) The hyperboloid is determined by any 3 skew lines, that is any three skew lines in 3-space are part of

one ruling of a hyperboloid.

101 | SurfaceStoryPartII.nb

4) They are rationally parameterized surfaces.

The difference is this: in the parabolic hyperboloid all the lines in one ruling are all parallel to one

plane, this is not true of the elliptic paraboloid. For example consider our parabolic hyperboloid

In[]:= {ContourPlot3D [{h1 ⩵ 0, x - y ⩵ 0, x - y ⩵ 1, x - y ⩵ -1}, {x, -3, 3},

{y, -1.2, 1.2}, {z, -3, 3}, Mesh → None, Axes → None, Boxed → False],

ContourPlot3D [{h1 ⩵ 0, x + y ⩵ 0, x + y ⩵ 1, x + y ⩵ -1}, {x, -3, 3},

{y, -1.2, 1.2}, {z, -3, 3}, Mesh → None, Axes → None, Boxed → False]}

Out[]=  , 

Both the families of planes x + y = a, and x - y = b as a, b run through the real numbers cut this surface

in lines which must be skew to each other but each plane of the form x + y = a, intersects each plane of

the form x - y = b in a line which meets the surface h1 in one point.

Thus the skew lines 3) above will all be parallel to one particular plane if and only if the surface they

generate is a parabolic hyperboloid. This fact was observed in the book by Hilbert and Cohn-Vossen,

who also observed that the elliptic hyperboloids contain an ellipse which is essential although they did

not state this fact in those words.

In fact a hyperbolic paraboloid is simply a hyperboloid which is tangent to the infinite plane. Note that

the maximal form in either equation z = x y or z = x2 - y2 are both a union of two lines so these hyper -

boloids have infinite curves which satisfy condition 2) above.

Here is a seemingly impossible set of skew lines to appear in an elliptic hyperboloid.

Lif = {t, 0, 0};

L2f = {0, t, 1};

L3f = {-1, -1, t};

In[]:= ParametricPlot3D [{L1f, L2f, L3f}, {t, -3, 3}, PlotStyle → {Blue, Green, Pink}]

Out[]=

SurfaceStoryPartII.nb | 102

The equations are

In[]:= L1eq = {y, z};

L2eq = {x, z - 1};

L3eq = {x + 1, y + 1};

In[]:= L1syl = sylvesterMD [L1eq, 2, {x, y, z}];

L2syl = sylvesterMD [L2eq, 2, {x, y, z}];

L3syl = sylvesterMD [L3eq, 2, {x, y, z}];

hp2 = First [

Chop [vectorSpaceIntersection3 [L1syl, L2syl, L3syl, dTol], dTol].mExpsMD [2, {x, y, z}]]

Out[]= -0.5 y - 0.5 x y - 0.5 x z + 0.5 y z

In[]:= Show [ContourPlot3D [hp2 ⩵ 0, {x, -3, 3}, {y, -3, 3}, {z, -3, 3}, Mesh → None],

ParametricPlot3D [{L1f, L2f, L3f}, {t, -3, 3}, PlotStyle → {Blue, Green, Pink}]]

Out[]=

[

I remark in passing that if we were considering complex projective surfaces then the ellipsoid and

hyperboloid are projectively equivalent. The tangent plane to a point in, say the real sphere, does

contain two complex lines which lie in the complex sphere. But in the real projective space the sphere

is not a ruled surface.

Our main result of this Section is that Every real projective quadric surface is projectively equiva -

lent to exactly one of our example surfaces. The one minor exception is that the non-squarefree

degenerate surface is not projectively equivalent to the squarefree degenerate surface.

The rest of this section will be devoted to proving this . Along with this constructive proof we will learn

more about each of the types of quadric surface.

2.2 Strategy

Given a thee variable quadratic equation we first pick a random point, assuming it is not not the empty

quadric. A good way to do this is to use the closestRealPointMD function and a random point. Here is

103 | SurfaceStoryPartII.nb

an example

In[]:= f232 = 1.004299994444187` + 4.619946233491519` x +

5.003986917416253` x2 - 1.5312443087645962` y - 2.5456169581885573` x y -

0.18725675804366315` y2 - 1.4437724690088531` z -

4.988262328875971` x z + 3.7338496490520834` y z - 1.7296244962937` z2

Out[]= 1.0043 + 4.61995 x + 5.00399 x2 - 1.53124 y - 2.54562 x y -

0.187257 y2 - 1.44377 z - 4.98826 x z + 3.73385 y z - 1.72962 z2

In[]:= p232 = closestRealPointMD [{f232}, RandomReal [{-5, 5}, 3], {x, y, z}]

Out[]= {1.15112, -1.11181, 1.3013 }

If there is none the real quadric is probably empty . A plot may help confirm this .

We then eliminate the non-surface cases by checking the regularity of the random point. The probabil -

ity that a random point of a surface is near zero. A good way to do this is to attempt to calculate the

tangent plane at this point. This does a check but one may need to look at the tangent plane if it is

given, all very small (eg 10-4) coefficients look suspiciously like a singular point.

In[]:= Tp232 = tangentPlaneNS [f232, p232, {x, y, z}]

Out[]= 7.1504 + 12.4794 x + 0.813695 y - 15.8387 z

This looks good . Next we check to see if this is the degenerate case. We use nDivideMDQ. This is given

in global function pages a�er March 2022 or below.

In[]:= nDivideMDQ [f232, Tp232, {x, y, z}, .0003]

Out[]= True

Now this looks degenerate.

If the preceding does not happen we proceed to calculate any lines in the quadric through this random

regular point. We adopt the trick used in Section 1.9.7 of this book to calculate lines on a cubic. If there

is one line we have a cone (cylinder), no real lines give an ellipsoid while two real lines indicate a

hyperboloid. In each case we will show that the information from the point and lines on the quadric

through this point are sufficient to find a transformation function taking the quadric to the standard

quadric of its type.

 We use the following black box code to find the random point and make the checks above for non-

surface or degenerate surfaces and if that is not the case looks for lines through the random point.

Note for technical reasons this function will not handle cylinders defined by only 2 variables, that is

cylinders parallel to one axis. But then there is one line in the direction of the missing variable through

each point so this function is not needed anyway.

Example : We use the quadric at the beginning of this section

SurfaceStoryPartII.nb | 104

In[]:= f231

Out[]= 4.49218 + 1.50272 x - 3.29325 x2 - 4.86139 y + 3.21859 x y -

5.40164 y2 + 5.22602 z - 0.809111 x z + 3.71454 y z + 5.26946 z2

In[]:= Lines = analyzeQSNS [f231, {x, y, z}]

» 2 Lines

Out[]= {{-0.686027 - 3.31495 t, -2.74836 + 8.54218 t, -1.54699 + 7.20492 t},

{-0.686027 - 0.591156 t, -2.74836 - 0.65952 t, -1.54699 - 0.492003 t}}

In[]:= analyzeQSNS [f_, V_] := Module [{Tp, p, F, G, ct, ct2, sol, ln1, ln2, a, b, c},

If[Length [Variables [Chop [f, 1.*^-6]]] < 3,

Echo ["Quadrics must use all 3 variables "];

Abort []];

p = Quiet [closestRealPointMD [{f}, RandomReal [{-5, 5}, 3], V]];

If[Abs[f /. Thread [V → p]] > .003, Echo ["Possible Empty Quadric"];

Abort []];

Tp = With [{Gr = Grad [f, V] /. Thread [{x, y, z} → p]},

If[Norm [Gr] > 1.*^-5, Expand [Gr.(V - p)], Echo ["Not Regular at"];

Return [p]]];

If[Abs[Tp /. Thread [V → Normalize [RandomReal [{-1, 1}, 3]]]] < .003,

Echo ["Random non-regular point, Possibly not a Surface"];

Return [p]];

If[nDivideMDQ [f, Tp, V, .001], Echo ["Possibly Degenerate "];

Return [p]];

F = {p〚1〛 + a t, p〚2〛 + b t, p〚3〛 + c t};
G = Expand [f /. Thread [V → F]];

ct = Coefficient [G, t];

ct2 = Coefficient [G, t^2];

sol = Quiet [NSolve [{ct, ct2}, {a, b, c}, Reals]];

If[Length [sol] ⩵ 0, Echo ["No lines, random point given"]; Return [p]];

ln1 = F /. sol〚1〛;
If[Length [sol] ⩵ 1, Return [ln1]];

ln2 = F /. sol〚2〛;
n = Length [pLineIntersectionMD [ln1, ln2, t, V, .03]];

Which [n ⩵ 1, Echo ["One Line"];

Return [ln1], n ⩵ 3, Echo ["2 Lines"];

{ln1, ln2}, True, Fail]]

So this will be a hyperboloid .

105 | SurfaceStoryPartII.nb

In[]:= Show [ContourPlot3D [f231 ⩵ 0, {x, -5, 5},

{y, -5, 5}, {z, -5, 5}, Mesh → None, MaxRecursion → 4],

ParametricPlot3D [Lines, {t, -5, 5}, PlotStyle → Blue], ImageSize → Small]

Out[]=

We will show later how this can be wrangled to our standard hyperboloid x2 + y2 - z2 = 1.

Remark 1: If you do not have an updated GlobalFunctions.nb the ndivideMDQ is given by

In[]:= nDivideMDQ [h_, g_, X_, tol_] := Module [{n, l, m, d1, d2, P, S, f, ex, t},

n = Length [X];

d1 = tDegMD [g, X];

d2 = tDegMD [h, X];

If [d1 > d2, Return [False]];

P = PseudoInverse [N[sylMD [g, d2, X]], Tolerance → tol];

S = Chop [sylMD [h, d2, X].P];

ex = expsMD [n, d2 - d1];

l = Length [ex];

f = FromCoefficientRules [Table [ex〚i〛 → S〚1, i〛, {i, l}], X];

t = Expand [f * g - h];

If[NumberQ [t],

If[Abs[t] < d2 * tol, Return [True], Return [False]]];

If[Norm [Flatten [sylMD [Expand [f * g - h], d2, X]]] > d2 * tol, Return [False]];

True];

REMARK 2: The next part of this section gets very long and technical. The reader who is just happy to

know our basic classification may skip to subsection 2.3.7. The reader who wants to know why this

classification works may skim the following subsections. These subsections are given for completeness

and the occasional reader who actually needs to transform a complicated quadric surface to one in

standard form. However subsections 2.3.7 to 2.3.10 give new material.

In[]:= Clear [f, g, h, p, q, p2, tplane]

2.3 Degenerate Case

Here the quadric has real points but is singular. We are sent here if NSolve[Grad[f,{x,y,z}]] appears

SurfaceStoryPartII.nb | 106

infinite. We have already found a random point so we can check if it is regular. For example consider

f232 above

In[]:= f232

Out[]= 1.0043 + 4.61995 x + 5.00399 x2 - 1.53124 y - 2.54562 x y -

0.187257 y2 - 1.44377 z - 4.98826 x z + 3.73385 y z - 1.72962 z2

In[]:= ContourPlot3D [f232 ⩵ 0, {x, -5, 5}, {y, -5, 5}, {z, -5, 5}, ImageSize → Tiny]

Out[]=

In[]:= TP232 = tangentPlaneNS [f232, p232, {x, y, z}]

Out[]= 7.1504 + 12.4794 x + 0.813695 y - 15.8387 z

Since the result is a plane the point was regular. We can see if this is a component

In[]:= PL232 = nDivideMD [f232, TP232, {x, y, z}, 1.*^-6]

Out[]= 0.140454 + 0.400981 x - 0.230131 y + 0.109202 z

Thus f232 is the union of two planes . The intersecting line is given by

In[]:= NSolve [Grad [f232, {x, y, z}]]

Out[]= {{x → -0.550258 + 1.11193 z, y → -0.348449 + 2.41194 z}}

which by inspection contains the point

In[]:= pt232 = {-0.5502577015419445` , -0.3484492995311171` , 0}

Out[]= {-0.550258 , -0.348449 , 0}

In[]:= Check :

In[]:= TP232 /. Thread [{x, y, z} → pt232]

PL232 /. Thread [{x, y, z} → pt232]

Out[]= 4.6595 × 10-12

Out[]= -2.58127 × 10-14

I now translate f232 and its factor planes TP232 and PL232 so that one the point pt232 is moved to the

origin. This is done by the transformation matrix

107 | SurfaceStoryPartII.nb

In[]:= T232 = {{1, 0, 0, -pt232〚1〛}, {0, 1, 0, -pt232〚2〛}, {0, 0, 1, 0}, {0, 0, 0, 1}};

T232 // MatrixForm

Out[]//MatrixForm=

1 0 0 0.550258

0 1 0 0.348449

0 0 1 0

0 0 0 1

In[]:= f232a = FLTNS [f232, T232, {x, y, z}]

TP232a = Chop [FLTNS [TP232, T232, {x, y, z}], 10*^-9]

PL232a = FLTNS [PL232, T232, {x, y, z}]

Out[]= 5.00399 x2 - 2.54562 x y - 0.187257 y2 - 4.98826 x z + 3.73385 y z - 1.72962 z2

Out[]= 12.4794 x + 0.813695 y - 15.8387 z

Out[]= 0.400981 x - 0.230131 y + 0.109202 z

Since there are no constant terms they pass through the origin . Next we rotate our planes to send

TP232 to the horizontal plane z = 0.

In[]:= PR232 = planeRotate3D [TP232a, z];

PR232 // MatrixForm

Out[]//MatrixForm=

-0.777288 -0.115885 -0.61838 0.

-0.115885 0.992444 -0.0403204 0.

0.61838 0.0403204 -0.784844 0.

0. 0. 0. 1.

In[]:= f232b = Chop [FLTNS [f232a, PR232, {x, y, z}], 1.*^-9]

TP232b = FLTNS [TP232a, PR232, {x, y, z}]

PL232b = Chop [FLTNS [PL232a, PR232, {x, y, z}], 1.*^-10]

Out[]= -7.11447 x z - 5.63574 y z + 3.08711 z2

Out[]= 20.1807 z

Out[]= -0.352537 x - 0.279263 y + 0.152973 z

Our planes still go through the origin but the first factor is now the z = 0 plane. When y = 1, z = 0 then

solving

In[]:= gc = PL232b /. {y → 1, z → 0}

Out[]= -0.279263 - 0.352537 x

In[]:= gcx = SolveValues [gc ⩵ 0, x]〚1〛
Out[]= -0.792152

so PL232b goes through the point

SurfaceStoryPartII.nb | 108

In[]:= q232b = {gcx, 1, 0}

PL232b /. Thread [{x, y, z} → q232b]

Out[]= {-0.792152 , 1, 0}

Out[]= 0.

In[]:= q232bt = Take [q232b, 2]

Out[]= {-0.792152 , 1}

So we take the 2 dimensional rotation about the origin that takes the vector q232bt to {0,1} and extend

it to a three dimensional transformation matrix leaving the z-plane fixed.

In[]:= RM232 = Simplify [Join [Join [RotationMatrix [{{gcx, 1}, {0, 1}}], 0 * IdentityMatrix [2], 2],

{{0, 0, 1, 0}, {0, 0, 0, 1}}]];

RM232 // MatrixForm

Out[]//MatrixForm=

0.783861 0.620937 0 0

-0.620937 0.783861 0 0

0 0 1 0

0 0 0 1

Now

In[]:= f232c = Chop [FLTNS [f232b, RM232, {x, y, z}], 1.*^-11]

TP232c = FLTNS [TP232b, RM232, {x, y, z}]

PL232c = FLTNS [PL232b, RM232, {x, y, z}]

Out[]= -9.07619 x z + 3.08711 z2

Out[]= 20.1807 z

Out[]= -0.449745 x + 0.152973 z

We note the line {y=0,z=0} now lies on all three planes so is the intersection of TP232c and PL232c.

Finally we do a 3 dimensional shear

In[]:= Clear [a]

In[]:= Sh232 = {{1, 0, a, 0}, {0, 1, 0, 0}, {0, 0, -9.076189692468215` , 0}, {0, 0, 0, 1}}

Out[]= {{1, 0, a, 0}, {0, 1, 0, 0}, {0, 0, -9.07619, 0}, {0, 0, 0, 1}}

Note

In[]:=

In[]:= gd = Chop [FLTNS [f232c, Sh232, {x, y, z}], 1.*^-10]

gdz = Chop [gd /. {x → 0, z → 1}, 1.*^-10]

Out[]= 1. x z + 0.0374752 z2 + 0.110178 a z2

Out[]= 0.0374752 + 0.110178 a

109 | SurfaceStoryPartII.nb

In[]:= sol232 = Solve [gdz ⩵ 0, a]

Out[]= {{a → -0.340132 }}

In[]:= Sh232a = Sh232 /. sol232 〚1〛
Out[]= {{1, 0, -0.340132 , 0}, {0, 1, 0, 0}, {0, 0, -9.07619, 0}, {0, 0, 0, 1}}

our result is

In[]:=

Chop [FLTNS [f232c, Sh232a, {x, y, z}], 1.*^-10]

Out[]= 1. x z

which was our target equation!

Letting

In[]:= A232 = Sh232a.RM232.PR232.T232;

A232 // MatrixForm

Out[]//MatrixForm=

-0.891574 0.511693 -0.242809 -0.312296

0.391809 0.849895 0.352369 0.511741

-5.61253 -0.365955 7.1234 -3.21586

0. 0. 0. 1.

In[]:= Chop [FLTNS [f232, A232, {x, y, z}], 1.*^-9]

Out[]= 1. x z

so up to a tiny numerical error we have transformed f232 to the standard example, in this case with an

affine transformation. Here are some plots

SurfaceStoryPartII.nb | 110

In[]:= {ContourPlot3D [f232 ⩵ 0, {x, -3, 3}, {y, -3, 3}, {z, -3, 3}, Mesh → None],

ContourPlot3D [f232b ⩵ 0, {x, -3, 3}, {y, -3, 3}, {z, -3, 3}, Mesh → None],

ContourPlot3D [f232c ⩵ 0, {x, -3, 3}, {y, -3, 3}, {z, -3, 3}, Mesh → None],

ContourPlot3D [x z ⩵ 0, {x, -3, 3}, {y, -3, 3}, {z, -3, 3}, Mesh → None]}

Out[]=  , ,

, 

2.4 Case of single line

I give two random examples .

2.4.1 First Example

In[]:= f234 = -2.3020166207367843` - 2.6858797219485577` x +

1.0131161481023399` x2 + 1.4721025020329819` y +

3.6587010950658008` x y + 2.676268803498578` y2 + 3.662928463334536` z +

5.874375409773489` x z + 3.229386168894008` y z + 0.7908431365144266` z2

Out[]= -2.30202 - 2.68588 x + 1.01312 x2 + 1.4721 y + 3.6587 x y +

2.67627 y2 + 3.66293 z + 5.87438 x z + 3.22939 y z + 0.790843 z2

We start by analyzing our quadric .

In[]:= Line234a = analyzeQSNS [f234, {x, y, z}]

» One Line

Out[]= {3.03683 - 1.6243 t, -5.2475 + 2.13762 t, -2.75568 + 1.61337 t}

111 | SurfaceStoryPartII.nb

We see there is a single line through the point

In[]:= p1 = Line234a /. {t → 0}

Out[]= {3.03683, -5.2475, -2.75568 }

This says we have a cone or a cylinder . To find out witch we run this again

In[]:= Line234b = analyzeQSNS [f234, {x, y, z}]

» One Line

Out[]= {-2.4303 - 1.004 t, 0.00758587 + 0.218295 t, 1.03954 + 0.067496 t}

which is through the point

In[]:= p2 = Line234b /. {t → 0}

Out[]= {-2.4303, 0.00758587 , 1.03954 }

Now we check to see if they intersect .

In[]:= p3 = pLineIntersectionMD [Line234a , Line234b , t, {x, y, z}, .003]

Out[]= {-0.664603 , -0.376321 , 0.920841 }

They do . We check for regularity

In[]:= tangentPlaneNS [f234, p3, {x, y, z}]

» Not Regular at

Out[]= {-0.664603 , -0.376321 , 0.920841 }

So this is a singular point . We have a cone . Here is a picture

SurfaceStoryPartII.nb | 112

In[]:= Show [ContourPlot3D [f234 ⩵ 0, {x, -5, 5}, {y, -5, 5}, {z, -5, 5}, Mesh → None],

ParametricPlot3D [{Line234a , Line234b }, {t, -15, 5}, PlotStyle → {Blue, Green }]]

Out[]=

To put this in our standard surface form we first move our singular point to the invisible plane, prefer -

ably a unit coordinate point. We first take it to zero and then use a transformation from 2.3.1 to put the

singular point at invisible point {0,0,1,0}.

In[]:= T234 = {{1, 0, 0, -p3〚1〛}, {0, 1, 0, -p3〚2〛}, {0, 0, 1, -p3〚3〛}, {0, 0, 0, 1}}

CC3 = {{1, 0, 0, 0}, {0, 1, 0, 0}, {0, 0, 0, 1}, {0, 0, 1, 0}}

B234 = CC3.T234;

B234 // MatrixForm

Out[]= {{1, 0, 0, 0.664603 }, {0, 1, 0, 0.376321 }, {0, 0, 1, -0.920841 }, {0, 0, 0, 1}}

Out[]= {{1, 0, 0, 0}, {0, 1, 0, 0}, {0, 0, 0, 1}, {0, 0, 1, 0}}

Out[]//MatrixForm=

1. 0. 0. 0.664603

0. 1. 0. 0.376321

0. 0. 0. 1.

0. 0. 1. -0.920841

Note

In[]:= fltiMD [p3, B234]

Out[]= {0., 0., 1., 0}

In[]:= f234b = Chop [FLTNS [f234, B234, {x, y, z}], 1.*^-6]

Out[]= 0.790843 + 5.87438 x + 1.01312 x2 + 3.22939 y + 3.6587 x y + 2.67627 y2

There is no z term! As a surface this is a cylinder. But its intersection with the z-plane is the curve with

113 | SurfaceStoryPartII.nb

the same equation but considered as a plane curve instead of a space cylinder.

In[]:= ContourPlot [f234b ⩵ 0, {x, -10, 30}, {y, -20, 10}, ImageSize → Small]

Out[]=

-10 0 10 20 30

-20

-15

-10

-5

0

5

10

 This plane curve will be some conic, in this case a hyperbola . But it is not actually important as in my

Plane Curve Book Chapter 7 there is a single method for reducing any non-singular conic to the unit

circle which involves the cTransform2D (Paragraph 70.1 GlobalFunctionsS.nb) which takes this to a

parabola which can be transformed to y = x2 followed by a standard transformation taking this

parabola to the unit circle.

In[]:= p2cTransform2D

Out[]= {{1, 0, 0}, {0, -0.5, 0.5}, {0, -0.5, -0.5}}

Another trick used is to escalate a FLT on 2 - space to 3 space by changing

Out[]//MatrixForm=

* * *

* * *

* * *

To

Out[]//MatrixForm=

* * 0 *

* * 0 *

0 0 1 0

* * 0 *

where the * indicate numbers in the same position. We have a function escalate2D

So now we find some critical points and apply the cTransform2D

In[]:= cpf234b = criticalPoints2D [f234b, x, y]〚2〛
Out[]= {-0.112914 , -0.0524928 }

In[]:= ctf234b = Chop [cTransform2D [f234b, cpf234b, x, y], dTol]

Out[]= {{0.421563 , -0.906799 , 0},

{-0.112049 , -0.0520905 , 0.992336 }, {0.89985, 0.418332 , 0.123565 }}

In[]:= gc = FLT3D [{f234b }, ctf234b, {x, y}]〚1〛
Out[]= 3.49815 - 3.65788 x + 0.982079 x2 + 6.01404 y

SurfaceStoryPartII.nb | 114

We do our translation trick in 2 D

In[]:= Clear [a, b, c]

In[]:= T2D = {{1, 0, a}, {0, 1, b}, {0, 0 , 1}};

In[]:= gt = FLT3D [{gc}, T2D, {x, y}]〚1〛
Out[]= 3.49815 + 3.65788 a + 0.982079 a2 - 6.01404 b - 3.65788 x - 1.96416 a x + 0.982079 x2 + 6.01404 y

In[]:= c0 = gt /. Thread [{x, y} → {0, 0}]

Out[]= 3.49815 + 3.65788 a + 0.982079 a2 - 6.01404 b

In[]:= cx = Coefficient [gt, x] /. {x → 0}

Out[]= -3.65788 - 1.96416 a

In[]:= cy = Coefficient [gt, y]

Out[]= 6.01404

In[]:= solgt = Solve [c0 ⩵ 0 && cx ⩵ 0, {a, b}]

Solve : Solve was unable to solve the system with inexact coefficients . The answer was obtained by solving a

corresponding exact system and numericizing the result .

Out[]= {{a → -1.86231, b → 0.0153135 }}

In[]:= T234c = T2D /. solgt〚1〛
Out[]= {{1, 0, -1.86231 }, {0, 1, 0.0153135 }, {0, 0, 1}}

In[]:= g234c = FLT3D [{gc}, T234c, {x, y}]

Out[]= 0.982079 x2 + 6.01404 y

A parabola, now almost here, we modify T2D by

In[]:= TT234d =

ReplacePart [T234c, {3, 3} → First [-Coefficient [g234c, y] / Coefficient [g234c, x^2]]]

Out[]= {{1, 0, -1.86231 }, {0, 1, 0.0153135 }, {0, 0, -6.12379 }}

In[]:= f234d = FLT3D [{gc}, p2cTransform2D .TT234d, {x, y}]〚1〛
Out[]= -0.982079 + 0.982079 x2 + 0.982079 y2

But this is equivalent to

In[]:= Expand f234d  f234d〚1〛
Out[]= 1. - 1. x2 - 1. y2

That is the unit circle, our goal . Putting this together

In[]:= B2D = p2cTransform2D .TT234d.ctf234b

Out[]= {{-1.25424, -1.68586, -0.230117 },

{-2.70611, -1.25805, -0.875458 }, {2.80438, 1.30373, -0.118771 }}

115 | SurfaceStoryPartII.nb

In[]:= FLT3D [{f234b }, B2D, {x, y}]

Out[]= -0.982079 + 0.982079 x2 + 0.982079 y2

Using our trick above, editing manually

In[]:= B3D = escalate2D [B2D];

B3D // MatrixForm

Out[]//MatrixForm=

-1.25424 -1.68586 0 -0.230117

-2.70611 -1.25805 0 -0.875458

0 0 1 0

2.80438 1.30373 0 -0.118771

In[]:= FLTNS [f234b, B3D, {x, y, z}]

Out[]= -0.982079 + 0.982079 x2 + 0.982079 y2

Note this last equation is now in 3 dimensions, that is, a right circular cylinder of radius 1. But insert -

ing the transformation getting f234b we get, eliminating some small error on the magnitude of 10-8

In[]:= cyl = Chop [FLTNS [f234, CC3.B3D.B234, {x, y, z}], 1.*^-6]

Out[]= 0.982079 x2 + 0.982079 y2 - 0.982079 z2

or equivalently

In[]:= roundPolyMD [Expand [cyl / Coefficient [cyl, x^2]], {x, y, z}, 1]

Out[]= x2 + y2 - z2

which has converted our original quadric f234 to the standard cone. Done! Note for reference the

transformation matrix is

In[]:= A = CC3.B3D.B234;

A // MatrixForm

Out[]//MatrixForm=

-1.25424 -1.68586 -0.230117 -1.25609

-2.70611 -1.25805 -0.875458 -1.46576

2.80438 1.30373 -0.118771 2.46379

0. 0. 0. 1.

so even though we did use some projective transformations the end transformation is just an affine

transformation .

Finally we saw in Chapter 1 that the cone had trigonometric parameterization

In[]:= pcone = {s Cos[t], s Sin[t], s};

So f234 has trigonometric parameterization

SurfaceStoryPartII.nb | 116

In[]:= TransformationFunction [Inverse [A]][{s Cos[t], s Sin[t], s}]

Out[]= -0.664603 + 0.387474 s + 0.421563 s Cos[t] - 0.163377 s Sin[t],

-0.376321 - 0.155234 s - 0.906799 s Cos[t] + 0.259415 s Sin[t],

0.920841 - 0.97464 s + 1.26591 × 10-15 s Cos[t] - 1.01003 s Sin[t]

or rational parameterization

In[]:= prcone = TransformationFunction [Inverse [A]][

{2 s u / (1 + u^2), s (1 - u^2) / (1 + u^2), s (1 + u^2) / (1 + u^2)}]

Out[]= -0.664603 + 0.387474 s +
0.843126 s u

1 + u2
-
0.163377 s 1 - u2

1 + u2
,

-0.376321 - 0.155234 s -
1.8136 s u

1 + u2
+
0.259415 s 1 - u2

1 + u2
,

0.920841 - 0.97464 s +
2.53181 × 10-15 s u

1 + u2
-
1.01003 s 1 - u2

1 + u2


2.4.2 Second Example

We look at the example of a cylinder above. We start out the same

In[]:= g234 = cyl

Out[]= 0.982079 x2 + 0.982079 y2 - 0.982079 z2

In[]:= Linesg234a = analyzeQSNS [g234, {x, y, z}]

» One Line

Out[]= {0.773121 - 0.0881251 t, 3.41867 - 0.38968 t, -3.505 + 0.399521 t}

So we do have a cone or cylinder .

In[]:= pg234a = Linesg234a /. {t → 0}

Out[]= {0.773121 , 3.41867, -3.505 }

In[]:= Linesg234b = analyzeQSNS [g234, {x, y, z}]

» One Line

Out[]= {1.84396 - 0.525789 t, -0.578447 + 0.164939 t, -1.93256 + 0.551053 t}

In[]:= pg234b = Linesg234b /. {t → 0}

Out[]= {1.84396, -0.578447 , -1.93256 }

In[]:= pg234c = pLineIntersectionMD [Linesg234a , Linesg234b , t, {x, y, z}, .003]

Out[]= 6.98723 × 10-11, 8.19944 × 10-11, 1.41363 × 10-10 

We see this lines are parallel, intersecting in an infinite point .

117 | SurfaceStoryPartII.nb

In[]:= Show [ContourPlot3D [{g234 ⩵ 0}, {x, -4, 4},

{y, -6, 6}, {z, -3, 3}, Mesh → None, MaxRecursion → 5],

ParametricPlot3D [{Linesg234a , Linesg234b }, {t, -6, 6}, PlotStyle → Green],

Graphics3D [{Red, PointSize [.04], Point [{pg234a, pg234b }]}],

Axes → False, Boxed → False, ImageSize → Small]

Out[]=

Now we rotate our cylinder by

In[]:= A234 = m2TM [RotationMatrix [{Take [pg234c, 3], {0, 0, 1}}]];

A234 // MatrixForm

Out[]//MatrixForm=

0.913915 -0.101019 -0.393133 0

-0.101019 0.881455 -0.461337 0

0.393133 0.461337 0.79537 0

0 0 0 1

In[]:= k = FLTNS [g234, A234, {x, y, z}]

Out[]= 0.678511 x2 - 0.712467 x y + 0.564043 y2 + 1.22833 x z + 1.44143 y z - 0.260475 z2

so

In[]:= FLTNS [k, CC3, {x, y, z}]

Out[]= -0.260475 + 1.22833 x + 0.678511 x2 + 1.44143 y - 0.712467 x y + 0.564043 y2

is the cone, which was our goal . So we have transformed g234 to the standard cone as advertised.

Note that unlike our cone this required a projective transformation.

