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2 Quadric Surfaces in Projective Space
We  will  illustrate  our  transformations  by discussing  an important  classical  subject.

The  standard  coverage  of this  is uneven  and  misleading.   For  example  the  term  hyperboloid  of  two  

sheets is nonsense  as all  non-degenerate  quadric  surfaces  are  rationally  parameterized  surfaces  and  

hence  of one  sheet.   The  hyperboloid  of 2 sheets  is actually  an ellipsoid.    I will  use  some  non-standard  

terminology  but  suggest  that  it be  widely  adopted.

2.1 General  Results

Quadric  surfaces  are  defined  from  our  affine  point  of view  by an equation

a1 x
2 + a2 x y + a3 y

2 + a4 x z + a5 y z + a6 z
2 + a7 x + a8 y + a9 z + a10 = 0

where  the  coefficients  ai are  machine  numbers  with  at least  one  of  a1, a2, …, a6 not  zero.  

For  example  a random  quadric  might  be  f231 = 0

In[  ]:= f231 = 4.492182872989918` + 1.5027217857511275` x -

3.2932471474961034` x2 - 4.861394482747162` y + 3.21859207861387` x y -

5.401643964553532` y2 + 5.226019667264691` z - 0.8091107243142233` x z +

3.7145392742572234` y z + 5.269463158972744` z2

Out[  ]= 4.49218 + 1.50272 x - 3.29325 x2 - 4.86139 y + 3.21859 x y -

5.40164 y2 + 5.22602 z - 0.809111 x z + 3.71454 y z + 5.26946 z2
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 One  general  comment  is that  since  these  actual  surfaces  are  affine  surfaces  of degree  2 any  line  

transversal  to these  surfaces  intersects  the  surface  in 2 points  by multiplicity.   Thus  these  are  all  ori -

entable,  that  is 2 sided  as projective  surfaces.   I will  make  some  comments  on  the  types  . 

Since  we  are  looking  at real  points  we  could  get  an empty  set  or a zero  or one  dimensional  set.     Also  

we could  get  a non-square  free  surface,   that  is a double  plane  with  equation  (ax + by + cz - d)2.  These  

are  not  surfaces,  they  have  no  regular  points.

The  degenerate  quadrics  are  reducible,  that  is they  may  be factored,  as such  they  are  necessarily  

singular.   In affine  space  they  could  be the  composite  of two  parallel  planes,  but  then  they  meet  in an 

infinite  line  in projective  space.  Since  we  are  working  strictly  with  real  quadrics  we  also  should  include  

here  empty  quadrics,  for  example  x2 + y2 + z2 + 1.

A cylinder  is a quadric  that  is equivalent  to a plane  quadric  where  one  of the  variables  x, y, z is absent.     

For  example  the  equation  on  the  le�  is x ^ 2 + y ^ 2 - 1 where  that  on  the  right  is a rotation  applied  to 

this  first  equation  giving  

In[  ]:= cyl = N[FLTNS [x^2 + y^2 - 1, m2TM [RotationMatrix [{{1, 0, 0}, {2, 1, 3}}]], {x, y, z}]]

Out[  ]= -1. + 0.357143 x2 - 0.223927 x y + 0.9805 y2 + 0.931785 x z + 0.162285 y z + 0.662357 z2

In[  ]:=  , 

In the  le�  we  have  a ruled  surface  of vertical  lines,  each  of one  has  infinite  point  {0, 0, 1, 0}.  Since  all  

these  lines  go through  this  one  point  it is a cone  in projective  space.   Rotating  it still  gives  a cone.   Thus  

in projective  space  a cylinder  is just  a cone  with  the  vertex  in the  infinite  plane.  

In particular  note  that  the  projective  transformation  with  transformation  matrix

In[  ]:= CC3 = {{1, 0, 0, 0}, {0, 1, 0, 0}, {0, 0, 0, 1}, {0, 0, 1, 0}};

In[  ]:= CC3 // MatrixForm

Out[  ]//MatrixForm=

1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0
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In[  ]:= FLTNS [x^2 + y^2 - z^2, CC3, {x, y, z}]

Out[  ]= -1 + x2 + y2

takes  our  standard  cone  to the  circular  cylinder  and  inversely.  

In[  ]:= FLTNS [x^2 + y^2 - 1, Inverse [CC3], {x, y, z}]

Out[  ]= x2 + y2 - z2

If we  perform  a FLT  transform  on  the  ellipsoid  above  which  sends  one  point  to an infinite  point  we  get  a 

parabolic  ellipsoid  ( called  a paraboloid  in the  literature).

In[  ]:=

In[  ]:=

  On  the  other  hand  if we  cut  the  ellipsoid  with  a plane  which  goes  to infinity  we  get

In[  ]:=  , 

which  wrongly  was  called  a hyperboloid  of 2 sheets  but  I call  it a hyperbolic  ellipsoid.   Since  every  

hyperbolic  ellipsoid  and  every  parabolic  ellipsoid   are  FLT  images  of the  ellipsoid  then  the  properties  of 

no non-null-homotopic  (essential)  ovals  and  two  sided-ness  are  preserved  for  all  of  these.

I mention  here  that  we  will  record  here  and  in GlobalFunctions.nb  a projective  transformation  matrix  

taking  the  paraboloid  z = x ^ 2 + y ^ 2  to the  sphere  x2 + y2 + z2 - 1.  This  will  be  used   in our  “proof”  of 

the  chart  as it is very  easy  to transform  any  type  of ellipsoid  to a paraboloid  using  iTransform.

In[  ]:= paraboloid2sphere

Out[  ]= 0, 0,
1

2
, -

1

2
, {1, 0, 0, 0}, {0, 1, 0, 0}, 0, 0,

1

2
,
1

2

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In[  ]:= FLTNS [z - x^2 - y^2, paraboloid2sphere , {x, y, z}]

Out[  ]= 1 - x2 - y2 - z2

In the  affine  plane  there  are  two  hyperboloids.   In addition  to the  one  pictured  above,  and  below  le�

there  is the  elliptic  hyperboloid  otherwise  known  as just  the  hyperboloid.  The below  right  is the   

parabolic  hyperboloid , otherwise  known  as the  hyperbolic  paraboloid  or saddle  surface .   In the  litera -

ture  these  are  o�en  considered  to be different  but  again  note  

In[  ]:= Ht = {{1.421753448878254` , 2.4001312247824407` ,

-1.4217534488782626` , -2.4001312247824362` }, {-1.3682399203220887` ,

0.05585142943475707` , 0.7762628086454613` , 1.1281027939185155` },

{-2.550704470740892` , -1.499868080914514` , 0.08976727903245796` ,

2.957640849193627` }, {1.1547005383792515` , 0.5773502691896257` ,

-1.1547005383792515` , -0.5773502691896266` }};

Ht // MatrixForm

Out[  ]//MatrixForm=

1.42175 2.40013 -1.42175 -2.40013

-1.36824 0.0558514 0.776263 1.1281

-2.5507 -1.49987 0.0897673 2.95764

1.1547 0.57735 -1.1547 -0.57735

In[  ]:= FLTNS x2 + y2 - z2 - 1, Ht, {x, y, z}
Out[  ]= 1. x y - 1. z

In[  ]:= {ContourPlot3D [x^2 + y^2 - z^2 ⩵ 1, {x, -2, 2},

{y, -2, 2}, {z, -2, 2}, Mesh → None, Boxed → False, Axes → False ],

ContourPlot3D [z ⩵ x y, {x, -8, 8}, {y, -8, 8}, {z, -5, 5}, Mesh → None,

Boxed → False, Axes → False ], ContourPlot3D [9 x^2 + y^2 - z^2 - 5 x y - z ⩵ 15,

{x, -8, 8}, {y, -8, 8}, {z, -5, 5}, Mesh → None, Boxed → False, Axes → False ]}

Out[  ]=  , , 

The  two  hyperboloids  do  share  4 important  properties

1) These  are  doubly  ruled  surfaces  .

2) The  tangent  plane  at every  point  cuts  the  hyperboloid  in two  lines,  one  from  each  ruling.

3) The  hyperboloid  is determined  by any  3 skew  lines,  that  is any  three  skew  lines  in 3-space  are  part  of 

one  ruling  of a hyperboloid.
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4) They  are  rationally  parameterized  surfaces.

The  difference  is this:   in the  parabolic  hyperboloid  all  the  lines  in one  ruling  are  all  parallel  to one  

plane,  this  is not  true  of the  elliptic  paraboloid.   For  example  consider  our  parabolic  hyperboloid  

In[  ]:= {ContourPlot3D [{h1 ⩵ 0, x - y ⩵ 0, x - y ⩵ 1, x - y ⩵ -1}, {x, -3, 3},

{y, -1.2, 1.2}, {z, -3, 3}, Mesh → None, Axes → None, Boxed → False ],

ContourPlot3D [{h1 ⩵ 0, x + y ⩵ 0, x + y ⩵ 1, x + y ⩵ -1}, {x, -3, 3},

{y, -1.2, 1.2}, {z, -3, 3}, Mesh → None, Axes → None, Boxed → False ]}

Out[  ]=  , 

Both  the  families  of planes  x + y = a, and  x - y = b as  a, b run  through  the  real  numbers  cut  this  surface  

in lines  which  must  be  skew  to each  other  but  each  plane  of the  form  x + y = a, intersects  each  plane  of 

the  form  x - y = b in a line  which  meets  the  surface  h1 in one  point.

Thus   the  skew  lines  3) above  will  all  be  parallel  to one  particular  plane  if and  only  if the  surface  they  

generate  is a parabolic  hyperboloid.    This  fact  was  observed  in the  book  by Hilbert  and  Cohn-Vossen,  

who  also  observed  that  the  elliptic  hyperboloids  contain  an ellipse  which  is essential  although  they  did  

not  state  this  fact  in those  words.   

In fact  a hyperbolic  paraboloid  is simply  a hyperboloid  which  is tangent  to the  infinite  plane.   Note  that  

the  maximal  form  in either  equation  z = x y  or  z = x2 - y2  are  both  a union  of two  lines  so these  hyper -

boloids  have  infinite  curves  which  satisfy  condition  2) above.

Here  is a seemingly  impossible  set  of skew  lines  to appear  in an elliptic  hyperboloid.

Lif = {t, 0, 0};

L2f = {0, t, 1};

L3f = {-1, -1, t};

In[  ]:= ParametricPlot3D [{L1f, L2f, L3f}, {t, -3, 3}, PlotStyle → {Blue, Green, Pink}]

Out[  ]=
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The  equations  are

In[  ]:= L1eq = {y, z};

L2eq = {x, z - 1};

L3eq = {x + 1, y + 1};

In[  ]:= L1syl = sylvesterMD [L1eq, 2, {x, y, z}];

L2syl = sylvesterMD [L2eq, 2, {x, y, z}];

L3syl = sylvesterMD [L3eq, 2, {x, y, z}];

hp2 = First [

Chop [vectorSpaceIntersection3 [L1syl, L2syl, L3syl, dTol ], dTol ].mExpsMD [2, {x, y, z}]]

Out[  ]= -0.5 y - 0.5 x y - 0.5 x z + 0.5 y z

In[  ]:= Show [ContourPlot3D [hp2 ⩵ 0, {x, -3, 3}, {y, -3, 3}, {z, -3, 3}, Mesh → None ],

ParametricPlot3D [{L1f, L2f, L3f}, {t, -3, 3}, PlotStyle → {Blue, Green, Pink}]]

Out[  ]=

[

I remark  in passing  that  if we  were  considering  complex  projective  surfaces  then  the  ellipsoid  and  

hyperboloid  are  projectively  equivalent.   The  tangent  plane  to a point  in,  say  the  real  sphere,  does  

contain  two  complex  lines  which  lie  in the  complex  sphere.   But  in the  real  projective  space  the  sphere  

is not  a ruled  surface.

Our  main  result  of  this  Section  is that  Every  real  projective  quadric  surface  is projectively  equiva -

lent  to exactly  one  of our   example  surfaces.  The  one  minor  exception  is that  the  non-squarefree  

degenerate  surface  is not  projectively  equivalent  to the  squarefree  degenerate  surface.

The  rest  of this  section  will  be  devoted  to proving  this  .   Along  with  this  constructive  proof  we  will  learn  

more  about  each  of the  types  of quadric  surface.

2.2 Strategy  

Given  a thee  variable  quadratic  equation  we  first  pick  a random  point,  assuming  it is not  not  the  empty  

quadric.   A good  way  to do  this  is to use  the  closestRealPointMD  function  and  a random  point.   Here  is 
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an example

In[  ]:= f232 = 1.004299994444187` + 4.619946233491519` x +

5.003986917416253` x2 - 1.5312443087645962` y - 2.5456169581885573` x y -

0.18725675804366315` y2 - 1.4437724690088531` z -

4.988262328875971` x z + 3.7338496490520834` y z - 1.7296244962937` z2

Out[  ]= 1.0043 + 4.61995 x + 5.00399 x2 - 1.53124 y - 2.54562 x y -

0.187257 y2 - 1.44377 z - 4.98826 x z + 3.73385 y z - 1.72962 z2

In[  ]:= p232 = closestRealPointMD [{f232}, RandomReal [{-5, 5}, 3], {x, y, z}]

Out[  ]= {1.15112, -1.11181, 1.3013 }

If there  is none  the  real  quadric  is probably  empty  .  A plot  may  help  confirm  this  .

We  then  eliminate  the  non-surface   cases  by checking  the  regularity  of the  random  point.   The  probabil -

ity that  a random  point  of a surface  is near  zero.   A good  way  to do  this  is to attempt  to calculate  the  

tangent  plane  at this  point.   This  does  a check  but  one  may  need  to look  at the  tangent  plane  if it is 

given,  all  very  small  (eg 10-4) coefficients  look  suspiciously  like  a singular  point.

In[  ]:= Tp232 = tangentPlaneNS [f232, p232, {x, y, z}]

Out[  ]= 7.1504 + 12.4794 x + 0.813695 y - 15.8387 z

This  looks  good  .  Next  we  check  to see  if this  is the  degenerate  case.   We  use  nDivideMDQ.   This  is given  

in global  function  pages  a�er  March  2022  or below.

In[  ]:= nDivideMDQ [f232, Tp232, {x, y, z}, .0003 ]

Out[  ]= True

Now  this  looks  degenerate.

If the  preceding  does  not  happen  we  proceed  to calculate  any  lines  in the  quadric  through  this  random  

regular  point.   We  adopt  the  trick  used  in Section  1.9.7  of this  book  to calculate  lines  on  a cubic.   If there  

is one  line  we  have  a cone  (cylinder),  no  real  lines  give  an ellipsoid  while  two  real  lines  indicate  a 

hyperboloid.    In each  case  we  will  show  that  the  information  from  the  point  and  lines  on  the  quadric  

through  this  point  are  sufficient  to find  a transformation  function  taking  the  quadric  to the  standard  

quadric  of its  type.

 We  use  the  following  black  box  code  to find  the  random  point  and  make  the  checks  above  for  non-

surface  or degenerate  surfaces  and  if that  is not  the  case  looks  for  lines  through  the  random  point.   

Note  for  technical  reasons  this  function  will  not  handle  cylinders  defined  by only  2 variables,  that  is 

cylinders  parallel  to one  axis.   But  then  there  is one  line  in the  direction  of the  missing  variable  through  

each  point  so this  function  is not  needed  anyway.

Example  :  We  use  the  quadric  at the  beginning  of this  section
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In[  ]:= f231

Out[  ]= 4.49218 + 1.50272 x - 3.29325 x2 - 4.86139 y + 3.21859 x y -

5.40164 y2 + 5.22602 z - 0.809111 x z + 3.71454 y z + 5.26946 z2

In[  ]:= Lines = analyzeQSNS [f231, {x, y, z}]

» 2 Lines

Out[  ]= {{-0.686027 - 3.31495 t, -2.74836 + 8.54218 t, -1.54699 + 7.20492 t},

{-0.686027 - 0.591156 t, -2.74836 - 0.65952 t, -1.54699 - 0.492003 t}}

In[  ]:= analyzeQSNS [f_, V_] := Module [{Tp, p, F, G, ct, ct2, sol, ln1, ln2, a, b, c},

If[Length [Variables [Chop [f, 1.*^-6 ]]] < 3,

Echo ["Quadrics must use all 3 variables "];

Abort []];

p = Quiet [closestRealPointMD [{f}, RandomReal [{-5, 5}, 3], V]];

If[Abs[f /. Thread [V → p]] > .003, Echo ["Possible Empty Quadric"];

Abort []];

Tp = With [{Gr = Grad [f, V] /. Thread [{x, y, z} → p]},

If[Norm [Gr] > 1.*^-5, Expand [Gr.(V - p)], Echo ["Not Regular at"];

Return [p]]];

If[Abs[Tp /. Thread [V → Normalize [RandomReal [{-1, 1}, 3]]]] < .003,

Echo ["Random non-regular point, Possibly not a Surface"];

Return [p]];

If[nDivideMDQ [f, Tp, V, .001 ], Echo ["Possibly Degenerate "];

Return [p]];

F = {p〚1〛 + a t, p〚2〛 + b t, p〚3〛 + c t};
G = Expand [f /. Thread [V → F]];

ct = Coefficient [G, t];

ct2 = Coefficient [G, t^2];

sol = Quiet [NSolve [{ct, ct2}, {a, b, c}, Reals ]];

If[Length [sol] ⩵ 0, Echo ["No lines, random point given"]; Return [p]];

ln1 = F /. sol〚1〛;
If[Length [sol] ⩵ 1, Return [ln1]];

ln2 = F /. sol〚2〛;
n = Length [pLineIntersectionMD [ln1, ln2, t, V, .03]];

Which [n ⩵ 1, Echo ["One Line"];

Return [ln1], n ⩵ 3, Echo ["2 Lines"];

{ln1, ln2}, True, Fail ]]

So this  will  be  a hyperboloid  .
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In[  ]:= Show [ContourPlot3D [f231 ⩵ 0, {x, -5, 5},

{y, -5, 5}, {z, -5, 5}, Mesh → None, MaxRecursion → 4],

ParametricPlot3D [Lines, {t, -5, 5}, PlotStyle → Blue ], ImageSize → Small ]

Out[  ]=

We  will  show  later  how  this  can  be wrangled  to our  standard  hyperboloid  x2 + y2 - z2 = 1.

Remark  1:  If you  do  not  have  an updated  GlobalFunctions.nb  the  ndivideMDQ  is given  by 

In[  ]:= nDivideMDQ [h_, g_, X_, tol_] := Module [{n, l, m, d1, d2, P, S, f, ex, t},

n = Length [X];

d1 = tDegMD [g, X];

d2 = tDegMD [h, X];

If [d1 > d2, Return [False ]];

P = PseudoInverse [N[sylMD [g, d2, X]], Tolerance → tol];

S = Chop [sylMD [h, d2, X].P];

ex = expsMD [n, d2 - d1];

l = Length [ex];

f = FromCoefficientRules [Table [ex〚i〛 → S〚1, i〛, {i, l}], X];

t = Expand [f * g - h];

If[NumberQ [t],

If[Abs[t] < d2 * tol, Return [True ], Return [False ]]];

If[Norm [Flatten [sylMD [Expand [f * g - h], d2, X]]] > d2 * tol, Return [False ]];

True ];

REMARK  2:  The  next  part  of this  section  gets  very  long  and  technical.   The  reader  who  is just  happy  to 

know  our  basic  classification  may  skip  to subsection  2.3.7.   The  reader  who  wants  to know  why  this  

classification  works  may  skim  the  following  subsections.   These  subsections  are  given  for  completeness  

and  the  occasional  reader  who  actually  needs  to transform  a complicated  quadric  surface  to one  in 

standard  form.   However   subsections  2.3.7  to 2.3.10  give  new  material.

In[  ]:= Clear [f, g, h, p, q, p2, tplane ]

2.3 Degenerate  Case

Here  the  quadric  has  real  points  but  is singular.    We  are  sent  here  if  NSolve[Grad[f,{x,y,z}]]  appears  
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infinite.  We  have  already  found  a random  point  so we  can  check  if it is regular.   For  example  consider  

f232  above

In[  ]:= f232

Out[  ]= 1.0043 + 4.61995 x + 5.00399 x2 - 1.53124 y - 2.54562 x y -

0.187257 y2 - 1.44377 z - 4.98826 x z + 3.73385 y z - 1.72962 z2

In[  ]:= ContourPlot3D [f232 ⩵ 0, {x, -5, 5}, {y, -5, 5}, {z, -5, 5}, ImageSize → Tiny ]

Out[  ]=

In[  ]:= TP232 = tangentPlaneNS [f232, p232, {x, y, z}]

Out[  ]= 7.1504 + 12.4794 x + 0.813695 y - 15.8387 z

Since  the  result  is a plane  the  point  was  regular.   We  can  see  if this  is a component

In[  ]:= PL232 = nDivideMD [f232, TP232, {x, y, z}, 1.*^-6 ]

Out[  ]= 0.140454 + 0.400981 x - 0.230131 y + 0.109202 z

Thus  f232  is the  union  of two  planes  .  The  intersecting  line  is given  by

In[  ]:= NSolve [Grad [f232, {x, y, z}]]

Out[  ]= {{x → -0.550258 + 1.11193 z, y → -0.348449 + 2.41194 z}}

which  by inspection  contains  the  point

In[  ]:= pt232 = {-0.5502577015419445` , -0.3484492995311171` , 0}

Out[  ]= {-0.550258 , -0.348449 , 0}

In[  ]:= Check :

In[  ]:= TP232 /. Thread [{x, y, z} → pt232 ]

PL232 /. Thread [{x, y, z} → pt232 ]

Out[  ]= 4.6595 × 10-12

Out[  ]= -2.58127 × 10-14

I now  translate  f232  and  its  factor  planes  TP232  and  PL232  so that  one  the  point  pt232  is moved  to the

origin.   This  is done  by the  transformation  matrix
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In[  ]:= T232 = {{1, 0, 0, -pt232〚1〛}, {0, 1, 0, -pt232〚2〛}, {0, 0, 1, 0}, {0, 0, 0, 1}};

T232 // MatrixForm

Out[  ]//MatrixForm=

1 0 0 0.550258

0 1 0 0.348449

0 0 1 0

0 0 0 1

In[  ]:= f232a = FLTNS [f232, T232, {x, y, z}]

TP232a = Chop [FLTNS [TP232, T232, {x, y, z}], 10*^-9 ]

PL232a = FLTNS [PL232, T232, {x, y, z}]

Out[  ]= 5.00399 x2 - 2.54562 x y - 0.187257 y2 - 4.98826 x z + 3.73385 y z - 1.72962 z2

Out[  ]= 12.4794 x + 0.813695 y - 15.8387 z

Out[  ]= 0.400981 x - 0.230131 y + 0.109202 z

Since  there  are  no  constant  terms  they  pass  through  the  origin  .  Next  we  rotate  our  planes  to send  

TP232  to the  horizontal  plane z = 0.

In[  ]:= PR232 = planeRotate3D [TP232a, z];

PR232 // MatrixForm

Out[  ]//MatrixForm=

-0.777288 -0.115885 -0.61838 0.

-0.115885 0.992444 -0.0403204 0.

0.61838 0.0403204 -0.784844 0.

0. 0. 0. 1.

In[  ]:= f232b = Chop [FLTNS [f232a, PR232, {x, y, z}], 1.*^-9 ]

TP232b = FLTNS [TP232a, PR232, {x, y, z}]

PL232b = Chop [FLTNS [PL232a, PR232, {x, y, z}], 1.*^-10 ]

Out[  ]= -7.11447 x z - 5.63574 y z + 3.08711 z2

Out[  ]= 20.1807 z

Out[  ]= -0.352537 x - 0.279263 y + 0.152973 z

Our  planes  still  go  through  the  origin  but  the  first  factor  is now  the  z = 0 plane.   When y = 1, z = 0 then  

solving

In[  ]:= gc = PL232b /. {y → 1, z → 0}

Out[  ]= -0.279263 - 0.352537 x

In[  ]:= gcx = SolveValues [gc ⩵ 0, x]〚1〛
Out[  ]= -0.792152

so PL232b  goes  through  the  point  
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In[  ]:= q232b = {gcx, 1, 0}

PL232b /. Thread [{x, y, z} → q232b ]

Out[  ]= {-0.792152 , 1, 0}

Out[  ]= 0.

In[  ]:= q232bt = Take [q232b, 2]

Out[  ]= {-0.792152 , 1}

So we  take  the  2 dimensional  rotation  about  the  origin  that  takes  the  vector  q232bt to {0,1}  and  extend  

it to a three  dimensional  transformation  matrix  leaving  the  z-plane  fixed.

In[  ]:= RM232 = Simplify [Join [Join [RotationMatrix [{{gcx, 1}, {0, 1}}], 0 * IdentityMatrix [2], 2],

{{0, 0, 1, 0}, {0, 0, 0, 1}}]];

RM232 // MatrixForm

Out[  ]//MatrixForm=

0.783861 0.620937 0 0

-0.620937 0.783861 0 0

0 0 1 0

0 0 0 1

Now

In[  ]:= f232c = Chop [FLTNS [f232b, RM232, {x, y, z}], 1.*^-11 ]

TP232c = FLTNS [TP232b, RM232, {x, y, z}]

PL232c = FLTNS [PL232b, RM232, {x, y, z}]

Out[  ]= -9.07619 x z + 3.08711 z2

Out[  ]= 20.1807 z

Out[  ]= -0.449745 x + 0.152973 z

We  note  the  line  {y=0,z=0}  now  lies  on  all  three  planes  so is the  intersection  of  TP232c  and  PL232c.

Finally  we  do  a 3 dimensional  shear

In[  ]:= Clear [a]

In[  ]:= Sh232 = {{1, 0, a, 0}, {0, 1, 0, 0}, {0, 0, -9.076189692468215` , 0}, {0, 0, 0, 1}}

Out[  ]= {{1, 0, a, 0}, {0, 1, 0, 0}, {0, 0, -9.07619, 0}, {0, 0, 0, 1}}

Note

In[  ]:=

In[  ]:= gd = Chop [FLTNS [f232c, Sh232, {x, y, z}], 1.*^-10 ]

gdz = Chop [gd /. {x → 0, z → 1}, 1.*^-10 ]

Out[  ]= 1. x z + 0.0374752 z2 + 0.110178 a z2

Out[  ]= 0.0374752 + 0.110178 a
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In[  ]:= sol232 = Solve [gdz ⩵ 0, a]

Out[  ]= {{a → -0.340132 }}

In[  ]:= Sh232a = Sh232 /. sol232 〚1〛
Out[  ]= {{1, 0, -0.340132 , 0}, {0, 1, 0, 0}, {0, 0, -9.07619, 0}, {0, 0, 0, 1}}

our  result  is 

In[  ]:=

Chop [FLTNS [f232c, Sh232a, {x, y, z}], 1.*^-10 ]

Out[  ]= 1. x z

which  was  our  target  equation!

Letting  

In[  ]:= A232 = Sh232a.RM232.PR232.T232;

A232 // MatrixForm

Out[  ]//MatrixForm=

-0.891574 0.511693 -0.242809 -0.312296

0.391809 0.849895 0.352369 0.511741

-5.61253 -0.365955 7.1234 -3.21586

0. 0. 0. 1.

In[  ]:= Chop [FLTNS [f232, A232, {x, y, z}], 1.*^-9 ]

Out[  ]= 1. x z

so up  to a tiny  numerical  error  we  have   transformed  f232  to the  standard  example,  in this  case  with  an 

affine  transformation.   Here  are  some  plots
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In[  ]:= {ContourPlot3D [f232 ⩵ 0, {x, -3, 3}, {y, -3, 3}, {z, -3, 3}, Mesh → None ],

ContourPlot3D [f232b ⩵ 0, {x, -3, 3}, {y, -3, 3}, {z, -3, 3}, Mesh → None ],

ContourPlot3D [f232c ⩵ 0, {x, -3, 3}, {y, -3, 3}, {z, -3, 3}, Mesh → None ],

ContourPlot3D [x z ⩵ 0, {x, -3, 3}, {y, -3, 3}, {z, -3, 3}, Mesh → None ]}

Out[  ]=  , ,

, 

2.4 Case of single line

I give  two  random  examples  .  

2.4.1  First  Example

In[  ]:= f234 = -2.3020166207367843` - 2.6858797219485577` x +

1.0131161481023399` x2 + 1.4721025020329819` y +

3.6587010950658008` x y + 2.676268803498578` y2 + 3.662928463334536` z +

5.874375409773489` x z + 3.229386168894008` y z + 0.7908431365144266` z2

Out[  ]= -2.30202 - 2.68588 x + 1.01312 x2 + 1.4721 y + 3.6587 x y +

2.67627 y2 + 3.66293 z + 5.87438 x z + 3.22939 y z + 0.790843 z2

We  start  by  analyzing  our  quadric  .

In[  ]:= Line234a = analyzeQSNS [f234, {x, y, z}]

» One Line

Out[  ]= {3.03683 - 1.6243 t, -5.2475 + 2.13762 t, -2.75568 + 1.61337 t}
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We  see  there  is a single  line  through  the  point   

In[  ]:= p1 = Line234a /. {t → 0}

Out[  ]= {3.03683, -5.2475, -2.75568 }

This  says  we  have  a cone  or a cylinder  .  To  find  out  witch  we  run  this  again

In[  ]:= Line234b = analyzeQSNS [f234, {x, y, z}]

» One Line

Out[  ]= {-2.4303 - 1.004 t, 0.00758587 + 0.218295 t, 1.03954 + 0.067496 t}

which  is through  the  point  

In[  ]:= p2 = Line234b /. {t → 0}

Out[  ]= {-2.4303, 0.00758587 , 1.03954 }

Now  we  check  to see  if they  intersect  .

In[  ]:= p3 = pLineIntersectionMD [Line234a , Line234b , t, {x, y, z}, .003 ]

Out[  ]= {-0.664603 , -0.376321 , 0.920841 }

They  do  .  We  check  for  regularity

In[  ]:= tangentPlaneNS [f234, p3, {x, y, z}]

» Not Regular at

Out[  ]= {-0.664603 , -0.376321 , 0.920841 }

So this  is a singular  point  .  We  have  a cone  .  Here  is a picture
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In[  ]:= Show [ContourPlot3D [f234 ⩵ 0, {x, -5, 5}, {y, -5, 5}, {z, -5, 5}, Mesh → None ],

ParametricPlot3D [{Line234a , Line234b }, {t, -15, 5}, PlotStyle → {Blue, Green }]]

Out[  ]=

To put  this  in our  standard  surface  form   we  first  move  our  singular  point  to the  invisible  plane,  prefer -

ably  a unit  coordinate  point.   We  first  take  it to zero  and  then  use  a transformation  from  2.3.1  to put  the  

singular  point  at invisible  point  {0,0,1,0}.

In[  ]:= T234 = {{1, 0, 0, -p3〚1〛}, {0, 1, 0, -p3〚2〛}, {0, 0, 1, -p3〚3〛}, {0, 0, 0, 1}}

CC3 = {{1, 0, 0, 0}, {0, 1, 0, 0}, {0, 0, 0, 1}, {0, 0, 1, 0}}

B234 = CC3.T234;

B234 // MatrixForm

Out[  ]= {{1, 0, 0, 0.664603 }, {0, 1, 0, 0.376321 }, {0, 0, 1, -0.920841 }, {0, 0, 0, 1}}

Out[  ]= {{1, 0, 0, 0}, {0, 1, 0, 0}, {0, 0, 0, 1}, {0, 0, 1, 0}}

Out[  ]//MatrixForm=

1. 0. 0. 0.664603

0. 1. 0. 0.376321

0. 0. 0. 1.