In[]:= CC3.A234 // MatrixForm

Out[]//MatrixForm=

0.913915 -0.101019 -0.393133 0.

-0.101019 0.881455 -0.461337 0.

0. 0. 0. 1.

0.393133 0.461337 0.79537 0.

2.5 Case of no real lines

I illustrate with a randomly generated quadric without looking at the plot.

SurfaceStoryPartII.nb | 118

In[]:= f235 = -2.031178358884528` + 4.17957755275523` x +

4.997732894861038` x2 + 4.016412314718252` y + 5.405655213618456` x y -

4.774616171824391` y2 - 0.3635208665574865` z + 2.1158591510475233` x z -

1.9584210592684848` y z - 3.6055350881202237` z2

Out[]= -2.03118 + 4.17958 x + 4.99773 x2 + 4.01641 y + 5.40566 x y -

4.77462 y2 - 0.363521 z + 2.11586 x z - 1.95842 y z - 3.60554 z2

Our usual first step is

In[]:= p235 = analyzeQSNS [f235, {x, y, z}]

» No lines , random point given

In[]:= p235 = {-3.6256394688081572` , 2.2338455675877786` , -2.1132818872948613` }

Out[]= {-3.62564, 2.23385, -2.11328 }

We must show this is projectively equivalent to the unit sphere . We next find the tangent plane.

In[]:= tp235 = tangentPlaneNS [f235, p235, {x, y, z}]

Out[]= -9.47573 - 24.4564 x - 32.7754 y + 2.82935 z

We apply our iTransform3D specializing at this tangent plane, that is making tp235 invisible.

In[]:= iT235 = iTransform3D [tp235]

Out[]= {{0.309503 , -0.941557 , 0.132962 , -0.381119 }, {-0.70722, -0.134457 , 0.69409, -1.58421 },

{-0.635647 , -0.308856 , -0.707503 , 3.56495 }, {-1.03337, -1.38487, 0.11955, -0.400382 }}

In particular p235 goes to

In[]:= q235 = fltiMD [p235, iT235]

Out[]= {-3.88754, -0.787249 , 6.67479, 0}

and our quadric now has equation in this specialization

In[]:= f235b = FLTNS [f235, iT235, {x, y, z}]

Out[]= -7.0792 + 10.9293 x - 8.91098 x2 + 32.5164 y - 28.4045 x y -

25.1027 y2 + 13.7463 z - 13.73 x z - 22.4648 y z - 5.32312 z2

We now rotate a vector in the direction of q235 to {0,0,1} using a rotation matrix about the origin.

In[]:= R235 = m2TM [RotationMatrix [{Take [q235, 3], {0, 0, 1}}]]

Out[]= {{0.865196 , -0.0272985 , 0.500689 , 0}, {-0.0272985 , 0.994472 , 0.101392 , 0},

{-0.500689 , -0.101392 , 0.859668 , 0}, {0, 0, 0, 1}}

Rotating our quadric f235b

In[]:= f235c = Chop [FLTNS [f235b, R235, {x, y, z}], 1.*^-7]

Out[]= -7.0792 + 15.451 x - 12.9935 x2 + 33.4321 y - 35.3577 x y - 26.3433 y2 + 3.04812 z

We see that this is a paraboloid from the equation. We will put this in standard form z = x2 + y2 and

119 | SurfaceStoryPartII.nb

then transform using our GlobalFunctions.nb transformation paraboloid2sphere.

An affine transformation involving a shear and translation will be sufficient.

In[]:= Clear [a, b, c, u]

Tgen = {{1, 0, 0, a}, {u, 1, 0, b}, {0, 0, 1, c}, {0, 0, 0, 1}};

In[]:= f235tg = FLTNS [f235c, Tgen, {x, y, z}]

Out[]= -7.0792 - 15.451 a - 12.9935 a2 - 33.4321 b - 35.3577 a b - 26.3433 b2 -

3.04812 c + 33.4321 a u + 35.3577 a2 u + 52.6867 a b u - 26.3433 a2 u2 + 15.451 x +

25.9869 a x + 35.3577 b x - 33.4321 u x - 70.7155 a u x - 52.6867 b u x +

52.6867 a u2 x - 12.9935 x2 + 35.3577 u x2 - 26.3433 u2 x2 + 33.4321 y + 35.3577 a y +

52.6867 b y - 52.6867 a u y - 35.3577 x y + 52.6867 u x y - 26.3433 y2 + 3.04812 z

In[]:= c0 = f235tg /. Thread [{x, y, z} → {0, 0, 0}]

Out[]= -7.0792 - 15.451 a - 12.9935 a2 - 33.4321 b - 35.3577 a b - 26.3433 b2 -

3.04812 c + 33.4321 a u + 35.3577 a2 u + 52.6867 a b u - 26.3433 a2 u2

In[]:= cx = Coefficient [f235tg, x] /. {y → 0}

Out[]= 15.451 + 25.9869 a + 35.3577 b - 33.4321 u - 70.7155 a u - 52.6867 b u + 52.6867 a u2

In[]:= cy = Coefficient [f235tg, y] /. {x → 0}

Out[]= 33.4321 + 35.3577 a + 52.6867 b - 52.6867 a u

In[]:= cxy = Coefficient [f235tg, x y]

Out[]= -35.3577 + 52.6867 u

In[]:= sol235tg = Solve [c0 ⩵ 0 && cx ⩵ 0 && cy ⩵ 0 && cxy ⩵ 0, {a, b, c, u}]

Solve : Solve was unable to solve the system with inexact coefficients . The answer was obtained by solving a

corresponding exact system and numericizing the result .

Out[]= {{a → 3.09277, b → -0.634545 , c → 4.70113, u → 0.671095 }}

In[]:= T235 = Tgen /. sol235tg 〚1〛;
T235 // MatrixForm

Out[]//MatrixForm=

1 0 0 3.09277

0.671095 1 0 -0.634545

0 0 1 4.70113

0 0 0 1

In[]:= f235d = FLTNS [f235c, T235, {x, y, z}]

Out[]= -1.12927 x2 - 26.3433 y2 + 3.04812 z

We can now put this in standard form for a paraboloid (parabolic ellipsoid in my notation) using a

homothety

SurfaceStoryPartII.nb | 120

In[]:= Homth235 =

{{Sqrt [-Coefficient [f235d, x^2]], 0, 0, 0}, {0, Sqrt [-Coefficient [f235d, y^2]], 0, 0},

{0, 0, Coefficient [f235d, z], 0}, {0, 0, 0, 1}};

Homth235 // MatrixForm

Out[]//MatrixForm=

1.06267 0 0 0

0 5.13258 0 0

0 0 3.04812 0

0 0 0 1

In[]:= FLTNS [f235d, Homth235 , {x, y, z}]

Out[]= -1. x2 - 1. y2 + 1. z

We are done as we have in GlobalFunctionsS.nb

In[]:= FLTNS [z - x^2 - y^2, paraboloid2sphere , {x, y, z}]

Out[]= 1 - x2 - y2 - z2

so the projective transformation

In[]:= A235 = paraboloid2sphere .Homth235 .T235.R235.iT235;

A235 // MatrixForm

Out[]//MatrixForm=

-7.84687 -8.89527 -0.338903 2.53791

-3.42938 -5.57762 0.118585 0.276449

-0.72582 0.469251 1.87743 0.287739

-8.88023 -10.2801 -0.219354 2.13753

gives the sphere to 7 decimal places

In[]:= roundPolyMD [FLTNS [f235, A235, {x, y, z}], {x, y, z}, 5.*^-7]

Out[]= 1. - 1. x2 - 1. y2 - 1. z2

2.6 Case of 2 real lines

This is the hard case of this section since a hyperboloid can be either a parabolic or an elliptic hyper -

boloid a situation where we really need projective geometry . It is the reason this section is in Chapter

2.

2.6.1 Special case

Here we start with the standard hyperboloid and a specific, not random, point and transform this to the

saddle surface z = x y. This is an easier target than the standard hyperboloid.

In[]:= f2361 = x^2 + y^2 - z^2 - 1;

p0 = {1, 0, 0};

Rather than using analyzeQSNS we manually find the lines on the hyperboloid through p0. Without

repeating the work we get parametric lines

121 | SurfaceStoryPartII.nb

In[]:= l2361a = {1, t, t};

l2361b = {1, t, -t};

These clearly go through point p0 = {1, 0, 0} and checking

In[]:= f2361 /. Thread [{x, y, z} → l2361a]

f2361 /. Thread [{x, y, z} → l2361b]

Out[]= 0

Out[]= 0

These lines must lie in the tangent plane

In[]:= tp2361 = tangentPlaneNS [f2361, p0, {x, y, z}]

Out[]= -2 + 2 x

Or equivalently, x - 1 We now, as we have been doing, make this plane invisible with a Transformation

function which will actually put these lines in the invisible plane of the target surface. In this case we

use a special transformation to keep it as exact as possible but with last row {1, 0, 0, -1} to make x - 1

invisible.

In[]:= A2361 = {{0, 1, 1, 0}, {0, -1, 1, 0}, {1, 0, 0, 1}, {1, 0, 0, -1}};

f2361b = FLTNS [f2361, A2361, {x, y, z}]

Out[]= -x y + z

Magically this works perfectly already. This is a saddle surface. We notice what happens to the lines.

In[]:= pl2361a = fltiMD [l2361a, A2361]

Out[]= {2 t, 0, 2, 0}

In[]:= pl2361b = fltiMD [l2361b, A2361]

Out[]= {0, -2 t, 2, 0}

Inversely the transformation matrix taking the saddle surface back to the sphere is

In[]:= ss2stdHyperboloid = Inverse [A2361]

Out[]= 0, 0,
1

2
,
1

2
, 

1

2
, -

1

2
, 0, 0, 

1

2
,
1

2
, 0, 0, 0, 0,

1

2
, -

1

2


We have seen transformation matrices are homogeneous so this could be multiplied by 2 to get integer

coordinates, but then the standard formula would be multiplied by the constant
1

4
.

2.6.2 General Case

We consider the following randomly defined hyperboloid . Some of the intermediate calculations will

be suppressed in the interest of readability.

SurfaceStoryPartII.nb | 122

In[]:= f2362 = -5.798523022437465` + 4.434386417880354` x +

3.667824022372237` x2 - 4.502072645249173` y + 2.7484271965897165` x y -

1.6804920132021834` y2 + 3.698654556429698` z - 3.6995461041438222` x z -

2.747070301170911` y z + 2.4907568140405516` z2

Out[]= -5.79852 + 4.43439 x + 3.66782 x2 - 4.50207 y + 2.74843 x y -

1.68049 y2 + 3.69865 z - 3.69955 x z - 2.74707 y z + 2.49076 z2

We apply, as usual, analyzeQSNS, but to avoid the randomness we just give the answer which does

identify this quadric surface as a hyperboloid.

In[]:= Lines2362 = {{0.19748140781913295` + 0.6308293338440896` t, -0.4728487245016963` -

0.8387004948688648` t, -2.2890238330740265` + 0.6933215712245515` t},

{0.19748140781913295` - 2.9636082441151346` t, -0.4728487245016963` -

4.785522759124684` t, -2.2890238330740265` - 8.048199525301122` t}}

Out[]= {{0.197481 + 0.630829 t, -0.472849 - 0.8387 t, -2.28902 + 0.693322 t},

{0.197481 - 2.96361 t, -0.472849 - 4.78552 t, -2.28902 - 8.0482 t}}

The plot is

In[]:= Show [ContourPlot3D [f2362 ⩵ 0, {x, -15, 15}, {y, -15, 15}, {z, -15, 15}, Mesh → None],

ParametricPlot3D [Lines2362 , {t, -15, 15}, PlotStyle → Blue]]

Out[]=

The intersection point and tangent plane at that point are

In[]:= p2362 = pLineIntersectionMD [Lines2362 〚1〛, Lines2362 〚2〛, t, {x, y, z}, dTol]

Out[]= {0.197481 , -0.472849 , -2.28902 }

In[]:= tp2362 = Expand [tangentPlaneNS [f2362, p2362, {x, y, z}] / 3]

Out[]= -5.68628 + 4.3506 x + 1.30601 y - 2.3786 z

The main trick is to make this tangent plane invisible by a FLT transformation, in particular the

transformation

123 | SurfaceStoryPartII.nb

In[]:= iT2362 = iTransform3D [tp2362];

iT2362 // MatrixForm

Out[]//MatrixForm=

0.494825 -0.572427 -0.653816 1.07695

0.113209 0.788436 -0.604609 0.0951902

0.861587 0.225158 0.454942 -1.09295

1.46962 0.441167 -0.803484 -1.92081

In[]:= f2362b = FLTNS [f2362, iT2362, {x, y, z}]

Out[]= -0.788052 - 0.278701 x + 1.86919 x2 + 6.96613 y + 1.52586 x y -

4.45715 y2 - 0.8878 z + 6.14318 x z - 2.69125 y z + 3.63058 z2

Note that the following points on these lines are invisible (infinite) points and hence the two lines go to

invisible lines.

In[]:= q1 = fltiMD [p2362, iT2362]

q2 = fltiMD [Lines2362 〚1〛 /. {t → 1}, iT2362]

q3 = fltiMD [Lines2362 〚2〛 /. {t → .1}, iT2362]

Out[]= {2.94194, 1.1287, -2.07064, 0}

Out[]= {3.28088, 0.119666 , -1.40054, 0}

Out[]= {3.59543, 1.20444, -2.79987, 0}

This surface is a saddle surface .

In[]:= ContourPlot3D [f2362b ⩵ 0, {x, -5, 5},

{y, -5, 5}, {z, -5, 5}, Mesh → None, ImageSize → Small]

Out[]=

Here is where we bring in homogeneous coordinates to describe the invisible set of this saddle surface.

The saddle surface itself has homogeneous coordinates which we denote by different font letters to

emphasize that these coordinates are homogeneous.

In[]:= F2362h = HomogNS [f2362b, {x, y, z}, {, , ℤ, }]

Out[]= -0.788052 2
- 0.278701   + 1.86919 2

+ 6.96613   +

1.52586   - 4.45715 2 - 0.8878  ℤ + 6.14318  ℤ - 2.69125  ℤ + 3.63058 ℤ2

The invisible set is then the union of these two lines

SurfaceStoryPartII.nb | 124

In[]:= f2362h = F2362h /. { → 0}

Out[]= 0. + 1.86919 2
+ 1.52586   - 4.45715 2 + 6.14318  ℤ - 2.69125  ℤ + 3.63058 ℤ2

We plot this viewing each homogeneous point as an affine line though the non- point {0,0,0}. So the

picture of this looks like an affine surface, in fact a degenerate quadric consisting of two planes. One

reason we gave the details of this rather obvious case is that we can, to some extent just follow our

earlier work, however we must preserve homogeneity and in particular our transformation matrices

must have the last column as {{0},{0},{0},{1}}, the final 1 could actually be any non-zero number by

homogeneity. In particular we can not use translations which will make it a bit more difficult.

In[]:= Show [ContourPlot3D [f2362h ⩵ 0, {, -1, 6}, {, -1, 2}, {ℤ, -5, 5}, Mesh → None,

MaxRecursion → 3], Graphics3D [{{Red, Ball [Take [q2, 3], .07], Ball [Take [q3, 3], .07]},

{Green, Ball [Take [q1, 3], .07]}, {Black, Ball [{0, 0, 0}, .07]}}]]

Out[]=

Note the black ball indicates the irrelevant point, {0,0,0}, as it is sometimes called, the green point is a

representative of the point of intersections of this projective lines and the red points represent the

image of q2, q3 above.

We can still decompose f2362h as the union of this two planes but we have to think affinely, the results

are

In[]:= plane2362h1 = 3.8439595680212264`  + 7.708625536063979`  + 9.66340805980829` ℤ
Out[]= 3.84396  + 7.70863  + 9.66341 ℤ

125 | SurfaceStoryPartII.nb

In[]:= plane2362h2 = 0.4862666360716048`  - 0.5782033378346113`  + 0.37570414375418054` ℤ
Out[]= 0.486267  - 0.578203  + 0.375704 ℤ

Note they are homogeneous , no constant term. We rotate the first plane to the x-plane, I mean the first

line to =0, again we cheat and work as if affine planes. Our transform is scalar, independent of

variables.

In[]:= Rot1 = planeRotate3D [plane2362h1 /. Thread [{, , ℤ} → {x, y, z}], x]

Out[]= {{0.296939 , 0.595477 , 0.746481 , 0.}, {-0.595477 , 0.726592 , -0.34274, 0.},

{-0.746481 , -0.34274, 0.570347 , 0.}, {0., 0., 0., 1.}}

In[]:= f2362h3 = Chop [FLTNS [f2362h, Rot1, {, , ℤ}], 1.*^-10]

Out[]= 1.04262 2
- 10.8539   + 0.640354  ℤ

In[]:= rotpl2 = Chop [FLTNS [plane2362h2 /. Thread [{, , ℤ} → {x, y, z}], Rot1, {x, y, z}], 1.*^-10]

Out[]= 0.0805404 x - 0.838448 y + 0.0494662 z

In[]:= u1 = Chop [fltMD [Take [q1, 3], Rot1], 1.*^-10]

Out[]= {0, -0.222062 , -3.76393 }

In[]:= u3 = fltMD [Take [q2, 3], Rot1]

Out[]= -1.37663 × 10-11, -1.38672, -3.28892 

We need another rotation to take u1 to a point on the y - axis

In[]:= Rot2 = m2TM [Chop [RotationMatrix [{u1, {0, 0, -4}}], 1.*^-11]]

Out[]= {{1., 0, 0, 0}, {0, 0.998264 , -0.058895 , 0}, {0, 0.058895 , 0.998264 , 0}, {0, 0, 0, 1}}

In[]:= f2362h4 = FLTNS [f2362h3, Rot2, {, , ℤ}]

Out[]= 1.04262 2
- 10.8728   + 3.11173 × 10-11  ℤ

We find a point on the other component and use a shear to place the second affine plane, (projective

line) to =0.

In[]:= Sh2 = {{-10.872815069250905` , 0, 0, 0}, {b, 1, 0, 0}, {0, 0, 1, 0}, {0, 0, 0, 1}}

Out[]= {{-10.8728, 0, 0, 0}, {b, 1, 0, 0}, {0, 0, 1, 0}, {0, 0, 0, 1}}

In[]:= f2362h5 = Chop [FLTNS [f2362h4, Sh2, {, , ℤ}], 1.*^-11]

Out[]= 0.00881945 2
+ 0.0919725 b 2

+ 1.  

So we have transformed the invisible curve of saddle surface f2362b to the reducible plane projective

curve  . Our big trick, which will be used also in the next section, is that since our transformation

functions were actually 3 dimensional they will work on our original affine saddle surface.

In[]:= f2362c = Chop [FLTNS [f2362b, Sh2.Rot2.Rot1, {x, y, z}], 1.*^-10]

Out[]= -0.788052 - 0.312954 x + 0.522437 b x +

0.00881945 x2 + 0.0919725 b x2 + 5.68036 y + 1. x y - 2.35542 z

SurfaceStoryPartII.nb | 126

The basic surface is what we want but we have introduced some unwanted translations that we can

remove and some coefficients that can be adjusted. Without going through the details since we have

done this before we find the correct translation/homothety that does the trick

In[]:= T2362 = {{1, 0, 0, 5.680359335436788` }, {0, 1, 0, -0.3630514858797215` },

{0, 0, 1, -0.5409691513012265` }, {0, 0, 0, 2.35542208613845` }};

T2362 // MatrixForm

Out[]//MatrixForm=

1 0 0 5.68036

0 1 0 -0.363051

0 0 1 -0.540969

0 0 0 2.35542

In[]:= FLTNS [f2362c, T2362, {x, y, z}]

Out[]= -0.0212691 x - 0.221802 b x + 0.00881945 x2 + 0.0919725 b x2 + 1. x y - 1. z

which was our goal . Given differently

In[]:= A2362 = T2362.Sh2.Rot2.Rot1.iT2362;

A2362 =

-0.2085799208652234` 0.7465627495536818` -0.7044539966396092` -1.2705164308724117`

-0.18615512434182432` 0.6542416058450221` 1.0105022947355933` -0.9752829505125605`

-1.2120746510033826` 0.6394032181172619` 0.05380172151374432` -0.6045336199227057`

0.3444419634581145` 1.4443536459572852` 0.0697838356683156` -0.8308561999355916`

Out[]= {{-0.20858, 0.746563 , -0.704454 , -1.27052 }, {-0.186155 , 0.654242 , 1.0105, -0.975283 },

{-1.21207, 0.639403 , 0.0538017 , -0.604534 }, {0.344442 , 1.44435, 0.0697838 , -0.830856 }}

In[]:= Chop [FLTNS [f2362, A2362, {x, y, z}], 1.*^-10]

Out[]= -0.0212691 x - 0.221802 b x + 0.00881945 x2 + 0.0919725 b x2 + 1. x y - 1. z

Finally, bringing in the transform ss2stdHyperboloid we transform our random hyperboloid f2362 to

the standard hyperboloid .

In[]:= Chop [FLTNS [f2362, ss2stdHyperboloid .A2362, {x, y, z}], 1.*^-10]

Out[]= 1. - 1. x2 + 0.0212691 y + 0.221802 b y - 0.0212691 x y - 0.221802 b x y -

0.991181 y2 + 0.0919725 b y2 + 0.0212691 z + 0.221802 b z - 0.0212691 x z -

0.221802 b x z + 0.0176389 y z + 0.183945 b y z + 1.00882 z2 + 0.0919725 b z2

2.7 Rationality of quadric surfaces.

The results of this section show that each non-degenerate quadric surface is a rational surface, since

each can be given as a Transformation Function applied to one of the standard types and we know

each standard type is rational. It is actually easier to work from our paraboloid and saddle surface as

they have obvious parameterizations:

In[]:= Clear [x, y, z, s, t]

127 | SurfaceStoryPartII.nb

In[]:= paraboloid := 
2 t

1 + t^2
s,

1 - t^2

1 + t^2
s, s^2

In[]:= saddleSurface := {s, t, s t}

In[]:= (z - x y) /. Thread [{x, y, z} → saddleSurface]

Out[]= 0

In particular we get the parameterizations

In[]:= sphere = Simplify [fltMD [paraboloid , paraboloid2sphere]];

In[]:= sphere = 
-1 + s2

1 + s2
,

4 s t

1 + s2 × 1 + t2
, -

2 s -1 + t2
1 + s2 × 1 + t2

;

In[]:= hyperboloid = Simplify [fltMD [saddleSurface , ss2stdHyperboloid]];

In[]:= hyperboloid = 
1 + s t

-1 + s t
,

s - t

-1 + s t
,

s + t

-1 + s t
;

2.8 Transitivity of symmetries of non-singular quadric surfaces.

Perhaps you have noticed that if one point on a non-singular quadric surface , ellipsoid or hyperboloid,

lies on no lines in the conic then this is true for all points. Also with hyperboloids if one point on a

hyperboloid lies on two lines then all points share this property. This is because projective linear

transformations, in particular FLT’s, are transitive on these surfaces, that is given two points on the

surface there is at least one such transformation taking the first point to the second.

For ellipsoids this is now obvious, since the standard example is the unit sphere about the origin and

any point on the sphere can be rotated to any other point with a FLT rotation, in fact a linear one. This

is not so obvious for the hyperboloid.

But note that for the the random hyperboloid in 2.3.6 the random point is mapped by our transforma -

tion to the point {1,0,0} in the standard hyperboloid.

In[]:= fltMD [p2362, ss2stdHyperboloid .A2362]

Out[]= {1., -0.530437 × (0.219697 × (-15.2929 + 1. b) - 0.245577 × (-10.5376 + 1. b) -

0.0846706 × (-0.0813494 + 1. b) + 0.110551 × (6.921 + 1. b)),

-0.530437 × (-0.110551 × (-4.10603 + 1. b) + 0.0846706 × (-2.35658 + 1. b) +

0.245577 × (10.2585 + 1. b) - 0.219697 × (12.6249 + 1. b))}

So following this method we expect that any given point p on any hyperboloid we can find a FLT taking

that hyperboloid to the standard one with p going to {1,0,0}. Thus if p, q are points on a given hyper -

boloid there are FLT transformation F1, F2 taking p, q to {1,0,0}. But then F2-1.F1 takes p to q.

As with ellipsoids it is enough to illustrate on the standard hyperboloid. The rational transformation

SurfaceStoryPartII.nb | 128

In[]:= hyperboloid

Out[]= 
1 + s t

-1 + s t
,

s - t

-1 + s t
,

s + t

-1 + s t


gives a pseudo-random rational point on the standard hyperboloid chosen for a nice plot below

In[]:= psh = hyperboloid /. {s → 3, t → 33 / 50}

Out[]= 
149

49
,
117

49
,
183

49


In[]:= psh = N
149

49
,
117

49
,
183

49


Out[]= {3.04082, 2.38776, 3.73469 }

We use the method of 2.3.6.2 to find a FLT symmetry of this standard hyperboloid which takes psh to

{1,0,0}.

In[]:= B2362 = {{0.13816845787030158` , 0.12331372237686955` ,

-0.8029079916135967` , 0.2281668087676449` }, {-0.49454148501616907` ,

-0.43338569397869237` , 0.42355638183243205` , 0.9567752977057387` },

{-0.466647613790002` , 0.6693815164894659` , -0.03563958055734917` ,

-0.046226525154333176` }, {-0.8416212606866844` ,

-0.6460513586376766` , 0.40045790433223194` , 0.5503795350045073` }};

B2362 // MatrixForm

Out[]//MatrixForm=

0.138168 0.123314 -0.802908 0.228167

-0.494541 -0.433386 0.423556 0.956775

-0.466648 0.669382 -0.0356396 -0.0462265

-0.841621 -0.646051 0.400458 0.55038

Check

In[]:= h1 = FLTNS [x^2 + y^2 - z^2 - 1, B2362, {x, y, z}];

h1 = Expand [h1 / Coefficient [h1, x^2]]

Out[]= -1. + 1. x2 + 1. y2 - 1. z2

In[]:= fltMD [psh, B2362]

Out[]= 1., -4.32023 × 10-16, 1.75509 × 10-16 

This works! The reader, however, should be beware that numerical issues can arise if these points are

two close together so I am not attempting a black box algorithm to find all such transformations . The

transitivity property should be considered theoretical rather than algorithmic .

Thus B2362 is a projective symmetry of the standard hyperbola

In[]:= h = x^2 + y^2 - z^2 - 1;

129 | SurfaceStoryPartII.nb

 because the last row is not {0,0,0,1}, with inverse

In[]:= A2362 = Inverse [B2362];

A2362 // MatrixForm

Out[]//MatrixForm=

-0.20858 0.746563 -0.704454 -1.27052

-0.186155 0.654242 1.0105 -0.975283

-1.21207 0.639403 0.0538017 -0.604534

0.344442 1.44435 0.0697838 -0.830856

This takes {1, 0, 0} to

In[]:= psh = fltMD [{1, 0, 0}, A2362]

Out[]= {3.04082, 2.38776, 3.73469 }

It is interesting to see how this transformation really works. It is easier to look at the transform of

curve on the surface rather than just points. So consider the parametric circle where h intersects the

z = 0 plane

In[]:= circ = 
2 t

1 + t2
,
1 - t2

1 + t2
, 0;

We might expect the image to be the horizontal circle through psh.

In[]:= circA = Simplify [fltMD [circ, A2362]]

Out[]= 
0.230288 + 0.18335 t + 0.886546 t2

-0.269644 - 0.302778 t + 1. t2
,

0.141104 + 0.163638 t + 0.716208 t2

-0.269644 - 0.302778 t + 1. t2
,
0.0153259 - 1.06546 t - 0.546735 t2

0.269644 + 0.302778 t - 1. t2


SurfaceStoryPartII.nb | 130

In[]:= Show [ContourPlot3D [h ⩵ 0, {x, -5, 5}, {y, -6, 6}, {z, -6, 6}, Mesh → None],

ParametricPlot3D [{circ, circA }, {t, -10, 10}, PlotStyle → {Blue, Green }],

Graphics3D [{Red, Ball [psh, .2], Ball [{1, 0, 0}, .2]}]]

Out[]=

Instead we get a vertical plane hyperbola through the point psh.

Being used to rigid motions of the quadric surfaces it is hard to picture a motion that does this. So we

should not think of projective transformations as motions.

2.9 Affine and Projective Symmetries of Quadric Surfaces

The example above shows that our main theorem implies that the symmetry group of a quadric surface

is isomorphic to the symmetry group of our standard example even though they have distinct

Euclidean symmetries.

There are several ways to find symmetries, one, like above is to construct, using the constructions

above but with two different points two different projective linear equivalences A1, A2 from quadric Q1

to quadric Q2. Then A1.Inverse[A2] is a symmetry of Q1.

On the other hand if matrix S gives a symmetry on one of our standard quadrics in our chart

and A : S⟶Q is a projective equivalence then S1 = A.S.Inverse[A] is a symmetry on Q. So once we

know the symmetry groups of the standard quadrics we know the symmetry groups of all quadric

surfaces.

Finally, starting from known isometries, that is linear symmetries of our standard quadrics and perhaps

examples as constructed above, we can deduce certain symmetries of the standard quadrics which

generate the symmetry groups.

131 | SurfaceStoryPartII.nb

2.9.1 Ellipsoids, Cones and Cylinders

A simple example is an ellipsoid with the coordinate axes as axes so the transform to the sphere is just a

homothety.

In[]:= ell = x^2 + 4 y^2 + 4 z^2 - 16;

ell2sphere = {{1, 0, 0, 0}, {0, 2, 0, 0}, {0, 0, 2, 0}, {0, 0, 0, 4}};

In[]:= FLTNS [ell, ell2sphere , {x, y, z}]

Out[]= -1 + x2 + y2 + z2

An obvious circle on the ellipsoid is the vertical circle is given parametrically by

In[]:= ecirc = 0,
4 t

1 + t2
,
2 × 1 - t2
1 + t2

;

Let

In[]:= R45 = {{0.7071067811865475` , -0.7071067811865475` , 0.`, 0},

{0.7071067811865475` , 0.7071067811865475` , 0.`, 0}, {0.`, 0.`, 1.`, 0}, {0, 0, 0, 1}}

Out[]= {{0.707107 , -0.707107 , 0., 0}, {0.707107 , 0.707107 , 0., 0}, {0., 0., 1., 0}, {0, 0, 0, 1}}

be a 45o rotation about the z-axis which is a Euclidean symmetry of the sphere.

Then

In[]:= R45ell = Inverse [ell2sphere].R45.ell2sphere ;

R45ell // MatrixForm

Out[]//MatrixForm=

0.707107 -1.41421 0. 0.

0.353553 0.707107 0. 0.

0. 0. 1. 0.

0. 0. 0. 1.

Note

In[]:= Det[R45ell]

Out[]= 1.

so this is a "rotation" .

If the reader has not already figured it out, the symmetries of a surface are given by exactly those

invertible 4*4 matrices which fix FLTNS on the surface . Points on the surface remain on the surface,

but are not pointwise fixed . Invertibility insures this transformation is 1 - 1 and onto this surface .