0. 0. 1. -0.920841

Note

In[  ]:= fltiMD [p3, B234 ]

Out[  ]= {0., 0., 1., 0}

In[  ]:= f234b = Chop [FLTNS [f234, B234, {x, y, z}], 1.*^-6 ]

Out[  ]= 0.790843 + 5.87438 x + 1.01312 x2 + 3.22939 y + 3.6587 x y + 2.67627 y2

There  is no  z term!   As  a surface  this  is a cylinder.   But  its  intersection  with  the  z-plane  is the  curve  with  
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the  same  equation  but  considered  as a plane  curve  instead  of a space  cylinder.

In[  ]:= ContourPlot [f234b ⩵ 0, {x, -10, 30}, {y, -20, 10}, ImageSize → Small ]

Out[  ]=
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  This  plane  curve  will  be  some  conic,  in this  case  a hyperbola  .  But  it is not  actually  important  as in my  

Plane  Curve  Book  Chapter  7 there  is a single  method  for  reducing  any  non-singular  conic  to the  unit  

circle  which  involves  the  cTransform2D  (Paragraph  70.1  GlobalFunctionsS.nb)  which  takes  this  to a 

parabola  which  can  be transformed  to y = x2 followed  by a standard  transformation  taking  this  

parabola  to the  unit  circle.

In[  ]:= p2cTransform2D

Out[  ]= {{1, 0, 0}, {0, -0.5, 0.5}, {0, -0.5, -0.5}}

Another  trick  used  is to escalate   a FLT  on  2 - space  to  3 space  by changing

Out[  ]//MatrixForm=

* * *

* * *

* * *

To

Out[  ]//MatrixForm=

* * 0 *

* * 0 *

0 0 1 0

* * 0 *

where  the  * indicate  numbers  in the  same  position.   We  have  a function  escalate2D

So now  we  find  some  critical  points  and  apply  the cTransform2D

In[  ]:= cpf234b = criticalPoints2D [f234b, x, y]〚2〛
Out[  ]= {-0.112914 , -0.0524928 }

In[  ]:= ctf234b = Chop [cTransform2D [f234b, cpf234b, x, y], dTol ]

Out[  ]= {{0.421563 , -0.906799 , 0},

{-0.112049 , -0.0520905 , 0.992336 }, {0.89985, 0.418332 , 0.123565 }}

In[  ]:= gc = FLT3D [{f234b }, ctf234b, {x, y}]〚1〛
Out[  ]= 3.49815 - 3.65788 x + 0.982079 x2 + 6.01404 y
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We  do  our  translation  trick  in 2 D

In[  ]:= Clear [a, b, c]

In[  ]:= T2D = {{1, 0, a}, {0, 1, b}, {0, 0 , 1}};

In[  ]:= gt = FLT3D [{gc}, T2D, {x, y}]〚1〛
Out[  ]= 3.49815 + 3.65788 a + 0.982079 a2 - 6.01404 b - 3.65788 x - 1.96416 a x + 0.982079 x2 + 6.01404 y

In[  ]:= c0 = gt /. Thread [{x, y} → {0, 0}]

Out[  ]= 3.49815 + 3.65788 a + 0.982079 a2 - 6.01404 b

In[  ]:= cx = Coefficient [gt, x] /. {x → 0}

Out[  ]= -3.65788 - 1.96416 a

In[  ]:= cy = Coefficient [gt, y]

Out[  ]= 6.01404

In[  ]:= solgt = Solve [c0 ⩵ 0 && cx ⩵ 0, {a, b}]

Solve : Solve was unable to solve the system with inexact coefficients . The answer was obtained by solving a

corresponding exact system and numericizing the result .

Out[  ]= {{a → -1.86231, b → 0.0153135 }}

In[  ]:= T234c = T2D /. solgt〚1〛
Out[  ]= {{1, 0, -1.86231 }, {0, 1, 0.0153135 }, {0, 0, 1}}

In[  ]:= g234c = FLT3D [{gc}, T234c, {x, y}]

Out[  ]= 0.982079 x2 + 6.01404 y

A parabola,   now  almost  here,  we  modify  T2D  by 

In[  ]:= TT234d =

ReplacePart [T234c, {3, 3} → First [-Coefficient [g234c, y] / Coefficient [g234c, x^2]]]

Out[  ]= {{1, 0, -1.86231 }, {0, 1, 0.0153135 }, {0, 0, -6.12379 }}

In[  ]:= f234d = FLT3D [{gc}, p2cTransform2D .TT234d, {x, y}]〚1〛
Out[  ]= -0.982079 + 0.982079 x2 + 0.982079 y2

But  this  is equivalent  to

In[  ]:= Expand f234d  f234d〚1〛
Out[  ]= 1. - 1. x2 - 1. y2

That  is the  unit  circle,  our  goal  .  Putting  this  together

In[  ]:= B2D = p2cTransform2D .TT234d.ctf234b

Out[  ]= {{-1.25424, -1.68586, -0.230117 },

{-2.70611, -1.25805, -0.875458 }, {2.80438, 1.30373, -0.118771 }}
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In[  ]:= FLT3D [{f234b }, B2D, {x, y}]

Out[  ]= -0.982079 + 0.982079 x2 + 0.982079 y2

Using  our  trick  above,  editing  manually

In[  ]:= B3D = escalate2D [B2D];

B3D // MatrixForm

Out[  ]//MatrixForm=

-1.25424 -1.68586 0 -0.230117

-2.70611 -1.25805 0 -0.875458

0 0 1 0

2.80438 1.30373 0 -0.118771

In[  ]:= FLTNS [f234b, B3D, {x, y, z}]

Out[  ]= -0.982079 + 0.982079 x2 + 0.982079 y2

Note  this  last  equation  is now  in 3  dimensions,   that  is,  a right  circular  cylinder  of radius  1.  But  insert -

ing  the  transformation  getting  f234b  we  get,  eliminating  some  small  error  on  the  magnitude  of 10-8

In[  ]:= cyl = Chop [FLTNS [f234, CC3.B3D.B234, {x, y, z}], 1.*^-6 ]

Out[  ]= 0.982079 x2 + 0.982079 y2 - 0.982079 z2

or equivalently

In[  ]:= roundPolyMD [Expand [cyl / Coefficient [cyl, x^2]], {x, y, z}, 1]

Out[  ]= x2 + y2 - z2

which  has  converted  our  original  quadric  f234  to the  standard  cone.   Done!   Note  for  reference  the  

transformation  matrix  is

In[  ]:= A = CC3.B3D.B234;

A // MatrixForm

Out[  ]//MatrixForm=

-1.25424 -1.68586 -0.230117 -1.25609

-2.70611 -1.25805 -0.875458 -1.46576

2.80438 1.30373 -0.118771 2.46379

0. 0. 0. 1.

so even  though  we  did  use  some  projective  transformations  the  end  transformation  is just  an affine  

transformation  .

Finally  we  saw  in Chapter  1 that  the  cone  had  trigonometric  parameterization

In[  ]:= pcone = {s Cos[t], s Sin[t], s};

So f234  has   trigonometric  parameterization  
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In[  ]:= TransformationFunction [Inverse [A]][{s Cos[t], s Sin[t], s}]

Out[  ]= -0.664603 + 0.387474 s + 0.421563 s Cos[t] - 0.163377 s Sin[t],

-0.376321 - 0.155234 s - 0.906799 s Cos[t] + 0.259415 s Sin[t],

0.920841 - 0.97464 s + 1.26591 × 10-15 s Cos[t] - 1.01003 s Sin[t]

or rational  parameterization

In[  ]:= prcone = TransformationFunction [Inverse [A]][

{2 s u / (1 + u^2), s (1 - u^2) / (1 + u^2), s (1 + u^2) / (1 + u^2)}]

Out[  ]= -0.664603 + 0.387474 s +
0.843126 s u

1 + u2
-
0.163377 s 1 - u2

1 + u2
,

-0.376321 - 0.155234 s -
1.8136 s u

1 + u2
+
0.259415 s 1 - u2

1 + u2
,

0.920841 - 0.97464 s +
2.53181 × 10-15 s u

1 + u2
-
1.01003 s 1 - u2

1 + u2


2.4.2  Second  Example   

We  look  at the  example  of a cylinder  above.  We  start  out  the  same

In[  ]:= g234 = cyl

Out[  ]= 0.982079 x2 + 0.982079 y2 - 0.982079 z2

In[  ]:= Linesg234a = analyzeQSNS [g234, {x, y, z}]

» One Line

Out[  ]= {0.773121 - 0.0881251 t, 3.41867 - 0.38968 t, -3.505 + 0.399521 t}

So we  do  have  a cone  or cylinder  .

In[  ]:= pg234a = Linesg234a /. {t → 0}

Out[  ]= {0.773121 , 3.41867, -3.505 }

In[  ]:= Linesg234b = analyzeQSNS [g234, {x, y, z}]

» One Line

Out[  ]= {1.84396 - 0.525789 t, -0.578447 + 0.164939 t, -1.93256 + 0.551053 t}

In[  ]:= pg234b = Linesg234b /. {t → 0}

Out[  ]= {1.84396, -0.578447 , -1.93256 }

In[  ]:= pg234c = pLineIntersectionMD [Linesg234a , Linesg234b , t, {x, y, z}, .003 ]

Out[  ]= 6.98723 × 10-11, 8.19944 × 10-11, 1.41363 × 10-10 

We  see  this  lines  are  parallel,  intersecting  in an infinite  point  .
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In[  ]:= Show [ContourPlot3D [{g234 ⩵ 0}, {x, -4, 4},

{y, -6, 6}, {z, -3, 3}, Mesh → None, MaxRecursion → 5],

ParametricPlot3D [{Linesg234a , Linesg234b }, {t, -6, 6}, PlotStyle → Green ],

Graphics3D [{Red, PointSize [.04], Point [{pg234a, pg234b }]}],

Axes → False, Boxed → False, ImageSize → Small ]

Out[  ]=

Now  we  rotate  our  cylinder  by 

In[  ]:= A234 = m2TM [RotationMatrix [{Take [pg234c, 3], {0, 0, 1}}]];

A234 // MatrixForm

Out[  ]//MatrixForm=

0.913915 -0.101019 -0.393133 0

-0.101019 0.881455 -0.461337 0

0.393133 0.461337 0.79537 0

0 0 0 1

In[  ]:= k = FLTNS [g234, A234, {x, y, z}]

Out[  ]= 0.678511 x2 - 0.712467 x y + 0.564043 y2 + 1.22833 x z + 1.44143 y z - 0.260475 z2

so

In[  ]:= FLTNS [k, CC3, {x, y, z}]

Out[  ]= -0.260475 + 1.22833 x + 0.678511 x2 + 1.44143 y - 0.712467 x y + 0.564043 y2

is the  cone,  which  was  our  goal  .  So  we  have  transformed  g234  to the  standard  cone  as advertised.   

Note  that  unlike  our  cone  this  required  a projective  transformation.

In[  ]:= CC3.A234 // MatrixForm

Out[  ]//MatrixForm=

0.913915 -0.101019 -0.393133 0.

-0.101019 0.881455 -0.461337 0.

0. 0. 0. 1.

0.393133 0.461337 0.79537 0.

2.5 Case of no real lines

I illustrate  with  a randomly  generated  quadric  without  looking  at the  plot.
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In[  ]:= f235 = -2.031178358884528` + 4.17957755275523` x +

4.997732894861038` x2 + 4.016412314718252` y + 5.405655213618456` x y -

4.774616171824391` y2 - 0.3635208665574865` z + 2.1158591510475233` x z -

1.9584210592684848` y z - 3.6055350881202237` z2

Out[  ]= -2.03118 + 4.17958 x + 4.99773 x2 + 4.01641 y + 5.40566 x y -

4.77462 y2 - 0.363521 z + 2.11586 x z - 1.95842 y z - 3.60554 z2

Our  usual  first  step  is 

In[  ]:= p235 = analyzeQSNS [f235, {x, y, z}]

» No lines , random point given

In[  ]:= p235 = {-3.6256394688081572` , 2.2338455675877786` , -2.1132818872948613` }

Out[  ]= {-3.62564, 2.23385, -2.11328 }

We  must  show  this  is projectively  equivalent  to the  unit  sphere  .  We  next  find  the  tangent  plane.

In[  ]:= tp235 = tangentPlaneNS [f235, p235, {x, y, z}]

Out[  ]= -9.47573 - 24.4564 x - 32.7754 y + 2.82935 z

We  apply  our iTransform3D  specializing  at this  tangent  plane,  that  is making  tp235  invisible.

In[  ]:= iT235 = iTransform3D [tp235 ]

Out[  ]= {{0.309503 , -0.941557 , 0.132962 , -0.381119 }, {-0.70722, -0.134457 , 0.69409, -1.58421 },

{-0.635647 , -0.308856 , -0.707503 , 3.56495 }, {-1.03337, -1.38487, 0.11955, -0.400382 }}

In particular  p235  goes  to

In[  ]:= q235 = fltiMD [p235, iT235 ]

Out[  ]= {-3.88754, -0.787249 , 6.67479, 0}

and  our  quadric  now  has  equation  in this  specialization

In[  ]:= f235b = FLTNS [f235, iT235, {x, y, z}]

Out[  ]= -7.0792 + 10.9293 x - 8.91098 x2 + 32.5164 y - 28.4045 x y -

25.1027 y2 + 13.7463 z - 13.73 x z - 22.4648 y z - 5.32312 z2

We  now  rotate  a vector  in the  direction  of q235  to {0,0,1}  using  a rotation  matrix  about  the  origin.

In[  ]:= R235 = m2TM [RotationMatrix [{Take [q235, 3], {0, 0, 1}}]]

Out[  ]= {{0.865196 , -0.0272985 , 0.500689 , 0}, {-0.0272985 , 0.994472 , 0.101392 , 0},

{-0.500689 , -0.101392 , 0.859668 , 0}, {0, 0, 0, 1}}

Rotating  our  quadric  f235b  

In[  ]:= f235c = Chop [FLTNS [f235b, R235, {x, y, z}], 1.*^-7 ]

Out[  ]= -7.0792 + 15.451 x - 12.9935 x2 + 33.4321 y - 35.3577 x y - 26.3433 y2 + 3.04812 z

We  see  that  this  is a paraboloid  from  the  equation.   We  will  put  this  in standard  form  z = x2 + y2 and  
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then  transform  using  our  GlobalFunctions.nb  transformation  paraboloid2sphere.  

An affine  transformation  involving  a shear  and  translation  will  be  sufficient.