In[]:= FLTNS [ell, R45ell, {x, y, z}]

Out[]= -16. + 1. x2 + 4. y2 + 4. z2

But the action of R45ell on the circle is

SurfaceStoryPartII.nb | 132

In[]:= circr45 = Chop [fltMD [ecirc, R45ell]]

Out[]= -
5.65685 t

1 + t2
,
2.82843 t

1 + t2
,
2. × 1 - t2

1 + t2


In[]:= Show [ContourPlot3D [ell ⩵ 0, {x, -4, 4}, {y, -4, 4}, {z, -4, 4}, Mesh → None],

ParametricPlot3D [{ecirc, circr45 }, {t, -10, 10}, PlotStyle → {Blue, Green }],

Axes → None, Boxed → False, ImageSize → Small]

Out[]=

This symmetry is not just moving the circle, but the entire ellipsoid. From a Euclidean point of view this

ellipsoid would only have 45o rotations, and other arbitrary rotations, about the major axis. We would

have 180 o rotations and reflections about the minor axes but no others. But here we have an affine

rotation of arbitrary angle about any line through the origin.

We note that we don’t really need our big theorem. The transform to the circle is just a homothety.

Generalizing from this discussion we see that the symmetry group of any ellipsoid is the orthogonal

group  (4).

In the case of a cone consider the symmetry

In[]:= ssCone = {{1.7320508075688772` , 0.`, 1.4142135623730951` , 0.`},

{2.`, 1.7320508075688772` , 2.449489742783178` , 0.`},

{2.449489742783178` , 1.4142135623730951` , 3.`, 0.`}, {0.`, 0.`, 0.`, 1.`}}

Out[]= {{1.73205, 0., 1.41421, 0.}, {2., 1.73205, 2.44949, 0.},

{2.44949, 1.41421, 3., 0.}, {0., 0., 0., 1.}}

In[]:= ssCone // MatrixForm

Out[]//MatrixForm=

1.73205 0. 1.41421 0.

2. 1.73205 2.44949 0.

2.44949 1.41421 3. 0.

0. 0. 0. 1.

In[]:= FLTNS [x^2 + y^2 - z^2, ssCone, {x, y, z}]

Out[]= 1. x2 + 1. y2 - 1. z2

Note that this is actually a linear transformation .

133 | SurfaceStoryPartII.nb

In[]:= circ1 = 
2 t

1 + t2
,
1 - t2

1 + t2
, 1;

circ1ss = fltMD [circ1, ssCone]

Out[]= 1.41421 +
3.4641 t

1 + t2
, 2.44949 +

4. t

1 + t2
+
1.73205 × 1 - t2

1 + t2
, 3. +

4.89898 t

1 + t2
+
1.41421 × 1 - t2

1 + t2


In[]:= Show [ContourPlot3D [x^2 + y^2 ⩵ z^2, {x, -6, 6}, {y, -6, 6}, {z, -3, 6}, Mesh → None],

ParametricPlot3D [{circ1, circ1ss }, {t, -20, 20}, PlotStyle → {Green, Magenta }],

ImageSize → Small, Axes → False, Boxed → False]

Out[]=

In the case of a cone consider the symmetry of the cylinder x2 + y2 - z2 moving ssCone to the cylinder

by CC3.

In[]:= sscyl = CC3.ssCone.Inverse [CC3]

Out[]= {{1.73205, 0., 0., 1.41421 }, {2., 1.73205, 0., 2.44949 },

{0., 0., 1., 0.}, {2.44949, 1.41421, 0., 3.}}

In[]:= sscyl // MatrixForm

Out[]//MatrixForm=

1.73205 0. 0. 1.41421

2. 1.73205 0. 2.44949

0. 0. 1. 0.

2.44949 1.41421 0. 3.

In[]:= FLTNS [x^2 + y^2 - 1, sscyl, {x, y, z}]

Out[]= -1. + 1. x2 + 1. y2

Note that unlike the cone, this is a projective transformation .

We can still use circ1 as it is also on the cone

In[]:= cyl1ss = Simplify [fltMD [circ1, sscyl]]

Out[]= 
0.891806 + 2.18447 t + 0.891806 t2

2.78361 + 3.08931 t + 1. t2
,

2.63689 + 2.52241 t + 0.452418 t2

2.78361 + 3.08931 t + 1. t2
,

0.630602 + 0.630602 t2

2.78361 + 3.08931 t + 1. t2


SurfaceStoryPartII.nb | 134

In[]:= Show [ContourPlot3D [x^2 + y^2 ⩵ 1, {x, -3, 3},

{y, -3, 3}, {z, -3, 7}, Mesh → None, ContourStyle → Opacity [.5]],

ParametricPlot3D [{circ1, cyl1ss }, {t, -20, 20}, PlotStyle → {Green, Magenta }],

ImageSize → Small, Axes → False, Boxed → False]

Out[]=

2.9.2 The group of symmetries of the Hyperbola

Given the huge amount of material online about hyperboloids as of this writing I have been unable to

find a source giving symmetries of the real hyperboloid. It may be that this is too complicated and

possibly not completely known. I don’t know the full story but given the above analysis I can say some

things.

We start with the easily described Euclidean geometry . The equation of the standard hyperboloid is

In[]:= h = x^2 + y^2 - z^2 - 1;

The obvious symmetries of the standard hyperbola are rotations about the z-axis as well as reflections

through planes containing the z-axis. In fact these are all isometries of the circle extended to 3 space.

There is also a horizontal reflection in the xy-plane. Finally from the symmetry A2362 found in section

2.3.6 as well as looking at symmetries of the saddle surface we find a simpler example of a rotation of

order 2 of the projective hyperboloid I will call the half turn. For the reader’s reference here, and in

Global Functions, is a summary. Note we give two versions of the rotations about the z-axis. For more

information on the rotations and reflections see the Mathematica documentation. All of these give

orthogonal 4×4 matrices, but note that since these will be used in TransformationFunctions they will

not all give geometrically orthogonal transformations.

In[]:= thetaR3D := N[m2TM [RotationMatrix [#, {0, 0, 1}]]] &

pRot3D [p_, q_] :=

If[p〚3〛 ⩵ 0 && q〚3〛 ⩵ 0, N[m2TM [RotationMatrix [{p, q}]]], Echo ["invalid points"];

Abort []]

vReflect3D := N[m2TM [ReflectionMatrix [#]]] &

hReflect3D := {{1, 0, 0, 0}, {0, 1, 0, 0}, {0, 0, -1, 0}, {0, 0, 0, 1}};

halfTurn := {{0, 0, 0, -1}, {0, 0, 1, 0}, {0, 1, 0, 0}, {-1, 0, 0, 0}}

Note all of these are symmetries of the standard hyperbola, the first 4 are obvious and the last is veri -

fied by

135 | SurfaceStoryPartII.nb

In[]:= FLTNS [h, halfTurn , {x, y, z}]

Out[]= 1 - x2 - y2 + z2

which sends equation h to - h.

2.9.3 The Group ℍ (4)

Looking at combinations of the above and their inverses we are lead to the following subgroup of the

real orthogonal group  (4) consisting of block matrices

In[]:= {{{B1, 0}, {0, B2}} // MatrixForm , {{0, B1}, {B2, 0}} // MatrixForm }

Out[]=  B1 0

0 B2
,

0 B1

B2 0


where B1, B2 are 2×2 orthogonal matrices. I call the set of all these matrices ℍ (4) and we will see that

these form a subgroup and are all symmetries of the hyperboloid.

A good way of seeing what these symmetries do is to look at their action on the unit circle in the xy

plane which lies on the hyperboloid.

circ = 
2 t

1 + t2
,
1 - t2

1 + t2
, 0;

Out[]= 
2 t

1 + t2
,
1 - t2

1 + t2
, 0

The functions, here and in GlobalFunctions,

In[]:= RHl3D := Module [{rr, R},

rr = RandomReal [{-1, 1}, 8];

Orthogonalize [SparseArray [{{1, 1} → rr〚1〛, {1, 2} → rr〚2〛, {2, 1} → rr〚3〛,
{2, 2} → rr〚4〛, {3, 3} → rr〚5〛, {3, 4} → rr〚6〛, {4, 3} → rr〚7〛, {4, 4} → rr〚8〛}]]]

RHr3D := Module [{rr, R},

rr = RandomReal [{-1, 1}, 8];

Orthogonalize [SparseArray [{{1, 3} → rr〚1〛, {1, 4} → rr〚2〛, {2, 3} → rr〚3〛,
{2, 4} → rr〚4〛, {3, 1} → rr〚5〛, {3, 2} → rr〚6〛, {4, 1} → rr〚7〛, {4, 2} → rr〚8〛}]]]

give random examples . Note they will differ each time they run, for example the following are different

SurfaceStoryPartII.nb | 136

In[]:= MatrixPower [RHl3D, 2] // MatrixForm

RHl3D.RHl3D // MatrixForm

Out[]//MatrixForm=

1. 0. 0. 0.

0. 1. 0. 0.

0. 0. 0.119376 -0.992849

0. 0. 0.992849 0.119376

Out[]//MatrixForm=

-0.980313 0.197449 0. 0.

-0.197449 -0.980313 0. 0.

0. 0. -0.711246 0.702943

0. 0. 0.702943 0.711246

So two random examples are (non evaluative)

In[]:= L1 =

0.2951434768979358` 0.9554529439195828` 0.` 0.`

0.9554529439195829` -0.29514347689793585` 0.` 0.`

0.` 0.` 0.20263181172652914` 0.979254996860585`

0.` 0.` -0.979254996860585` 0.20263181172652914`

Out[]= {{0.295143 , 0.955453 , 0., 0.}, {0.955453 , -0.295143 , 0., 0.},

{0., 0., 0.202632 , 0.979255 }, {0., 0., -0.979255 , 0.202632 }}

In[]:= R1 =

0.` 0.` 0.7698936188976082` 0.6381722460125828`

0.` 0.` 0.6381722460125827` -0.7698936188976082`

0.007857413066204117` 0.9999691300534768` 0.` 0.`

0.9999691300534768` -0.007857413066204117` 0.` 0.`

Out[]= {{0., 0., 0.769894 , 0.638172 }, {0., 0., 0.638172 , -0.769894 },

{0.00785741 , 0.999969 , 0., 0.}, {0.999969 , -0.00785741 , 0., 0.}}

Note

In[]:= FLTNS [h, L1, {x, y, z}]

FLTNS [h, R1, {x, y, z}]

Out[]= -1. + 1. x2 + 1. y2 - 1. z2

Out[]= 1. - 1. x2 - 1. y2 + 1. z2

In[]:= circL = Simplify [fltMD [circ, L1]]

circR = Simplify [fltMD [circ, R1]]

Out[]= 
4.71522 + 2.9131 t - 4.71522 t2

1. + t2
,

-1.45655 + 9.43043 t + 1.45655 t2

1. + t2
, 4.83268 

Out[]= 
81.2191 + 81.2191 t2

-1. + 254.529 t + 1. t2
,
97.9831 + 97.9831 t2

1. - 254.529 t - 1. t2
,
127.264 + 2. t - 127.264 t2

-1. + 254.529 t + 1. t2


137 | SurfaceStoryPartII.nb

In[]:= Show [ContourPlot3D [h ⩵ 0, {x, -6, 6}, {y, -6, 6}, {z, -6, 6}, Mesh → None],

ParametricPlot3D [{circ, circL, circR },

{t, -15, 15}, PlotStyle → {Green, Blue, Magenta }],

ImageSize → Small, Axes → False, Boxed → False, ImageSize → Medium]

Out[]=

So the le� type send the base circle to another horizontal circle while the right type sends it to a verti -

cal hyperbola.

We note that ℍ (4) is large enough to already be transitive on points. For example consider our

pseudo random point

In[]:= psh = {3.0408163265306136` , 2.387755102040818` , 3.734693877551021` }

Out[]= {3.04082, 2.38776, 3.73469 }

Using circR above

In[]:= Solve [circR〚3〛 ⩵ psh〚3〛, t]

Solve : Solve was unable to solve the system with inexact coefficients . The answer was obtained by solving a

corresponding exact system and numericizing the result .

Out[]= {{t → -7.37673 }, {t → 0.135561 }}

we have

In[]:= q0 = circ /. {t → 0.13556133358205716` }

Out[]= {0.26623, 0.963909 , 0}

In[]:= R3 = pRot3D [{1, 0, 0}, q0]

Out[]= {{0.26623, -0.963909 , 0., 0.},

{0.963909 , 0.26623, 0., 0.}, {0., 0., 1., 0.}, {0., 0., 0., 1.}}

In[]:= q1 = fltMD [{1, 0, 0}, R1.R3]

Out[]= {2.46734, -2.97661, 3.73469 }

SurfaceStoryPartII.nb | 138

In[]:= B1 = pRot3D [ReplacePart [q1, 3 → 0], ReplacePart [psh, 3 → 0]]

Out[]= {{0.026446 , -0.99965, 0., 0.},

{0.99965, 0.026446 , 0., 0.}, {0., 0., 1., 0.}, {0., 0., 0., 1.}}

In[]:= fltMD [q1, B1]

Out[]= {3.04082, 2.38776, 3.73469 }

So if

In[]:= B2 = B1.R1.R3;

B2 // MatrixForm

Out[]//MatrixForm=

0. 0. -0.617588 0.786501

0. 0. 0.786501 0.617588

0.965972 0.258648 0. 0.

0.258648 -0.965972 0. 0.

In[]:= fltMD [{1, 0, 0}, B2]

Out[]= {3.04082, 2.38776, 3.73469 }

which shows a member of ℍ (4) sending {1,0,0} to our pseudo-random point psh.

2.9.4 Another set of Symmetries of the Hyperboloid.

More experimentation with the constructions in 2.3.10 show there are additional symmetries of the

hyperboloid, somewhat like our symmetries of the non-spherical ellipsoid. Here is a continuous 1

parameter family sshyp[u] of strange linear symmetries for u ≥ 1.

of linear symmetries. Here we assume u is real, u ≥ 1.

In[]:= sshyp3D [u_] :=  u , 0, -1 + u , 0,
-1 + u, u , -1 + u u , 0,  -1 + u u , -1 + u , u, 0, {0, 0, 0, 1}

In[]:= sshyp3D [u] // MatrixForm

Out[]//MatrixForm=

u 0 -1 + u 0

-1 + u u -1 + u u 0

-1 + u u -1 + u u 0

0 0 0 1

Note

In[]:= Det[sshyp3D [u]]

Out[]= 1

In[]:= FLTNS [h, sshyp3D [u], {x, y, z}]

Out[]= -1 + x2 + y2 - z2

So these are all symmetries of the hyperbola with determinant 1 but not in ℍ (4). Note sshyp[1] is just

139 | SurfaceStoryPartII.nb

the identity symmetry. Here is an example for u = 3.

In[]:= sshyp3D [3] // MatrixForm

Out[]//MatrixForm=

3 0 2 0

2 3 6 0

6 2 3 0

0 0 0 1

In[]:= circss3 = Simplify [fltMD [circ, sshyp3D [3]]]

Out[]= 
2 3 t

1 + t2
,

3 + 4 t - 3 t2

1 + t2
,

2 1 + 2 3 t - t2

1 + t2


In[]:= Show [ContourPlot3D [h ⩵ 0, {x, -4, 4}, {y, -4, 4}, {z, -4, 4}, Mesh → None],

ParametricPlot3D [{circ, circss3 }, {t, -20, 20}, PlotStyle → {Green, Magenta }],

ImageSize → Small, Axes → False, Boxed → False]

Out[]=

Alternatively we may show the action of the transformation of the hyperboloid by drawing several

curves. I will suppress the code but the transformation sshyp3D[3] takes the curves in the le� plot to

those in the right, pushing one side of the hyperboloid up and the other down.

 , 

SurfaceStoryPartII.nb | 140

Note the plane containing the conic circss3 is

In[]:= FLTNS [z, sshyp [3], {x, y, z}]

Out[]= - 2 x - 6 y + 3 z

which passes through the origin which must happen since we have a linear transformation. To move

this away from the origin we can compose this transformation with a le� type transformation from ℍ

(4). Here are several examples

In[]:= ru = Sort [RandomReal [{1, 12}, 3]]

Out[]= {4.84493, 7.78546, 10.3032 }

In[]:= randho4 = Table [RHl3D, {3}];

Table [randho4 〚i〛 // MatrixForm , {i, 3}]

Out[]= 
0.960738 -0.277458 0. 0.

0.277458 0.960738 0. 0.

0. 0. 0.990014 -0.140968

0. 0. 0.140968 0.990014

,

-0.967219 0.253942 0. 0.

0.253942 0.967219 0. 0.

0. 0. 0.874658 -0.484741

0. 0. -0.484741 -0.874658

,

0.500231 -0.865892 0. 0.

-0.865892 -0.500231 0. 0.

0. 0. 0.179668 -0.983727

0. 0. 0.983727 0.179668



In[]:= Table [randho4 〚i〛.sshyp [ru〚i〛] // MatrixForm , {i, 3}]

Out[]= 
1.04789 -0.61072 0.686333 0.

4.30469 2.1147 4.69066 0.

4.27297 1.94127 4.79655 -0.140968

0.608429 0.276418 0.682983 0.990014

,

-0.975666 0.70856 -0.673781 0.

7.27159 2.69878 7.69152 0.

6.35726 2.27839 6.80962 -0.484741

-3.52324 -1.2627 -3.77393 -0.874658

,

-6.44992 -2.7794 -6.95173 0.

-7.43317 -1.60568 -7.53858 0.

1.75903 0.548008 1.85116 -0.983727

9.63116 3.00049 10.1356 0.179668



141 | SurfaceStoryPartII.nb

In[]:= parss = Table [Together [Simplify [fltMD [circ, randho4 〚i〛.sshyp [ru〚i〛]]]], {i, 3}]

Out[]= 
0.855834 × -1. + 3.43166 t + 1. t2

1.77472 + 1.70525 t + 1. t2
,

-
2.96344 × -1. - 4.07121 t + 1. t2

1.77472 + 1.70525 t + 1. t2
, -

2.91795 × -0.864599 - 4.10421 t + 1. t2
1.77472 + 1.70525 t + 1. t2

,

-
1.826 × -1. + 2.75394 t + 1. t2
-5.50808 - 18.1591 t + 1. t2

, -
6.95489 × -1. - 5.3888 t + 1. t2

-5.50808 - 18.1591 t + 1. t2
,

-
7.12073 × -0.649136 - 4.60149 t + 1. t2

-5.50808 - 18.1591 t + 1. t2
, -

0.985315 × -1. - 4.64124 t + 1. t2
-1.12739 - 6.82863 t + 1. t2

,

-
0.569223 × -1. - 9.25862 t + 1. t2

-1.12739 - 6.82863 t + 1. t2
,
0.543011 × 0.284461 - 2.29678 t + 1. t2

-1.12739 - 6.82863 t + 1. t2


In[]:= Table [Show [Show [ContourPlot3D [h ⩵ 0, {x, -5, 5}, {y, -5, 5}, {z, -5, 5}, Mesh → None],

ParametricPlot3D [parss〚i〛, {t, -30, 30}, PlotStyle → Blue],

Axes → False, Boxed → False, ImageSize → Small]], {i, 3}]

Out[]=  , , 

Here is another example

S4 = RHl3D.sshyp [7.3].RHr3D

In[]:= S4 = {{5.765471472798233` , -0.2088666170455097` , 2.9114996070358705` ,

5.080103995549325` }, {4.356696328800707` , -0.15783070438982646` ,

3.2175957450713106` , 3.10689411694907` }, {-4.769383016337672` ,

0.9267231581213656` , -2.776345846324982` , -3.8597582709183604` },

{5.52036682191551` , 0.4579519441664014` , 3.181455025937826` , 4.422953057585654` }}

Out[]= {{5.76547, -0.208867 , 2.9115, 5.0801 }, {4.3567, -0.157831 , 3.2176, 3.10689 },

{-4.76938, 0.926723 , -2.77635, -3.85976 }, {5.52037, 0.457952 , 3.18146, 4.42295 }}

In[]:= circS4 = Together [FullSimplify [fltMD [circ, S4]]]

Out[]= 
1.33391 × 0.921018 + 2.18019 t + 1. t2

1.231 + 2.78455 t + 1. t2
,

0.823386 × 0.903311 + 2.66895 t + 1. t2
1.231 + 2.78455 t + 1. t2

, -
1.20718 × 0.612775 + 1.99286 t + 1. t2

1.231 + 2.78455 t + 1. t2


SurfaceStoryPartII.nb | 142

In[]:= Show [Show [ContourPlot3D [h ⩵ 0, {x, -5, 5}, {y, -5, 5}, {z, -5, 5}, Mesh → None],

ParametricPlot3D [circA, {t, -30, 30}, PlotStyle → Blue],

Axes → False, Boxed → False, ImageSize → Small]]

Out[]=

I conjecture that all projective symmetries of the standard hyperboloid can be obtained this way but don’t

have a good argument at this time.

As mentioned above the symmetries of the standard hyperboloid generate symmetries of all hyper -

boloids. Recall that

In[]:= sss2h = ss2stdHyperboloid

Out[]= 0, 0,
1

2
,
1

2
, 

1

2
, -

1

2
, 0, 0, 

1

2
,
1

2
, 0, 0, 0, 0,

1

2
, -

1

2


is linear projective equivalence from the saddle surface to the standard hyperboloid. Thus

In[]:= sr3 = N[Inverse [ss2h].sshyp3D [3].ss2h];

sr3 // MatrixForm

Out[]//MatrixForm=

4.29788 1.15161 2.22474 2.22474

0.116337 0.434174 0.224745 0.224745

0.707107 0.707107 1.36603 0.366025

0.707107 0.707107 0.366025 1.36603

is a symmetry of the saddle surface :

In[]:= FLTNS [z - x y, sr3, {x, y, z}]

Out[]= -1. x y + 1. z

Of course, here we have a projective symmetry rather than a linear symmetry. Some of the numbers

may look familiar, this can be expressed exactly using 2 , 3 , and 6 .

Consider the curve on z - x y given by

f = {t, -t, -t^2}

In[]:= sr3f = Simplify [f, sr3]

Out[]= 
-5.03965 - 0.269488 t + 0.585511 t2

10.0677 - 6.34591 t + 1. t2
,

5.03965 + 0.269488 t - 0.585511 t2

10.0677 - 6.34591 t + 1. t2
,

-2.52274 - 1.85995 t - 0.342823 t2

10.0677 - 6.34591 t + 1. t2


143 | SurfaceStoryPartII.nb

So the symmetry sends the red parabola to the blue hyperbola below!

Show [ContourPlot3D [{ss ⩵ 0}, {x, -10, 10},

{y, -10, 10}, {z, -10, 10}, ContourStyle → Opacity [.7], Mesh → None],

ParametricPlot3D [{g, Sr3f}, {t, -30, 30}, PlotStyle → {Red, Blue}],

Axes → False, Boxed → False, ImageSize → Full]

Out[]=

SurfaceStoryPartII.nb | 144

3. Cubic Surfaces

3.1 A rational Surface
Joe Harris, in his book [Algebraic Geometry, A First Course], claims on p. 157 that a complex cubic

surface containing a rational normal curve, eg. a curve equivalent to the twisted cubic must be rational.

Based on material I have so far developed I cannot give a proof in the real case. But here is an example

of a rational cubic surface containing the twisted cubic curve. This surface is, unsurprisingly, singular.

We will see that this real parameterized surface does not fill up the implicit surface containing it. But I

will calculate the singular set both in the surface and parameter space. In the parameter space this is

an algebraic set, but in the parameterized surface only a semi-algebraic set.

In[]:= F = {s + t, s^2 - 2 t, s^3 - 3 t s + t}

Out[]= s + t, s2 - 2 t, s3 + t - 3 s t

The curve

In[]:= nrat = F /. {t → 0}

Out[]= s, s2, s3

will be in this surface.

In[]:= f1 = pol2affNS [F, 3, 3, {s, t}, {x, y, z}]〚1〛
» Number of equations 1

Out[]= 0. - 2. x2 + 1.33333 x3 + 2. y - 5.33333 x y - 2. x2 y -

3.33333 y2 + 0.666667 y3 + 4. z + 5.33333 x z - 0.666667 z2

In[]:= f = roundPolyMD [3 f1, {x, y, z}, 1]

Out[]= -6 x2 + 4 x3 + 6 y - 16 x y - 6 x2 y - 10 y2 + 2 y3 + 12 z + 16 x z - 2 z2

In[]:= Expand [f /. Thread [{x, y, z} → F]]

Out[]= 0

So we see that f = 0 is a rational cubic surface containing a normal rational curve. Looking for non-

regular points

In[]:= grd = Grad [f, {x, y, z}]

Out[]= -12 x + 12 x2 - 16 y - 12 x y + 16 z, 6 - 16 x - 6 x2 - 20 y + 6 y2, 12 + 16 x - 4 z

145 | SurfaceStoryPartII.nb

In[]:= sol = Solve [f ⩵ 0 && grd ⩵ 0, {x, y, z}]

Solve : Equations may not give solutions for all "solve " variables .

Out[]= {y → 3 + x, z → 3 + 4 x}, x → -
4

3
, y →

5

3
, z → -

7

3


The first solution to this is a singular line in f = 0, which is easily seen to be parametric .

In[]:= pln = {t, 3 + t, 3 + 4 t}

Out[]= {t, 3 + t, 3 + 4 t}

Check

In[]:= Expand [f /. Thread [{x, y, z} → pln]]

Out[]= 0

Plotting we see there is a bit of a problem here .

In[]:= Show [ContourPlot3D [f ⩵ 0, {x, -4, 4}, {y, -4, 6}, {z, -10, 10}, Mesh → None,

MaxRecursion → 5], ParametricPlot3D [F, {s, -5, 5}, {t, -5, 5}, PlotStyle → LightGray],

ParametricPlot3D [pln, {t, -4, 4}, PlotStyle → Blue]]

Out[]=

The singular line is in f = 0, but not in the image of F. So here is another case where the implicit surface

contains the parametric surface but is larger. We might think of removing this line as we did with

blowups in the Space Curve Book, 3.3 but that will not work here because it is not a component.

Note the point {-3, 0, -9} is on this line, hence in surface f = 0. But consider the nearby points

SurfaceStoryPartII.nb | 146

In[]:= NSolveValues [{f, y, x + 3.001 }, {x, y, z}]

Out[]= {{-3.001, 0., -9.004 - 0.00223652 ⅈ}, {-3.001, 0., -9.004 + 0.00223652 ⅈ}}

So this point is close to complex points of f = 0 so this line is not isolated, merely a real set in a complex

surface. As mentioned in Section 1.1.2 the non-regular set of this implicit surface is an algebraic set.

But we cannot consider points such as {-3, 0, -9} as singular points of the parametric real surface

because they are not on this surface. Fortunately sol above gave us another solution, the point

In[]:= p = {-4 / 3, 5 / 3, -7 / 3}

Out[]= -
4

3
,
5

3
, -

7

3


We check that this is on the parametric surface F and also on the parametric line pln

In[]:= Solve [F ⩵ p, {s, t}]

Out[]= s → -1, t → -
1

3


In[]:= F /. {s → -1, t → -1 / 3}

Out[]= -
4

3
,
5

3
, -

7

3


In[]:= pln /. {t → -4 / 3}

Out[]= -
4

3
,
5

3
, -

7

3


Plotting

147 | SurfaceStoryPartII.nb

In[]:= Show [ContourPlot3D [f ⩵ 0, {x, -4, 4}, {y, -4, 6}, {z, -10, 10}, Mesh → None,

MaxRecursion → 5], ParametricPlot3D [pln, {t, -4 / 3, 4}, PlotStyle → Blue],

Graphics3D [{Red, PointSize [.025], Point [{-4 / 3, 5 / 3, -7 / 3}]}],

ParametricPlot3D [{s, s^2, s^3}, {s, -3, 3}, PlotStyle → Green]]

Out[]=

we see that the singular set for the parametric surface F is the subset of pln with t ≥ -4

3
. In this plot we

also show the twisted cubic which goes near, but not through p. Another view is

SurfaceStoryPartII.nb | 148

Thus Abhyankar' s statement quoted in 1.1.2 is not true for parametric surfaces, the regular set is only a

semi-algebraic set.

Back in the parametric space we note if we take a point on the line pln with t > -1 we get two real

solutions to

In[]:= Solve [(pln /. {t → 2}) ⩵ F, {s, t}]

Out[]= s → -1 - 10 , t → 3 + 10 , s → -1 + 10 , t → 3 - 10 

But if t < -1 then we get two imaginary solutions.

In[]:= Solve [(pln /. {t → -2}) ⩵ F, {s, t}]

Out[]= s → -1 - ⅈ 2 , t → -1 + ⅈ 2 , s → -1 + ⅈ 2 , t → -1 - ⅈ 2 

The fact that exact solutions seem to come with a square root suggest that perhaps the inverse image

of the singular part of the parametric surface F is a plane quadric. So using the method above using

NSolveValue we obtain the following 5 points in the inverse image

In[]:= plnInverseSet = {-4.162277660168382` , 6.162277660168382` },

-1, -
1

3
, {1, -1}, {1.6457513110645907` , -0.6457513110645907` },

{2.162277660168379` , -0.16227766016837908` }

Out[]= {-4.16228, 6.16228 }, -1, -
1

3
, {1, -1}, {1.64575, -0.645751 }, {2.16228, -0.162278 }

Checking we see all these points map to the singular line

In[]:= F /. Thread [{s, t} → #] & /@ plnInverseSet

Out[]= {2., 5., 11.}, -
4

3
,
5

3
, -

7

3
, {0, 3, 3}, {1., 4., 7.}, {2., 5., 11.}

Applying the function aCurve from my Plane Curves Book, it is in the GlobalFunctionsS.nb notebook,

In[]:= parb = Chop [aCurve2D [plnInverseSet , x, y]]

Out[]= 6.03157 + 2.01052 x - 2.01052 x2 + 6.03157 y

we get a parabola .

149 | SurfaceStoryPartII.nb

In[]:= Show [ContourPlot [parb ⩵ 0, {x, -5, 5}, {y, -2, 7}, ImageSize → Small],

Graphics [{Black, PointSize [.04], Point [plnInverseSet]}]]

Out[]=

-4 -2 0 2 4

-2

0

2

4

6

Check that a random point on this parabola gives a point on pln with t > -1

In[]:= x1 = RandomReal [{-4, 4}]

q2 = NSolveValues [{parb, x - x1}, {x, y}]〚1〛
Out[]= -3.6543

Out[]= {-3.6543, 4.6694 }

In[]:= q3 = F /. Thread [{s, t} → q2]

Out[]= {1.0151, 4.0151, 7.06041 }

In[]:= pln /. {t → q3〚1〛}
Out[]= {1.0151, 4.0151, 7.06041 }

Thus this parabola in the parameter space folds on itself to give the singular set of the parametric

surface F.

3.2. Lines on a Cubic Surface
In 1849 Arthur Cayley and George Salmon showed that every smooth cubic contains exactly 27 lines.

Elsewhere I have written extensively about this topic, notably my article [Ideals of Numeric Realizations

of Configurations of Lines], A variation of this article together with some additional information is

available on my website. In this section and its notebook appendices I am giving a new take on this

material.

In general, even if the cubic surface is a real surface, many of these lines may be complex, in fact the

number of real lines can only be 3, 7, 15 or 27. For example the Fermat Surface x3 + y3 + z3 + 1 = 0 of

Section 1.5 and 1.6 contains, as we saw, 3 real lines and hence 24 complex lines. These lines are easy to

write down by inspection using the pattern established for the three real lines. Let α,β be the two cube

roots of -1 other than -1 itself, that is α=.5-Sqrt[3]/2 ⅈ , β = .5+Sqrt[3]/2ⅈ .