In[  ]:= Clear [a, b, c, u]

Tgen = {{1, 0, 0, a}, {u, 1, 0, b}, {0, 0, 1, c}, {0, 0, 0, 1}};

In[  ]:= f235tg = FLTNS [f235c, Tgen, {x, y, z}]

Out[  ]= -7.0792 - 15.451 a - 12.9935 a2 - 33.4321 b - 35.3577 a b - 26.3433 b2 -

3.04812 c + 33.4321 a u + 35.3577 a2 u + 52.6867 a b u - 26.3433 a2 u2 + 15.451 x +

25.9869 a x + 35.3577 b x - 33.4321 u x - 70.7155 a u x - 52.6867 b u x +

52.6867 a u2 x - 12.9935 x2 + 35.3577 u x2 - 26.3433 u2 x2 + 33.4321 y + 35.3577 a y +

52.6867 b y - 52.6867 a u y - 35.3577 x y + 52.6867 u x y - 26.3433 y2 + 3.04812 z

In[  ]:= c0 = f235tg /. Thread [{x, y, z} → {0, 0, 0}]

Out[  ]= -7.0792 - 15.451 a - 12.9935 a2 - 33.4321 b - 35.3577 a b - 26.3433 b2 -

3.04812 c + 33.4321 a u + 35.3577 a2 u + 52.6867 a b u - 26.3433 a2 u2

In[  ]:= cx = Coefficient [f235tg, x] /. {y → 0}

Out[  ]= 15.451 + 25.9869 a + 35.3577 b - 33.4321 u - 70.7155 a u - 52.6867 b u + 52.6867 a u2

In[  ]:= cy = Coefficient [f235tg, y] /. {x → 0}

Out[  ]= 33.4321 + 35.3577 a + 52.6867 b - 52.6867 a u

In[  ]:= cxy = Coefficient [f235tg, x y]

Out[  ]= -35.3577 + 52.6867 u

In[  ]:= sol235tg = Solve [c0 ⩵ 0 && cx ⩵ 0 && cy ⩵ 0 && cxy ⩵ 0, {a, b, c, u}]

Solve : Solve was unable to solve the system with inexact coefficients . The answer was obtained by solving a

corresponding exact system and numericizing the result .

Out[  ]= {{a → 3.09277, b → -0.634545 , c → 4.70113, u → 0.671095 }}

In[  ]:= T235 = Tgen /. sol235tg 〚1〛;
T235 // MatrixForm

Out[  ]//MatrixForm=

1 0 0 3.09277

0.671095 1 0 -0.634545

0 0 1 4.70113

0 0 0 1

In[  ]:= f235d = FLTNS [f235c, T235, {x, y, z}]

Out[  ]= -1.12927 x2 - 26.3433 y2 + 3.04812 z

We  can  now  put  this  in standard  form  for  a paraboloid  (parabolic  ellipsoid  in my  notation)  using  a 

homothety
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In[  ]:= Homth235 =

{{Sqrt [-Coefficient [f235d, x^2]], 0, 0, 0}, {0, Sqrt [-Coefficient [f235d, y^2]], 0, 0},

{0, 0, Coefficient [f235d, z], 0}, {0, 0, 0, 1}};

Homth235 // MatrixForm

Out[  ]//MatrixForm=

1.06267 0 0 0

0 5.13258 0 0

0 0 3.04812 0

0 0 0 1

In[  ]:= FLTNS [f235d, Homth235 , {x, y, z}]

Out[  ]= -1. x2 - 1. y2 + 1. z

We  are  done  as we  have  in GlobalFunctionsS.nb

In[  ]:= FLTNS [z - x^2 - y^2, paraboloid2sphere , {x, y, z}]

Out[  ]= 1 - x2 - y2 - z2

so the  projective  transformation  

In[  ]:= A235 = paraboloid2sphere .Homth235 .T235.R235.iT235;

A235 // MatrixForm

Out[  ]//MatrixForm=

-7.84687 -8.89527 -0.338903 2.53791

-3.42938 -5.57762 0.118585 0.276449

-0.72582 0.469251 1.87743 0.287739

-8.88023 -10.2801 -0.219354 2.13753

gives  the  sphere  to 7 decimal  places

In[  ]:= roundPolyMD [FLTNS [f235, A235, {x, y, z}], {x, y, z}, 5.*^-7 ]

Out[  ]= 1. - 1. x2 - 1. y2 - 1. z2

2.6 Case of 2 real lines

This  is the  hard  case  of this  section  since  a hyperboloid  can  be either  a parabolic   or  an elliptic  hyper -

boloid  a situation  where  we  really  need  projective  geometry  .  It is the  reason  this  section  is in Chapter  

2.

2.6.1  Special  case

Here  we  start  with  the  standard  hyperboloid  and  a specific,  not  random,  point  and  transform  this  to the  

saddle  surface  z = x y. This  is an easier  target  than  the  standard  hyperboloid.

In[  ]:= f2361 = x^2 + y^2 - z^2 - 1;

p0 = {1, 0, 0};

Rather  than  using  analyzeQSNS  we  manually  find  the  lines  on  the  hyperboloid  through  p0.  Without  

repeating  the  work  we  get  parametric  lines
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In[  ]:= l2361a = {1, t, t};

l2361b = {1, t, -t};

These  clearly  go through  point  p0 = {1, 0, 0}  and   checking

In[  ]:= f2361 /. Thread [{x, y, z} → l2361a ]

f2361 /. Thread [{x, y, z} → l2361b ]

Out[  ]= 0

Out[  ]= 0

These  lines  must  lie  in the  tangent  plane

In[  ]:= tp2361 = tangentPlaneNS [f2361, p0, {x, y, z}]

Out[  ]= -2 + 2 x

Or equivalently,  x - 1 We  now,  as we  have  been  doing,  make  this  plane  invisible  with  a Transformation  

function  which  will  actually  put  these  lines  in the  invisible  plane  of the  target  surface.   In this  case  we  

use  a special  transformation  to keep  it as exact  as possible  but  with  last  row  {1, 0, 0, -1} to make  x - 1 

invisible.

In[  ]:= A2361 = {{0, 1, 1, 0}, {0, -1, 1, 0}, {1, 0, 0, 1}, {1, 0, 0, -1}};

f2361b = FLTNS [f2361, A2361, {x, y, z}]

Out[  ]= -x y + z

Magically  this  works  perfectly  already.   This  is a saddle  surface.   We  notice  what  happens  to the  lines.

In[  ]:= pl2361a = fltiMD [l2361a, A2361 ]

Out[  ]= {2 t, 0, 2, 0}

In[  ]:= pl2361b = fltiMD [l2361b, A2361 ]

Out[  ]= {0, -2 t, 2, 0}

Inversely  the  transformation  matrix  taking  the  saddle  surface  back  to the  sphere  is

In[  ]:= ss2stdHyperboloid = Inverse [A2361 ]

Out[  ]= 0, 0,
1

2
,
1

2
, 

1

2
, -

1

2
, 0, 0, 

1

2
,
1

2
, 0, 0, 0, 0,

1

2
, -

1

2


We  have  seen  transformation  matrices  are  homogeneous  so this  could  be multiplied  by 2 to get  integer  

coordinates,  but  then  the  standard  formula  would  be multiplied  by the  constant  
1

4
.   

2.6.2  General  Case

We  consider  the  following  randomly  defined  hyperboloid  .  Some  of the  intermediate  calculations  will  

be suppressed  in the  interest  of readability.  
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In[  ]:= f2362 = -5.798523022437465` + 4.434386417880354` x +

3.667824022372237` x2 - 4.502072645249173` y + 2.7484271965897165` x y -

1.6804920132021834` y2 + 3.698654556429698` z - 3.6995461041438222` x z -

2.747070301170911` y z + 2.4907568140405516` z2

Out[  ]= -5.79852 + 4.43439 x + 3.66782 x2 - 4.50207 y + 2.74843 x y -

1.68049 y2 + 3.69865 z - 3.69955 x z - 2.74707 y z + 2.49076 z2

We  apply,  as usual,  analyzeQSNS, but  to avoid  the  randomness  we  just  give  the  answer  which  does  

identify  this  quadric  surface  as a hyperboloid.

In[  ]:= Lines2362 = {{0.19748140781913295` + 0.6308293338440896` t, -0.4728487245016963` -

0.8387004948688648` t, -2.2890238330740265` + 0.6933215712245515` t},

{0.19748140781913295` - 2.9636082441151346` t, -0.4728487245016963` -

4.785522759124684` t, -2.2890238330740265` - 8.048199525301122` t}}

Out[  ]= {{0.197481 + 0.630829 t, -0.472849 - 0.8387 t, -2.28902 + 0.693322 t},

{0.197481 - 2.96361 t, -0.472849 - 4.78552 t, -2.28902 - 8.0482 t}}

The  plot  is

In[  ]:= Show [ContourPlot3D [f2362 ⩵ 0, {x, -15, 15}, {y, -15, 15}, {z, -15, 15}, Mesh → None ],

ParametricPlot3D [Lines2362 , {t, -15, 15}, PlotStyle → Blue ]]

Out[  ]=

The  intersection  point  and  tangent  plane  at that  point  are

In[  ]:= p2362 = pLineIntersectionMD [Lines2362 〚1〛, Lines2362 〚2〛, t, {x, y, z}, dTol ]

Out[  ]= {0.197481 , -0.472849 , -2.28902 }

In[  ]:= tp2362 = Expand [tangentPlaneNS [f2362, p2362, {x, y, z}] / 3]

Out[  ]= -5.68628 + 4.3506 x + 1.30601 y - 2.3786 z

The  main  trick  is to make  this  tangent  plane  invisible  by a FLT  transformation,  in particular  the  

transformation
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In[  ]:= iT2362 = iTransform3D [tp2362 ];

iT2362 // MatrixForm

Out[  ]//MatrixForm=

0.494825 -0.572427 -0.653816 1.07695

0.113209 0.788436 -0.604609 0.0951902

0.861587 0.225158 0.454942 -1.09295

1.46962 0.441167 -0.803484 -1.92081

In[  ]:= f2362b = FLTNS [f2362, iT2362, {x, y, z}]

Out[  ]= -0.788052 - 0.278701 x + 1.86919 x2 + 6.96613 y + 1.52586 x y -

4.45715 y2 - 0.8878 z + 6.14318 x z - 2.69125 y z + 3.63058 z2

Note  that  the  following  points  on  these  lines  are  invisible  (infinite)  points   and  hence  the  two  lines  go to 

invisible  lines.

In[  ]:= q1 = fltiMD [p2362, iT2362 ]

q2 = fltiMD [Lines2362 〚1〛 /. {t → 1}, iT2362 ]

q3 = fltiMD [Lines2362 〚2〛 /. {t → .1}, iT2362 ]

Out[  ]= {2.94194, 1.1287, -2.07064, 0}

Out[  ]= {3.28088, 0.119666 , -1.40054, 0}

Out[  ]= {3.59543, 1.20444, -2.79987, 0}

This  surface  is a saddle  surface  .

In[  ]:= ContourPlot3D [f2362b ⩵ 0, {x, -5, 5},

{y, -5, 5}, {z, -5, 5}, Mesh → None, ImageSize → Small ]

Out[  ]=

Here  is where  we  bring  in homogeneous  coordinates  to describe  the  invisible  set  of this  saddle  surface.   

The  saddle  surface  itself  has  homogeneous  coordinates  which  we  denote  by different  font  letters  to 

emphasize  that  these  coordinates  are  homogeneous.

In[  ]:= F2362h = HomogNS [f2362b, {x, y, z}, {, , ℤ, }]

Out[  ]= -0.788052 2
- 0.278701   + 1.86919 2

+ 6.96613   +

1.52586   - 4.45715 2 - 0.8878  ℤ + 6.14318  ℤ - 2.69125  ℤ + 3.63058 ℤ2

The  invisible  set  is then  the  union  of these  two  lines
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In[  ]:= f2362h = F2362h /. { → 0}

Out[  ]= 0. + 1.86919 2
+ 1.52586   - 4.45715 2 + 6.14318  ℤ - 2.69125  ℤ + 3.63058 ℤ2

We  plot  this  viewing  each  homogeneous  point  as an affine  line  though  the  non-  point  {0,0,0}.   So  the  

picture  of this  looks  like  an affine  surface,  in fact  a degenerate  quadric  consisting  of two  planes.   One  

reason  we  gave  the  details  of this  rather  obvious  case  is that  we  can,  to some  extent  just  follow  our  

earlier  work,  however  we  must  preserve  homogeneity  and  in particular  our  transformation  matrices  

must  have  the  last  column  as {{0},{0},{0},{1}},  the  final  1 could  actually  be  any  non-zero  number  by 

homogeneity.   In particular  we  can  not  use  translations  which  will  make  it a bit  more  difficult.

In[  ]:= Show [ContourPlot3D [f2362h ⩵ 0, {, -1, 6}, {, -1, 2}, {ℤ, -5, 5}, Mesh → None,

MaxRecursion → 3], Graphics3D [{{Red, Ball [Take [q2, 3], .07], Ball [Take [q3, 3], .07]},

{Green, Ball [Take [q1, 3], .07]}, {Black, Ball [{0, 0, 0}, .07]}}]]

Out[  ]=

Note  the  black  ball  indicates  the  irrelevant  point,  {0,0,0},  as  it is sometimes  called,   the  green  point  is a 

representative  of the  point  of intersections  of this  projective  lines  and  the  red  points  represent  the

image  of q2,  q3  above.

We  can  still  decompose  f2362h  as the  union  of this  two  planes  but  we  have  to think  affinely,  the  results  

are

In[  ]:= plane2362h1 = 3.8439595680212264`  + 7.708625536063979`  + 9.66340805980829` ℤ
Out[  ]= 3.84396  + 7.70863  + 9.66341 ℤ
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In[  ]:= plane2362h2 = 0.4862666360716048`  - 0.5782033378346113`  + 0.37570414375418054` ℤ
Out[  ]= 0.486267  - 0.578203  + 0.375704 ℤ

Note  they  are  homogeneous  , no  constant  term.   We  rotate  the  first  plane  to the  x-plane,  I mean  the  first  

line  to =0,   again  we  cheat  and  work  as if affine  planes.   Our  transform  is scalar,  independent  of 

variables.

In[  ]:= Rot1 = planeRotate3D [plane2362h1 /. Thread [{, , ℤ} → {x, y, z}], x]

Out[  ]= {{0.296939 , 0.595477 , 0.746481 , 0.}, {-0.595477 , 0.726592 , -0.34274, 0.},

{-0.746481 , -0.34274, 0.570347 , 0.}, {0., 0., 0., 1.}}

In[  ]:= f2362h3 = Chop [FLTNS [f2362h, Rot1, {, , ℤ}], 1.*^-10 ]

Out[  ]= 1.04262 2
- 10.8539   + 0.640354  ℤ

In[  ]:= rotpl2 = Chop [FLTNS [plane2362h2 /. Thread [{, , ℤ} → {x, y, z}], Rot1, {x, y, z}], 1.*^-10 ]

Out[  ]= 0.0805404 x - 0.838448 y + 0.0494662 z

In[  ]:= u1 = Chop [fltMD [Take [q1, 3], Rot1 ], 1.*^-10 ]

Out[  ]= {0, -0.222062 , -3.76393 }

In[  ]:= u3 = fltMD [Take [q2, 3], Rot1 ]

Out[  ]= -1.37663 × 10-11, -1.38672, -3.28892 

We  need  another  rotation  to take  u1 to a point  on  the  y - axis

In[  ]:= Rot2 = m2TM [Chop [RotationMatrix [{u1, {0, 0, -4}}], 1.*^-11 ]]

Out[  ]= {{1., 0, 0, 0}, {0, 0.998264 , -0.058895 , 0}, {0, 0.058895 , 0.998264 , 0}, {0, 0, 0, 1}}

In[  ]:= f2362h4 = FLTNS [f2362h3, Rot2, {, , ℤ}]

Out[  ]= 1.04262 2
- 10.8728   + 3.11173 × 10-11  ℤ

We  find  a point  on  the  other  component  and  use  a shear  to place  the  second  affine  plane,  (projective  

line)  to  =0.

In[  ]:= Sh2 = {{-10.872815069250905` , 0, 0, 0}, {b, 1, 0, 0}, {0, 0, 1, 0}, {0, 0, 0, 1}}

Out[  ]= {{-10.8728, 0, 0, 0}, {b, 1, 0, 0}, {0, 0, 1, 0}, {0, 0, 0, 1}}

In[  ]:= f2362h5 = Chop [FLTNS [f2362h4, Sh2, {, , ℤ}], 1.*^-11 ]

Out[  ]= 0.00881945 2
+ 0.0919725 b 2

+ 1.  

So we  have  transformed  the  invisible  curve  of saddle  surface  f2362b  to the  reducible  plane  projective  

curve   .  Our  big  trick,  which  will  be  used  also  in the  next  section,  is that  since  our  transformation  

functions  were  actually  3 dimensional  they  will  work  on  our  original  affine  saddle  surface.

In[  ]:= f2362c = Chop [FLTNS [f2362b, Sh2.Rot2.Rot1, {x, y, z}], 1.*^-10 ]

Out[  ]= -0.788052 - 0.312954 x + 0.522437 b x +

0.00881945 x2 + 0.0919725 b x2 + 5.68036 y + 1. x y - 2.35542 z
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The  basic  surface  is what  we  want  but  we  have  introduced  some  unwanted  translations  that  we  can  

remove  and  some  coefficients  that  can  be adjusted.    Without  going  through  the  details  since  we  have  

done  this  before  we  find  the  correct  translation/homothety  that  does  the  trick

In[  ]:= T2362 = {{1, 0, 0, 5.680359335436788` }, {0, 1, 0, -0.3630514858797215` },

{0, 0, 1, -0.5409691513012265` }, {0, 0, 0, 2.35542208613845` }};

T2362 // MatrixForm

Out[  ]//MatrixForm=

1 0 0 5.68036

0 1 0 -0.363051

0 0 1 -0.540969

0 0 0 2.35542

In[  ]:= FLTNS [f2362c, T2362, {x, y, z}]

Out[  ]= -0.0212691 x - 0.221802 b x + 0.00881945 x2 + 0.0919725 b x2 + 1. x y - 1. z

which  was  our  goal  .   Given  differently

In[  ]:= A2362 = T2362.Sh2.Rot2.Rot1.iT2362;

A2362 =

-0.2085799208652234` 0.7465627495536818` -0.7044539966396092` -1.2705164308724117`

-0.18615512434182432` 0.6542416058450221` 1.0105022947355933` -0.9752829505125605`

-1.2120746510033826` 0.6394032181172619` 0.05380172151374432` -0.6045336199227057`

0.3444419634581145` 1.4443536459572852` 0.0697838356683156` -0.8308561999355916`

Out[  ]= {{-0.20858, 0.746563 , -0.704454 , -1.27052 }, {-0.186155 , 0.654242 , 1.0105, -0.975283 },

{-1.21207, 0.639403 , 0.0538017 , -0.604534 }, {0.344442 , 1.44435, 0.0697838 , -0.830856 }}

In[  ]:= Chop [FLTNS [f2362, A2362, {x, y, z}], 1.*^-10 ]

Out[  ]= -0.0212691 x - 0.221802 b x + 0.00881945 x2 + 0.0919725 b x2 + 1. x y - 1. z

Finally,  bringing  in the  transform  ss2stdHyperboloid  we  transform  our  random  hyperboloid  f2362 to 

the  standard  hyperboloid  .

In[  ]:= Chop [FLTNS [f2362, ss2stdHyperboloid .A2362, {x, y, z}], 1.*^-10 ]

Out[  ]= 1. - 1. x2 + 0.0212691 y + 0.221802 b y - 0.0212691 x y - 0.221802 b x y -

0.991181 y2 + 0.0919725 b y2 + 0.0212691 z + 0.221802 b z - 0.0212691 x z -

0.221802 b x z + 0.0176389 y z + 0.183945 b y z + 1.00882 z2 + 0.0919725 b z2

2.7 Rationality  of quadric  surfaces.

The  results  of this  section  show  that  each  non-degenerate  quadric  surface  is a rational  surface,  since  

each  can  be given  as a Transformation  Function  applied  to one  of the  standard  types  and  we  know  

each  standard  type  is rational.   It is actually  easier  to work  from  our  paraboloid  and  saddle  surface  as 

they  have  obvious  parameterizations:

In[  ]:= Clear [x, y, z, s, t]
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In[  ]:= paraboloid := 
2 t

1 + t^2
s,

1 - t^2

1 + t^2
s, s^2

In[  ]:= saddleSurface := {s, t, s t}

In[  ]:= (z - x y) /. Thread [{x, y, z} → saddleSurface ]

Out[  ]= 0

In particular  we  get  the  parameterizations

In[  ]:= sphere = Simplify [fltMD [paraboloid , paraboloid2sphere ]];

In[  ]:= sphere = 
-1 + s2

1 + s2
,

4 s t

1 + s2 × 1 + t2
, -

2 s -1 + t2
1 + s2 × 1 + t2

;

In[  ]:= hyperboloid = Simplify [fltMD [saddleSurface , ss2stdHyperboloid ]];

In[  ]:= hyperboloid = 
1 + s t

-1 + s t
,

s - t

-1 + s t
,

s + t

-1 + s t
;

2.8 Transitivity  of symmetries  of non-singular  quadric  surfaces.

Perhaps  you  have  noticed  that  if one  point  on  a non-singular  quadric  surface  , ellipsoid  or hyperboloid,  

lies  on  no  lines  in the  conic  then  this  is true  for  all  points.   Also  with  hyperboloids  if one  point  on  a 

hyperboloid  lies  on  two  lines  then  all  points  share  this  property.   This  is because  projective  linear  

transformations,  in particular  FLT’s,   are  transitive  on these  surfaces,  that  is given  two  points  on  the  

surface  there  is at least  one  such  transformation  taking  the  first  point  to the  second.

For  ellipsoids  this  is now  obvious,  since  the  standard  example  is the  unit  sphere  about  the  origin  and  

any  point  on  the  sphere  can  be rotated  to any  other  point  with  a FLT  rotation,  in fact  a linear  one.   This  

is not  so obvious  for  the  hyperboloid.

But  note   that  for  the  the  random  hyperboloid  in 2.3.6  the  random  point  is mapped  by our  transforma -

tion  to the  point  {1,0,0}  in the  standard  hyperboloid.

In[  ]:= fltMD [p2362, ss2stdHyperboloid .A2362 ]

Out[  ]= {1., -0.530437 × (0.219697 × (-15.2929 + 1. b) - 0.245577 × (-10.5376 + 1. b) -

0.0846706 × (-0.0813494 + 1. b) + 0.110551 × (6.921 + 1. b)),

-0.530437 × (-0.110551 × (-4.10603 + 1. b) + 0.0846706 × (-2.35658 + 1. b) +

0.245577 × (10.2585 + 1. b) - 0.219697 × (12.6249 + 1. b))}

So following  this  method  we  expect  that  any  given  point  p on  any  hyperboloid  we  can  find  a FLT  taking  

that  hyperboloid  to the  standard  one  with  p going  to {1,0,0}.    Thus  if  p,  q  are  points  on  a given  hyper -

boloid  there  are  FLT  transformation  F1,  F2 taking  p,  q to {1,0,0}.   But  then  F2-1.F1 takes  p to q.

As with  ellipsoids  it is enough  to illustrate  on  the  standard  hyperboloid.   The  rational  transformation  
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In[  ]:= hyperboloid

Out[  ]= 
1 + s t

-1 + s t
,

s - t

-1 + s t
,

s + t

-1 + s t


gives  a pseudo-random  rational  point  on  the  standard  hyperboloid  chosen  for  a nice  plot  below

In[  ]:= psh = hyperboloid /. {s → 3, t → 33 / 50}

Out[  ]= 
149

49
,
117

49
,
183

49


In[  ]:= psh = N
149

49
,
117

49
,
183

49


Out[  ]= {3.04082, 2.38776, 3.73469 }

We  use  the  method  of 2.3.6.2  to find  a FLT  symmetry  of this  standard  hyperboloid  which  takes  psh to 

{1,0,0}.

In[  ]:= B2362 = {{0.13816845787030158` , 0.12331372237686955` ,

-0.8029079916135967` , 0.2281668087676449` }, {-0.49454148501616907` ,

-0.43338569397869237` , 0.42355638183243205` , 0.9567752977057387` },

{-0.466647613790002` , 0.6693815164894659` , -0.03563958055734917` ,

-0.046226525154333176` }, {-0.8416212606866844` ,

-0.6460513586376766` , 0.40045790433223194` , 0.5503795350045073` }};

B2362 // MatrixForm

Out[  ]//MatrixForm=

0.138168 0.123314 -0.802908 0.228167

-0.494541 -0.433386 0.423556 0.956775

-0.466648 0.669382 -0.0356396 -0.0462265

-0.841621 -0.646051 0.400458 0.55038

Check

In[  ]:= h1 = FLTNS [x^2 + y^2 - z^2 - 1, B2362, {x, y, z}];

h1 = Expand [h1 / Coefficient [h1, x^2]]

Out[  ]= -1. + 1. x2 + 1. y2 - 1. z2

In[  ]:= fltMD [psh, B2362 ]

Out[  ]= 1., -4.32023 × 10-16, 1.75509 × 10-16 

This  works!   The  reader,  however,  should  be beware  that  numerical  issues  can  arise  if these  points  are  

two  close  together  so I am  not  attempting  a black  box  algorithm  to find  all  such  transformations  .  The  

transitivity  property  should  be considered  theoretical  rather  than  algorithmic  . 

Thus  B2362  is a projective  symmetry  of the  standard  hyperbola

In[  ]:= h = x^2 + y^2 - z^2 - 1;
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 because  the  last  row  is not  {0,0,0,1},   with  inverse

In[  ]:= A2362 = Inverse [B2362 ];

A2362 // MatrixForm

Out[  ]//MatrixForm=

-0.20858 0.746563 -0.704454 -1.27052

-0.186155 0.654242 1.0105 -0.975283

-1.21207 0.639403 0.0538017 -0.604534

0.344442 1.44435 0.0697838 -0.830856

This  takes  {1,  0, 0} to

In[  ]:= psh = fltMD [{1, 0, 0}, A2362 ]

Out[  ]= {3.04082, 2.38776, 3.73469 }

It is interesting  to see  how  this  transformation  really  works.   It is easier  to look  at the  transform  of  

curve  on  the  surface  rather  than  just  points.   So  consider  the  parametric   circle  where  h intersects  the  

z = 0  plane

In[  ]:= circ = 
2 t

1 + t2
,
1 - t2

1 + t2
, 0;

We  might  expect  the  image  to be the  horizontal  circle  through  psh.

In[  ]:= circA = Simplify [fltMD [circ, A2362 ]]

Out[  ]= 
0.230288 + 0.18335 t + 0.886546 t2

-0.269644 - 0.302778 t + 1. t2
,

0.141104 + 0.163638 t + 0.716208 t2

-0.269644 - 0.302778 t + 1. t2
,
0.0153259 - 1.06546 t - 0.546735 t2

0.269644 + 0.302778 t - 1. t2

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In[  ]:= Show [ContourPlot3D [h ⩵ 0, {x, -5, 5}, {y, -6, 6}, {z, -6, 6}, Mesh → None ],

ParametricPlot3D [{circ, circA }, {t, -10, 10}, PlotStyle → {Blue, Green }],

Graphics3D [{Red, Ball [psh, .2], Ball [{1, 0, 0}, .2]}]]

Out[  ]=

Instead  we  get  a vertical  plane  hyperbola  through  the  point  psh.

Being  used  to rigid  motions  of the  quadric  surfaces  it is hard  to picture  a motion  that  does  this.   So  we  

should  not  think  of projective  transformations  as motions.

2.9  Affine  and Projective  Symmetries  of Quadric  Surfaces

The  example  above  shows  that  our  main  theorem  implies  that  the  symmetry  group  of a quadric  surface  

is isomorphic  to the  symmetry  group  of our  standard  example  even  though  they  have  distinct  

Euclidean  symmetries.   

There  are  several  ways  to find  symmetries,  one,  like  above  is to construct,  using  the  constructions  

above  but  with  two  different  points  two  different  projective  linear  equivalences   A1,  A2  from  quadric  Q1 

to quadric  Q2.  Then   A1.Inverse[A2]  is a symmetry  of Q1.

On the  other  hand  if matrix  S gives  a symmetry  on  one  of our  standard  quadrics  in our  chart  

and A : S⟶Q  is a projective  equivalence  then  S1 = A.S.Inverse[A]  is a symmetry  on  Q. So once  we  

know  the  symmetry  groups  of the  standard  quadrics  we  know  the  symmetry  groups  of all  quadric  

surfaces.

Finally,  starting  from  known  isometries,  that  is linear  symmetries  of our  standard  quadrics  and  perhaps  

examples  as constructed  above,  we  can  deduce  certain  symmetries  of the  standard  quadrics  which  

generate  the  symmetry  groups.
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2.9.1  Ellipsoids,  Cones  and Cylinders

A simple  example  is an ellipsoid  with  the  coordinate  axes  as axes  so the  transform  to the  sphere  is just  a 

homothety.

In[  ]:= ell = x^2 + 4 y^2 + 4 z^2 - 16;

ell2sphere = {{1, 0, 0, 0}, {0, 2, 0, 0}, {0, 0, 2, 0}, {0, 0, 0, 4}};

In[  ]:= FLTNS [ell, ell2sphere , {x, y, z}]

Out[  ]= -1 + x2 + y2 + z2

An obvious  circle  on  the  ellipsoid  is the  vertical  circle  is given  parametrically  by

In[  ]:= ecirc = 0,
4 t

1 + t2
,
2 × 1 - t2
1 + t2

;

Let  

In[  ]:= R45 = {{0.7071067811865475` , -0.7071067811865475` , 0.`, 0},

{0.7071067811865475` , 0.7071067811865475` , 0.`, 0}, {0.`, 0.`, 1.`, 0}, {0, 0, 0, 1}}

Out[  ]= {{0.707107 , -0.707107 , 0., 0}, {0.707107 , 0.707107 , 0., 0}, {0., 0., 1., 0}, {0, 0, 0, 1}}

be a 45o  rotation  about  the  z-axis  which  is a Euclidean  symmetry  of the  sphere.

Then  

In[  ]:= R45ell = Inverse [ell2sphere ].R45.ell2sphere ;

R45ell // MatrixForm

Out[  ]//MatrixForm=

0.707107 -1.41421 0. 0.

0.353553 0.707107 0. 0.

0. 0. 1. 0.

0. 0. 0. 1.

Note  

In[  ]:= Det[R45ell ]

Out[  ]= 1.

so this  is a "rotation"  .

If the  reader  has  not  already  figured  it out,  the  symmetries  of a surface  are  given  by exactly  those  

invertible   4*4  matrices  which  fix  FLTNS  on  the  surface  .  Points  on  the  surface  remain  on  the  surface,  

but  are  not  pointwise  fixed  .  Invertibility  insures  this  transformation  is 1 - 1 and  onto  this  surface  .

In[  ]:= FLTNS [ell, R45ell, {x, y, z}]

Out[  ]= -16. + 1. x2 + 4. y2 + 4. z2

But  the  action  of R45ell  on  the  circle  is
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In[  ]:= circr45 = Chop [fltMD [ecirc, R45ell ]]

Out[  ]= -
5.65685 t

1 + t2
,
2.82843 t

1 + t2
,
2. × 1 - t2

1 + t2


In[  ]:= Show [ContourPlot3D [ell ⩵ 0, {x, -4, 4}, {y, -4, 4}, {z, -4, 4}, Mesh → None ],

ParametricPlot3D [{ecirc, circr45 }, {t, -10, 10}, PlotStyle → {Blue, Green }],

Axes → None, Boxed → False, ImageSize → Small ]

Out[  ]=

This  symmetry  is not  just  moving  the  circle,  but  the  entire  ellipsoid.   From  a Euclidean  point  of view  this  

ellipsoid  would  only  have  45o rotations,  and  other  arbitrary  rotations,  about  the  major  axis.   We  would  

have  180 o rotations  and  reflections  about  the  minor  axes  but  no  others.  But  here  we  have  an affine  

rotation  of arbitrary  angle  about  any  line  through  the  origin.

We  note  that  we  don’t  really  need  our  big  theorem.   The  transform  to the  circle  is just  a homothety.

Generalizing   from  this  discussion  we  see  that  the  symmetry  group  of any  ellipsoid  is the  orthogonal  

group    (4).