SurfaceStoryPartII.nb | 150

In[]:= α = .5 - Sqrt [3] / 2 I

β = .5 + Sqrt [3] / 2 I

Out[]= 0.5 - 0.866025 ⅈ
Out[]= 0.5 + 0.866025 ⅈ

In[]:= α^3
Out[]= -1. - 1.11022 × 10-16 ⅈ

The three real lines are

In[]:= lf1 = {t, -t, -1};

lf2 = {t, -1, -t};

lf3 = {-1, t, -t};

By replacing the - 1' s, including the coefficient of -t, by α, and or β we can easily construct the remain -

ing 24 lines, a few more will be listed below

In[]:= lf4 = {t, α t, -1};

lf5 = {β, t, -t};

lf6 = {α, t, β t};
Note, for example

In[]:= (x^3 + y^3 + z^3 + 1) /. Thread [{x, y, z} → lf6]

Out[]= 2.22045 × 10-16
- 1.11022 × 10-16 ⅈ + 2.22045 × 10-16

+ 1.11022 × 10-16 ⅈ t3

The reader can write down the rest if they choose to. I will note that in my GlobalFunctions.nb that

there is a function called pLineIntersectionMD which finds the intersection of two parametric lines in

any dimensional space. This will be discussed with code in section 1.9.3. It does specifically work for all

lines including pairs of lines with possible infinite or complex intersections. The empty set is returned if

the lines are skew.

In[]:= pLineIntersectionMD [lf1, lf6, t, {x, y, z}, dTol]

Out[]= 0.5 - 0.866025 ⅈ, -0.5 + 0.866025 ⅈ, -1. + 1.17961 × 10-16 ⅈ

3.2.1 The double Six configuration

In H . S . M . Coxeter' s review of Volume II of Ludwig Schläfli’s collected works he says that one paper

 . . is modestly entitled "An attempt to determine the 27 lines upon a surface of the third order, and

to divide such surfaces into species in reference to the reality of the lines upon the surface ." The

existence of 27 such lines had already been discovered by Cayley and Salmon, but this paper of 1856

gives the first complete description of this configuration . .

The key to Schläfli’s analysis is his discovery of 12 line sub-configurations of the 27 lines, this configura -

tion called a double 6 . From these one may extract the remaining 15 lines easily.

A double 6 configuration consists of two sets of 6 mutually skew lines such that a line in the first set

intersects 5 lines of the second set, we number the lines in each set so that the kth line in the first set is

151 | SurfaceStoryPartII.nb

skew from the kth line of the second set but intersects all the other lines of the second set. We can draw

this where a blank area indicates no intersection.

Out[]=

12

11

10

9

8

7

1 2 3 4 5 6

In a double 6 there are 15 double 2 configurations, two lines from each skew set which do not intersect

the other set, for example L1, L2 ,L7, L8 is a double 2. For each double 2 there is a unique line which

intersects all 4 lines. Since a line which meets a cubic surface in 4 points, counting multiplicities is in

the cubic surface the cubic that contains the double 6 also contains these 15 lines.

3.3 The theory

[Hilbert and Cohn-Vossen] show in their book how to construct a double 6 configuration in ℝ3 making 6

somewhat arbitrary, or if you prefer random, choices. I gave an example of this in my Configuration

paper mentioned above. Given a double 6 there is an explicit construction of 15 additional lines which

meet the double 4 in 4 points. The theorem is that for any particular double 6 there is a unique smooth

cubic surface containing this double 6. It then must also contain the other 15 lines which meet the

double 4 in 4 points for a total of 27 lines.

Conversely every smooth cubic contains 27 lines and within these 27 lines there are double 6 configura -

tions determining all of these lines.

I will construct a double 6 using the Hilbert Cohn-Vossen method in appendix A. Here is their method

which I will modify slightly.

SurfaceStoryPartII.nb | 152

In[]:=

In the next subsection we discuss some of the problems that must be solved with the tools to solve

them. The major work will be in the notebook appendices.

3.3.1 The Problems that must be solved

The appendices depend on being able to solve certain problems, particularly problem E below which is

needed to find lines 6, 5,4,3 2 and 7. I describe here, through examples, how to use a combination of

built-in functions and my global functions to do this.

A . Find the two tangent lines through a point on a hyperboloid. Let the hyperboloid and nice

integer point be

In[]:= h1Eq = -y - x y - x z + y z;

q1 = {-1, -1, 2};

h1Eq /. Thread [{x, y, z} → q1]

Out[]= 0

We first find the tangent plane at this point .

In[]:= tP = tangentPlaneNS [h1Eq, q1, {x, y, z}]

Out[]= -1 - x + 2 × (1 + y)

The two lines are the intersections of the tangent plane with the hyperboloid . In this nice exact case it

is easy

In[]:= Solve [h1Eq ⩵ 0 && tP ⩵ 0, {x, y, z}]

Solve : Equations may not give solutions for all "solve " variables .

Out[]= {{x → 1 + 2 y, z → -2 y}, {x → -1, y → -1}}

We can now just write down either the implicit equations or parametric formula for these lines.

In[]:= l1eq = {1 + 2 y - x, -2 y - z};

l1p = {1 + 2 t, t, -2 t};

153 | SurfaceStoryPartII.nb

In[]:= l2eq = {x + 1, y + 1};

l2p = {-1, -1, t};

Note for line 1, line 2 is similar, we can verify these formulas

In[]:= l1eq /. Thread [{x, y, z} → l1p]

Simplify [h1Eq /. Thread [{x, y, z} → l1p]]

Out[]= {0, 0}

Out[]= 0

Unfortunately if these are given numerically Solve may not work. Consider a different point.

In[]:= q2 = {-0.5820528096134947` , -0.41794719038650535` , -1.0644355432484727` };

h1Eq /. Thread [{x, y, z} → q2]

Out[]= -3.37508 × 10-14

In[]:= tP2 = Expand [tangentPlaneNS [h1Eq, q2, {x, y, z}]]

Out[]= 0.417947 + 1.48238 x - 1.48238 y + 0.164106 z

The first solution from Solve is

In[]:= Solve [h1Eq ⩵ 0 && tP2 ⩵ 0, {x, y, z}]〚1〛
Solve : Solve was unable to solve the system with inexact coefficients . The answer was obtained by solving a

corresponding exact system and numericizing the result .

Solve : Equations may not give solutions for all "solve " variables .

Out[]= x → 1.88744 × 10-23
× -7.4689 × 1021 + 5.59143 × 1022 y -

6332.47 1.39113 × 1036 + 6.65696 × 1036 y + 7.96388 × 1036 y2 ,

z → 1.36396 × 10-21
× -9.33613 × 1020 - 3.6658 × 1020 y +

791.559 1.39113 × 1036 + 6.65696 × 1036 y + 7.96388 × 1036 y2 

This solution is not satisfactory . The technique is to find two points other than q2 in the intersection

and, by the theory, we can then find the lines from q2 to these points.

In[]:= sol2 = NSolveValues [{h1Eq, tP2}, {x, y, z}]

NSolveValues : Infinite solution set has dimension at least 1. Returning intersection of solutions with

-
69046 x

57903

+
40299 y

38602

-
142003 z

115806

== 1.

Out[]= {{-0.444331 , -0.226149 , -0.575961 }, {-0.792106 , -0.568778 , -0.529467 }}

The first line is

In[]:= l1eq = lineMD [q2, sol2〚1〛, {x, y, z}]

Out[]= {-0.142566 - 0.505657 x - 0.733816 y + 0.430697 z,

0.221125 + 0.784292 x - 0.57961 y + 0.00645667 z}

SurfaceStoryPartII.nb | 154

Now we can find the first line using Solve

In[]:= sol2b = Solve [l1eq ⩵ 0, {x, y, z}]

Solve : Equations may not give solutions for all "solve " variables .

Out[]= {{y → 0.392647 + 1.39265 x, z → 1. + 3.54682 x}}

The solution is given using the parameter x, replacing this by t we have

In[]:= l1p = {x, y, z} /. sol2b〚1〛 /. {x → t}

Out[]= {t, 0.392647 + 1.39265 t, 1. + 3.54682 t}

Checking

In[]:= Simplify [l1eq /. Thread [{x, y, z} → l1p]]

Simplify [h1Eq /. Thread [{x, y, z} → l1p]]

Out[]= 0., 2.77556 × 10-17 

Out[]= 5.64271 × 10-13
+ 2.04947 × 10-12 t + 1.75637 × 10-12 t2

which is good to approximately our default tolerance .

B . Going from parametric equation of line to implicit equations . In principle one can use the

general implicitization method as in Section 1.4 but with lines it is easiest to find two points and use the

Global Function lineMD . This is automated by Global Function pl2eqMD which handles

parametric lines in ℝn for any n.

It doesn't need to be automated, for example consider

In[]:= line1 = {t, 0.39264678170294964` + 1.3926467817030561` t,

1.000000000001437` + 3.5468182768858614` t}

Out[]= {t, 0.392647 + 1.39265 t, 1. + 3.54682 t}

We calculate

In[]:= p = line1 /. {t → 0}

q = line1 /. {t → 4}

Out[]= {0, 0.392647 , 1.}

Out[]= {4, 5.96323, 15.1873 }

In[]:= line1Eq = lineMD [p, q, {x, y, z}]

Out[]= {-0.20001 - 0.709398 x - 0.536696 y + 0.410741 z,

-0.170932 - 0.606265 x + 0.765762 y - 0.129742 z}

But sometimes to get more accuracy or if the 2 points are rational we would like an equation system

with rational coefficients . But lineMD returns floating point numbers as do the methods in section 1.3

. A simple routine specifically for lines in ℝ3 is

155 | SurfaceStoryPartII.nb

In[]:= ratLine3D [p_, q_] := Module [{form, formp, formq, sol},

form = { x - a y + b, x - c z + d};

formp = form /. Thread [{x, y, z} → p];

formq = form /. Thread [{x, y, z} → q];

sol = Solve [formp ⩵ 0 && formq ⩵ 0]〚1〛;
form /. sol]

Note that it is assumed that the variables are x, y, z and that x is a parameter, meaning the two points p,

q have distinct first component. If not rename the variables, run then name them back again. It is

somewhat surprising that the equation solved appears to be underdetermined, but Solve apparently

needs the extra variable. Anyway we only need one solution so if the Solve returns several we are only

using the first. Here is an example:

In[]:= p = -
14

15
, -

17

15
, 0;

q = 
1

13
, -

11

13
,
11

13
;

In[]:= l = ratLine3D [p, q]

Out[]= -
171

56
+ x -

197 y

56
,
14

15
+ x -

197 z

165


Test: Note that r1 p + r2 q will be in the line through p,q for any r1+r2=1

In[]:= r = 3 / 7 p + 4 / 7 q

Out[]= -
162

455
, -

63

65
,
44

91


In[]:= l /. Thread [{x, y, z} → r]

Out[]= {0, 0}

C . Find intersection point or determine parallel or skew given two parametric lines . The reader is

reminded that we are actually working in projective 3 space but seeing only affine space. Two lines are

parallel if they have a common infinite point. Skew means they do not intersect or are parallel. Fortu -

nately we have a very good Global Function to tell the difference. I have mentioned it before but here is

the code based directly on the SVD.

SurfaceStoryPartII.nb | 156

In[]:= nullspace [M_, tol_] :=

Take [SingularValueDecomposition [N[M]]〚3〛, All, - (Dimensions [M]〚2〛 - matrixrank [M, tol])]

pLineIntersectionMD [L1_, L2_, t_, X_, tol_] :=

Module {n, cr1, cr2, p1, p2, v1, v2, eq1, eq2, S, r, ans},

n = Length [X];

If[Length [L1] ≠ n, Echo ["Line 1 error"]; Abort []];

If[Length [L2] ≠ n, Echo ["Line 2 error"]; Abort []];

p1 = Chop [L1 /. {t → 0}];

v1 = Append [Chop [(L1 - p1) /. {t → 1}], 0];

eq1 = lineMD [p1, v1, X];

p2 = Chop [L2 /. {t → 0}];

v2 = Append [Chop [(L2 - p2) /. {t → 1}], 0];

eq2 = lineMD [p2, v2, X];

S = sylvesterMD [Join [eq1, eq2], 1, X];

r = matrixrank [S, tol];

If[r < n, Return [{0}]];

If[r > n, Return [{}]];

ans = Flatten [nullspace [S, tol]];

IfAbs[ans〚1〛] < tol, RotateLeft [Chop [ans, tol], 1], Take ans  ans〚1〛, -n


To confirm intersection we should use a tight tolerance, but to confirm skewness we should use a loose

one. Here are two random parallel lines

In[]:= rline1 = {-1.284743961295125` + 1.7850221750544781` t,

-1.8513906749735787` + 0.32363757592140274` t,

-1.7705832745415062` - 0.49925464276626474` t}

Out[]= {-1.28474 + 1.78502 t, -1.85139 + 0.323638 t, -1.77058 - 0.499255 t}

In[]:= rline2 = {-3.8470503573307893` + 1.3999119717968946` t,

-3.2811667316024042` + 0.253814279389482` t,

1.5989379697539752` - 0.39154278369810475` t}

Out[]= {-3.84705 + 1.39991 t, -3.28117 + 0.253814 t, 1.59894 - 0.391543 t}

In[]:= pLineIntersectionMD [rline1, rline2, t, {x, y, z}, dTol]

Out[]= {-0.948688 , -0.172004 , 0.26534, 0}

Note that the function returns a list of length 4 with the last component 0, this means infinite point.

Now let

In[]:=

157 | SurfaceStoryPartII.nb

In[]:= rline3 = {-1.1577650571599911` + 1.609386049766386` t,

-1.66840669830856` + 0.2899071921064588` t,

-1.5955859749592347` - 0.4488387468161354` t}

Out[]= {-1.15777 + 1.60939 t, -1.66841 + 0.289907 t, -1.59559 - 0.448839 t}

In[]:= pLineIntersectionMD [rline1, rline3, t, {x, y, z}, dTol]

Out[]= {}

Consider

In[]:= ParametricPlot3D [{rline1, rline2 }, {t, -3, 3}, ImageSize → Tiny]

Out[]=

It perhaps looks like these are skew but note

In[]:= pLineIntersectionMD [rline1, rline3, t, {x, y, z}, .003]

Out[]= {0.948813 , 0.171104 , -0.265476 , 0}

So these lines are parallel meeting in an infinite point. For our later work parallel lines are NOT skew.

A nice property of this function is that if one only wants to know whether 2 lines meet one can use

Length [pLineIntersectionMD [line1, line2, t, {x, y, z}, tol]]

If the result is 0 the lines are skew, if 1 the lines are equal, 3 means an affine intersection and 4 means

an infinite intersection, i.e. parallel. We will use this heavily in later subsections.

D . Finding hyperboloid generated by 3 skew lines . We have done this in Chapter 2 but so this

Section can stand alone we repeat with 3 parametric lines.

In[]:= rline4 = RandomReal [{-3, 3}, {3, 2}].{1, t}

rline5 = RandomReal [{-3, 3}, {3, 2}].{1, t}

Out[]= {1.64127 + 1.98068 t, -2.48105 - 0.466556 t, 0.416791 + 1.84621 t}

Out[]= {0.52162 - 1.46426 t, 0.208229 - 1.25196 t, -2.3118 + 0.578546 t}

We will find the hyperloid generated by lines rl1, rl4, rl5. First we check skewness

In[]:= {pLineIntersectionMD [rl1, rl4, t, {x, y, z}, .001],

pLineIntersectionMD [rl1, rl5, t, {x, y, z}, .001],

pLineIntersectionMD [rl4, rl5, t, {x, y, z}, .001]}

» Line 1 error

Out[]= $Aborted

Next we find implicit equations

SurfaceStoryPartII.nb | 158

In[]:= rl1eq = pl2eqMD [rline1, t, {x, y, z}]

Out[]= {0.124503 + 0.301341 x - 0.72363 y + 0.608319 z,

0.927707 - 0.00411915 x + 0.319782 y + 0.192568 z}

In[]:= rl4eq = pl2eqMD [rline4, t, {x, y, z}]

Out[]= {0.00276285 - 0.682579 x - 0.341924 y + 0.645884 z,

0.919497 - 0.0454673 x + 0.364185 y + 0.140812 z}

In[]:= rl5eq = pl2eqMD [rline5, t, {x, y, z}]

Out[]= {0.381565 + 0.633352 x - 0.62443 y + 0.251713 z,

0.815507 - 0.218984 x + 0.413509 y + 0.340594 z}

Then we find Sylvester matrices, m = 2 is sufficient for this, although if we actually want equation of the

configuration of these three lines we should use at least m = 4. Just finding the hyperboloid loses the

information about what lines we used which may be important later.

In[]:= syl1 = sylvesterMD [rl1eq, 2, {x, y, z}];

syl4 = sylvesterMD [rl4eq, 2, {x, y, z}];

syl5 = sylvesterMD [rl5eq, 2, {x, y, z}];

hp2 =

First [Chop [vectorSpaceIntersection3 [syl1, syl4, syl5, dTol], dTol].mExpsMD [2, {x, y, z}]]

Out[]= 0.794171 + 0.204124 x - 0.00394934 x2 + 0.27198 y + 0.0884639 x y -

0.0239499 y2 + 0.469243 z + 0.0247282 x z + 0.150685 y z + 0.0416093 z2

To look at this hyperboloid and the lines

In[]:= Show [ContourPlot3D [hp2 ⩵ 0, {x, -5, 5}, {y, -5, 5}, {z, -5, 5}, Mesh → None],

ParametricPlot3D [{rline1, rline4, rline5 }, {t, -5, 5}, PlotStyle → {Blue, Green, Cyan}],

Axes → False, Boxed → False, ImageSize → Small]

Out[]=

E . Finding two lines intersecting 4 skew lines the last intersecting the hyperboloid generated by

the first 3 in two points. Actually Hilbert stated this more generally, but if a line not in, or tangent to, a

hyperboloid intersects a hyperboloid in one point then since the equation of the hyperboloid has

degree 2 there are exactly 2, possibly infinite, points of intersection of the line and the hyperboloid.

Using the above methods one simply notes that these two lines are the lines in the opposite ruling of

the first 3 lines at the points of intersection. In the construction of the double 6 one of the lines is

159 | SurfaceStoryPartII.nb

already known so one merely needs to construct the two tangent lines at the other intersection point,

one will be skew to the first 3 lines and the other will intersect the first 3 lines so one test using

pLineIntersectionMD is sufficient. So it is really not necessary to give an example.

A double 2 is a configuration of 4 lines with the following diagram :

Out[]=

1 2

3

4

F. Given a double 2 find a line which meets all 4 lines. Note that intersecting lines 1,4 define a plane

as do intersecting lines 2,3. In projective 3-space space any two distinct planes meet in a unique line.

Rather than go through the procedure of problem D, we can assume we know the intersection points of

1,4 and 2,3 and one more point on each line. Then the equations of the planes come from

linearSetMD, each plane with a single equation. The intersecting line is the line with these 2 equa -

tions. As in A. if one needs parametric equations one can use Solve.

G . Material from the Space Curve Book . We have already seen this in Section 1.4 The Torus Story but

just as a reminder these numerical linear algebra techniques will also be needed here. Thankfully these

are all given by functions in my GlobalFunctionsNS.nb so if one is willing to accept these functions as

given there is no need to review this information. Specifically the functions needed are

vectorSpaceIntersection3, sylvesterMD, hBasisMD.

3.4 Example of Double 6 construction

I modify the Hilbert Cohn-Vossen method by starting out with the hyperboloid given both parametri -

cally and later by an implicit quadric equation in Section 1.3. This way I can find lots of rational points

and lines in the construction. Lines L1, L8, L9 and L10 come from this hyperboloid. Further lines L5, L6

will then also be in this paraboloid and L11 and L12 meet the hyperboloid in rational points so will

themselves be rational. In order to give the construction note that lines L1, L8, L9, L10, L11, and L12

can be given arbitrarily as long as L8, L9, L10, L11 and L12 met L1 and are mutually skew.

Recall the hyperboloid and its equation are given by

In[]:= hyp1 = 
t - s2 t

1 - s2
,
1 + s2 - 2 s t

1 - s2
,
2 s - t - s2 t

1 - s2
;

hypEq = 1 - x^2 - y^2 + z^2;

Some rational lines can be calculated directly from the parameterization hyp1. Given a value s0 ≠ 1

In[]:= r1[s0_] := Expand [hyp1 /. {s → s0}]

r2[s0_] := Expand [{r1[s0]〚1〛, r1[s0]〚2〛, -r1[s0]〚3〛}]

SurfaceStoryPartII.nb | 160

In[]:= L1 = r2[-1 / 2]

L8 = r1[-2 / 3]

L9 = r1[-1 / 4]

L10 = r1[1 / 4]

Out[]= t,
5

3
+
4 t

3
,
4

3
+
5 t

3


Out[]= t,
13

5
+
12 t

5
, -

12

5
-
13 t

5


Out[]= t,
17

15
+
8 t

15
, -

8

15
-
17 t

15


Out[]= t,
17

15
-
8 t

15
,

8

15
-
17 t

15


One can check using plineIntersectionMD that these meet the criteria. The following points are also on

L1

In[]:= l1a = L1 /. {t → -5 / 4}

l1b = L1 /. {t → 1 / 2}

Out[]= -
5

4
, 0, -

3

4


Out[]= 
1

2
,
7

3
,
13

6


Line L11 will be chosen arbitrarily, but not actually randomly

L11 = t,
5

13
+
4 t

13
,

4

13
+
11 t

13
;

It can be checked that l1a is on L11 these lines are skew to each other and the lines L8, L9, L10.

Now we need to find L6 which meets L8, L9, L10 and L11. Now L8, L9 and L10 were chosen inside the

hyperbola hyp1 so we don’t need to do problem D here. But then the line we need is the line in the

opposite ruling to L8, L9, L10 through the second point of intersection of hyp1 with L11. To do this it

helps to find the implicit equation of L11, using problem B above. L11 goes through l1a above, a

second point is

In[]:= l11a = L11 /. {t → 1}

Out[]= 1,
9

13
,
15

13


In[]:= L11eq = ratLine3D [l1a, l11a]

Out[]= 
5

4
+ x -

13 y

4
,

4

11
+ x -

13 z

11


161 | SurfaceStoryPartII.nb

We then solve, using just Solve to get rational solutions

In[]:= SolveValues [hypEq ⩵ 0 && L11eq ⩵ 0, {x, y, z}]

Out[]= -
5

4
, 0, -

3

4
, {2, 1, 2}

But the first solution is just l1a so the desired point is

In[]:= l11b = {2, 1, 2}

Out[]= {2, 1, 2}

So using problem A

In[]:= tp11 = tangentPlaneNS [hypEq, l11b, {x, y, z}]

Out[]= 2 - 4 x - 2 y + 4 z

In[]:= Solve [hypEq ⩵ 0 && tp11 ⩵ 0, {x, y, z}]

Solve : Equations may not give solutions for all "solve " variables .

Out[]= {y → 1, z → x}, y →
1

3
× (-5 + 4 x), z →

1

3
× (-4 + 5 x)

Our first solution gives the parametric line {t, 1, t} in the hyperboloid which will be a candidate for L6

In[]:= hypEq /. Thread [{x, y, z} → {t, 1, t}]

Out[]= 0

In[]:= L6 = {t, 1, t};

In[]:= pLineIntersectionMD [L6, L8, t, {x, y, z}, dTol]

pLineIntersectionMD [L6, L9, t, {x, y, z}, dTol]

pLineIntersectionMD [L6, L10, t, {x, y, z}, dTol]

pLineIntersectionMD [L6, L11, t, {x, y, z}, dTol]

Out[]= {-0.666667 , 1., -0.666667 }

Out[]= {-0.25, 1., -0.25 }

Out[]= {0.25, 1., 0.25 }

Out[]= {2., 1., 2.}

Finally we choose L12, this must meet L1 but be skew to L8, L9 ,L10, L11 and L6. We leave the check to

the reader.

L12 = t,
599

180
-
179 t

90
,
409

180
-
19 t

90
;

SurfaceStoryPartII.nb | 162

In[]:= Show [ContourPlot3D [hypEq ⩵ 0, {x, -3, 3}, {y, -3, 3}, {z, -3, 3}, Mesh → None],

ParametricPlot3D [{L1, L8, L9, L10, L11, L12}, {t, -3, 3},

PlotStyle → {Blue, Green, Green, Green, Magenta, Magenta }],

Axes → None, Boxed → False, ImageSize → Medium]

Out[]=

One case not obvious by the picture is whether L11 meets L12, but it doesn’t.

In[]:= pLineIntersectionMD [L11, L12, t, {x, y, z}, dTol]

Out[]= {}

This works . A similar method to the one finding L6 will give the other lines in the double 6 although in

the other cases Problem D will be needed to find a hyperboloid containing 3 of the lines. Here are the

12 lines.

In[]:= L1 = t,
5

3
+
4 t

3
,
4

3
+
5 t

3
;

In[]:= L2 = {t, 1.10873690400994` - 0.4642368931192767` t,

-0.4642368931190869` + 1.669047069329676` t}

Out[]= {t, 1.10874 - 0.464237 t, -0.464237 + 1.66905 t}

In[]:= L3 = {t, 1.125206152628268` - 0.5076671846982648` t,

-0.3081725820785607` + 1.5241953578676644` t};

163 | SurfaceStoryPartII.nb

In[]:= L4 = {t, 0.9721721581433124` - 0.4260900032234079` t,

-0.11264557902259985` + 1.3711014253079723` t}

Out[]= {t, 0.972172 - 0.42609 t, -0.112646 + 1.3711 t}

In[]:= L5 = t,
29

20
-
21 t

20
, -

21

20
+
29 t

20
;

In[]:= L6 = {t, 1, t};

In[]:= L7 = {t, 1.661032057842025` - 0.9952722110334632` t,

-0.40924299170135053` + 1.6161700818709201` t}

Out[]= {t, 1.66103 - 0.995272 t, -0.409243 + 1.61617 t}

In[]:= L8 = t,
13

5
+
12 t

5
, -

12

5
-
13 t

5
;

In[]:= L9 = t,
17

15
+
8 t

15
, -

8

15
-
17 t

15
;

In[]:= L10 = t,
17

15
-
8 t

15
,

8

15
-
17 t

15
;

In[]:= L11 = t,
5

13
+
4 t

13
,

4

13
+
11 t

13
;

In[]:= L12 = t,
599

180
-
179 t

90
,
409

180
-
19 t

90
;

The reader with Mathematica can use pLineIntersectionMD to check that lines that should intersect

should and those that shouldn’t don’t. For example

In[]:= pLineIntersectionMD [L1, L7, t, {x, y, z}, dTol]

Out[]= {}

Here is the plot of the full double 6 with the intersection points

SurfaceStoryPartII.nb | 164

3.5 the Additional lines

As mentioned above there are 15 additional lines that will intersect this double 6 in 4 points, hence will

in any naive cubic surface containing these lines. The construction is outlined in Problem F, here is an

example. The reader who wants all 15 must work them out themselves, they are not included in the

Appendix A.

We consider the line from the double 2 consisting of L1, L2, L7 and L8. First we find the planes contain -

ing L7, L2 and L1, L8.

As before these lines have the following implicit equations

In[]:= L1eq = ratLine3D [L1 /. {t → 0}, L1 /. {t → 4}]

Out[]= 
5

4
+ x -

3 y

4
,
4

5
+ x -

3 z

5


In[]:= L2eq = ratLine3D [L2 /. {t → 0}, L2 /. {t → 4}]

Out[]= {-2.3883 + x + 2.15407 y, -0.278145 + x - 0.599144 z}

In[]:= L7eq = ratLine3D [L7 /. {t → 0}, L7 /. {t → 4}]

Out[]= {-1.66892 + x + 1.00475 y, -0.253218 + x - 0.618747 z}

In[]:= NSolve [Join [L2eq, L7eq]]

Out[]= {{x → 1.04003, y → 0.625914 , z → 1.27163 }}

In[]:= L8eq = ratLine3D [L8 /. {t → 0}, L8 /. {t → 4}]

Out[]= 
13

12
+ x -

5 y

12
,
12

13
+ x +

5 z

13


165 | SurfaceStoryPartII.nb

In[]:= L9eq = ratLine3D [L9 /. {t → 0}, L9 /. {t → 4}]

Out[]= 
17

8
+ x -

15 y

8
,

8

17
+ x +

15 z

17


In[]:= L10eq = ratLine3D [L10 /. {t → 0}, L10 /. {t → 4}]

Out[]= -
17

8
+ x +

15 y

8
, -

8

17
+ x +

15 z

17


In[]:= L11eq = ratLine3D [L11 /. {t → 0}, L11 /. {t → 4}]

Out[]= 
5

4
+ x -

13 y

4
,

4

11
+ x -

13 z

11


In[]:= L12eq = ratLine3D [L12 /. {t → 0}, L12 /. {t → 4}]

Out[]= -
599

358
+ x +

90 y

179
, -

409

38
+ x +

90 z

19


In[]:= syl7 = sylvesterMD [L7eq, 1, {x, y, z}];

syl2 = sylvesterMD [L2eq, 1, {x, y, z}];

In[]:= int72 = vectorSpaceIntersection [syl7, syl2, dTol];

plane72 = int72〚1〛.mExpsMD [1, {x, y, z}]

Out[]= 0.277687 - 0.828887 x - 0.0481178 y + 0.483239 z

Likewise

In[]:= syl1 = sylvesterMD [L1eq, 1, {x, y, z}];

syl8 = sylvesterMD [L8eq, 1, {x, y, z}];

int18 = vectorSpaceIntersection [syl1, syl8, dTol];

plane81 = int18〚1〛.mExpsMD [1, {x, y, z}]

Out[]= -0.701646 - 0.613941 x + 0.350823 y + 0.0877058 z

In[]:= Therefore

In[]:= L13 = First [SolveValues [plane72 ⩵ 0 && plane81 ⩵ 0, {x, y, z}] /. {x → t}]

SolveValues : Equations may not give solutions for all "solve " variables .

Out[]= {t, 2.09159 + 1.28909 t, -0.366371 + 1.84363 t}

Checking :

In[]:= p131 = pLineIntersectionMD [L13, L1, t, {x, y, z}, dTol]

Out[]= {9.60473, 14.473, 17.3412 }

In[]:= p132 = pLineIntersectionMD [L13, L2, t, {x, y, z}, dTol]

Out[]= {-0.560566 , 1.36897, -1.39985 }

In[]:= p137 = pLineIntersectionMD [L13, L7, t, {x, y, z}, dTol]

Out[]= {-0.188482 , 1.84862, -0.713861 }

SurfaceStoryPartII.nb | 166

In[]:= p138 = pLineIntersectionMD [L13, L8, t, {x, y, z}, dTol]

Out[]= {-0.45765, 1.50164, -1.21011 }

3.6 The Implicit Cubic

We can proceed as in Section 4, the torus, to find the equation of a cubic containing the double 6

obtained in subsection 4. It is important to note that we are aiming to find the equations of a reducible

curve which is a union of the lines. We know from the Space Curve Book that these are generally not

naive curves and will have more than two equations. For this reason we go one at a time and use a

higher degree in the calculation. From past experience we can surmise that degree 5 will be sufficient,

initially even degree 4 may work. But in each step we are adding to the curve so we want to avoid, say,

using the equation of the hyperboloid alone containing many of the lines because this hyperboloid also

has many points that will not be in the final cubic. We may at some point see the equation of the

hyperboloid but with additional equations removing these unwanted points.

We will see in our calculation a new idea, at least to me, that we do not need to use all the lines in the

double 6. Since we saw that half the lines in the double 6 were determined by the earlier lines the other

lines already exist in any cubic equation in the system. In fact when we have made all the choices

allowed we see that there is a unique cubic which continues through the rest of the construct if we

choose to continue. Once we have a unique cubic at this point we are actually done. This will happen

once we have lines L1, L8, L9, L10, L11 and L12. Although Hilbert’s construction puts L6 before choos -

ing L12 I will show that adding L6 was unnecessary to get the cubic equation since it was already in the

cubics at the L11 step.

So actually we have a new, to me, theorem.

Given a line in 3 space and 5 mutually skew lines intersecting that line, the intersections necessarily are

distinct and of multiplicity 1 due to the skewness, there is a unique cubic containing these lines as well as

the 21 other lines constructed from these as in subsections 4 and 5.

There is one disclaimer. As long as all the lines are chosen randomly there should be no problem, but if

the lines are arbitrarily chosen then one must check that L12 is also skew to the constructed L6 which

depends on the first 5 lines.

Here is our construction, new to this edition of the book.

The first step is to find the implicit equations for the 6 lines. We presumably did this in the previous

section using the method used above in constructing L6. We call these L1eq, L2eq ...

We do the following 4 calculations

167 | SurfaceStoryPartII.nb

In[]:= X4 = mExpsMD [4, {x, y, z}];

sylL1 = sylvesterMD [L1eq, 4, {x, y, z}];

sylL8 = sylvesterMD [L8eq, 4, {x, y, z}];

int18 = vectorSpaceIntersection [sylL1, sylL8, dTol].X4;

Basis18 = hBasisMD [int18, 4, {x, y, z}, dTol]

tDegMD [#, {x, y, z}] & /@ Basis18

» Initial Hilbert Function {1, 2, 2, 2, 2}

» Final Hilbert Function {1, 2, 2, 2, 2}

Out[]= -8. - 7. x + 4. y + 1. z, 4.33333 + 7.46667 x + 3.2 x2 - 4.26667 y - 3.73333 x y + 1. y2

Out[]= {1, 2}

In[]:= sylL11 = sylvesterMD [L11eq, 4, {x, y, z}];

sylL9 = sylvesterMD [L9eq, 4, {x, y, z}];

int911 = vectorSpaceIntersection [sylL11, sylL9, dTol].X4;

Basis911 = hBasisMD [int911, 4, {x, y, z}, dTol]

tDegMD [#, {x, y, z}] & /@ Basis911

» Initial Hilbert Function {1, 3, 2, 2, 2}

» Final Hilbert Function {1, 3, 2, 2, 2}

Out[]= -2.45455 - 7.63636 x - 3.54545 x2 + 3.72727 y + 8.77273 x y + 3.31818 z + 1. x z,

0.435897 + 0.553846 x + 0.164103 x2 - 1.51795 y - 0.841026 x y + 1. y2,

-0.960373 - 2.94965 x - 1.43963 x2 + 1.68019 y + 3.83263 x y + 0.636364 z + 1. y z,

0.540793 + 1.39301 x + 0.0592075 x2 - 1.0704 y - 2.51935 x y - 0.727273 z + 1. z2

Out[]= {2, 2, 2, 2}

In[]:= sylL10 = sylvesterMD [L10eq, 4, {x, y, z}];

sylL12 = sylvesterMD [L12eq, 4, {x, y, z}];

int1012 = vectorSpaceIntersection [sylL10, sylL12, dTol].X4;

Basis1012 = hBasisMD [int1012, 4, {x, y, z}, dTol]

tDegMD [#, {x, y, z}] & /@ Basis1012

» Initial Hilbert Function {1, 3, 2, 2, 2}

» Final Hilbert Function {1, 3, 2, 2, 2}

Out[]= -0.549873 - 2.3229 x + 1.47125 x2 + 1.19466 y + 0.633588 x y - 1.50763 z + 1. x z,

3.77148 - 4.02889 x + 1.06074 x2 - 4.46111 y + 2.52222 x y + 1. y2,

2.86845 - 0.212231 x - 0.672072 x2 - 2.90937 y - 0.126802 x y - 0.329262 z + 1. y z,

1.95113 + 0.435233 x - 1.73875 x2 - 1.60615 y - 0.851824 x y - 0.778626 z + 1. z2

Out[]= {2, 2, 2, 2}

SurfaceStoryPartII.nb | 168

In[]:= sylB18 = sylvesterMD [Basis18, 4, {x, y, z}];

sylB911 = sylvesterMD [Basis911 , 4, {x, y, z}];

sylB1012 = sylvesterMD [Basis1012 , 4, {x, y, z}];

In[]:= intAll = vectorSpaceIntersection3 [sylB18, sylB911, sylB1012 , 10^ (-11)].X4;

BasisAll = hBasisMD [intAll, 4, {x, y, z}, dTol];

tDegMD [#, {x, y, z}] & /@ BasisAll

» Initial Hilbert Function {1, 3, 6, 9, 6}

» Final Hilbert Function {1, 3, 6, 9, 6}

Out[]= {3, 4, 4, 4, 4, 4, 4}

We notice that there is one cubic and 6 4th degree equations. This cubic must be the unique cubic

through the six lines. Further, since each of the other 21 lines intersects three of the six lines then they

must also lie in this cubic. The skeptical reader who has calculated all 21 of these lines can easily check

these last assertions directly. Here is a graphic showing the 6 lines and the cubic

In[]:= SScubic = BasisAll 〚1〛
Out[]= -1.9593 - 3.01427 x + 0.746586 x2 + 2.14804 x3 + 5.29948 y + 2.26374 x y - 1.01454 x2 y -

4.24981 y2 + 0.695088 x y2 + 0.909641 y3 + 2.21734 z + 0.461988 x z - 1.25871 x2 z -

1.82023 y z - 0.480467 x y z - 0.341667 y2 z + 0.121951 z2 - 1.88933 x z2 + 0.164481 y z2 + 1. z3

In[]:= Show [ContourPlot3D [SScubic ⩵ 0, {x, -10, 10}, {y, -10, 10}, {z, -10, 10}, Mesh → None],

ParametricPlot3D [{L1, L8, L9, L10, L11, L12}, {t, -10, 10},

PlotStyle → {Magenta, Blue, Blue, Blue, Blue, Blue}], Axes → None, Boxed → False]

Out[]=

169 | SurfaceStoryPartII.nb

You should recognize this as the cover illustration of the Surface Story.

Here is a closeup view of the middle of the graphic showing first the magenta line intersecting all 5 blue

lines and the blue lines not intercepting each other. There are actually 2 small holes in the surface not

visible in the large view.

3.7 Finding lines on a given smooth cubic, Example 1

In this subsection I go the opposite direction . I start with a smooth cubic surface and try to find the 27

lines. Based on the previous work one might think of looking for one line and then looking for 5 skew

lines intersecting this line. From there I can find the other 21 lines using the previous techniques.

It actually turns out that it is easier to try to find all 27 lines at once. The trick is that for a parametric

line with parametric function F to lie on the surface f = 0 we simply need

f /. Thread[{x, y, z} → F] ⩵ 0

Letting F be a generic curve it is easy to set up the equation which NSolve can solve. Given previous

examples most lines do not have a constant first component. So we find these lines first

In[]:= F1 = {t, a1 + b1 t, a2 + b2 t}

Out[]= {t, a1 + b1 t, a2 + b2 t}

We illustrate with an easy equation .

In[]:= cubic1 = 16 * x^3 + 16 * y^3 - 31 * z^3 + 24 * x^2 * z -

48 * x^2 * y - 48 * x * y^2 + 24 * y^2 * z - 93.5307 * z^2 - 72 * z;

Our main equation is

SurfaceStoryPartII.nb | 170

In[]:= mainEq = Collect [Expand [cubic1 /. Thread [{x, y, z} → F1]], t]

Out[]= 16 a13 - 72 a2 + 24 a12 a2 - 93.5307 a22 - 31 a23 +

-48 a12 + 48 a12 b1 + 48 a1 a2 b1 - 72 b2 + 24 a12 b2 - 187.061 a2 b2 - 93 a22 b2 t +

-48 a1 + 24 a2 - 96 a1 b1 + 48 a1 b12 + 24 a2 b12 + 48 a1 b1 b2 - 93.5307 b22 - 93 a2 b22 t2 +

16 - 48 b1 - 48 b12 + 16 b13 + 24 b2 + 24 b12 b2 - 31 b23 t3

We want this to be essentially zero for all t. So the coefficients of tk must be zero. Let

In[]:= Clear [a1, a2, b1, b2]

Now just solve this non-linear system of 4 equations in 4 unknowns

In[]:= cf0 = 16 a13 - 72 a2 + 24 a12 a2 - 93.5307` a22 - 31 a23;

cf1 = -48 a12 + 48 a12 b1 + 48 a1 a2 b1 - 72 b2 + 24 a12 b2 - 187.0614` a2 b2 - 93 a22 b2;

cf2 = -48 a1 + 24 a2 - 96 a1 b1 + 48 a1 b12 + 24 a2 b12 + 48 a1 b1 b2 - 93.5307` b22 - 93 a2 b22;

cf3 = 16 - 48 b1 - 48 b12 + 16 b13 + 24 b2 + 24 b12 b2 - 31 b23;

In[]:= {time, solcubic1 } = Timing [NSolve [{cf0, cf1, cf2, cf3}]];

In[]:= time

Out[]= 0.391518

In[]:= Length [solcubic1]

Out[]= 27

This takes a long time for a computer, but not much in human time. We now display the lines

In[]:= Do[Print ["line [", i, "]=", line [i] = F1 /. solcubic1 〚i〛], {i, 27}]

171 | SurfaceStoryPartII.nb

line [1]={t, - 3.73243 + 13.9293 t, - 5.46452 + 14.9294 t}

line [2]={t, 3.22448 + 4.08729 t, - 3.00967 - 3.5649 t}

line [3]={t, 2.73814 + 3.4304 t, 1.87092 + 3.02721 t}

line [4]={t, - 0.476643 - 1.47664 t, - 1.90652 - 1.90653 t}

line [5]={t, 1.1547 - 1. t, - 2.3094 }

line [6]={t, 1.44663 + 6.17467 t, - 2.47977 - 4.18706 t}

line [7]={t, 0.298434 - 0.815559 t, - 1.39762 - 0.863769 t}

line [8]={t, 0. + 3.73205 t, 0. }

line [9]={t, 0.297094 + 0.485438 t, - 1.62331 - 1.18835 t}

line [10]={t, 1.06079 - 0.957224 t, 0.265302 - 1.17278 t}

line [11]={t, 0.577351 - 1. t, - 1.1547 }

line [12]={t, 0.651252 + 2.63242 t, - 1.11635 + 1.88495 t}

line [13]={t, 3.1547 + 3.73205 t, - 2.3094 }

line [14]={t, - 0.234285 + 0.161952 t, - 1.4988 - 0.678101 t}

line [15]={t, 0.365925 - 1.22615 t, - 1.71369 + 1.05911 t}

line [16]={t, - 0.845298 + 0.267949 t, - 2.3094 }

line [17]={t, 1.10819 - 1.04469 t, - 1.03437 + 1.22519 t}

line [18]={t, - 0.612013 + 2.05999 t, - 0.896026 - 2.448 t}

line [19]={t, - 0.798198 + 0.291512 t, - 0.545395 + 0.882467 t}

line [20]={t, 0. - 1. t, 0. }

line [21]={t, - 0.42265 + 0.267949 t, - 1.1547 }

line [22]={t, 0.267956 + 0.0717912 t, - 1.4641 + 1.0718 t}

line [23]={t, 1.57735 + 3.73205 t, - 1.1547 }

line [24]={t, - 0.247397 + 0.379879 t, - 1.58268 + 0.716051 t}

line [25]={t, - 0.788904 + 0.244661 t, - 0.197304 - 0.872192 t}

line [26]={t, 0. + 0.267949 t, 0. }

line [27]={t, - 0.322788 - 0.677211 t, - 1.29112 + 1.29112 t}

We can now check with an incidence matrix using pLineIntersectionMD . We make this a little compli -

cated for later use . Note an entry 0 means the lines are skew, 1 means they are the same, 3 means they

intersect in the affine plane and 4 is an infinite intersection, that is the lines are parallel in affine 3

space.

In[]:= lineList = Range [27]

Out[]= {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,

14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27}

SurfaceStoryPartII.nb | 172

In[]:= incidence =

SparseArray [Flatten [Table [{i, j} → Length [pLineIntersectionMD [line [lineList 〚i〛],
line [lineList 〚j〛], t, {x, y, z}, .003]], {i, 27}, {j, 27}], 1]]

Out[]= SparseArray  Specified elements : 297

Dimensions : {27, 27}


In[]:= M = Join [Partition [Prepend [lineList , 0], 1], Prepend [incidence , lineList], 2];

Grid [M,

Background → {None, None, {{{1, 1}, {1, 28}} → LightGray , {{1, 28}, {1, 1}} → LightGray }}]

Out[]=

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

1 1 0 3 3 0 0 0 3 0 0 3 0 0 3 3 3 3 3 0 0 0 3 0 0 0 0 0

2 0 1 3 3 0 3 3 0 0 0 3 0 3 0 0 0 3 3 0 0 0 0 0 0 3 3 0

3 3 3 1 0 0 0 0 0 3 3 0 3 3 3 0 0 0 0 3 3 3 0 0 0 0 0 0

4 3 3 0 1 0 3 0 0 3 3 0 0 0 0 0 3 0 0 0 3 0 0 3 3 0 0 3

5 0 0 0 0 1 3 0 0 3 3 4 0 3 3 0 3 3 3 0 4 0 0 0 0 0 0 0

6 0 3 0 3 3 1 0 3 0 0 0 3 0 3 3 0 0 0 3 0 3 3 0 0 0 0 0

7 0 3 0 0 0 0 1 0 0 3 0 3 0 3 3 3 0 3 0 3 0 3 3 0 0 0 0

8 3 0 0 0 0 3 0 1 0 3 0 3 4 0 0 0 0 3 0 3 0 0 4 0 3 3 0

9 0 0 3 3 3 0 0 0 1 0 0 3 0 0 3 0 0 3 0 0 0 3 3 0 3 3 0

10 0 0 3 3 3 0 3 3 0 1 0 0 0 0 0 0 3 0 0 0 3 3 0 3 3 0 0

11 3 3 0 0 4 0 0 0 0 0 1 3 0 0 0 0 0 0 0 4 3 3 3 3 3 0 0

12 0 0 3 0 0 3 3 3 3 0 3 1 0 0 0 3 3 0 0 0 0 0 0 3 0 0 3

13 0 3 3 0 3 0 0 4 0 0 0 0 1 0 3 3 0 0 0 0 0 3 4 3 0 0 3

14 3 0 3 0 3 3 3 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 3 3 3 3 3

15 3 0 0 0 0 3 3 0 3 0 0 0 3 0 1 0 3 0 0 3 3 0 0 3 3 0 0

16 3 0 0 3 3 0 3 0 0 0 0 3 3 0 0 1 0 0 3 0 4 0 0 0 3 4 0

17 3 3 0 0 3 0 0 0 0 3 0 3 0 0 3 0 1 0 3 0 0 0 3 0 0 3 3

18 3 3 0 0 3 0 3 3 3 0 0 0 0 0 0 0 0 1 3 0 3 0 0 3 0 0 3

19 0 0 3 0 0 3 0 0 0 0 0 0 0 0 0 3 3 3 1 3 0 3 3 3 3 0 0

20 0 0 3 3 4 0 3 3 0 0 4 0 0 0 3 0 0 0 3 1 0 0 0 0 0 3 3

21 0 0 3 0 0 3 0 0 0 3 3 0 0 0 3 4 0 3 0 0 1 0 3 0 0 4 3

22 3 0 0 0 0 3 3 0 3 3 3 0 3 0 0 0 0 0 3 0 0 1 0 0 0 3 3

23 0 0 0 3 0 0 3 4 3 0 3 0 4 3 0 0 3 0 3 0 3 0 1 0 0 0 0

24 0 0 0 3 0 0 0 0 0 3 3 3 3 3 3 0 0 3 3 0 0 0 0 1 0 3 0

25 0 3 0 0 0 0 0 3 3 3 3 0 0 3 3 3 0 0 3 0 0 0 0 0 1 0 3

26 0 3 0 0 0 0 0 3 3 0 0 0 0 3 0 4 3 0 0 3 4 3 0 3 0 1 0

27 0 0 0 3 0 0 0 0 0 0 0 3 3 3 0 0 3 3 0 3 3 3 0 0 3 0 1

Notice the 1’s lie all on the diagonal, so all these lines are distinct. Thus we have all 27 lines.

We re-arrange the lines to find a double 6, we do not show the work since it is tedious. Remember that

this is one example of a double 6 in this cubic, but not the only one.

173 | SurfaceStoryPartII.nb

In[]:=

0 5 3 4 7 25 26 2 16 14 9 20 10

5 1 0 0 0 0 0 0 3 3 3 4 3

3 0 1 0 0 0 0 3 0 3 3 3 3

4 0 0 1 0 0 0 3 3 0 3 3 3

7 0 0 0 1 0 0 3 3 3 0 3 3

25 0 0 0 0 1 0 3 3 3 3 0 3

26 0 0 0 0 0 1 3 4 3 3 3 0

2 0 3 3 3 3 3 1 0 0 0 0 0

16 3 0 3 3 3 4 0 1 0 0 0 0

14 3 3 0 3 3 3 0 0 1 0 0 0

9 3 3 3 0 3 3 0 0 0 1 0 0

20 4 3 3 3 0 3 0 0 0 0 1 0

10 3 3 3 3 3 0 0 0 0 0 0 1

The pink squares show the two sets of lines are each mutually skew, the cyan squares show the correct

incidences among these lines. Note that two of these intersections are infinite. We can plot this

In[]:= Show [ContourPlot3D [cubic1 ⩵ 0, {x, -4, 4}, {y, -4, 4},

{z, -4, 4}, ContourStyle → Opacity [.9], Mesh → None], ParametricPlot3D [

{line [2], line [16], line [14], line [9], line [20], line [10]}, {t, -4, 4}, PlotStyle → Green],

ParametricPlot3D [{line [5], line [3], line [4], line [7], line [25], line [26]},

{t, -4, 4}, PlotStyle → Blue], Axes → False, Boxed → False]

Out[]=

If we expand the picture above we get

SurfaceStoryPartII.nb | 174

Out[]=

0 5 3 4 7 25 26 2 16 14 9 20 10 1 6 8 11 12 13 15 17 18 19 21 22 23 24 27

5 1 0 0 0 0 0 0 3 3 3 4 3 0 3 0 4 0 3 0 3 3 0 0 0 0 0 0

3 0 1 0 0 0 0 3 0 3 3 3 3 3 0 0 0 3 3 0 0 0 3 3 0 0 0 0

4 0 0 1 0 0 0 3 3 0 3 3 3 3 3 0 0 0 0 0 0 0 0 0 0 3 3 3

7 0 0 0 1 0 0 3 3 3 0 3 3 0 0 0 0 3 0 3 0 3 0 0 3 3 0 0

25 0 0 0 0 1 0 3 3 3 3 0 3 0 0 3 3 0 0 3 0 0 3 0 0 0 0 3

26 0 0 0 0 0 1 3 4 3 3 3 0 0 0 3 0 0 0 0 3 0 0 4 3 0 3 0

2 0 3 3 3 3 3 1 0 0 0 0 0 0 3 0 3 0 3 0 3 3 0 0 0 0 0 0

16 3 0 3 3 3 4 0 1 0 0 0 0 3 0 0 0 3 3 0 0 0 3 4 0 0 0 0

14 3 3 0 3 3 3 0 0 1 0 0 0 3 3 0 0 0 0 0 0 0 0 0 0 3 3 3

9 3 3 3 0 3 3 0 0 0 1 0 0 0 0 0 0 3 0 3 0 3 0 0 3 3 0 0

20 4 3 3 3 0 3 0 0 0 0 1 0 0 0 3 4 0 0 3 0 0 3 0 0 0 0 3

10 3 3 3 3 3 0 0 0 0 0 0 1 0 0 3 0 0 0 0 3 0 0 3 3 0 3 0

we see each of the remaining lines intersect the double 6 in exactly 4 points. Most of these intersec -

tions involve only two lines intersection. Rarely we may have 3 lines intersecting if the intersection of

the planes containing the double 2 goes through the intersection of two of the lines of the double 2. In

the literature these are called an Eckardt points. These are easy to identify from the incidence matrix

regarding the incidence matrix as an Association.

In[]:= otherAssoc = Table [{i, j} → pLineIntersectionMD [line [i], line [j], t, {x, y, z}, .003],

{i, 26}, {j, i + 1, 27}];

V = Select [Values [otherAssoc], Length [#] > 2 &];

st = Select [Tally [V], #〚2〛 > 1 &]

Out[]= {{{0., 0., 0.}, 3}}

So the only Eckardt point is the origin . Finding the lines

In[]:= KeySelect [otherAssoc , otherAssoc [#] ⩵ {0, 0, 0} &]

Out[]= {8, 20} → {0., 0., 0.}, {8, 26} → {0., 0., 0.}, {20, 26} → {0., 0., 0.}

So the single Eckardt is the intersection of lines 20 and 26 of the double 2 and 8 outside the double 2.

175 | SurfaceStoryPartII.nb

In[]:= Show [ContourPlot3D [cubic1 ⩵ 0, {x, -2, 2}, {y, -2, 2}, {z, -2, 2}, Mesh → None],

ParametricPlot3D [{line [8], line [20], line [26]}, {t, -3, 3}, PlotStyle → {Red, Blue, Blue}],

Axes → False, Boxed → False]

Out[]=

3.8 Finding lines, Clebsch Diagonal Cubic

My second example is the famous surface known as the Clebsch diagonal Cubic. Not only does this

surface have 27 real lines they lie in such a way as to make a pleasing plot. This is also symmetric in all

the variables. One discussion is at http://mathworld.wolfram.com/ClebschDiagonalCubic.html. This is

also known in the literature as Klein’s icosahedral cubic. A more complete discussion with moving

pictures is by John Baez in https://blogs.ams.org/visualinsight/2016/03/01/clebsch-surface/ where he

includes several plots by the science fiction writer Greg Egan. So I will not attempt a full computation

Another interesting thing is that there are reportedly 10 Eckardt points. I will find some of these points,

following the method above.

In[]:= cdc = 81 (x^3 + y^3 + z^3) - 189 (x^2 y + x^2 z + y^2 x + y^2 z + z^2 x + z^2 y) +

54 x y z + 126 (x y + x z + y z) - 9 (x^2 + y^2 + z^2) - 9 (x + y + z) + 1;

We first find all the lines .

SurfaceStoryPartII.nb | 176

http://mathworld.wolfram.com/ClebschDiagonalCubic.html

In[]:= cdcEq = Collect [Expand [cdc /. Thread [{x, y, z} → F1]], t]

Out[]= 1 - 9 a1 - 9 a12 + 81 a13 - 9 a2 + 126 a1 a2 - 189 a12 a2 - 9 a22 - 189 a1 a22 + 81 a23 +

-9 + 126 a1 - 189 a12 + 126 a2 + 54 a1 a2 - 189 a22 - 9 b1 - 18 a1 b1 + 243 a12 b1 + 126 a2 b1 -

378 a1 a2 b1 - 189 a22 b1 - 9 b2 + 126 a1 b2 - 189 a12 b2 - 18 a2 b2 - 378 a1 a2 b2 + 243 a22 b2
t + -9 - 189 a1 - 189 a2 + 126 b1 - 378 a1 b1 + 54 a2 b1 - 9 b12 + 243 a1 b12 -

189 a2 b12 + 126 b2 + 54 a1 b2 - 378 a2 b2 + 126 b1 b2 -

378 a1 b1 b2 - 378 a2 b1 b2 - 9 b22 - 189 a1 b22 + 243 a2 b22 t2 +

81 - 189 b1 - 189 b12 + 81 b13 - 189 b2 + 54 b1 b2 - 189 b12 b2 - 189 b22 - 189 b1 b22 + 81 b23 t3

In[]:= cdc0 = 1 - 9 a1 - 9 a12 + 81 a13 - 9 a2 + 126 a1 a2 - 189 a12 a2 - 9 a22 - 189 a1 a22 + 81 a23;

cdc1 = -9 + 126 a1 - 189 a12 + 126 a2 + 54 a1 a2 - 189 a22 - 9 b1 - 18 a1 b1 + 243 a12 b1 + 126 a2 b1 -

378 a1 a2 b1 - 189 a22 b1 - 9 b2 + 126 a1 b2 - 189 a12 b2 - 18 a2 b2 - 378 a1 a2 b2 + 243 a22 b2;

cdc2 = -9 - 189 a1 - 189 a2 + 126 b1 - 378 a1 b1 + 54 a2 b1 - 9 b12 + 243 a1 b12 - 189 a2 b12 + 126 b2 +

54 a1 b2 - 378 a2 b2 + 126 b1 b2 - 378 a1 b1 b2 - 378 a2 b1 b2 - 9 b22 - 189 a1 b22 + 243 a2 b22;

cdc3 = 81 - 189 b1 - 189 b12 + 81 b13 - 189 b2 + 54 b1 b2 - 189 b12 b2 - 189 b22 - 189 b1 b22 + 81 b23;

In[]:= solcdc = NSolve [{cdc0, cdc1, cdc2, cdc3}];

Do[Print ["cline [", i, "]=", cline [i] = F1 /. solcdc 〚i〛], {i, 22}]

177 | SurfaceStoryPartII.nb

cline [1]={t, 2.2847 - 5.23607 t, 0.872678 - 2.23607 t}

cline [2]={t, 0.390273 - 0.447214 t, 0.241202 + 2.34164 t}

cline [3]={t, - 0.333333 + 3. t, 0. }

cline [4]={t, 0.0486327 - 0.763932 t, 0.127322 + 2.23607 t}

cline [5]={t, 0.127322 + 2.23607 t, 0.0486327 - 0.763932 t}

cline [6]={t, 0., - 0.333333 + 3. t}

cline [7]={t, 0.666667 - 1. t, 0.333333 }

cline [8]={t, 0.269672 - 2.92705 t, 0.063661 - 1.30902 t}

cline [9]={t, 0.241202 + 2.34164 t, 0.390273 - 0.447214 t}

cline [10]={t, 0.872678 - 2.23607 t, 2.2847 - 5.23607 t}

cline [11]={t, 0.333333 - 1. t, 0. }

cline [12]={t, - 0.333333 , 0. - 1. t}

cline [13]={t, 0.436339 - 0.190983 t, - 0.103006 + 0.427051 t}

cline [14]={t, 0.063661 - 1.30902 t, 0.269672 - 2.92705 t}

cline [15]={t, 0.0921311 - 0.341641 t, - 0.0569401 + 0.447214 t}

cline [16]={t, - 0.0569401 + 0.447214 t, 0.0921311 - 0.341641 t}

cline [17]={t, 0. - 1. t, - 0.333333 }

cline [18]={t, 0., 0.333333 - 1. t}

cline [19]={t, 0., 0.111111 + 0.333333 t}

cline [20]={t, 0.333333 , 0.666667 - 1. t}

cline [21]={t, 0.111111 + 0.333333 t, 0. }

cline [22]={t, - 0.103006 + 0.427051 t, 0.436339 - 0.190983 t}

In[]:= Length [solcdc]

Out[]= 22

So we don' t get all the lines but one can get the other lines by symmetry .

In[]:= cline [23] = {0, -1 / 3 + 3 t, t};

cline [24] = {0, 1 / 3 - t, t};

cline [25] = {-1 / 3, -t, t};

cline [26] = {0, t, -1 / 3 + 3 t};

cline [27] = {1 / 3, t, 2 / 3 - t};

In[]:= Simplify [cdc /. Thread [{x, y, z} → cline [27]]]

Out[]= 0

Our incidence chart can be calculated .

SurfaceStoryPartII.nb | 178

In[]:= lineList = Range [27]

Out[]= {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,

14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27}

In[]:= incidence2 =

SparseArray [Flatten [Table [{i, j} → Length [pLineIntersectionMD [cline [lineList 〚i〛],
cline [lineList 〚j〛], t, {x, y, z}, .003]], {i, 27}, {j, 27}], 1]]

Out[]= SparseArray  Specified elements : 297

Dimensions : {27, 27}


In[]:= M2 = Join [Partition [Prepend [lineList , 0], 1], Prepend [incidence2 , lineList], 2];

Grid [M2,

Background → {None, None, {{{1, 1}, {1, 28}} → LightGray , {{1, 28}, {1, 1}} → LightGray }}]

Out[]=

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

1 1 0 0 0 0 0 0 3 3 3 0 0 3 0 0 3 3 3 0 0 3 0 3 0 0 0 3

2 0 1 0 3 0 3 0 3 3 3 3 0 3 0 0 0 0 0 0 3 0 0 3 0 3 0 0

3 0 0 1 0 0 3 0 0 3 0 3 3 3 3 3 0 0 0 0 0 3 0 3 0 0 0 3

4 0 3 0 1 3 0 0 0 0 0 0 0 0 3 3 0 3 3 0 0 3 3 3 0 0 0 3

5 0 0 0 3 1 0 0 3 3 0 3 3 3 0 0 3 0 0 3 0 0 0 0 0 0 3 3

6 0 3 3 0 0 1 0 3 0 0 0 0 0 0 0 3 3 3 3 0 0 3 0 0 0 3 3

7 0 0 0 0 0 0 1 3 3 0 4 0 0 0 3 0 4 0 3 3 0 3 3 0 0 0 3

8 3 3 0 0 3 3 3 1 0 0 0 3 0 3 3 0 0 0 0 0 3 0 0 3 0 0 0

9 3 3 3 0 3 0 3 0 1 0 0 0 0 3 0 0 0 3 0 0 0 3 0 0 3 3 0

10 3 3 0 0 0 0 0 0 0 1 3 3 0 3 3 0 0 0 3 0 0 3 0 0 0 3 3

11 0 3 3 0 3 0 4 0 0 3 1 0 0 0 0 3 4 3 0 0 3 0 0 3 0 0 0

12 0 0 3 0 3 0 0 3 0 3 0 1 0 0 0 0 3 4 0 4 0 3 3 0 3 0 0

13 3 3 3 0 3 0 0 0 0 0 0 0 1 0 3 0 3 0 3 3 0 3 0 3 0 0 0

14 0 0 3 3 0 0 0 3 3 3 0 0 0 1 0 3 3 0 3 3 0 0 0 3 0 0 0

15 0 0 3 3 0 0 3 3 0 3 0 0 3 0 1 3 0 3 0 0 0 0 0 0 3 3 0

16 3 0 0 0 3 3 0 0 0 0 3 0 0 3 3 1 0 0 0 3 0 3 3 0 3 0 0

17 3 0 0 3 0 3 4 0 0 0 4 3 3 3 0 0 1 0 0 0 0 0 0 0 3 3 0

18 3 0 0 3 0 3 0 0 3 0 3 4 0 0 3 0 0 1 3 4 0 0 0 3 0 0 0

19 0 0 0 0 3 3 3 0 0 3 0 0 3 3 0 0 0 3 1 0 3 0 3 0 3 0 0

20 0 3 0 0 0 0 3 0 0 0 0 4 3 3 0 3 0 4 0 1 3 0 0 0 0 3 3

21 3 0 3 3 0 0 0 3 0 0 3 0 0 0 0 0 0 0 3 3 1 3 0 0 3 3 0

22 0 0 0 3 0 3 3 0 3 3 0 3 3 0 0 3 0 0 0 0 3 1 0 3 0 0 0

23 3 3 3 3 0 0 3 0 0 0 0 3 0 0 0 3 0 0 3 0 0 0 1 3 0 3 0

24 0 0 0 0 0 0 0 3 0 0 3 0 3 3 0 0 0 3 0 0 0 3 3 1 4 3 4

25 0 3 0 0 0 0 0 0 3 0 0 3 0 0 3 3 3 0 3 0 3 0 0 4 1 0 4

26 0 0 0 0 3 3 0 0 3 3 0 0 0 0 3 0 3 0 0 3 3 0 3 3 0 1 0

27 3 0 3 3 3 3 3 0 0 3 0 0 0 0 0 0 0 0 0 3 0 0 0 4 4 0 1

 We don’t have any duplicates so this must be all.