In the  case  of a cone  consider  the  symmetry

In[  ]:= ssCone = {{1.7320508075688772` , 0.`, 1.4142135623730951` , 0.`},

{2.`, 1.7320508075688772` , 2.449489742783178` , 0.`},

{2.449489742783178` , 1.4142135623730951` , 3.`, 0.`}, {0.`, 0.`, 0.`, 1.`}}

Out[  ]= {{1.73205, 0., 1.41421, 0.}, {2., 1.73205, 2.44949, 0.},

{2.44949, 1.41421, 3., 0.}, {0., 0., 0., 1.}}

In[  ]:= ssCone // MatrixForm

Out[  ]//MatrixForm=

1.73205 0. 1.41421 0.

2. 1.73205 2.44949 0.

2.44949 1.41421 3. 0.

0. 0. 0. 1.

In[  ]:= FLTNS [x^2 + y^2 - z^2, ssCone, {x, y, z}]

Out[  ]= 1. x2 + 1. y2 - 1. z2

Note  that  this  is actually  a linear  transformation  .
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In[  ]:= circ1 = 
2 t

1 + t2
,
1 - t2

1 + t2
, 1;

circ1ss = fltMD [circ1, ssCone ]

Out[  ]= 1.41421 +
3.4641 t

1 + t2
, 2.44949 +

4. t

1 + t2
+
1.73205 × 1 - t2

1 + t2
, 3. +

4.89898 t

1 + t2
+
1.41421 × 1 - t2

1 + t2


In[  ]:= Show [ContourPlot3D [x^2 + y^2 ⩵ z^2, {x, -6, 6}, {y, -6, 6}, {z, -3, 6}, Mesh → None ],

ParametricPlot3D [{circ1, circ1ss }, {t, -20, 20}, PlotStyle → {Green, Magenta }],

ImageSize → Small, Axes → False, Boxed → False ]

Out[  ]=

In the  case  of a cone  consider  the  symmetry  of the  cylinder  x2 + y2 - z2 moving  ssCone  to the  cylinder  

by CC3.

In[  ]:= sscyl = CC3.ssCone.Inverse [CC3]

Out[  ]= {{1.73205, 0., 0., 1.41421 }, {2., 1.73205, 0., 2.44949 },

{0., 0., 1., 0.}, {2.44949, 1.41421, 0., 3.}}

In[  ]:= sscyl // MatrixForm

Out[  ]//MatrixForm=

1.73205 0. 0. 1.41421

2. 1.73205 0. 2.44949

0. 0. 1. 0.

2.44949 1.41421 0. 3.

In[  ]:= FLTNS [x^2 + y^2 - 1, sscyl, {x, y, z}]

Out[  ]= -1. + 1. x2 + 1. y2

Note  that  unlike  the  cone,  this  is a projective  transformation  .

We  can  still  use  circ1  as it is also  on  the  cone

In[  ]:= cyl1ss = Simplify [fltMD [circ1, sscyl ]]

Out[  ]= 
0.891806 + 2.18447 t + 0.891806 t2

2.78361 + 3.08931 t + 1. t2
,

2.63689 + 2.52241 t + 0.452418 t2

2.78361 + 3.08931 t + 1. t2
,

0.630602 + 0.630602 t2

2.78361 + 3.08931 t + 1. t2

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In[  ]:= Show [ContourPlot3D [x^2 + y^2 ⩵ 1, {x, -3, 3},

{y, -3, 3}, {z, -3, 7}, Mesh → None, ContourStyle → Opacity [.5]],

ParametricPlot3D [{circ1, cyl1ss }, {t, -20, 20}, PlotStyle → {Green, Magenta }],

ImageSize → Small, Axes → False, Boxed → False ]

Out[  ]=

2.9.2  The group  of symmetries  of the Hyperbola

Given  the  huge  amount  of material  online  about  hyperboloids  as of this  writing  I have  been  unable  to 

find  a source  giving  symmetries  of the  real  hyperboloid.   It may  be that  this  is too  complicated  and  

possibly  not  completely  known.   I don’t  know  the  full  story  but  given  the  above  analysis  I can  say  some  

things.   

We  start  with  the  easily  described  Euclidean  geometry  .  The  equation  of the  standard  hyperboloid  is 

In[  ]:= h = x^2 + y^2 - z^2 - 1;

The  obvious  symmetries  of the  standard  hyperbola  are  rotations  about  the  z-axis  as well  as reflections  

through  planes  containing  the  z-axis.   In fact  these  are  all  isometries  of the  circle  extended  to 3 space.   

There  is also  a horizontal  reflection  in the  xy-plane.   Finally  from  the  symmetry  A2362  found  in section  

2.3.6  as well  as looking  at symmetries  of the  saddle  surface  we  find  a simpler  example  of a rotation  of 

order  2 of the  projective  hyperboloid  I will  call  the  half  turn.   For  the  reader’s  reference  here,  and  in 

Global  Functions,  is a summary.   Note  we  give  two  versions  of the  rotations  about  the  z-axis.  For  more  

information  on  the  rotations  and  reflections  see  the  Mathematica  documentation.   All  of  these  give  

orthogonal  4×4 matrices,  but  note  that  since  these  will  be  used  in TransformationFunctions  they  will  

not  all  give  geometrically  orthogonal  transformations.

In[  ]:= thetaR3D := N[m2TM [RotationMatrix [#, {0, 0, 1}]]] &

pRot3D [p_, q_] :=

If[p〚3〛 ⩵ 0 && q〚3〛 ⩵ 0, N[m2TM [RotationMatrix [{p, q}]]], Echo ["invalid points"];

Abort []]

vReflect3D := N[m2TM [ReflectionMatrix [#]]] &

hReflect3D := {{1, 0, 0, 0}, {0, 1, 0, 0}, {0, 0, -1, 0}, {0, 0, 0, 1}};

halfTurn := {{0, 0, 0, -1}, {0, 0, 1, 0}, {0, 1, 0, 0}, {-1, 0, 0, 0}}

Note  all  of  these  are  symmetries  of the  standard  hyperbola,  the  first  4 are  obvious  and  the  last  is veri -

fied  by
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In[  ]:= FLTNS [h, halfTurn , {x, y, z}]

Out[  ]= 1 - x2 - y2 + z2

which  sends  equation  h to - h.

2.9.3   The Group  ℍ (4)

Looking  at combinations  of the  above  and  their  inverses   we  are  lead  to the  following  subgroup  of the  

real  orthogonal  group   (4)  consisting  of block  matrices

In[  ]:= {{{B1, 0}, {0, B2}} // MatrixForm , {{0, B1}, {B2, 0}} // MatrixForm }

Out[  ]=  B1 0

0 B2
,

0 B1

B2 0


where  B1, B2  are  2×2 orthogonal  matrices.   I call  the  set  of all  these  matrices  ℍ (4)  and  we  will  see  that  

these  form  a subgroup  and  are  all  symmetries  of the  hyperboloid.

A good  way  of seeing  what  these  symmetries  do  is to look  at their  action  on  the  unit  circle  in the  xy 

plane  which  lies  on  the  hyperboloid.

circ = 
2 t

1 + t2
,
1 - t2

1 + t2
, 0;

Out[  ]= 
2 t

1 + t2
,
1 - t2

1 + t2
, 0

The  functions,  here  and  in GlobalFunctions,  

In[  ]:= RHl3D := Module [{rr, R},

rr = RandomReal [{-1, 1}, 8];

Orthogonalize [SparseArray [{{1, 1} → rr〚1〛, {1, 2} → rr〚2〛, {2, 1} → rr〚3〛,
{2, 2} → rr〚4〛, {3, 3} → rr〚5〛, {3, 4} → rr〚6〛, {4, 3} → rr〚7〛, {4, 4} → rr〚8〛}]]]

RHr3D := Module [{rr, R},

rr = RandomReal [{-1, 1}, 8];

Orthogonalize [SparseArray [{{1, 3} → rr〚1〛, {1, 4} → rr〚2〛, {2, 3} → rr〚3〛,
{2, 4} → rr〚4〛, {3, 1} → rr〚5〛, {3, 2} → rr〚6〛, {4, 1} → rr〚7〛, {4, 2} → rr〚8〛}]]]

give  random  examples  .  Note  they  will  differ  each  time  they  run,  for  example  the  following  are  different
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In[  ]:= MatrixPower [RHl3D, 2] // MatrixForm

RHl3D.RHl3D // MatrixForm

Out[  ]//MatrixForm=

1. 0. 0. 0.

0. 1. 0. 0.

0. 0. 0.119376 -0.992849

0. 0. 0.992849 0.119376

Out[  ]//MatrixForm=

-0.980313 0.197449 0. 0.

-0.197449 -0.980313 0. 0.

0. 0. -0.711246 0.702943

0. 0. 0.702943 0.711246

So two  random  examples  are  (non  evaluative)

In[  ]:= L1 =

0.2951434768979358` 0.9554529439195828` 0.` 0.`

0.9554529439195829` -0.29514347689793585` 0.` 0.`

0.` 0.` 0.20263181172652914` 0.979254996860585`

0.` 0.` -0.979254996860585` 0.20263181172652914`

Out[  ]= {{0.295143 , 0.955453 , 0., 0.}, {0.955453 , -0.295143 , 0., 0.},

{0., 0., 0.202632 , 0.979255 }, {0., 0., -0.979255 , 0.202632 }}

In[  ]:= R1 =

0.` 0.` 0.7698936188976082` 0.6381722460125828`

0.` 0.` 0.6381722460125827` -0.7698936188976082`

0.007857413066204117` 0.9999691300534768` 0.` 0.`

0.9999691300534768` -0.007857413066204117` 0.` 0.`

Out[  ]= {{0., 0., 0.769894 , 0.638172 }, {0., 0., 0.638172 , -0.769894 },

{0.00785741 , 0.999969 , 0., 0.}, {0.999969 , -0.00785741 , 0., 0.}}

Note

In[  ]:= FLTNS [h, L1, {x, y, z}]

FLTNS [h, R1, {x, y, z}]

Out[  ]= -1. + 1. x2 + 1. y2 - 1. z2

Out[  ]= 1. - 1. x2 - 1. y2 + 1. z2

In[  ]:= circL = Simplify [fltMD [circ, L1]]

circR = Simplify [fltMD [circ, R1]]

Out[  ]= 
4.71522 + 2.9131 t - 4.71522 t2

1. + t2
,

-1.45655 + 9.43043 t + 1.45655 t2

1. + t2
, 4.83268 

Out[  ]= 
81.2191 + 81.2191 t2

-1. + 254.529 t + 1. t2
,
97.9831 + 97.9831 t2

1. - 254.529 t - 1. t2
,
127.264 + 2. t - 127.264 t2

-1. + 254.529 t + 1. t2

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In[  ]:= Show [ContourPlot3D [h ⩵ 0, {x, -6, 6}, {y, -6, 6}, {z, -6, 6}, Mesh → None ],

ParametricPlot3D [{circ, circL, circR },

{t, -15, 15}, PlotStyle → {Green, Blue, Magenta }],

ImageSize → Small, Axes → False, Boxed → False, ImageSize → Medium ]

Out[  ]=

So the  le�  type  send  the  base  circle  to another  horizontal  circle  while  the  right  type  sends  it to a verti -

cal  hyperbola.   

We  note  that  ℍ (4)  is large  enough  to already  be transitive  on  points.   For  example  consider  our  

pseudo  random  point

In[  ]:= psh = {3.0408163265306136` , 2.387755102040818` , 3.734693877551021` }

Out[  ]= {3.04082, 2.38776, 3.73469 }

Using  circR  above

In[  ]:= Solve [circR〚3〛 ⩵ psh〚3〛, t]

Solve : Solve was unable to solve the system with inexact coefficients . The answer was obtained by solving a

corresponding exact system and numericizing the result .

Out[  ]= {{t → -7.37673 }, {t → 0.135561 }}

we have

In[  ]:= q0 = circ /. {t → 0.13556133358205716` }

Out[  ]= {0.26623, 0.963909 , 0}

In[  ]:= R3 = pRot3D [{1, 0, 0}, q0]

Out[  ]= {{0.26623, -0.963909 , 0., 0.},

{0.963909 , 0.26623, 0., 0.}, {0., 0., 1., 0.}, {0., 0., 0., 1.}}

In[  ]:= q1 = fltMD [{1, 0, 0}, R1.R3]

Out[  ]= {2.46734, -2.97661, 3.73469 }
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In[  ]:= B1 = pRot3D [ReplacePart [q1, 3 → 0], ReplacePart [psh, 3 → 0]]

Out[  ]= {{0.026446 , -0.99965, 0., 0.},

{0.99965, 0.026446 , 0., 0.}, {0., 0., 1., 0.}, {0., 0., 0., 1.}}

In[  ]:= fltMD [q1, B1]

Out[  ]= {3.04082, 2.38776, 3.73469 }

So if

In[  ]:= B2 = B1.R1.R3;

B2 // MatrixForm

Out[  ]//MatrixForm=

0. 0. -0.617588 0.786501

0. 0. 0.786501 0.617588

0.965972 0.258648 0. 0.

0.258648 -0.965972 0. 0.

In[  ]:= fltMD [{1, 0, 0}, B2]

Out[  ]= {3.04082, 2.38776, 3.73469 }

which  shows  a member  of ℍ (4)  sending  {1,0,0}  to our  pseudo-random  point   psh.

2.9.4   Another  set of Symmetries  of the Hyperboloid.

More  experimentation  with  the  constructions  in 2.3.10  show  there  are  additional  symmetries  of the  

hyperboloid,  somewhat  like  our  symmetries  of the  non-spherical  ellipsoid.   Here  is a continuous  1 

parameter  family   sshyp[u]  of strange  linear  symmetries  for  u ≥ 1.

of  linear  symmetries.  Here  we  assume  u is real,  u  ≥  1.

In[  ]:= sshyp3D [u_] :=  u , 0, -1 + u , 0,
-1 + u, u , -1 + u u , 0,  -1 + u u , -1 + u , u, 0, {0, 0, 0, 1}

In[  ]:= sshyp3D [u] // MatrixForm

Out[  ]//MatrixForm=

u 0 -1 + u 0

-1 + u u -1 + u u 0

-1 + u u -1 + u u 0

0 0 0 1

Note

In[  ]:= Det[sshyp3D [u]]

Out[  ]= 1

In[  ]:= FLTNS [h, sshyp3D [u], {x, y, z}]

Out[  ]= -1 + x2 + y2 - z2

So these  are  all  symmetries  of the  hyperbola  with  determinant  1 but  not  in ℍ (4).   Note  sshyp[1] is just  
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the  identity  symmetry.  Here  is an example  for  u = 3.

In[  ]:= sshyp3D [3] // MatrixForm

Out[  ]//MatrixForm=

3 0 2 0

2 3 6 0

6 2 3 0

0 0 0 1

In[  ]:= circss3 = Simplify [fltMD [circ, sshyp3D [3]]]

Out[  ]= 
2 3 t

1 + t2
,

3 + 4 t - 3 t2

1 + t2
,

2 1 + 2 3 t - t2

1 + t2


In[  ]:= Show [ContourPlot3D [h ⩵ 0, {x, -4, 4}, {y, -4, 4}, {z, -4, 4}, Mesh → None ],

ParametricPlot3D [{circ, circss3 }, {t, -20, 20}, PlotStyle → {Green, Magenta }],

ImageSize → Small, Axes → False, Boxed → False ]

Out[  ]=

Alternatively  we  may  show  the  action  of the  transformation  of the  hyperboloid  by drawing  several  

curves.   I will  suppress  the  code  but  the  transformation  sshyp3D[3]  takes  the   curves  in the  le�  plot  to 

those  in the  right,  pushing  one  side  of the  hyperboloid  up  and  the  other  down.