We now look for the famous Eckart points in this example.

179 | SurfaceStoryPartII.nb

In[]:= otherAssoc2 = Table [{i, j} → pLineIntersectionMD [cline [i], cline [j], t, {x, y, z}, .003],

{i, 26}, {j, i + 1, 27}];

V2 = KeySelect [otherAssoc2 , Length [otherAssoc2 [#]] ⩵ 3 &];

In[]:= st = Select [Tally [Values [V2], Norm [#1 - #2] < 1.*^-9 &], #〚2〛 > 1 &]

Out[]= {{0.166667 , 0.166667 , 0.}, 3}, 1.4866 × 10-14, -0.333333 , -4.91517 × 10-15 , 3,
-8.17955 × 10-14, 2.72734 × 10-14, -0.333333 , 3,
0.166667 , -1.48845 × 10-16, 0.166667 , 3, {{0.333333 , 0.333333 , 0.333333 }, 3},

-0.333333 , 1.02521 × 10-14, -1.01915 × 10-14 , 3,
1.04294 × 10-17, 0.166667 , 0.166667 , 3

In[]:= KeySelect [V2, Norm [V2[#] - st〚1, 1〛] < 1.*^-9 &]

Out[]= {3, 11} → {0.166667 , 0.166667 , 0.},

{3, 21} → {0.166667 , 0.166667 , 0.}, {11, 21} → {0.166667 , 0.166667 , 0.}

In[]:= KeySelect [V2, Norm [V2[#] - st〚2, 1〛] < 1.*^-9 &]

Out[]=  {3, 12} → 1.4866 × 10-14, -0.333333 , -4.91517 × 10-15 ,
{3, 23} → 2.1065 × 10-15, -0.333333 , -2.1065 × 10-15 ,
{12, 23} → -2.79385 × 10-15, -0.333333 , 8.13327 × 10-15 

In[]:= KeySelect [V2, Norm [V2[#] - st〚3, 1〛] < 1.*^-9 &]

Out[]=  {6, 17} → -8.17955 × 10-14, 2.72734 × 10-14, -0.333333 ,
{6, 26} → -4.60317 × 10-15, 4.3122 × 10-15, -0.333333 ,
{17, 26} → 2.27423 × 10-14, -6.82551 × 10-14, -0.333333 

In[]:= KeySelect [V2, Norm [V2[#] - st〚4, 1〛] < 1.*^-9 &]

Out[]=  {6, 18} → 0.166667 , -1.48845 × 10-16, 0.166667 ,
{6, 19} → 0.166667 , 6.92135 × 10-18, 0.166667 ,
{18, 19} → 0.166667 , -4.11295 × 10-17, 0.166667 

In[]:= KeySelect [V2, Norm [V2[#] - st〚5, 1〛] < 1.*^-9 &]

Out[]= {7, 20} → {0.333333 , 0.333333 , 0.333333 },

{7, 27} → {0.333333 , 0.333333 , 0.333333 }, {20, 27} → {0.333333 , 0.333333 , 0.333333 }

In[]:= KeySelect [V2, Norm [V2[#] - st〚6, 1〛] < 1.*^-9 &]

Out[]=  {19, 21} → -0.333333 , 1.02521 × 10-14, -1.01915 × 10-14 ,
{19, 25} → -0.333333 , 2.80014 × 10-14, -8.34944 × 10-14 ,
{21, 25} → -0.333333 , -5.30136 × 10-14, 1.76712 × 10-14 

In[]:= KeySelect [V2, Norm [V2[#] - st〚7, 1〛] < 1.*^-9 &]

Out[]=  {23, 24} → 1.04294 × 10-17, 0.166667 , 0.166667 ,
{23, 26} → 1.88326 × 10-18, 0.166667 , 0.166667 ,
{24, 26} → 5.73977 × 10-17, 0.166667 , 0.166667 

SurfaceStoryPartII.nb | 180

So we find 7 Eckardt points ,these are all rational. The others are infinite.

In[]:= epoints = {{1 / 6, 1 / 6, 0}, {0, -1 / 3, 0}, {0, 0, -1 / 3},

{1 / 6, 1 / 6, 0}, {1 / 3, 1 / 3, 1 / 3}, {-1 / 3, 0, 0}, {0, 1 / 6, 1 / 6, 0}};

Note by symmetry there are only 3 different orbits, one of length 1.

In[]:= elines = DeleteDuplicates [

{3, 11, 21, 12, 23, 6, 17, 26, 6, 18, 19, 7, 20, 27, 19, 21, 25, 23, 24, 26}]

Out[]= {3, 11, 21, 12, 23, 6, 17, 26, 18, 19, 7, 20, 27, 25, 24}

In[]:= Show [ContourPlot3D [cdc ⩵ 0, {x, -1, 1},

{y, -1, 1}, {z, -1, 1}, Mesh → None, ContourStyle → Opacity [0.9]],

ParametricPlot3D [cline [#] & /@ elines, {t, -3, 3}, PlotStyle → Green],

Axes → False, Boxed → False]

Out[]=

181 | SurfaceStoryPartII.nb

4. Fourth Degree and Related Surfaces
We already saw in Chapter 1 some surfaces related to the torus. Here we will consider these again as

well as some other 4 degree surfaces. But while there were large continuous groups of symmetries in

degree 2 the symmetry group of higher degree surfaces will generally be finite. So we start our discus -

sion with the geometric point groups. As a comment one source is the book Geometry and Symmetry

by Paul B. Yale (Holden Day, 1968). He also was one of my undergraduate professors, he made me get

excited about abstract algebra while he was writing this book. Unfortunately it is written in 1960’s

algebra speak with hardly any matrix representations so this book is not very relevant to this

discussion.

4.1 Geometric Point groups and applications
We remind our readers that in mathematics a matrix group is a set of n×n matrices for some fixed n

which satisfy the two rules: 1) the product of any two matrices in the group is in the group and 2) the

inverse of any matrix in the group is in the group. In particular the set of projective linear symmetries of

a surfaces forms a group. We caution that multiplication of matrices is not commutative, possibly

A.B ≠ B.A, so these groups do not satisfy a commutative law. To an algebraist this makes them more

interesting. They do, because of matrix multiplication in general, satisfy the associative

law (A.B).C = A.(B.C) however. The identity n×n matrix with ones down the main diagonal and 0 else -

where is automatically in every matrix group from rules 1) and 2) above.

As an example, a well known type of matrix groups are the crystallographic point groups. There is a

brief discussion in Wolfram Math World but I recommend instead the article by this name in Wikipedia.

We will loosely follow the standard notation in these sources but must worry about compatibility with

Mathematica variables.

4.1.1 Tetrahedral groups

The so called tetrahedral groups , generally denoted T, are perhaps better called cubic groups as in

[Yale]. These will give a building base for the other groups. We give an inductive construction, the

reader should notice the pattern. Tet2 and Tet3 are given as 2×2, 3×3 matrices to facilitate the induc -

tive construction but must be expanded to 4×4 matrices using 2 or 1 applications of m2TM before using

fltMD or FLTNS.

In[]:= Tet2 = {{{1, 0}, {0, 1}}, {{0, 1}, {1, 0}}};

MatrixForm [#] & /@ Tet2

Out[]=  1 0

0 1
,

0 1

1 0


SurfaceStoryPartII.nb | 182

In[]:= Tet3 = Join [{{1, 0, 0}, Prepend [#〚1〛, 0], Prepend [#〚2〛, 0]} & /@ Tet2,

{Prepend [#〚1〛, 0], {1, 0, 0}, Prepend [#〚2〛, 0]} & /@ Tet2,

{Prepend [#〚1〛, 0], Prepend [#〚2〛, 0], {1, 0, 0}} & /@ Tet2];

MatrixForm [#] & /@

Tet3

Out[]= 
1 0 0

0 1 0

0 0 1

,

1 0 0

0 0 1

0 1 0

,

0 1 0

1 0 0

0 0 1

,

0 0 1

1 0 0

0 1 0

,

0 1 0

0 0 1

1 0 0

,

0 0 1

0 1 0

1 0 0



In[]:= Tet4 = Join [{{1, 0, 0, 0}, Prepend [#〚1〛, 0], Prepend [#〚2〛, 0], Prepend [#〚3〛, 0]} & /@ Tet3,

{Prepend [#〚1〛, 0], {1, 0, 0, 0}, Prepend [#〚2〛, 0], Prepend [#〚3〛, 0]} & /@ Tet3,

{Prepend [#〚1〛, 0], Prepend [#〚2〛, 0], {1, 0, 0, 0}, Prepend [#〚3〛, 0]} & /@ Tet3,

{Prepend [#〚1〛, 0], Prepend [#〚2〛, 0], Prepend [#〚3〛, 0], {1, 0, 0, 0}} & /@ Tet3];

MatrixForm [#] & /@

Tet4

Out[]= 
1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

,

1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

,

1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

,

1 0 0 0

0 0 0 1

0 1 0 0

0 0 1 0

,

1 0 0 0

0 0 1 0

0 0 0 1

0 1 0 0

,

1 0 0 0

0 0 0 1

0 0 1 0

0 1 0 0

,

0 1 0 0

1 0 0 0

0 0 1 0

0 0 0 1

,

0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0

,

0 0 1 0

1 0 0 0

0 1 0 0

0 0 0 1

,

0 0 0 1

1 0 0 0

0 1 0 0

0 0 1 0

,

0 0 1 0

1 0 0 0

0 0 0 1

0 1 0 0

,

0 0 0 1

1 0 0 0

0 0 1 0

0 1 0 0

,

0 1 0 0

0 0 1 0

1 0 0 0

0 0 0 1

,

0 1 0 0

0 0 0 1

1 0 0 0

0 0 1 0

,

0 0 1 0

0 1 0 0

1 0 0 0

0 0 0 1

,

0 0 0 1

0 1 0 0

1 0 0 0

0 0 1 0

,

0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

,

0 0 0 1

0 0 1 0

1 0 0 0

0 1 0 0

,

0 1 0 0

0 0 1 0

0 0 0 1

1 0 0 0

,

0 1 0 0

0 0 0 1

0 0 1 0

1 0 0 0

,

0 0 1 0

0 1 0 0

0 0 0 1

1 0 0 0

,

0 0 0 1

0 1 0 0

0 0 1 0

1 0 0 0

,

0 0 1 0

0 0 0 1

0 1 0 0

1 0 0 0

,

0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0



These have exactly one 1 in each row and column. Note there are 2 symmetry matrices in Tet2 , 6 in

Tet3 and 24 in Tet4.

As examples, Tet3 provides symmetries of several cubic surfaces. The first example is the Fermat

surface

In[]:= fermat = x^3 + y^3 + z^3 + 1

Out[]= 1 + x3 + y3 + z3

Note that

183 | SurfaceStoryPartII.nb

In[]:= FLTNS [fermat, m2TM [Tet3〚RandomInteger [{1, 6}]〛], {x, y, z}]

Out[]= 1 + x3 + y3 + z3

We saw that this surface had 3 real lines given parametrically

In[]:= lf1 = {t, -t, -1};

lf2 = {t, -1, -t};

lf3 = {-1, t, -t};

Permuting, say lf1 , with the 6 symmetries in Tet3

In[]:= Column [Table [fltMD [lf1, m2TM [Tet3〚n〛]], {n, 6}]]

Out[]=

{t, -t, -1}

{t, -1, -t}

{-t, t, -1}

{-1, t, -t}

{-t, -1, t}

{-1, -t, t}

sends this line to one of the three . You do need to notice that , say for {-t, t, -1}, changing the sign on

both t’s merely changes the direction of the parameterization, so {-t, t, -1} is the same line as

{t, -t, -1}. The example also works if lf1 is replaced by lf2 or lf3.

Another cubic example is the Clebsch Diagonal Cubic. The equation below makes it clear that permut -

ing variables makes no difference.

In[]:= cdc = 81 (x^3 + y^3 + z^3) - 189 (x^2 y + x^2 z + y^2 x + y^2 z + z^2 x + z^2 y) +

54 x y z + 126 (x y + x z + y z) - 9 (x^2 + y^2 + z^2) - 9 (x + y + z) + 1;

so for example

In[]:= cdc2 = FLTNS [cdc, m2TM [Tet3〚3〛], {x, y, z}]

Out[]= 1 - 9 x - 9 x2 + 81 x3 - 9 y + 126 x y - 189 x2 y - 9 y2 - 189 x y2 + 81 y3 - 9 z +

126 x z - 189 x2 z + 126 y z + 54 x y z - 189 y2 z - 9 z2 - 189 x z2 - 189 y z2 + 81 z3

In[]:= Expand [cdc2 - cdc]

Out[]= 0

Here the real lines must also be permuted, but this is more complicated as there are 27 of these . In

these cubic cases we do not claim that these are the only affine symmetries, but your author does not

know of any others .

4.1.2 Octahedral Groups
These also are considered cubic groups as we will see in our example . Essentially we now let the

entries in our matrices take values in {1, -1} instead of just 1. Although the tetrahedral groups were

given as lists the rest of our groups will be given as functions so we don’t need to list them all.

SurfaceStoryPartII.nb | 184

The following function gives all 3×3 diagonal matrices with elements in {1,-1}. We are representing

integers in a reverse binary form. In order for this to work correctly this function needs the domain to

be the set of integers 8 through 15.

In[]:= unitDiag3 [m_] := Module [{j}, If[m < 8 || m > 15, Echo ["Need 8 ≤ m ≤ 15"];

Abort [],

j = Reverse [IntegerDigits [m, 2]];

{{(-1)^j〚1〛, 0, 0}, {0, (-1)^j〚2〛, 0}, {0, 0, (-1)^j〚3〛}}]]

Then the group I will call Oh, or Oh(3), note regular capital O here, is the set of matrices

In[]:= Oh[k_, m_] := m2TM [unitDiag3 [m + 7].Tet3〚k〛]

Here, to get each symmetry once, k=1…6 and m =1…8 . Thus we will get 48 symmetries. Although

they would generally be presented as 3×3 matrices we will give them already as 4×4 transformation

matrices.

For example

In[]:= Oh[3, 6] // MatrixForm

Out[]//MatrixForm=

0 -1 0 0

1 0 0 0

0 0 -1 0

0 0 0 1

This group of symmetries may be familiar as a discrete subgroup of symmetries of the sphere, that is

the well known orthogonal group  (3).

In[]:= sphere = x^2 + y^2 + z^2 - 1

Out[]= -1 + x2 + y2 + z2

In[]:= FLTNS [sphere, Oh[3, 6], {x, y, z}]

Out[]= -1 + x2 + y2 + z2

Of course the orthogonal group is a continuous group and infinite. However when working with the

rounded cube one needs to use a point group.

In[]:= rcube = x^4 + y^4 + z^4 - 1

Out[]= -1 + x4 + y4 + z4

185 | SurfaceStoryPartII.nb

In[]:= ContourPlot3D [x^4 + y^4 + z^4 ⩵ 1, {x, -1, 1}, {y, -1, 1},

{z, -1, 1}, Mesh → None, ImageSize → Small, Axes → False, Boxed → False]

Out[]=

In[]:= FLTNS [rcube, Oh[4, 7], {x, y, z}]

Out[]= -1 + x4 + y4 + z4

In[]:= M = m2TM [Orthogonalize [RandomReal [{-2, 2}, {3, 3}]]]

Out[]= {{-0.802743 , -0.570305 , 0.174226 , 0}, {-0.596262 , 0.763416 , -0.248328 , 0},

{-0.00861577 , 0.303228 , 0.952879 , 0}, {0, 0, 0, 1}}

In[]:= FLTNS [rcube, M, {x, y, z}]

Out[]= -1. + 0.521955 x4 + 0.662071 x3 y + 2.52318 x2 y2 - 0.344949 x y3 + 0.469864 y4 -

0.186999 x3 z + 0.857031 x2 y z - 1.05707 x y2 z + 0.48859 y3 z + 0.34509 x2 z2 -

0.951367 x y z2 + 0.657636 y2 z2 + 0.539357 x z3 - 0.774267 y z3 + 0.832879 z4

which is not a symmetry . So it appears that one can only have finitely many symmetries.

The rcube reminds one of some dice which have rounded edges to roll more smoothly. The reader is

reminded that these transformations do not all apply to physical objects as they contain reflections

which turn your right hand into your le� hand which does not happen in the physical world. In some

cases one may wish to work with a smaller group, the symmetries of determinant one.

In[]:= Clear [k, m]

In[]:= SO = Reap [Do[If[Det[Oh[k, m]] ⩵ 1, Sow[{k, m}]], {k, 6}, {m, 8}]]〚2, 1〛
Out[]= {{1, 1}, {1, 4}, {1, 6}, {1, 7}, {2, 2}, {2, 3}, {2, 5}, {2, 8}, {3, 2}, {3, 3}, {3, 5}, {3, 8},

{4, 1}, {4, 4}, {4, 6}, {4, 7}, {5, 1}, {5, 4}, {5, 6}, {5, 7}, {6, 2}, {6, 3}, {6, 5}, {6, 8}}

There are 24 physical symmetries . For example

In[]:= MatrixForm [Oh[2, 8]]

Out[]//MatrixForm=

-1 0 0 0

0 0 -1 0

0 -1 0 0

0 0 0 1

Note that as in 4.2 any symmetry of the rcube transfers to a symmetry of any surface projectively

SurfaceStoryPartII.nb | 186

equivalent to the rcube. An example motivated by my breakfast today is

In[]:= K = {{1, 0, 0, 0}, {0, 1, 0, 0}, {0, 0, .5, 0}, {0, 0, 0, 1}}

Out[]= {{1, 0, 0, 0}, {0, 1, 0, 0}, {0, 0, 0.5, 0}, {0, 0, 0, 1}}

In[]:= jellyDonut = FLTNS [rcube, K, {x, y, z}]

Out[]= -1. + 1. x4 + 1. y4 + 16. z4

In[]:= jrot = K.Oh[2, 3].Inverse [K]

Out[]= {{1., 0., 0., 0.}, {0., 0., -2., 0.}, {0., 0.5, 0., 0.}, {0., 0., 0., 1.}}

To see this as a rotation of the jelly Donut

In[]:= FLTNS [jellyDonut , jrot, {x, y, z}]

Out[]= -1. + 1. x4 + 1. y4 + 16. z4

Note that point

In[]:= pjd = {0, 0, .5};

jellyDonut /. Thread [{x, y, z} → pjd]

Out[]= 0.

is on my jellyDonut . Rotating

In[]:= qjd = fltMD [pjd, jrot]

Out[]= {0., -1., 0.}

In[]:= ImageCrop [Show [ContourPlot3D [jellyDonut ⩵ 0, {x, -1, 1},

{y, -1, 1}, {z, -1, 1}, Mesh → None, ContourStyle → LightPink],

Graphics3D [{PointSize [.03], {Blue, Point [pjd]}, {Red, Point [qjd]}}],

Axes → False, Boxed → False]]

Out[]=

Once again, this is a theoretical rotation, do not try this on your own jelly donut.

4.1.2 The quartic hyperboloid.

The quartic hyperboloid is the surface with equation

187 | SurfaceStoryPartII.nb

In[]:= qhyp = x^4 + y^4 - z^4 - 1

Out[]= -1 + x4 + y4 - z4

In[]:= ContourPlot3D [qhyp ⩵ 0, {x, -2, 2}, {y, -2, 2}, {z, -2, 2},

Mesh → None, ImageSize → Small, Axes → False, Boxed → False]

Out[]=

We can think of this as an opened box, so affine symmetries are those symmetries of Oh that don’t

move the upper and lower faces of the rcube. In fact we can start with the symmetries of the quadric

hyperboloid which are in Oh.

In[]:= ohyp =

Reap [Do[If[FLTNS [x^2 + y^2 - z^2 - 1, Oh[k, m], {x, y, z}] ⩵ x^2 + y^2 - z^2 - 1, Sow[{k, m}]],

{k, 6}, {m, 8}]]〚2, 1〛

Out[]= {{1, 1}, {1, 2}, {1, 3}, {1, 4}, {1, 5}, {1, 6}, {1, 7},

{1, 8}, {3, 1}, {3, 2}, {3, 3}, {3, 4}, {3, 5}, {3, 6}, {3, 7}, {3, 8}}

In[]:= MatrixForm [Oh @@ #] & /@ ohyp

Out[]= 
1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

,

-1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

,

1 0 0 0

0 -1 0 0

0 0 1 0

0 0 0 1

,

-1 0 0 0

0 -1 0 0

0 0 1 0

0 0 0 1

,

1 0 0 0

0 1 0 0

0 0 -1 0

0 0 0 1

,

-1 0 0 0

0 1 0 0

0 0 -1 0

0 0 0 1

,

1 0 0 0

0 -1 0 0

0 0 -1 0

0 0 0 1

,

-1 0 0 0

0 -1 0 0

0 0 -1 0

0 0 0 1

,

0 1 0 0

1 0 0 0

0 0 1 0

0 0 0 1

,

0 -1 0 0

1 0 0 0

0 0 1 0

0 0 0 1

,

0 1 0 0

-1 0 0 0

0 0 1 0

0 0 0 1

,

0 -1 0 0

-1 0 0 0

0 0 1 0

0 0 0 1

,

0 1 0 0

1 0 0 0

0 0 -1 0

0 0 0 1

,

0 -1 0 0

1 0 0 0

0 0 -1 0

0 0 0 1

,

0 1 0 0

-1 0 0 0

0 0 -1 0

0 0 0 1

,

0 -1 0 0

-1 0 0 0

0 0 -1 0

0 0 0 1



Note that these all have the form of matrices in ℍ (4) of Chapter 2 of the le� type, except with entries

restricted to {0,-1,1}.

The interesting thing is these discrete symmetries also work for the quartic hyperboloid

SurfaceStoryPartII.nb | 188

In[]:= FLTNS [qhyp, Oh @@ ohyp〚RandomInteger [{1, 16}]〛, {x, y, z}]

Out[]= -1 + x4 + y4 - z4

But a general symmetry in ℍ (4) of that type does not work

In[]:= A1 =

0.5814431788612586` 0.8135870142496832` 0.` 0.`

0.8135870142496833` -0.5814431788612587` 0.` 0.`

0.` 0.` 0.47455284783002816` 0.8802270131144638`

0.` 0.` 0.8802270131144637` -0.4745528478300281`

Out[]= {{0.581443 , 0.813587 , 0., 0.}, {0.813587 , -0.581443 , 0., 0.},

{0., 0., 0.474553 , 0.880227 }, {0., 0., 0.880227 , -0.474553 }}

In[]:= FLTNS [qhyp, A1, {x, y, z}]

Out[]= -0.65103 + 0.552439 x4 - 0.612791 x3 y + 2.68537 x2 y2 + 0.612791 x y3 +

0.552439 y4 - 0.918302 z - 2.09382 z2 + 0.918302 z3 - 0.65103 z4

For qhyp we don’t have circles on the surface to work with be we can see the results of a symmetry by

looking at arrows from the point to the image point.

For example start with point {1,0,0} on qhyp and apply twice

In[]:= A2 = Oh[3, 6]

Out[]= {{0, -1, 0, 0}, {1, 0, 0, 0}, {0, 0, -1, 0}, {0, 0, 0, 1}}

In[]:= fltMD [{1, 0, 0}, A2]

Out[]= {0, 1, 0}

In[]:= fltMD [{0, 1, 0}, A2]

Out[]= {-1, 0, 0}

In[]:= Show [ContourPlot3D [qhyp ⩵ 0, {x, -2, 2}, {y, -2, 2}, {z, -2, 2},

Mesh → None, ContourStyle → Opacity [.55], Axes → False, Boxed → False],

Graphics3D [{{Blue, Ball [{1, 0, 0}, .04], Ball [{0, 1, 0}, .04], Ball [{-1, 0, 0}, .04]},

{Black, Thickness [.01], Arrow [{{1, 0, 0}, {0, 1, 0}}],

Arrow [{{0, 1, 0}, {-1, 0, 0}}]}}], ImageSize → Small]

Out[]=

Unlike the rcube which is bounded the hyperboloids have infinite curves so there can be projective

189 | SurfaceStoryPartII.nb

symmetries. The maximal form for the quartic hyperboloid is the cone x4 + y4 - z4.

In[]:= ContourPlot3D [{x^4 + y^4 - z^4 ⩵ 0, x^2 + y^2 + z^2 ⩵ 1},

{x, -1, 1}, {y, -1, 1}, {z, -1, 1}, ContourStyle → {Orange, LightGray },

Mesh → None, Axes → False, Boxed → False, ImageSize → Small]

Out[]=

To induce a point symmetry of the quadric hyperboloid x2 + y2 - z2 - 1 a 4×4 real matrix it appears that

the matrix must be in ℍ (4) and Oh(4). There are two types, we called le� and right of these (see

Section 2.9 or paragraph 85 in GlobalFunctions.nb). We can construct these as follows :

In[]:= unitDiag2 [m_] := Module [{j}, If[m < 2, Abort [], j = Reverse [IntegerDigits [m, 2]];

{{(-1)^j〚1〛, 0}, {0, (-1)^j〚2〛}}]]

In[]:= Hyp4 [t1_, t2_, b1_, b2_, p_] := Switch [p, 1,

Join [Partition [Flatten [Riffle [unitDiag2 [b1 + 3].Tet2〚t1〛, {{0, 0}, {0, 0}}]], 4],

Partition [Flatten [Riffle [{{0, 0}, {0, 0}}, unitDiag2 [b2 + 3].Tet2〚t2〛]], 4]], 2,

Join [Partition [Flatten [Riffle [{{0, 0}, {0, 0}}, unitDiag2 [b1 + 3].Tet2〚t1〛]], 4],

Partition [Flatten [Riffle [unitDiag2 [b2 + 3].Tet2〚t2〛, {{0, 0}, {0, 0}}]], 4]]]

For this function t1,t2 come from 1,2, while b1,b2 go from 1 to 4, and p goes from 1,2. So we have 128

projective symmetries of the quartic hyperboloid. These all lie in ℍ (4) so are also symmetries of the

quadric hyperboloid, but not vice versa. Note also if t2 = 1 and b2 = 1, 2 then this is in m2TM[Oh].

One technicality is that transformation matrices are homogeneous, that is a constant multiple of a

transformation gives the same results. For example, consider the IdentityMatrix[4] and

In[]:= Id = IdentityMatrix [4];

MI = -Id;

MI // MatrixForm

Out[]//MatrixForm=

-1 0 0 0

0 -1 0 0

0 0 -1 0

0 0 0 -1

For the point

SurfaceStoryPartII.nb | 190

In[]:= p = {-1, 0, 0};

In[]:= fltMD [p, Id]

fltMD [p, MI]

Out[]= {-1, 0, 0}

Out[]= {-1, 0, 0}

give the same result . This is actually true for all points on the quartic Hyperboloid

For this reason the function Hyp4 above gives duplicate results. So to count actual symmetries we can

normalize by

In[]:= Hyp4N [t1_, t2_, b1_, b2_, p_] :=

If[Total [Hyp4 [t1, t2, b1, b2, p]〚4〛] > 0, Hyp4 [t1, t2, b1, b2, p], -Hyp4 [t1, t2, b1, b2, p]]

In[]:= Now

Out[]= Sun 21 Aug 2022 10:05:11 GMT-4

In[]:= Length [DeleteDuplicates [

Flatten [Table [Hyp4N [t1, t2, b1, b2, p], {t1, 2}, {t2, 2}, {b1, 4}, {b2, 4}, {p, 2}], 4]]]

Out[]= 64

So this group has only 64 distinct symmetries .

Here are some examples, we must be a bit careful as this second type sends the z-plane to infinity. We

could use fltiMD but that doesn’t help with plotting.

In[]:= A1 = Hyp4 [2, 2, 2, 4, 2];

A1 // MatrixForm

Out[]//MatrixForm=

0 0 0 -1

0 0 1 0

0 -1 0 0

-1 0 0 0

In[]:= FLTNS [x^4 + y^4 - z^4 - 1, A1, {x, y, z}]

Out[]= 1 - x4 - y4 + z4

In[]:= P = {x, y, z} /. FindInstance [x^4 + y^4 - z^4 ⩵ 1 && z ⩵ 2, {x, y, z}, Integers , 8]

Out[]= {{-2, -1, 2}, {-2, 1, 2}, {-1, -2, 2}, {-1, 2, 2}, {1, -2, 2}, {1, 2, 2}, {2, -1, 2}, {2, 1, 2}}

In[]:= Q = fltMD [#, A1] & /@ P

Out[]= -
1

2
, 1,

1

2
, -

1

2
, 1, -

1

2
, {-1, 2, 2},

{-1, 2, -2}, {1, -2, -2}, {1, -2, 2}, 
1

2
, -1, -

1

2
, 

1

2
, -1,

1

2


191 | SurfaceStoryPartII.nb

In[]:= Show [ContourPlot3D [x^4 + y^4 - z^4 ⩵ 1, {x, -3, 3}, {y, -3, 3}, {z, -3, 3}, Mesh → None,

Axes → False, Boxed → False, ContourStyle → Opacity [0.55]], Graphics3D [

{{Blue, PointSize [.02], Point [P]}, {Green, PointSize [.02], Point [Q]}}, ImageSize → Small]]

Out[]=

So this reminds us of the symmetries of the quadric hyperboloid in Chapter 2 where the images of

points of z-height 2 lie on a vertical curve. I will make this more precise in the next sub-section.