 , 
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Note  the  plane  containing  the  conic  circss3  is 

In[  ]:= FLTNS [z, sshyp [3], {x, y, z}]

Out[  ]= - 2 x - 6 y + 3 z

which  passes  through  the  origin  which  must  happen  since  we  have  a linear  transformation.   To  move  

this  away  from  the  origin  we  can  compose  this  transformation  with  a le�  type  transformation  from  ℍ 

(4).   Here  are  several  examples

In[  ]:= ru = Sort [RandomReal [{1, 12}, 3]]

Out[  ]= {4.84493, 7.78546, 10.3032 }

In[  ]:= randho4 = Table [RHl3D, {3}];

Table [randho4 〚i〛 // MatrixForm , {i, 3}]

Out[  ]= 
0.960738 -0.277458 0. 0.

0.277458 0.960738 0. 0.

0. 0. 0.990014 -0.140968

0. 0. 0.140968 0.990014

,

-0.967219 0.253942 0. 0.

0.253942 0.967219 0. 0.

0. 0. 0.874658 -0.484741

0. 0. -0.484741 -0.874658

,

0.500231 -0.865892 0. 0.

-0.865892 -0.500231 0. 0.

0. 0. 0.179668 -0.983727

0. 0. 0.983727 0.179668



In[  ]:= Table [randho4 〚i〛.sshyp [ru〚i〛] // MatrixForm , {i, 3}]

Out[  ]= 
1.04789 -0.61072 0.686333 0.

4.30469 2.1147 4.69066 0.

4.27297 1.94127 4.79655 -0.140968

0.608429 0.276418 0.682983 0.990014

,

-0.975666 0.70856 -0.673781 0.

7.27159 2.69878 7.69152 0.

6.35726 2.27839 6.80962 -0.484741

-3.52324 -1.2627 -3.77393 -0.874658

,

-6.44992 -2.7794 -6.95173 0.

-7.43317 -1.60568 -7.53858 0.

1.75903 0.548008 1.85116 -0.983727

9.63116 3.00049 10.1356 0.179668


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In[  ]:= parss = Table [Together [Simplify [fltMD [circ, randho4 〚i〛.sshyp [ru〚i〛]]]], {i, 3}]

Out[  ]= 
0.855834 × -1. + 3.43166 t + 1. t2

1.77472 + 1.70525 t + 1. t2
,

-
2.96344 × -1. - 4.07121 t + 1. t2

1.77472 + 1.70525 t + 1. t2
, -

2.91795 × -0.864599 - 4.10421 t + 1. t2
1.77472 + 1.70525 t + 1. t2

,

-
1.826 × -1. + 2.75394 t + 1. t2
-5.50808 - 18.1591 t + 1. t2

, -
6.95489 × -1. - 5.3888 t + 1. t2

-5.50808 - 18.1591 t + 1. t2
,

-
7.12073 × -0.649136 - 4.60149 t + 1. t2

-5.50808 - 18.1591 t + 1. t2
, -

0.985315 × -1. - 4.64124 t + 1. t2
-1.12739 - 6.82863 t + 1. t2

,

-
0.569223 × -1. - 9.25862 t + 1. t2

-1.12739 - 6.82863 t + 1. t2
,
0.543011 × 0.284461 - 2.29678 t + 1. t2

-1.12739 - 6.82863 t + 1. t2


In[  ]:= Table [Show [Show [ContourPlot3D [h ⩵ 0, {x, -5, 5}, {y, -5, 5}, {z, -5, 5}, Mesh → None ],

ParametricPlot3D [parss〚i〛, {t, -30, 30}, PlotStyle → Blue ],

Axes → False, Boxed → False, ImageSize → Small ]], {i, 3}]

Out[  ]=  , , 

Here  is another  example

S4 = RHl3D.sshyp [7.3].RHr3D

In[  ]:= S4 = {{5.765471472798233` , -0.2088666170455097` , 2.9114996070358705` ,

5.080103995549325` }, {4.356696328800707` , -0.15783070438982646` ,

3.2175957450713106` , 3.10689411694907` }, {-4.769383016337672` ,

0.9267231581213656` , -2.776345846324982` , -3.8597582709183604` },

{5.52036682191551` , 0.4579519441664014` , 3.181455025937826` , 4.422953057585654` }}

Out[  ]= {{5.76547, -0.208867 , 2.9115, 5.0801 }, {4.3567, -0.157831 , 3.2176, 3.10689 },

{-4.76938, 0.926723 , -2.77635, -3.85976 }, {5.52037, 0.457952 , 3.18146, 4.42295 }}

In[  ]:= circS4 = Together [FullSimplify [fltMD [circ, S4]]]

Out[  ]= 
1.33391 × 0.921018 + 2.18019 t + 1. t2

1.231 + 2.78455 t + 1. t2
,

0.823386 × 0.903311 + 2.66895 t + 1. t2
1.231 + 2.78455 t + 1. t2

, -
1.20718 × 0.612775 + 1.99286 t + 1. t2

1.231 + 2.78455 t + 1. t2

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In[  ]:= Show [Show [ContourPlot3D [h ⩵ 0, {x, -5, 5}, {y, -5, 5}, {z, -5, 5}, Mesh → None ],

ParametricPlot3D [circA, {t, -30, 30}, PlotStyle → Blue ],

Axes → False, Boxed → False, ImageSize → Small ]]

Out[  ]=

I conjecture  that  all  projective  symmetries  of the  standard  hyperboloid  can  be obtained  this  way  but  don’t  

have  a good  argument  at this  time.

As mentioned  above  the   symmetries  of the  standard  hyperboloid  generate  symmetries  of all  hyper -

boloids.  Recall  that

In[  ]:= sss2h = ss2stdHyperboloid

Out[  ]= 0, 0,
1

2
,
1

2
, 

1

2
, -

1

2
, 0, 0, 

1

2
,
1

2
, 0, 0, 0, 0,

1

2
, -

1

2


is linear  projective  equivalence  from  the  saddle  surface  to the  standard  hyperboloid.   Thus

In[  ]:= sr3 = N[Inverse [ss2h ].sshyp3D [3].ss2h ];

sr3 // MatrixForm

Out[  ]//MatrixForm=

4.29788 1.15161 2.22474 2.22474

0.116337 0.434174 0.224745 0.224745

0.707107 0.707107 1.36603 0.366025

0.707107 0.707107 0.366025 1.36603

is a symmetry  of the  saddle  surface  :

In[  ]:= FLTNS [z - x y, sr3, {x, y, z}]

Out[  ]= -1. x y + 1. z

Of course,  here  we  have  a projective   symmetry  rather  than  a linear  symmetry.   Some  of the  numbers  

may  look  familiar,  this  can  be expressed  exactly  using  2 , 3 , and  6 .

Consider  the  curve  on  z - x y   given  by 

f = {t, -t, -t^2}

In[  ]:= sr3f = Simplify [f, sr3]

Out[  ]= 
-5.03965 - 0.269488 t + 0.585511 t2

10.0677 - 6.34591 t + 1. t2
,

5.03965 + 0.269488 t - 0.585511 t2

10.0677 - 6.34591 t + 1. t2
,

-2.52274 - 1.85995 t - 0.342823 t2

10.0677 - 6.34591 t + 1. t2

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So the  symmetry  sends  the  red  parabola  to the  blue  hyperbola  below!

Show [ContourPlot3D [{ss ⩵ 0}, {x, -10, 10},

{y, -10, 10}, {z, -10, 10}, ContourStyle → Opacity [.7], Mesh → None ],

ParametricPlot3D [{g, Sr3f}, {t, -30, 30}, PlotStyle → {Red, Blue}],

Axes → False, Boxed → False, ImageSize → Full ]

Out[  ]=
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3. Cubic Surfaces

3.1 A rational Surface
Joe  Harris,   in his  book  [Algebraic  Geometry,  A First  Course],   claims  on  p. 157  that  a complex  cubic  

surface  containing  a rational  normal  curve,  eg. a curve  equivalent  to the  twisted  cubic  must  be  rational.   

Based  on  material  I have   so far  developed  I cannot  give  a proof  in the  real  case.  But  here  is an example  

of a rational  cubic  surface  containing  the  twisted  cubic  curve.   This  surface  is,  unsurprisingly,  singular.  

We  will  see  that  this  real  parameterized  surface  does  not  fill  up  the  implicit  surface  containing  it.   But  I 

will  calculate  the  singular  set  both  in the  surface  and  parameter  space.   In the  parameter  space  this  is 

an algebraic  set,  but  in the  parameterized  surface  only  a semi-algebraic  set.

In[  ]:= F = {s + t, s^2 - 2 t, s^3 - 3 t s + t}

Out[  ]= s + t, s2 - 2 t, s3 + t - 3 s t

The  curve

In[  ]:= nrat = F /. {t → 0}

Out[  ]= s, s2, s3

will  be  in this  surface.

In[  ]:= f1 = pol2affNS [F, 3, 3, {s, t}, {x, y, z}]〚1〛
» Number of equations 1

Out[  ]= 0. - 2. x2 + 1.33333 x3 + 2. y - 5.33333 x y - 2. x2 y -

3.33333 y2 + 0.666667 y3 + 4. z + 5.33333 x z - 0.666667 z2

In[  ]:= f = roundPolyMD [3 f1, {x, y, z}, 1]

Out[  ]= -6 x2 + 4 x3 + 6 y - 16 x y - 6 x2 y - 10 y2 + 2 y3 + 12 z + 16 x z - 2 z2

In[  ]:= Expand [f /. Thread [{x, y, z} → F]]

Out[  ]= 0

So we  see  that  f = 0 is a rational  cubic  surface  containing  a normal  rational  curve.   Looking  for  non-

regular  points

In[  ]:= grd = Grad [f, {x, y, z}]

Out[  ]= -12 x + 12 x2 - 16 y - 12 x y + 16 z, 6 - 16 x - 6 x2 - 20 y + 6 y2, 12 + 16 x - 4 z
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In[  ]:= sol = Solve [f ⩵ 0 && grd ⩵ 0, {x, y, z}]

Solve : Equations may not give solutions for all "solve " variables .

Out[  ]= {y → 3 + x, z → 3 + 4 x}, x → -
4

3
, y →

5

3
, z → -

7

3


The  first  solution  to this  is a singular  line  in f = 0, which  is easily  seen  to be parametric  .

In[  ]:= pln = {t, 3 + t, 3 + 4 t}

Out[  ]= {t, 3 + t, 3 + 4 t}

Check

In[  ]:= Expand [f /. Thread [{x, y, z} → pln]]

Out[  ]= 0

Plotting  we  see  there  is a bit  of a problem  here  .

In[  ]:= Show [ContourPlot3D [f ⩵ 0, {x, -4, 4}, {y, -4, 6}, {z, -10, 10}, Mesh → None,

MaxRecursion → 5], ParametricPlot3D [F, {s, -5, 5}, {t, -5, 5}, PlotStyle → LightGray ],

ParametricPlot3D [pln, {t, -4, 4}, PlotStyle → Blue ]]

Out[  ]=

The  singular  line  is in f = 0, but  not  in the  image  of F.  So  here  is another  case  where  the  implicit  surface  

contains  the  parametric  surface  but  is larger.   We  might  think  of removing  this  line  as we  did  with  

blowups  in the  Space  Curve  Book,  3.3  but  that  will  not  work  here  because  it is not  a component.   

Note  the  point  {-3,  0, -9}  is on  this   line,  hence  in surface  f = 0.   But  consider  the  nearby  points
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In[  ]:= NSolveValues [{f, y, x + 3.001 }, {x, y, z}]

Out[  ]= {{-3.001, 0., -9.004 - 0.00223652 ⅈ}, {-3.001, 0., -9.004 + 0.00223652 ⅈ}}

So this  point  is close  to complex  points  of f = 0 so this  line  is not  isolated,  merely  a real  set  in a complex  

surface.   As  mentioned  in Section  1.1.2  the  non-regular  set  of this  implicit  surface  is an algebraic  set.

But  we  cannot  consider  points  such  as {-3,  0, -9}  as singular  points  of the  parametric  real  surface  

because  they  are  not  on  this  surface.   Fortunately  sol above  gave  us another  solution,  the  point  

In[  ]:= p = {-4 / 3, 5 / 3, -7 / 3}

Out[  ]= -
4

3
,
5

3
, -

7

3


We  check  that  this  is on  the  parametric  surface  F  and  also  on  the  parametric  line  pln

In[  ]:= Solve [F ⩵ p, {s, t}]

Out[  ]= s → -1, t → -
1

3


In[  ]:= F /. {s → -1, t → -1 / 3}

Out[  ]= -
4

3
,
5

3
, -

7

3


In[  ]:= pln /. {t → -4 / 3}

Out[  ]= -
4

3
,
5

3
, -

7

3


Plotting
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In[  ]:= Show [ContourPlot3D [f ⩵ 0, {x, -4, 4}, {y, -4, 6}, {z, -10, 10}, Mesh → None,

MaxRecursion → 5], ParametricPlot3D [pln, {t, -4 / 3, 4}, PlotStyle → Blue ],

Graphics3D [{Red, PointSize [.025 ], Point [{-4 / 3, 5 / 3, -7 / 3}]}],

ParametricPlot3D [{s, s^2, s^3}, {s, -3, 3}, PlotStyle → Green ]]

Out[  ]=

we see  that  the  singular  set  for  the  parametric  surface  F is the  subset  of pln with  t ≥ -4

3
.  In this  plot  we  

also  show  the  twisted  cubic  which  goes  near,  but  not  through  p.  Another  view  is 
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Thus  Abhyankar'  s statement  quoted  in 1.1.2  is not  true  for  parametric  surfaces,  the  regular  set  is only  a 

semi-algebraic  set.

Back  in the  parametric  space  we  note  if we  take  a point  on  the  line  pln with  t > -1 we  get  two  real  

solutions  to

In[  ]:= Solve [(pln /. {t → 2}) ⩵ F, {s, t}]

Out[  ]= s → -1 - 10 , t → 3 + 10 , s → -1 + 10 , t → 3 - 10 

But  if t < -1 then  we  get  two  imaginary  solutions.   

In[  ]:= Solve [(pln /. {t → -2}) ⩵ F, {s, t}]

Out[  ]= s → -1 - ⅈ 2 , t → -1 + ⅈ 2 , s → -1 + ⅈ 2 , t → -1 - ⅈ 2 

The  fact  that  exact  solutions  seem  to come  with  a square  root  suggest  that  perhaps  the  inverse  image  

of the  singular  part  of the  parametric  surface  F is a  plane  quadric.   So  using  the  method  above  using  

NSolveValue  we  obtain  the  following  5 points  in the  inverse  image

In[  ]:= plnInverseSet = {-4.162277660168382` , 6.162277660168382` },

-1, -
1

3
, {1, -1}, {1.6457513110645907` , -0.6457513110645907` },

{2.162277660168379` , -0.16227766016837908` }

Out[  ]= {-4.16228, 6.16228 }, -1, -
1

3
, {1, -1}, {1.64575, -0.645751 }, {2.16228, -0.162278 }

Checking  we  see  all  these  points  map  to the  singular  line

In[  ]:= F /. Thread [{s, t} → #] & /@ plnInverseSet

Out[  ]= {2., 5., 11.}, -
4

3
,
5

3
, -

7

3
, {0, 3, 3}, {1., 4., 7.}, {2., 5., 11.}

Applying  the  function  aCurve from  my  Plane  Curves  Book,  it is in the  GlobalFunctionsS.nb notebook,

In[  ]:= parb = Chop [aCurve2D [plnInverseSet , x, y]]

Out[  ]= 6.03157 + 2.01052 x - 2.01052 x2 + 6.03157 y

we get  a parabola  .
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In[  ]:= Show [ContourPlot [parb ⩵ 0, {x, -5, 5}, {y, -2, 7}, ImageSize → Small ],

Graphics [{Black, PointSize [.04], Point [plnInverseSet ]}]]

Out[  ]=

-4 -2 0 2 4

-2

0

2

4

6

Check  that  a random  point  on  this  parabola  gives  a point  on  pln with  t > -1

In[  ]:= x1 = RandomReal [{-4, 4}]

q2 = NSolveValues [{parb, x - x1}, {x, y}]〚1〛
Out[  ]= -3.6543

Out[  ]= {-3.6543, 4.6694 }

In[  ]:= q3 = F /. Thread [{s, t} → q2]

Out[  ]= {1.0151, 4.0151, 7.06041 }

In[  ]:= pln /. {t → q3〚1〛}
Out[  ]= {1.0151, 4.0151, 7.06041 }

Thus  this  parabola  in the  parameter  space  folds  on  itself  to give  the  singular  set  of the  parametric  

surface  F.