4.1.3 An orbit in the quartic hyperboloid

The orbit of a point p under a group of symmetries is the set of points obtained by applying all the

symmetries in the group to this point. In Chapter 2 the set of projective symmetries of the quadric

hyperboloid was shown, in two ways, to be transitive, that is, every point of the hyperboloid is in the

orbit of any given point. This concept of orbit is more interesting when we look at finite symmetry

groups such as our group Hyp4. We start with our point p1 = P〚1〛 = {-2, -1, 2}. We can calculate our 32

point orbit by

SurfaceStoryPartII.nb | 192

In[]:= p1 = {-2, -1, 2};

orbitp1 = DeleteDuplicates [Flatten [Transpose [

Table [fltMD [p1, Hyp4 [t1, t2, b1, b2, p]], {t1, 2}, {t2, 2}, {b1, 4}, {b2, 4}, {p, 2}]], 4]]

Out[]= {-2, -1, 2}, {-2, -1, -2}, {2, 1, -2}, {2, 1, 2}, {2, -1, 2}, {2, -1, -2}, {-2, 1, -2},

{-2, 1, 2}, {-1, -2, 2}, {-1, -2, -2}, {1, 2, -2}, {1, 2, 2}, {1, -2, 2}, {1, -2, -2},

{-1, 2, -2}, {-1, 2, 2}, -1, -
1

2
,
1

2
, -1, -

1

2
, -

1

2
, 1,

1

2
, -

1

2
, 1,

1

2
,
1

2
,

1, -
1

2
,
1

2
, 1, -

1

2
, -

1

2
, -1,

1

2
, -

1

2
, -1,

1

2
,
1

2
, -

1

2
, -1,

1

2
, -

1

2
, -1, -

1

2
,


1

2
, 1, -

1

2
, 

1

2
, 1,

1

2
, 

1

2
, -1,

1

2
, 

1

2
, -1, -

1

2
, -

1

2
, 1, -

1

2
, -

1

2
, 1,

1

2


We can easily check that each of these points lies on at least one of the 8 planes

z - 2, z - 1 /2, z + 1 /2, z + 2, x - 2 y, x + 2 y, 2 x - y, 2 x + y. Using pathFinder3D from Chapter 1 of

my Space Curves Book one can trace the entire curve obtained by intersecting the quartic hyperbola by

the first plane z = 2. The intersections of the last 4 planes with the quartic hyperbola contain an infinite

point and hence have two affine components. But it is easy to trace the part of the first curve cut out by

x = 2 y that lies between the points {-2, -1, 2} and {-2, -1, -2}. The rest of the curves or segments in

the following plot can be calculated using fltMD and the symmetries in Hyp4.

In[]:=

Then it can be checked that orbitp1 consists of all the intersection points in the above plot. Unlike

Chapter 2 we cannot construct more points higher or lower by taking powers of our symmetries

because Hyp4 is a group and all powers already are contained there. The rounded square shape of the

horizontal curves seems to be an obstruction to the existence of more rotational symmetries and the

vertical curves are just projective linear images of the horizontal ones. So I am comfortable in claiming

193 | SurfaceStoryPartII.nb

that Hyp4 contains all symmetries of the quartic hyperbola, but may be wrong as we saw with the

strange symmetries of the quadric hyperbola.

4.1.4 More on the quartic hyperbola.

Unlike the quadric hyperbola which has 2 lines through every point, I know of only 8 lines. These are

given by

In[]:= hl1a = {1, t, t};

hl1b = {1, t, -t};

hl2a = {-1, t, -t};

hl2b = {-1, t, t};

hl3a = {t, 1, -t};

hl3b = {t, 1, t};

hl4a = {t, -1, t};

hl4b = {t, -1, -t};

These lines form two mutually skew sets of lines which intersect each line of the other set. This is

somewhat analogous two the two rulings for the quadric hyperbola.

In[]:= Show [ContourPlot3D [x^4 + y^4 - z^4 ⩵ 1, {x, -3, 3},

{y, -3, 3}, {z, -3, 3}, Mesh → None, ContourStyle → Opacity [.75]],

ParametricPlot3D [{hl1a, hl2a, hl3a, hl4a}, {t, -3, 3}, PlotStyle → Cyan],

ParametricPlot3D [{hl1b, hl2b, hl3b, hl4b}, {t, -3, 3}, PlotStyle → Magenta],

Axes → False, Boxed → False]

Out[]=

SurfaceStoryPartII.nb | 194

Note, however that some meet in infinite points.

In[]:= pLineIntersectionMD [hl1a, hl2b, t, {x, y, z}, dTol]

Out[]= {0, -0.707107 , -0.707107 , 0}

Unfortunately, unlike smooth cubics, these lines are not enough to determine the quadric hyperboloid,

here are three other quadric surfaces, there are actually many containing these 8 lines.

In[]:=  ,

, 

I also mention that the theory of quartic hyperboloids is much more complicated than the quartic, it

appears there are many non-projectively equivalent projective quartic surfaces, such as the ones

above. It also appears that the quartic saddle surface

195 | SurfaceStoryPartII.nb

In[]:= ContourPlot3D [z ⩵ x^4 - y^4, {x, -3, 3}, {y, -3, 3}, {z, -3, 3},

Mesh → None, Axes → False, Boxed → False, ImageSize → Small]

Out[]=

may not be equivalent to the quartic hyperboloid. Here is a similar surface that is equivalent to qhyp

along with a two of the lines. All 8, of course, can transform to ss4 although some may go to the new

infinite plane .

In[]:= J = iTransform3D [y - 1]

Out[]= {{0.788675 , 0.57735, -0.211325 , -0.366025 }, {-0.57735, 0.57735, -0.57735, 1.},

{-0.211325 , 0.57735, 0.788675 , -0.366025 }, {0, 1.73205, 0, -1.73205 }}

In[]:= ss4 = FLTNS [qhyp, J, {x, y, z}]

Out[]= -0.0624642 + 0.00564428 x + 0.908494 x2 - 2.31319 x3 + 1.95753 x4 + 0.250926 y -

1.07356 x y + 2.04904 x2 y - 1.20753 x3 y - 0.366025 y2 + 0.707532 x y2 +

0.274519 x2 y2 + 0.288675 y3 - 0.0245191 x y3 + 0.496207 z - 0.732051 x z -

0.158494 x2 z + 1.18301 x3 z - 0.390544 y z + 1.73205 x y z - 0.475481 x2 y z +

1.02452 y2 z + 0.0245191 y3 z - 1.64054 z2 + 1.89054 x z2 - 0.316987 y z2 +

0.475481 x y z2 - 0.274519 y2 z2 + 2.89054 z3 - 1.18301 x z3 + 1.20753 y z3 - 1.95753 z4

In[]:= lss4a = fltMD [hl4a, J]

lss4b = fltMD [hl4b, J]

Out[]= {-0.288675 × (-0.943376 + 0.57735 t),

-0.288675 × (0.42265 - 1.1547 t), -0.288675 × (-0.943376 + 0.57735 t)}

Out[]= {-0.288675 × (-0.943376 + 1. t), -0.122008 , -0.288675 × (-0.943376 - 1. t)}

SurfaceStoryPartII.nb | 196

In[]:= Show [ContourPlot3D [ss4 ⩵ 0, {x, -3, 3}, {y, -3, 3}, {z, -3, 3}, Mesh → None],

ParametricPlot3D [lss4a, {t, -10, 10}, PlotStyle → Blue],

ParametricPlot3D [lss4b, {t, -10, 10}, PlotStyle → Green], Axes → False, Boxed → False]

Out[]=

Also, because of the equivalence J, all 128 symmetries of qhyp become symmetries of ss4. For example

In[]:= Ω = J.Hyp4 [2, 1, 3, 4, 2].Inverse [J]

Out[]= {{0.721688 , 0.644338 , -0.0669873 , -0.221688 },

{-0.211325 , -0.788675 , -1.36603, 0.211325 },

{-0.961325 , 0.32735, -0.75, 0.67265 }, {0.549038 , 1.18301, -1.18301, 0.816987 }}

In[]:= Chop [FLTNS [ss4, Ω, {x, y, z}] + ss4, dTol]

Out[]= 0

so ss4 is equivalent to its image up to the constant -1.

In[]:= lss4aJ = Chop [Simplify [fltMD [lss4a, Ω]], dTol]

lss4bJ = Chop [Simplify [fltMD [lss4b, Ω]], dTol]

Out[]= 
-0.244017 + 0.211325 t

1. + 1. t
, -

0.244017

1. + 1. t
,
0.333333 + 0.788675 t

1. + 1. t


Out[]= 
0.244017 + 0.455342 t

-1. + 1. t
,
0.244017 + 0.666667 t

-1. + 1. t
,
0.333333 + 0.122008 t

1. - 1. t


197 | SurfaceStoryPartII.nb

In[]:= Show [ContourPlot3D [ss4 ⩵ 0, {x, -3, 3}, {y, -3, 3}, {z, -3, 3}, Mesh → None],

ParametricPlot3D [{lss4a, lss4b }, {t, -10, 10}, PlotStyle → Blue],

ParametricPlot3D [{lss4aJ, lss4bJ }, {t, -10, 10}, PlotStyle → Green],

Axes → False, Boxed → False]

Out[]=

4.2 More on the Torus
As we have seen, working with quartics that there are many different types of seemingly similar sur -

faces which are not projectively equivalent. In particular tori come in different shapes, the ratio

between the outer radius and inner radius must be the same in projectively equivalent tori. These are

o�en given by parameters a,b as a > b > 0 shown below.

SurfaceStoryPartII.nb | 198

Out[]=

The trigonometric parameterization is

In[]:= torabt = {(a + b Cos[v]) Cos[u], (a + b Cos[v]) Sin[u], b Sin[v]};

The parameters range from - to  . From this we get the rational parametrization as in Chapter 1.4

Now the parameters range from -∞ < u, v <∞.

In[]:= torabrat = Together Expand  a +
2 b v

1 + v2

2 u

1 + u2
, a +

2 b v

1 + v2

1 - u2

1 + u2
, b

1 - v2

1 + v2


Out[]= 
2 u a + 2 b v + a v2
1 + u2 × 1 + v2

,
a - a u2 + 2 b v - 2 b u2 v + a v2 - a u2 v2

1 + u2 × 1 + v2
,
b - b v2

1 + v2


The implicit equation can be given by the equation

In[]:= torusEqab = Collect a4 + b4 + x4 + 2 x2 y2 + y4 + 2 x2 z2 +

2 y2 z2 + z4 + b2 -2 a2 - 2 x2 - 2 y2 - 2 z2 + a2 -2 x2 - 2 y2 + 2 z2, {a, b}

Out[]= a4 + b4 + x4 + 2 x2 y2 + y4 + 2 x2 z2 + 2 y2 z2 + z4 + b2 -2 x2 - 2 y2 - 2 z2 + a2 -2 b2 - 2 x2 - 2 y2 + 2 z2

Since a, b are not linear factors we can not expect tori with different a,b to be projectively equivalent

but if the ratio of a,b are the same then these will be equivalent

In[]:= torus31 = Expand [torusEqab /. {a → 3, b → 1}]

Out[]= 64 - 20 x2 + x4 - 20 y2 + 2 x2 y2 + y4 + 16 z2 + 2 x2 z2 + 2 y2 z2 + z4

In[]:= torus62 = Expand [torusEqab /. {a → 6, b → 2}]

Out[]= 1024 - 80 x2 + x4 - 80 y2 + 2 x2 y2 + y4 + 64 z2 + 2 x2 z2 + 2 y2 z2 + z4

Then

199 | SurfaceStoryPartII.nb

In[]:= Expand [16 * FLTNS [torus31, {{2, 0, 0, 0}, {0, 2, 0, 0}, {0, 0, 2, 0}, {0, 0, 0, 1}}, {x, y, z}]]

Out[]= 1024 - 80 x2 + x4 - 80 y2 + 2 x2 y2 + y4 + 64 z2 + 2 x2 z2 + 2 y2 z2 + z4

so torus31 is projectively equivalent to torus62.

4.2.1 Symmetries of the torus

All these standard tori, using these equations, have the same symmetry group. Any rotation on the z-

axis will preserve the torus. In addition we can reflect the torus in the xy-plane. Thus the obvious

symmetries will have transformation matrices of the form

In[]:= torusSym [ang_, refh_, refv_] := If[refh ^2 + refv ^2 ⩵ 2,

Join [Join [RotationMatrix [ang].{{1, 0}, {0, refv}}, {{0, 0}, {0, 0}}, 2],

{{0, 0, refv, 0}, {0, 0, 0, 1}}], Echo ["Must have refh,refv =±1"];

Abort []]

Where ang is any real number, the angle, while refh=1 gives horizontal rotation and refh = -1 gives

horizontal reflection, refv = -1 gives vertical reflextion.

For example

In[]:= Clear [α];

{torusSym [α, 1, -1] // MatrixForm , torusSym [Pi / 3, -1, 1] // MatrixForm }

Out[]= 
Cos[α] Sin[α] 0 0

Sin[α] -Cos[α] 0 0

0 0 -1 0

0 0 0 1

,

1

2
-

3

2
0 0

3

2

1

2
0 0

0 0 1 0

0 0 0 1



Another way to get the rotation symmetry is to take two planes through the z-axis, that is planes

defined by linear equations involving only x, y, then planeRotate3D will give such a symmetry.

In[]:= planeRotate3D [x - 3 y, x]

Out[]= {{0.316228 , -0.948683 , 0., 0.},

{0.948683 , 0.316228 , 0., 0.}, {0., 0., 1., 0.}, {0., 0., 0., 1.}}

 also reflections can be obtained by

In[]:= ReflectionMatrix [{3, 4, 0, 0}]

ReflectionMatrix [{0, 0, 1, 0}]

Out[]= 
7

25
, -

24

25
, 0, 0, -

24

25
, -

7

25
, 0, 0, {0, 0, 1, 0}, {0, 0, 0, 1}

Out[]= {{1, 0, 0, 0}, {0, 1, 0, 0}, {0, 0, -1, 0}, {0, 0, 0, 1}}

where in the first case one reflects in the plane 3 x + 4 y = 0 and in the second gives reflection through

the xy plane.

As in other situations any projective equivalent to these tori will have equivalent transformation

SurfaceStoryPartII.nb | 200

groups. For example consider the affine equivalent surface from the transformation

In[]:= A = {{.7, .8, 0, -1}, {-.1, 2, .4, 2}, {0, 0, 2, 0}, {0, 0, 0, 1}};

A // MatrixForm

Out[]//MatrixForm=

0.7 0.8 0 -1

-0.1 2 0.4 2

0 0 2 0

0 0 0 1

In[]:= g = FLTNS [torus31, A, {x, y, z}]

Out[]= -25.0325 - 42.7573 x + 29.5471 x2 + 23.6362 x3 + 3.35152 x4 + 22.9208 y - 35.4258 x y -

30.7072 x2 y - 5.11504 x3 y + 8.55849 y2 + 16.3294 x y2 + 3.84051 x2 y2 - 3.57051 y3 -

1.44139 x y3 + 0.26614 y4 - 4.58416 z + 7.08517 x z + 6.14143 x2 z + 1.02301 x3 z -

3.4234 y z - 6.53176 x y z - 1.5362 x2 y z + 2.14231 y2 z + 0.864837 x y2 z -

0.212912 y3 z + 7.68648 z2 + 3.8809 x z2 + 1.06898 x2 z2 - 2.15874 y z2 - 0.87147 x y z2 +

0.321817 y2 z2 + 0.37462 z3 + 0.151232 x z3 - 0.111694 y z3 + 0.0732436 z4

In[]:= ContourPlot3D [g ⩵ 0, {x, -10, 10}, {y, -8, 10}, {z, -4, 4}, Mesh → None, MaxRecursion → 4]

Out[]=

Consider the symmetry

201 | SurfaceStoryPartII.nb

In[]:= Ω = torusSym [Pi / 4, -1, 1]

N[Ω] // MatrixForm

Out[]= 
1

2

, -
1

2

, 0, 0, 
1

2

,
1

2

, 0, 0, {0, 0, 1, 0}, {0, 0, 0, 1}

Out[]//MatrixForm=

0.707107 -0.707107 0. 0.

0.707107 0.707107 0. 0.

0. 0. 1. 0.

0. 0. 0. 1.

Recall torus13 was the torus of Section 1.4. Using the parametric definition we can make a circle on

this

In[]:= circ1 = torabrat /. {a → 3, b → 1, u → 0}

Out[]= 0,
3 + 2 v + 3 v2

1 + v2
,
1 - v2

1 + v2


At v -> 0 we have the point on circ1

In[]:= p1 = circ1 /. {v → 0}

Out[]= {0, 3, 1}

In[]:= circ2 = fltMD [circ1, Ω]

Out[]= -
3 + 2 v + 3 v2

2 1 + v2
,
3 + 2 v + 3 v2

2 1 + v2
,
1 - v2

1 + v2


Now we get point

In[]:= p2 = fltMD [p1, Ω]

Out[]= -
3

2

,
3

2

, 1

SurfaceStoryPartII.nb | 202

In[]:= Show [ContourPlot3D [torus31 ⩵ 0, {x, -4, 4}, {y, -4, 4}, {z, -4, 4}, Mesh → None,

ContourStyle → Opacity [.7]], ParametricPlot3D [circ1, {v, -10, 10}, PlotStyle → Blue],

ParametricPlot3D [circ2, {v, -10, 10}, PlotStyle → Green],

Graphics3D [{{Blue, PointSize [.04], Point [p1]}, {Green, PointSize [.04], Point [p2]}}],

Axes → False, Boxed → False, ImageSize → Small]

Out[]=

On g we have

In[]:= circA1 = fltMD [circ1, A]

Out[]= -1. +
0.8 × 3 + 2 v + 3 v2

1 + v2
, 2. +

0.4 × 1 - v2
1 + v2

+
2. × 3 + 2 v + 3 v2

1 + v2
,
2. × 1 - v2

1 + v2


In[]:= q1 = fltMD [p1, A]

Out[]= {1.4, 8.4, 2.}

The symmetry is then ψ given by

In[]:= ψ = A.Ω.Inverse [A]

Out[]= {{1.4381, -0.539886 , 0.107977 , 1.51787 },

{1.91588, -0.0238887 , 0.204778 , 3.96365 }, {0., 0., 1., 0.}, {0., 0., 0., 1.}}

Checking that we have a symmetry

In[]:= Chop [FLTNS [g, ψ, {x, y, z}] - g, dTol]

Out[]= 0

In[]:= circA2 = Simplify [fltMD [circA1, ψ]]

Out[]= 
-0.787868 + 0.141421 v - 0.787868 v2

1. + v2
,
6.85477 + 2.96985 v + 6.05477 v2

1. + v2
,
2. - 2. v2

1 + v2


In[]:= q2 = fltMD [q1, ψ]

Out[]= {-0.787868 , 6.85477, 2.}

203 | SurfaceStoryPartII.nb

In[]:= ImageCrop [Show [ContourPlot3D [g ⩵ 0, {x, -8, 8},

{y, -8, 10}, {z, -4, 4}, Mesh → None, ContourStyle → Opacity [.7]],

ParametricPlot3D [circA1, {v, -20, 20}, PlotStyle → Blue],

ParametricPlot3D [circA2, {v, -20, 20}, PlotStyle → Green],

Graphics3D [{{Blue, PointSize [.04], Point [q1]}, {Green, PointSize [.04], Point [q2]}}],

Axes → False, Boxed → False, ImageSize → Medium]]

Out[]=

So in both cases we see we have something like a rotation and reflection even though this is not exactly

correct.

4.2.2 Intersecting surface by plane

A parametric conic will always be taken to a parametric conic by a projective linear transforma -

tion. In particular the conic is always planar. In Chapter 2 the intersection of a quadric surface and

plane is always a conic and this is why we construct many strange symmetries. But with quartic sur -

faces this is rare. A torus or equivalent surface does have at least 2 conics through any point, but

perhaps no more.

The following function will help us decide if a plane through a surface can support a conic. This first

tries to find 5 points in the intersection then li�s them to a plane, tests for general position, if that

checks then the function attempts to produce a parametric conic . The surface may be given as a semi-

algebraic set consisting as surface given as an equation and one or more inequalities, the plane is

given as an equation. This is a probabilistic algorithm and may not work for any given run. You should

try several times before giving up. To check that the parametric conic does lie in the surface write the

surface in form f = 0 and use Simplify [f /.Thread[{x,y,z}->conic] where conic is the parametric

output of the function .

SurfaceStoryPartII.nb | 204

In[]:= planeIntersectSurfaceNS [plane_, surfaceEq_ , V_] :=

Module [{k, sol, tbl, a, u, v, par, points, rnc, s, t},

k = 1;

n = 1;

tbl = Reap [While [k < 6 && n < 25, n++;

sol = NSolveValues [plane && surfaceEq && RandomReal [{0, 4}, 3].V ⩵ 3, V, Reals];

If[Length [sol] > 0, k++; Sow[sol〚1〛]]]]〚2, 1〛;
If[Length [tbl] < 5, Echo ["5 points not found, try again or change equation "];

Abort []];

a = tbl〚1〛;
u = tbl〚2〛 - a;
v = tbl〚3〛 - a;
par = a + s * u + t * v;

points = Table [First [SolveValues [tbl〚i〛 ⩵ par, {s, t}]], {i, 5}];

If[! gpTestMD [points, 2, .003], Echo ["Fails,try again"]; Abort []];

rnc = rncInterpolate [points, 1, 2];

Simplify [par /. Thread [{s, t} → rnc〚2〛]]]

This is listed as paragraph 86 in GlobalFunctions.nb.

If we apply this to our example torus31 and a horizontal plane z = c, -1 < c < 1 we should get success.

In[]:= conic1 = planeIntersectSurfaceNS [z ⩵ .7, torus31 ⩵ 0, {x, y, z}]

Out[]= 
3.14809 + 6.23321 t + 2.80623 t2

0.858926 + 1.78349 t + 1. t2
,

-0.516455 - 2.9227 t - 2.43309 t2

0.858926 + 1.78349 t + 1. t2
, 0.7

In[]:= Simplify [torus31 /. Thread [{x, y, z} → conic1]]

Out[]= -9.9476 × 10-14
- 6.82121 × 10-13 t + 3.63798 × 10-12 t2 +

1.45519 × 10-11 t3 + 1.81899 × 10-11 t4 + 1.00044 × 10-11 t5 - 9.09495 × 10-13 t6 -

2.27374 × 10-13 t7 + 7.10543 × 10-13 t8  0.858926 + 1.78349 t + 1. t24

On the other hand if we take a vertical plane through the line {x = 0, y = 0} we should also get success

(perhaps a�er several tries)

In[]:= conic2 = planeIntersectSurfaceNS [2 x ⩵ 3 y, torus31 ⩵ 0, {x, y, z}]

Out[]= 
0.142124 - 0.212296 t + 1.69074 t2

0.0427706 - 0.0753224 t + 1. t2
,

0.0947495 - 0.141531 t + 1.12716 t2

0.0427706 - 0.0753224 t + 1. t2
,
0.00480237 - 0.412591 t + 0.25102 t2

0.0427706 - 0.0753224 t + 1. t2


In[]:= Simplify [torus31 /. Thread [{x, y, z} → conic2]]

Out[]= 64 - 24 conic22
+ 9 conic24

But if we take a random plane intersecting the torus we get

205 | SurfaceStoryPartII.nb

In[]:= plane3 = RandomReal [{-4, 4}, 3].{x, y, z} - .2

Out[]= -0.2 + 1.57775 x - 2.55377 y + 3.18539 z

In[]:= conic3 = planeIntersectSurfaceNS [plane3 ⩵ 0, torus31 ⩵ 0, {x, y, z}]

Out[]= 
0.586069 - 1.46416 t + 0.631606 t2

0.320132 - 1.13073 t + 1. t2
,

0.901848 - 3.28888 t + 2.90138 t2

0.320132 - 1.13073 t + 1. t2
,

-0.298704 + 1.10884 t - 0.99953 t2

0.320132 - 1.13073 t + 1. t2


In[]:= Chop [Simplify [torus31 /. Thread [{x, y, z} → conic3]]]

Out[]= 64 - 24 conic32
+ 9 conic34

So this function fails , indicating that there may be no such conic. One can try this last experiment

many times and it will generally fail. There are few, if any, planes other than the horizontal and vertical

ones which support conics. Thus the odds of finding a symmetry other than the ones in 4.2.1 are very

small.

4.2.3 A lateral rotation

For the standard torus given by torusEqab each plane through the z-axis does intersect the torus in two

circles. T hese have a rotation symmetry. It may appear that rotating each of these circles in the angle

σ will give a symmetry of the torus. This is true but it is not a projective linear transformation. However

we can give a function attaining this rotation using Mathematica. In fact each point is rotated by an

affine transformation but for different points we must use a different affine transformation.

SurfaceStoryPartII.nb | 206

In[]:= torusLateralRotNS [p_, σ_, a_, b_] :=

Module {rΘ, J, K, RΘ, SΘ, p1, p2, q1, Θ, p0, plane, planeRo, teqab, A},

teqab = a4 - 2 a2 b2 + b4 - 2 a2 x2 - 2 b2 x2 + x4 - 2 a2 y2 -

2 b2 y2 + 2 x2 y2 + y4 + 2 a2 z2 - 2 b2 z2 + 2 x2 z2 + 2 y2 z2 + z4;

If[Abs[teqab /. Thread [{x, y, z} → p]] > 1*^-6,

Echo ["p not on torus with parameters a,b"];

Abort []];

rΘ = {{Cos[Θ], 0, Sin[Θ], 0}, {0, 1, 0, 0}, {-Sin[Θ], 0, Cos[Θ], 0}, {0, 0, 0, 1}};

J = {{1, 0, 0, -a}, {0, 1, 0, 0}, {0, 0, 1, 0}, {0, 0, 0, 1}};

K = {{-1, 0, 0, -a}, {0, 1, 0, 0}, {0, 0, 1, 0}, {0, 0, 0, 1}};

RΘ = (Inverse [J].rΘ.J) /. {Θ → σ};

SΘ = (Inverse [K].rΘ.K) /. {Θ → σ};

plane = Chop [linearSetMD [{p, {0, 0, 0}, {0, 0, 2}}, {x, y, z}]]〚1〛;
planeRo = planeRotate3D [plane, y];

p0 = NSolveValues [plane ⩵ 0 && teqab ⩵ 0 && z ⩵ b && x ≥ 0, {x, y, z}, Reals]〚1〛;
If[p0〚1〛 * p0〚2〛 > 0,

A = Inverse [planeRo].RΘ.planeRo, A = Inverse [planeRo].SΘ.planeRo];

q = fltMD [p, A];

If[Abs[teqab /. Thread [{x, y, z} → q]] < 1.*^-9, Return [q], Return [{}]]

Here p is a point on the torus with parameters a,b and σ is the lateral angle of rotation. In rare

instances due perhaps numerical issues the point calculated is not close enough to the torus and the

empty set is returned. So, for example, we could start with

In[]:= p = {-2.2554393726474875` , 0.2032078198223429` , -0.6776061916189526` };

Then its image is

In[]:= q = torusLateralRotNS [p, 2 Pi / 3, 3, 1]

Out[]= {-2.76967, 0.249538 , 0.9757 }

In[]:= ImageCrop [Show [ContourPlot3D [torus31 ⩵ 0, {x, -4, 4},

{y, -4, 4}, {z, -4, 4}, Mesh → None, ContourStyle → Opacity [.5]],

Graphics3D [{{Black, PointSize [.03], Point [p]}, {Red, PointSize [.03], Point [q]}}],

ImageSize → Small, Axes → False, Boxed → False]]

Out[]=

Here the black point p rotates to the red point q.

With this function we can't enter a parameterized curve for the argument but using the standard

Mathematica formulation we can enter a list of points

207 | SurfaceStoryPartII.nb

torusLateralRotNS [#, σ, a, b] & /@ L

For example we may trace the horizontal circle of say height z = .8 on the torus31 and then ro
tate by Pi/4.

In[]:= FindInstance [torus31 ⩵ 0 && z ⩵ .8, {x, y, z}]

Out[]= {{x → -3.6, y → 0, z → 0.8}}

In[]:= L1 = pathFinder3D [{torus31, z - .8}, {0, -3.6, .8}, {0, 3.6, .8}, .25, {x, y, z}, maxit → 60];

L2 = pathFinder3D [{torus31, z - .8}, {0, 3.6, .8}, {0, -3.6, .8}, .25, {x, y, z}, maxit → 60];

L = Join [L1, L2];

Ha = torusLateralRotNS [#, Pi / 4, 3, 1] & /@ L;

H = Reap [Do[If[Length [q] ⩵ 3, Sow[q]], {q, Ha}]]〚2, 1〛;
» not a point {3.55255 , 0.582543 , 0.8 }

» not a point {- 3.58438 , - 0.33503 , 0.8 }

In[]:= ImageCrop [Show [ContourPlot3D [torus31 ⩵ 0, {x, -4, 4},

{y, -4, 4}, {z, -4, 4}, Mesh → None, ContourStyle → Opacity [.75]],

Graphics3D [{{Black, Thickness [.01], Line [L]}, {Red, Thickness [.01], Line [H]}}],

ImageSize → Medium, Axes → False, Boxed → False]]

Out[]=

While these lateral rotations are not projective linear transformations they can be composed with

projective linear transformations as in section 4.2.1 to get a lateral symmetry of any projective torus,

that is surface projectively equivalent to a torus. I will not illustrate that here. One application is that

the group of symmetries including our projective linear symmetries and our lateral symmetries is now

transitive.

4.2.4 A characterization of projective tori?

It follows from the above, from 4.3.2 or directly from our equations parametric or implicit that a prop -

erty of our standard tori is that each point in contained in two circles lying on the torus. So each projec -

tive surface equivalent to a standard surface is contained in two plane conics. This is because plane

conics are preserved by projective linear transformations.

An interesting question for further thought is whether the converse is true? Is a 4th degree surface in ℝ3

such that each point is contained in two distinct conics necessarily a projective torus? A difficulty is

SurfaceStoryPartII.nb | 208

that unlike the case of a quadric surface we don’t have a good handle on defining projective transforma -

tion to a torus. A second problem is that unlike the quadric surfaces there are infinitely many equiva -

lence classes of the standard torus. But as in 1.4 three pairs of these conics may give an equation of

these surfaces.

4.2.5 Some Variants on the torus idea

4.2.5.1 Elliptic Torus

The center line of the standard torus is a circle in the xy-plane about the origin. We can extend this to a

torus-like surface with centerline an ellipse by transforming via a simple homothety that works only in

the y-direction. This actually gives us some interesting examples. The following function takes positive

numbers a1,a2 and b. Generally we think of a1 > a2 > b but we will see that that is not necessary. In

that case, however, the central ellipse will be

x2

a1
2
+
y2

a2
2

= 1

We will see below that vertical planes through the z-axis do not necessarily cut out circles.

In[]:= ellipticTorus [a1_, a2_, b1_] := Module {toreq, tor1, A, tor, c, d},

If[a1 ≤ 0 || a2 ≤ 0 || b1 ≤ 0, Echo ["all values must be positive "];

Abort []];

toreq = a4 - 2 a2 b2 + b4 - 2 a2 x2 - 2 b2 x2 + x4 - 2 a2 y2 - 2 b2 y2 +

2 x2 y2 + y4 + 2 a2 z2 - 2 b2 z2 + 2 x2 z2 + 2 y2 z2 + z4;

tor1 = toreq /. {a → a1, b → b1};

A = {{1, 0, 0, 0}, {0, a2 / a1, 0, 0}, {0, 0, 1, 0}, {0, 0, 0, 1}};

tor = FLTNS [tor1, A, {x, y, z}];

c = Max[Norm /@ NSolveValues [{tor, x, z}, {x, y, z}, Reals]];

d = Max[Norm /@ NSolveValues [{tor, y, z}, {x, y, z}, Reals]];

Echo [{{d, 0, 0}, {0, c, 0}}, "Points on outer ellipse"];

tor

The picture is as follows, since we are interested in ratios it is best to plot this with all three ranges

equal and the function echos a suggested value, typically, but not always, a1 + b.

In[]:= etor753 = ellipticTorus [7, 5, 3]

» Points on outer ellipse {{10., 0, 0}, {0, 7.14286 , 0}}

Out[]= 1600 - 116 x2 + x4 -
5684 y2

25
+
98 x2 y2

25
+
2401 y4

625
+ 80 z2 + 2 x2 z2 +

98 y2 z2

25
+ z4

The important thing is that we have points {a1, 0, b} and {a2, 0, b} on this torus which gives the correct

center ellipse.

209 | SurfaceStoryPartII.nb

In[]:= etor753 /. Thread [{x, y, z} → {7, 0, 3}]

etor753 /. Thread [{x, y, z} → {0, 5, 3}]

Out[]= 0

Out[]= 0

The function ellipticTorus also echo’s two additional points on the torus, in this case

In[]:= etor753 /. Thread [{x, y, z} → {10, 0, 0}]

etor753 /. Thread [{x, y, z} → {0, 7.142857142857143` , 0}]

Out[]= 0

Out[]= 0.

In this case the y value of the second point is
a1+b

a1/a2
 =

50

7
. But that may not always be the case, although

it should be near a2+b which is 7 in this case.

The simplest way to plot the central ellipse
x2

72
+

y2

52
= 1 is to note that

{7, 0, 0}, {-7, 0, 0}, {0, 5, 0} and {0, -5, 0} lie on this ellipse as well as the solutions to

In[]:= sol = NSolveValues [{x^2 / 49 + y^2 / 25 - 1, x - y}, {x, y}, Reals]

Out[]= {{-4.06867, -4.06867 }, {4.06867, 4.06867 }}

so we can get a parametric function by

In[]:= cec = Chop [rncInterpolate [{{7, 0}, {-7, 0}, {0, 5}, {0, -5}, sol〚1〛}, 1, 2]〚2〛]

Out[]= 
4.48651 t

-0.102698 - 1. t2
,

-0.513489 + 5. t2

-0.102698 - 1. t2


We should use the maximum norm of the two points on the xy-plane and ellicptic torus echoed by the

ellipticToris function to get the max and min for all components of the plot. These should be the same

because we are interested in the ratios.

SurfaceStoryPartII.nb | 210

In[]:= Show [ContourPlot3D [etor753 ⩵ 0, {x, -10, 10}, {y, -10, 10}, {z, -10, 10},

Mesh → None, ContourStyle → Opacity [.65]], ParametricPlot3D [{Append [cec, 0]},

{t, -20, 20}, PlotStyle → Directive [{Black, Thickness [.01], Dashed }]],

Graphics3D [{{Blue, Thickness [.005], Arrow [{{0, 0, 0}, {7, 0, 0}}]}, {Green, Thickness [.005],

Arrow [{{0, 0, 0}, {0, 5, 0}}]}, {Red, Thickness [.005], Arrow [{{-7, 0, 0}, {-7, 0, 3}}]}}]]

Out[]=

To find the transverse conics we can use

In[]:= ce1 = planeIntersectSurfaceNS [y ⩵ 0, etor753 ⩵ 0 && x > 0, {x, y, z}]

Out[]= 
17.6969 + 20.9185 t + 6.88412 t2

1.94042 + 2.55314 t + 1. t2
, 0,

-4.11851 - 7.7829 t - 2.99776 t2

1.94042 + 2.55314 t + 1. t2


In[]:= ce1 = 
1.068604887036968` - 6.295225510389116` t + 9.53963066266547` t2

0.10688305225352232` - 0.6315609392728924` t + 1.` t2
, 0,

-0.01202700100288967` + 0.5786133264878908` t - 1.596958389329299` t2

0.10688305225352232` - 0.6315609392728924` t + 1.` t2
;

ce2 = planeIntersectSurfaceNS [x ⩵ 0, etor753 ⩵ 0 && y > 0, {x, y, z}];

In[]:= ce2 = 0,
5.997745301899537` - 11.916147176615913` t + 6.122412060454718` t2

0.8702399822561371` - 1.8004006722223846` t + 1.` t2
,

-1.2255935960394186` + 3.831952553651778` t - 2.555538042454029` t2

0.8702399822561371` - 1.8004006722223846` t + 1.` t2
;

We can plot this in the plane

211 | SurfaceStoryPartII.nb

In[]:= {ParametricPlot [Delete [ce1, {2}], {t, -20, 20}, PlotStyle → Blue,

PlotRange → {{4, 10}, {-3, 3}}, ImageSize → Small, Frame → True],

ParametricPlot [Take [ce2, -2], {t, -20, 30}, PlotStyle → Blue,

PlotRange → {{2, 8}, {-3, 3}}, ImageSize → Small, Frame → True]}

Out[]= 

4 5 6 7 8 9 10

-3

-2

-1

0

1

2

3

,

2 3 4 5 6 7 8

-3

-2

-1

0

1

2

3



The first is a circle but the second is clearly not a circle as the horizontal and vertical ranges of the plot

have equal length. So these conics are not uniform around the elliptic torus.

As an amusing application, it has been pointed out to me that the King James Bible describes Noah’s

Ark as having dimensions 300, 50 and 30 cubits. Some scholars see as the source of this a Babylonian

flood story which some have interpreted as being a ra� rather than a boat, the shape then being a

torus. This is unlikely as the the torus was not likely a Babylonian shape, much less an elliptic torus.

But plotting a 30,5,3 elliptic torus we get

In[]:= NoahTorus = ellipticTorus [30, 5, 3]

» Points on outer ellipse {{33., 0, 0}, {0, 5.5, 0}}

Out[]= 793 881 - 1818 x2 + x4 - 65 448 y2 + 72 x2 y2 + 1296 y4 + 1782 z2 + 2 x2 z2 + 72 y2 z2 + z4

In[]:= ImageCrop [ContourPlot3D [NoahTorus ⩵ 0, {x, -33, 33}, {y, -33, 33},

{z, -33, 33}, Mesh → None, MaxRecursion → 4, Axes → False, Boxed → False]]

Out[]=

which is not a completely improbable shape for a ra�, especially since Noah and the animals were

sealed inside.

4.2.5.2 Octic Torus

Since all the monomials in a torus or ellipticTorus are even we can double the exponents of x , y, z to

get a slightly different shape.

SurfaceStoryPartII.nb | 212

In[]:= octicTorus = Expand [torusEqab /. {x → x^2, y → y^2, z → z^2}]

Out[]= a4 - 2 a2 b2 + b4 - 2 a2 x4 - 2 b2 x4 + x8 - 2 a2 y4 -

2 b2 y4 + 2 x4 y4 + y8 + 2 a2 z4 - 2 b2 z4 + 2 x4 z4 + 2 y4 z4 + z8

This gives us a squared off torus, not unlike a donut the author was served recently.

In[]:= otorus32 = octicTorus /. {a → 3, b → 2}

Out[]= 25 - 26 x4 + x8 - 26 y4 + 2 x4 y4 + y8 + 10 z4 + 2 x4 z4 + 2 y4 z4 + z8

In[]:= ImageCrop [ContourPlot3D [otorus32 ⩵ 0, {x, -4, 4},

{y, -4, 4}, {z, -8, 8}, Mesh → None, Axes → False, Boxed → False]]

Out[]=

One can play this game on a specific Elliptic Torus. As example we can square the NoahTorus by

In[]:= NoahRaft = ellipticTorus [3, .5, .3] /. {x → x^2, y → y^2, z → z^2}

» Points on outer ellipse {{3.3, 0, 0}, {0, 0.55 , 0}}

Out[]= 79.3881 - 18.18 x4 + 1. x8 - 654.48 y4 + 72. x4 y4 + 1296. y8 + 17.82 z4 + 2. x4 z4 + 72. y4 z4 + 1. z8

In[]:= ImageCrop [ContourPlot3D [NoahRaft ⩵ 0, {x, -3, 3}, {y, -3, 3},

{z, -8, 8}, Mesh → None, Axes → False, Boxed → False, MaxRecursion → 4]]

Out[]=

To make this more like a ra� we could add a bottom

In[]:= ImageCrop [Show [ContourPlot3D [NoahRaft ⩵ 0,

{x, -4, 4}, {y, -4, 4}, {z, -8, 8}, Mesh → None, MaxRecursion → 4],

RegionPlot3D [x^4 / 3.3 ^2 + y^4 / .55 ^2 ≤ 1 && -.55 < z < -.1, {x, -2, 2}, {y, -2, 2},

{z, -2, 2}, Mesh → None, ColorFunction → Blue], Axes → None, Boxed → False]]

Out[]=

4.2.5.3 Symmetries of elliptic and octic tori

The elliptic tori are projective linear transforms of standard tori so any projective symmetry of the

latter will transport to them. Note that the transform from the standard torus torusEqab to the elliptic

torus ellipicTorus[a1,a2,b1] is just

213 | SurfaceStoryPartII.nb

In[]:= J := {{1, 0, 0, 0}, {0, a2 / a1, 0, 0}, {0, 0, 1, 0}, {0, 0, 0, 1}}

So, for example, consider the elliptic torus above

In[]:= etor753 = ellipticTorus [7, 5, 3]

» Points on outer ellipse {{10., 0, 0}, {0, 7.14286 , 0}}

Out[]= 1600 - 116 x2 + x4 -
5684 y2

25
+
98 x2 y2

25
+
2401 y4

625
+ 80 z2 + 2 x2 z2 +

98 y2 z2

25
+ z4

Here

In[]:= J753 = J /. {a1 → 7, a2 → 5}

Out[]= {1, 0, 0, 0}, 0,
5

7
, 0, 0, {0, 0, 1, 0}, {0, 0, 0, 1}

Let

In[]:= sym1 = N[torusSym [-6 Pi / 11, 1, 1]]

Out[]= {{-0.142315 , 0.989821 , 0., 0.},

{-0.989821 , -0.142315 , 0., 0.}, {0., 0., 1., 0.}, {0., 0., 0., 1.}}

In[]:= esym1 = J753.sym1.Inverse [J753]

Out[]= {{-0.142315 , 1.38575, 0., 0.},

{-0.707015 , -0.142315 , 0., 0.}, {0., 0., 1., 0.}, {0., 0., 0., 1.}}

In[]:= Chop [etor753 - FLTNS [etor753, esym1, {x, y, z}]]

Out[]= 0

so we have a symmetry.

Consider our curve

In[]:= ce1 = 
7.456123843292054` - 16.93950360896598` t + 9.642705601053876` t2

0.7919997073644772` - 1.7753725463339702` t + 1.` t2
, 0,

-1.4103710158407021` + 2.8556585740233564` t - 1.4198968646202492` t2

0.7919997073644772` - 1.7753725463339702` t + 1.` t2
;

we have

In[]:= ece1 = fltMD [ce1, esym1]

Out[]= 0. -
0.142315 × 7.45612 - 16.9395 t + 9.64271 t2

0.792 - 1.77537 t + 1. t2
,

0. -
0.707015 × 7.45612 - 16.9395 t + 9.64271 t2

0.792 - 1.77537 t + 1. t2
,
1. × -1.41037 + 2.85566 t - 1.4199 t2

0.792 - 1.77537 t + 1. t2


SurfaceStoryPartII.nb | 214

In[]:= ImageCrop [Show [ContourPlot3D [etor753 ⩵ 0, {x, -10, 10},

{y, -10, 10}, {z, -10, 10}, ContourStyle → Opacity [.75], Mesh → None],

ParametricPlot3D [ce1, {t, -20, 20}, PlotStyle → Blue],

ParametricPlot3D [ece1, {t, -20, 20}, PlotStyle → Green], Axes → False, Boxed → False]]

Out[]=

In[]:=

As in 4.2.3 we can port the lateral rotations to elliptic tori since they are projectively equivalent to

standard tori. But again remember that these symmetries are not projective linear symmetries.

In[]:=

The symmetries above are not symmetries of octic tori but one can check that the symmetry group

containing the symmetries Hyp4[i,1,j,k,1] for i = 1, 2, j, k = 1, 2, 3, 4 are symmetries, for example

In[]:= otorusS = FLTNS [otorus32 , Hyp4 [2, 1, 3, 4, 1], {x, y, z}] - otorus32

Out[]= 0

Note by normalizing

In[]:= OtSym = DeleteDuplicates [Flatten [Table [Hyp4N [i, 1, j, k, 1], {i, 2}, {j, 4}, {k, 4}], 2]]

Out[]= {{{1, 0, 0, 0}, {0, 1, 0, 0}, {0, 0, 1, 0}, {0, 0, 0, 1}},

{{1, 0, 0, 0}, {0, 1, 0, 0}, {0, 0, -1, 0}, {0, 0, 0, 1}},

{{-1, 0, 0, 0}, {0, -1, 0, 0}, {0, 0, -1, 0}, {0, 0, 0, 1}},

{{-1, 0, 0, 0}, {0, -1, 0, 0}, {0, 0, 1, 0}, {0, 0, 0, 1}},

{{-1, 0, 0, 0}, {0, 1, 0, 0}, {0, 0, 1, 0}, {0, 0, 0, 1}},

{{-1, 0, 0, 0}, {0, 1, 0, 0}, {0, 0, -1, 0}, {0, 0, 0, 1}},

{{1, 0, 0, 0}, {0, -1, 0, 0}, {0, 0, -1, 0}, {0, 0, 0, 1}},

{{1, 0, 0, 0}, {0, -1, 0, 0}, {0, 0, 1, 0}, {0, 0, 0, 1}},

{{0, 1, 0, 0}, {1, 0, 0, 0}, {0, 0, 1, 0}, {0, 0, 0, 1}},

{{0, 1, 0, 0}, {1, 0, 0, 0}, {0, 0, -1, 0}, {0, 0, 0, 1}},

{{0, -1, 0, 0}, {-1, 0, 0, 0}, {0, 0, -1, 0}, {0, 0, 0, 1}},

{{0, -1, 0, 0}, {-1, 0, 0, 0}, {0, 0, 1, 0}, {0, 0, 0, 1}},

{{0, -1, 0, 0}, {1, 0, 0, 0}, {0, 0, 1, 0}, {0, 0, 0, 1}},

{{0, -1, 0, 0}, {1, 0, 0, 0}, {0, 0, -1, 0}, {0, 0, 0, 1}},

{{0, 1, 0, 0}, {-1, 0, 0, 0}, {0, 0, -1, 0}, {0, 0, 0, 1}},

{{0, 1, 0, 0}, {-1, 0, 0, 0}, {0, 0, 1, 0}, {0, 0, 0, 1}}}

215 | SurfaceStoryPartII.nb

In[]:= Table [FLTNS [otorus32 , OtSym〚i〛, {x, y, z}] - otorus32 , {i, 16}]

Out[]= {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}

So we have 16 distinct symmetries of the otic torus.

4.3 Gluing surfaces
I already noticed in my Plane Curve Book that singularities of curves could be removed by adding or

subtracting a constant to the equation. One way to see this is to look at the actual contour plot. A

simple example is the curve x2 - y2 = 0.

In[]:= Clear [x, y]

In[]:= ContourPlot [x^2 - y^2, {x, -3, 3}, {y, -3, 3}, ImageSize → Small]

Out[]=

The default is x2 -y2⩵ 0, adding or subtracting a constant moves the curve to a different contour

which should not contain a singularity.

In[]:= ContourPlot [{x^2 - y^2 ⩵ 2, x^2 - y^2 ⩵ -2}, {x, -3, 3},

{y, -3, 3}, ContourStyle → {Orange, Blue}, ImageSize → Small]

Out[]=

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

Another example is we can glue two curves together to make a non-singular curve . Here are two

circles

SurfaceStoryPartII.nb | 216

In[]:= {ContourPlot [{(x + 2)^2 + y^2 ⩵ 4, (x - 2)^2 + y^2 ⩵ 4},

{x, -5, 5}, {y, -5, 5}, ImageSize → Small], ContourPlot [

((x + 2)^2 + y^2 - 4) ((x - 2)^2 + y^2 - 4) - 2 ⩵ 0, {x, -5, 5}, {y, -5, 5}, ImageSize → Small]}

Out[]= 

-4 -2 0 2 4

-4

-2

0

2

4

,

-4 -2 0 2 4

-4

-2

0

2

4



The same holds for surfaces but contour plots of surfaces showing different contours are usually ugly.

4.3.1 The double Torus

Likewise we can glue two tori to make a double torus.

In[]:= tor = Expand [torusEqab /. {a → 2, b → 1}]

Out[]= 9 - 10 x2 + x4 - 10 y2 + 2 x2 y2 + y4 + 6 z2 + 2 x2 z2 + 2 y2 z2 + z4

Note this torus contains the points {-3, 0, 0} and {3, 0, 0} . So translating by ±3 in the x-direction gives us

two two tori touching the origin

In[]:= torp = FLTNS [tor, {{1, 0, 0, -3}, {0, 1, 0, 0}, {0, 0, 1, 0}, {0, 0, 0, 1}}, {x, y, z}];

torm = FLTNS [tor, {{1, 0, 0, 3}, {0, 1, 0, 0}, {0, 0, 1, 0}, {0, 0, 0, 1}}, {x, y, z}];

In[]:= ImageCrop [ContourPlot3D [{torp ⩵ 0, torm ⩵ 0}, {x, -6, 6}, {y, -6, 6},

{z, -6, 6}, Mesh → None, Axes → False, Boxed → False, ImageSize → Small]]

Out[]=

So we get the double torus

In[]:= doublTorus = torp * torm - 600

Out[]= -600 + -48 x + 44 x2 - 12 x3 + x4 + 8 y2 - 12 x y2 + 2 x2 y2 + y4 + 24 z2 - 12 x z2 + 2 x2 z2 + 2 y2 z2 + z4 ×
48 x + 44 x2 + 12 x3 + x4 + 8 y2 + 12 x y2 + 2 x2 y2 + y4 + 24 z2 + 12 x z2 + 2 x2 z2 + 2 y2 z2 + z4

217 | SurfaceStoryPartII.nb

In[]:= ImageCrop [ContourPlot3D [doublTorus ⩵ 0, {x, -6, 6},

{y, -6, 6}, {z, -6, 6}, Mesh → None, Axes → False, Boxed → False]]

Out[]=

We can look inside

In[]:= ContourPlot3D [doublTorus ⩵ 0, {x, -6, 1}, {y, -6, 6},

{z, -3, 3}, Mesh → None, Axes → False, Boxed → False]

Out[]=

Thus the interior is connected but not simply connected. I note that we actually get a nice plane curve

of degree 8 out of this, an oval with two nested ovals.

In[]:= curveDT = Expand [doublTorus /. {z → 0}]

Out[]= -600 - 2304 x2 + 784 x4 - 56 x6 + x8 - 448 x2 y2 -

96 x4 y2 + 4 x6 y2 + 64 y4 - 24 x2 y4 + 6 x4 y4 + 16 y6 + 4 x2 y6 + y8

SurfaceStoryPartII.nb | 218

In[]:= ContourPlot [curveDT ⩵ 0, {x, -7, 7}, {y, -6, 6}, ImageSize → Small]

Out[]=

-6 -4 -2 0 2 4 6

-6

-4

-2

0

2

4

6

4.4 Breakfast with Barry

In[]:=

My selection of Donuts is a jelly donut (back le�), octic donut, (front le�) a double donut and an elliptic

donut. All objects in this graphic are made from 100% fourth and eighth degree surfaces. Note how -

ever that the jelly donut is of smaller degree and has more symmetry than the octic donut.

Here is the code for the graphic.

In[]:= CoffeeCup = 0.0625` x4 + 11.24682650380698` y +

4.743416490252569` y2 + 0.8891397050194614` y3 + 0.0625` y4 - 1.25` z ×
262.5` x2 + 2.44140625` x4 - 1344.` y - 175.` x2 y + 3520.` y2 + 50.` x2 y2 -

1792.` y3 + 256.` y4 + 96.` z2 + 12.5` x2 z2 - 448.` y z2 + 128.` y2 z2 + 16.` z4;

In[]:= DoubleDonut =

3.423774655931445`*^8 + 1.3655528886821947`*^8 x + 2.6047110685191058`*^7 x2 +

219 | SurfaceStoryPartII.nb

3.02080968449735`*^6 x3 + 230293.87029144645` x4 + 11722.824430539758` x5 +

387.4700098060629` x6 + 7.589160493137579` x7 + 0.06776036154587124` x8 +

7.745211966466844`*^7 y + 2.307104403777339`*^7 x y + 3.1919077874500793`*^6 x2 y +

252437.3347839762` x3 y + 11945.18683298869` x4 y + 318.7447407117784` x5 y +

3.79458024656879` x6 y + 1.1841404708939653`*^7 y2 + 2.8843808155736877`*^6 x y2 +

334626.2789470098` x2 y2 + 22493.664568820335` x3 y2 + 932.9138161057081` x4 y2 +

22.76748147941274` x5 y2 + 0.27104144618348497` x6 y2 + 1.1161226979040564`*^6 y3 +

197460.24190600865` x y3 + 15977.00423657296` x2 y3 + 637.4894814235568` x3 y3 +

11.383740739706369` x4 y3 + 80825.53651895358` y4 + 10770.84013828058` x y4 +

703.4176027932275` x2 y4 + 22.767481479412737` x3 y4 + 0.4065621692752274` x4 y4 +

4031.817403584271` y5 + 318.7447407117784` x y5 + 11.383740739706369` x2 y5 +

157.97379649358237` y6 + 7.589160493137581` x y6 + 0.27104144618348497` x2 y6 +

3.7945802465687892` y7 + 0.06776036154587124` y8 + 7.140206420134889`*^7 z +

2.0700852050226893`*^7 x z + 2.808963995461423`*^6 x2 z + 219230.81126304282` x3 z +

10289.730729647046` x4 z + 273.20977775295285` x5 z + 3.25249735420182` x6 z +

1.1228074623911565`*^7 y z + 2.1596103664289545`*^6 x y z + 184227.17453733447` x2 y z +

7649.87377708268` x3 y z + 136.60488887647642` x4 y z + 1.3643985507912594`*^6 y2 z +

207806.99975593266` x y2 z + 15071.552339794564` x2 y2 z + 546.4195555059057` x3 y2 z +

9.757492062605456` x4 y2 z + 89266.74138448146` y3 z + 7649.873777082679` x y3 z +

273.20977775295285` x2 y3 z + 4781.8216101475155` y4 z + 273.2097777529528` x y4 z +

9.757492062605458` x2 y4 z + 136.60488887647642` y5 z + 3.25249735420182` y6 z +

1.0948567163463235`*^7 z2 + 2.6677540213443628`*^6 x z2 + 313646.82623042853` x2 z2 +

21547.75160495567` x3 z2 + 916.0225131795534` x4 z2 + 22.76748147941274` x5 z2 +

0.27104144618348497` x6 z2 + 1.4262920758236062`*^6 y z2 + 225866.77319824233` x y z2 +

16991.523211295593` x2 y z2 + 637.4894814235568` x3 y z2 + 11.383740739706369` x4 y z2 +

160218.91779091774` y2 z2 + 20595.76731269649` x y2 z2 + 1373.0525997341456` x2 y2 z2 +

45.53496295882548` x3 y2 z2 + 0.8131243385504549` x4 y2 z2 + 9078.153781891173` y3 z2 +

637.4894814235566` x y3 z2 + 22.767481479412737` x2 y3 z2 + 457.03008655459234` y4 z2 +

22.767481479412737` x y4 z2 + 0.813124338550455` x2 y4 z2 + 11.383740739706369` y5 z2 +

0.27104144618348497` y6 z2 + 975690.7289601153` z3 + 170227.90552527318` x z3 +

13729.44183155672` x2 z3 + 546.4195555059056` x3 z3 + 9.757492062605456` x4 z3 +

88326.8997490113` y z3 + 7649.873777082679` x y z3 + 273.2097777529528` x2 y z3 +

8221.532712057191` y2 z3 + 546.4195555059056` x y2 z3 + 19.514984125210912` x2 y2 z3 +

273.2097777529528` y3 z3 + 9.757492062605456` y4 z3 + 71772.37405939946` z4 +

9824.92717441591` x z4 + 669.6349969409181` x2 z4 + 22.767481479412737` x3 z4 +

0.4065621692752274` x4 z4 + 5046.336378306903` y z4 + 318.7447407117784` x y z4 +

11.383740739706369` x2 y z4 + 440.13878362843764` y2 z4 + 22.767481479412737` x y2 z4 +

0.8131243385504549` x2 y2 z4 + 11.383740739706369` y3 z4 + 0.4065621692752274` y4 z4 +

3439.711101909677` z5 + 273.20977775295285` x z5 + 9.757492062605458` x2 z5 +

136.60488887647642` y z5 + 9.757492062605458` y2 z5 + 141.0824935674276` z6 +

7.589160493137581` x z6 + 0.27104144618348497` x2 z6 + 3.79458024656879` y z6 +

0.27104144618348497` y2 z6 + 3.252497354201819` z7 + 0.06776036154587124` z8;

SurfaceStoryPartII.nb | 220

In[]:= Coffee = 0.0625 x4 + 11.24682650380698` y +

4.743416490252569` y2 + 0.8891397050194614` y3 + 0.0625` y4 - 1.25` z;

In[]:= EllipticDonut = 9.466790363338271`*^6 + 233512.40375308643` x + 12359.174320987653` x2 +

135.26913580246912` x3 + 3.1604938271604937` x4 + 2.1823589135802467`*^6 y +

27053.827160493827` x y + 1264.1975308641975` x2 y + 194618.4691358025` y2 +

845.4320987654321` x y2 + 39.50617283950617` x2 y2 + 7901.234567901234` y3 +

123.45679012345678` y4 + 298127.53066666663` z + 3469.653333333333` x z +

162.13333333333333` x2 z + 32426.66666666666` y z + 1013.3333333333331` y2 z +

28230.897777777776` z2 + 304.3555555555555` x z2 + 14.222222222222221` x2 z2 +

2844.4444444444443` y z2 + 88.88888888888889` y2 z2 + 364.8` z3 + 16.` z4;

In[]:= OcticDonut = 3.469045206798153`*^8 + 1.4458678390406924`*^8 x +

2.782662290002328`*^7 x2 + 3.1595294956295667`*^6 x3 + 228959.79098600807` x4 +

10735.065996037181` x5 + 315.7372351775643` x6 + 5.306508154244778` x7 +

0.039018442310623375` x8 - 36786.78605103493` y - 7667.904282897711` x y -

676.5797896655276` x2 y - 26.53254077123711` x3 y - 0.3901844231054383` x4 y +

68976.19931089878` y2 + 14377.320530408528` x y2 + 1268.587105624203` x2 y2 +

49.748513946042294` x3 y2 + 0.7315957933242032` x4 y2 - 57483.01118730754` y3 -

11981.10044200579` x y3 - 1057.1559213534624` x2 y3 - 41.45709495503738` x3 y3 -

0.6096631611034908` x4 y3 + 17968.77554869617` y4 + 3744.093888126808` x y4 +

330.36122542295374` x2 y4 + 12.955342173449164` x3 y4 + 0.1905197378448407` x4 y4 -

6.668190824544581` y5 + 4.167619265355597` y6 - 1.4884354519128173` y7 +

0.2325680393613778` y8 + 4.6891396192918494`*^7 z + 9.76468964187654`*^6 x z +

861590.2625185181` x2 z + 33787.85343209876` x3 z + 496.88019753086417` x4 z -

2484.400987662375` y z + 4658.251851852518` y2 z - 3881.8765432098953` y3 z +

1213.0864197530864` y4 z + 1.192557005865718`*^7 z2 + 2.1539756562962956`*^6 x z2 +

190056.67555555553` x2 z2 + 7453.2029629629615` x3 z2 + 109.60592592592592` x4 z2 -

548.0296296291053` y z2 + 1027.555555555562` y2 z2 - 856.2962962962993` y3 z2 +

267.59259259259255` y4 z2 + 1.7119754005491352`*^6 z3 + 211174.0839506172` x z3 +

18633.007407407404` x2 z3 + 730.706172839506` x3 z3 + 10.74567901234568` x4 z3 -

53.72839506203309` y z3 + 100.74074074074815` y2 z3 - 83.95061728395103` y3 z3 +

26.23456790123457` y4 z3 + 182675.9776790124` z4 + 7763.75308641975` x z4 +

685.0370370370368` x2 z4 + 26.864197530864192` x3 z4 + 0.3950617283950617` x4 z4 -

1.9753086419768806` y z4 + 3.7037037037036953` y2 z4 - 3.0864197530864246` y3 z4 +

0.9645061728395061` y4 z4 + 17608.192` z5 + 1294.72` z6 + 54.4` z7 + 1.` z8;

In[]:= jellyDonut = 998.4833359433574` + 9.142857142857139` x +

1.959183673469388` x2 + 0.18658892128279878` x3 + 0.006663890045814243` x4 -

0.12851787945498896` y + 0.18359697064998423` y2 -

0.11656950517459316` y3 + 0.02775464408918885` y4 + 561.9712000000002` z +

120.42240000000002` z2 + 11.468800000000003` z3 + 0.4096000000000002` z4;

221 | SurfaceStoryPartII.nb

In[]:= Show [ContourPlot3D [{CoffeeCup ⩵ 2}, {x, -25, 10}, {y, -20, 5},

{z, -20, 5}, Mesh → None, MaxRecursion → 5, ContourStyle → LightYellow],

ContourPlot3D [DoubleDonut ⩵ 0, {x, -23, 5}, {y, -20, 5}, {z, -15, 5},

Mesh → None, ColorFunction → ColorData [1, "ColorList "]],

RegionPlot3D [Coffee < -5, {x, -5, 5}, {y, -10, 4}, {z, -15, 3},

Mesh → None, ColorFunction → ColorData [12, "ColorList "]],

ContourPlot3D [{EllipticDonut ⩵ 0, OcticDonut ⩵ 0}, {x, -25, 10}, {y, -20, 5}, {z, -18, 5},

Mesh → None, MaxRecursion → 6, ContourStyle → {LightOrange , LightYellow }],

ContourPlot3D [jellyDonut ⩵ 0, {x, -25, 10}, {y, -20, 5}, {z, -20, 5},

Mesh → None, ContourStyle → LightPink , MaxRecursion → 6]]

Out[]=

SurfaceStoryPartII.nb | 222

References
Barry H Dayton Plane Curve Book A numerical Approach to Real Algebraic Curves, Wolfram Media,

2018. Paperback, Kindle versions available from Amazon.com, notebook versions from wolfr.am/Day
tonCurves , barryhdayton.space

Barry H Dayton Space Curve Book, 2020, available at barryhdayton.space/SpaceCurves/S
paceCurveBook_v2c.pdf Notebook version at notebookarchive.org

Barry H Dayton Ideals of numeric realizations of configurations of lines. Contemporary Mathematics

496: Interactions of Classical and Numerical Algebraic Geometry, AMS, pp.181--191, 2009.

Barry H Dayton Degree vs Dimension for Rational Parametric Curves, Mathematica Journal 22, 2020.

Shreeram S Abhyankar Algebraic Geometry for Scientists and Engineers, AMS, 1990.

Sebastián Montiel, Antonio Ros Curves and Surfaces, Graduate Studies in Mathematics 69, AMS and

Real Sociedad Matemática Española, 2005.

David H von Seggern , CRC Standard Curves and Surfaces with Mathematica, CRC press, Third Edition,

2016.

Joe Harris , Algebraic Geometry, A First Course, Springer Graduate Texts in Mathematics 133, 2010

edition.

David Hilbert, S . Cohn - Vossen, Geometry and the Imagination , Chelsea, 1952.

Eric Weisstein http://mathworld.wolfram.com/ClebschDiagonalCubic.html

John Baez https://blogs.ams.org/visualinsight/2016/03/01/clebsch-surface/

Paul B . Yale, Geometry and Symmetry, Holden Day, 1968, (Also Dover, 1988)

223 | SurfaceStoryPartII.nb

http://mathworld.wolfram.com/ClebschDiagonalCubic.html