3.2. Lines on a Cubic Surface
In 1849  Arthur  Cayley  and  George  Salmon  showed  that  every  smooth  cubic  contains  exactly  27 lines.  

Elsewhere  I have  written   extensively  about  this  topic,  notably  my  article  [Ideals  of  Numeric  Realizations  

of Configurations  of Lines],  A variation  of this  article  together  with  some  additional  information  is 

available  on  my  website.   In this  section  and  its   notebook  appendices  I am  giving  a new  take  on  this  

material.

In general,  even  if the  cubic  surface  is a real  surface,  many   of these  lines  may  be complex,  in fact  the  

number  of real  lines  can  only  be 3, 7, 15  or 27.   For  example  the  Fermat  Surface  x3 + y3 + z3 + 1 = 0 of 

Section  1.5  and  1.6  contains,  as we  saw,  3 real  lines  and  hence  24 complex  lines.   These  lines  are  easy  to 

write  down  by inspection  using  the  pattern  established  for  the  three  real  lines.   Let  α,β be  the  two  cube  

roots  of -1 other  than  -1 itself,  that  is  α=.5-Sqrt[3]/2  ⅈ , β = .5+Sqrt[3]/2ⅈ .   
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In[  ]:= α = .5 - Sqrt [3] / 2 I

β = .5 + Sqrt [3] / 2 I

Out[  ]= 0.5 - 0.866025 ⅈ
Out[  ]= 0.5 + 0.866025 ⅈ

In[  ]:= α^3
Out[  ]= -1. - 1.11022 × 10-16 ⅈ

The  three  real  lines  are

In[  ]:= lf1 = {t, -t, -1};

lf2 = {t, -1, -t};

lf3 = {-1, t, -t};

By replacing  the  - 1' s, including  the  coefficient  of -t,  by  α, and  or β we  can  easily  construct  the  remain -

ing  24 lines,    a few  more  will  be  listed  below

In[  ]:= lf4 = {t, α t, -1};

lf5 = {β, t, -t};

lf6 = {α, t, β t};
Note,  for  example

In[  ]:= (x^3 + y^3 + z^3 + 1) /. Thread [{x, y, z} → lf6]

Out[  ]= 2.22045 × 10-16
- 1.11022 × 10-16 ⅈ + 2.22045 × 10-16

+ 1.11022 × 10-16 ⅈ t3

The  reader  can  write  down  the   rest  if they  choose  to.   I will  note  that  in my  GlobalFunctions.nb that  

there  is a function  called  pLineIntersectionMD  which  finds  the  intersection  of two  parametric  lines  in 

any  dimensional  space.   This  will  be  discussed  with  code  in section  1.9.3.  It does  specifically  work  for  all   

lines  including  pairs  of lines  with  possible  infinite  or complex  intersections.   The  empty  set  is returned  if 

the  lines  are  skew.

In[  ]:= pLineIntersectionMD [lf1, lf6, t, {x, y, z}, dTol ]

Out[  ]= 0.5 - 0.866025 ⅈ, -0.5 + 0.866025 ⅈ, -1. + 1.17961 × 10-16 ⅈ

3.2.1  The double  Six configuration

In H . S . M . Coxeter'  s review  of Volume  II of  Ludwig  Schläfli’s  collected  works  he says  that  one  paper

 . . is modestly  entitled  "An  attempt  to determine  the  27 lines  upon  a surface  of the  third  order,  and  

to divide  such  surfaces  into  species  in reference  to the  reality  of the  lines  upon  the  surface  ." The  

existence  of 27 such  lines  had  already  been  discovered  by Cayley  and  Salmon,  but  this  paper  of 1856  

gives  the  first  complete  description  of this  configuration  . .

The  key  to Schläfli’s  analysis  is his  discovery  of  12  line  sub-configurations  of the  27 lines,  this  configura -

tion  called  a double  6 .  From  these  one  may  extract  the  remaining  15 lines  easily.

A double  6  configuration  consists  of two  sets  of 6 mutually  skew  lines  such  that  a line  in the  first  set  

intersects  5 lines  of the  second  set,  we  number  the  lines  in each  set  so that  the  kth line  in the  first  set   is 
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skew  from  the  kth line  of the  second  set  but  intersects  all  the  other  lines  of the  second  set.   We  can  draw  

this  where  a blank  area  indicates  no  intersection.

Out[  ]=

12

11

10

9

8

7

1 2 3 4 5 6

In a double  6 there  are  15 double  2 configurations,  two  lines  from  each  skew  set  which  do  not  intersect  

the  other  set,  for  example  L1,  L2 ,L7,  L8 is a double  2.  For  each  double  2 there  is a unique  line  which  

intersects  all  4 lines.  Since  a line  which  meets  a cubic  surface  in 4 points,  counting  multiplicities  is in

the  cubic  surface  the  cubic  that  contains  the  double  6 also  contains  these  15 lines.

3.3 The theory

[Hilbert  and  Cohn-Vossen]  show  in their  book  how  to construct  a double  6 configuration  in ℝ3 making  6 

somewhat  arbitrary,  or if you  prefer  random,  choices.   I gave  an example  of this  in my  Configuration   

paper  mentioned  above.    Given  a double  6 there  is an explicit  construction  of  15  additional  lines  which  

meet  the  double  4 in 4 points.   The  theorem  is that  for  any  particular  double  6 there  is a unique  smooth  

cubic  surface  containing  this  double  6.  It then  must  also  contain  the  other  15 lines  which  meet  the  

double  4 in 4 points  for  a total  of 27 lines.

Conversely   every  smooth  cubic  contains  27 lines  and  within  these  27 lines  there  are  double  6  configura -

tions  determining  all  of  these  lines.

I will  construct  a double  6 using  the  Hilbert  Cohn-Vossen  method  in appendix  A.  Here  is their  method  

which  I will  modify  slightly.
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In[  ]:=

In the  next  subsection  we  discuss  some  of the  problems   that  must  be  solved  with  the  tools  to solve  

them.   The  major  work  will  be  in the  notebook  appendices.

3.3.1  The Problems  that  must  be solved

The  appendices  depend  on  being  able  to solve  certain  problems,  particularly  problem  E below  which  is 

needed  to find  lines  6, 5,4,3  2 and  7.  I describe  here,  through  examples,   how  to use  a combination  of 

built-in  functions  and  my  global  functions  to do  this.

A . Find  the  two  tangent  lines  through  a point  on  a hyperboloid.    Let  the  hyperboloid  and  nice  

integer  point   be

In[  ]:= h1Eq = -y - x y - x z + y z;

q1 = {-1, -1, 2};

h1Eq /. Thread [{x, y, z} → q1]

Out[  ]= 0

We  first  find  the  tangent  plane  at this  point  .

In[  ]:= tP = tangentPlaneNS [h1Eq, q1, {x, y, z}]

Out[  ]= -1 - x + 2 × (1 + y)

The  two  lines  are  the  intersections  of the  tangent  plane  with  the  hyperboloid  .  In this  nice  exact  case  it 

is easy

In[  ]:= Solve [h1Eq ⩵ 0 && tP ⩵ 0, {x, y, z}]

Solve : Equations may not give solutions for all "solve " variables .

Out[  ]= {{x → 1 + 2 y, z → -2 y}, {x → -1, y → -1}}

We  can  now  just  write  down  either  the  implicit  equations  or parametric  formula  for  these  lines.

In[  ]:= l1eq = {1 + 2 y - x, -2 y - z};

l1p = {1 + 2 t, t, -2 t};
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In[  ]:= l2eq = {x + 1, y + 1};

l2p = {-1, -1, t};

Note  for  line  1, line  2 is similar,  we  can  verify  these  formulas

In[  ]:= l1eq /. Thread [{x, y, z} → l1p]

Simplify [h1Eq /. Thread [{x, y, z} → l1p]]

Out[  ]= {0, 0}

Out[  ]= 0

Unfortunately  if  these  are  given  numerically  Solve may  not  work.   Consider  a different  point.

In[  ]:= q2 = {-0.5820528096134947` , -0.41794719038650535` , -1.0644355432484727` };

h1Eq /. Thread [{x, y, z} → q2]

Out[  ]= -3.37508 × 10-14

In[  ]:= tP2 = Expand [tangentPlaneNS [h1Eq, q2, {x, y, z}]]

Out[  ]= 0.417947 + 1.48238 x - 1.48238 y + 0.164106 z

The  first  solution  from  Solve is 

In[  ]:= Solve [h1Eq ⩵ 0 && tP2 ⩵ 0, {x, y, z}]〚1〛
Solve : Solve was unable to solve the system with inexact coefficients . The answer was obtained by solving a

corresponding exact system and numericizing the result .

Solve : Equations may not give solutions for all "solve " variables .

Out[  ]= x → 1.88744 × 10-23
× -7.4689 × 1021 + 5.59143 × 1022 y -

6332.47 1.39113 × 1036 + 6.65696 × 1036 y + 7.96388 × 1036 y2 ,

z → 1.36396 × 10-21
× -9.33613 × 1020 - 3.6658 × 1020 y +

791.559 1.39113 × 1036 + 6.65696 × 1036 y + 7.96388 × 1036 y2 

This  solution  is not  satisfactory  .  The  technique  is to find  two  points  other  than  q2 in the  intersection  

and,  by  the  theory,   we  can  then  find  the  lines  from  q2 to these  points.

In[  ]:= sol2 = NSolveValues [{h1Eq, tP2}, {x, y, z}]

NSolveValues : Infinite solution set has dimension at least 1. Returning intersection of solutions with

-
69046 x

57903

+
40299 y

38602

-
142003 z

115806

== 1.

Out[  ]= {{-0.444331 , -0.226149 , -0.575961 }, {-0.792106 , -0.568778 , -0.529467 }}

The  first  line  is

In[  ]:= l1eq = lineMD [q2, sol2〚1〛, {x, y, z}]

Out[  ]= {-0.142566 - 0.505657 x - 0.733816 y + 0.430697 z,

0.221125 + 0.784292 x - 0.57961 y + 0.00645667 z}
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Now  we  can  find  the  first  line  using   Solve

In[  ]:= sol2b = Solve [l1eq ⩵ 0, {x, y, z}]

Solve : Equations may not give solutions for all "solve " variables .

Out[  ]= {{y → 0.392647 + 1.39265 x, z → 1. + 3.54682 x}}

The  solution  is given  using  the  parameter  x,  replacing  this  by  t we  have

In[  ]:= l1p = {x, y, z} /. sol2b〚1〛 /. {x → t}

Out[  ]= {t, 0.392647 + 1.39265 t, 1. + 3.54682 t}

Checking

In[  ]:= Simplify [l1eq /. Thread [{x, y, z} → l1p]]

Simplify [h1Eq /. Thread [{x, y, z} → l1p]]

Out[  ]= 0., 2.77556 × 10-17 

Out[  ]= 5.64271 × 10-13
+ 2.04947 × 10-12 t + 1.75637 × 10-12 t2

which  is good  to approximately  our  default  tolerance  .

B . Going  from  parametric  equation  of line  to implicit  equations  .  In principle  one  can  use  the  

general  implicitization  method  as in Section  1.4  but  with  lines  it is easiest  to find  two  points  and  use  the  

Global  Function  lineMD .  This  is automated  by Global  Function  pl2eqMD which handles  

parametric  lines in ℝn for  any  n.

It doesn't  need  to be automated,  for  example  consider

In[  ]:= line1 = {t, 0.39264678170294964` + 1.3926467817030561` t,

1.000000000001437` + 3.5468182768858614` t}

Out[  ]= {t, 0.392647 + 1.39265 t, 1. + 3.54682 t}

We  calculate

In[  ]:= p = line1 /. {t → 0}

q = line1 /. {t → 4}

Out[  ]= {0, 0.392647 , 1.}

Out[  ]= {4, 5.96323, 15.1873 }

In[  ]:= line1Eq = lineMD [p, q, {x, y, z}]

Out[  ]= {-0.20001 - 0.709398 x - 0.536696 y + 0.410741 z,

-0.170932 - 0.606265 x + 0.765762 y - 0.129742 z}

But  sometimes  to get  more  accuracy  or  if the  2 points  are  rational  we  would  like  an equation  system  

with  rational  coefficients  .   But  lineMD  returns  floating  point  numbers  as do  the  methods  in section  1.3  

.  A simple  routine  specifically  for  lines  in ℝ3 is
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In[  ]:= ratLine3D [p_, q_] := Module [{form, formp, formq, sol},

form = { x - a y + b, x - c z + d};

formp = form /. Thread [{x, y, z} → p];

formq = form /. Thread [{x, y, z} → q];

sol = Solve [formp ⩵ 0 && formq ⩵ 0]〚1〛;
form /. sol]

Note  that  it is assumed  that  the  variables  are  x, y, z and  that  x is a parameter,  meaning  the  two  points  p,  

q have  distinct  first  component.   If not  rename  the  variables,  run  then  name  them  back  again.   It is 

somewhat  surprising  that  the  equation  solved  appears  to be  underdetermined,  but  Solve  apparently

needs  the  extra  variable.  Anyway  we  only  need  one  solution  so if the  Solve  returns  several  we  are  only  

using  the  first.   Here  is an example:

In[  ]:= p = -
14

15
, -

17

15
, 0;

q = 
1

13
, -

11

13
,
11

13
;

In[  ]:= l = ratLine3D [p, q]

Out[  ]= -
171

56
+ x -

197 y

56
,
14

15
+ x -

197 z

165


Test:  Note  that  r1 p + r2 q will  be  in the  line  through  p,q  for  any  r1+r2=1  

In[  ]:= r = 3 / 7 p + 4 / 7 q

Out[  ]= -
162

455
, -

63

65
,
44

91


In[  ]:= l /. Thread [{x, y, z} → r]

Out[  ]= {0, 0}

C . Find  intersection  point  or determine  parallel  or  skew  given  two  parametric  lines  .  The  reader  is 

reminded  that  we  are  actually  working  in projective  3 space  but  seeing  only  affine  space.   Two  lines  are  

parallel  if they  have  a common  infinite  point.   Skew  means  they  do  not  intersect  or are  parallel.   Fortu -

nately  we  have  a very  good  Global  Function  to tell  the  difference.   I have  mentioned  it before  but  here  is 

the  code  based  directly  on  the  SVD.
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In[  ]:= nullspace [M_, tol_] :=

Take [SingularValueDecomposition [N[M]]〚3〛, All, - (Dimensions [M]〚2〛 - matrixrank [M, tol])]

pLineIntersectionMD [L1_, L2_, t_, X_, tol_] :=

Module {n, cr1, cr2, p1, p2, v1, v2, eq1, eq2, S, r, ans},

n = Length [X];

If[Length [L1] ≠ n, Echo ["Line 1 error"]; Abort []];

If[Length [L2] ≠ n, Echo ["Line 2 error"]; Abort []];

p1 = Chop [L1 /. {t → 0}];

v1 = Append [Chop [(L1 - p1) /. {t → 1}], 0];

eq1 = lineMD [p1, v1, X];

p2 = Chop [L2 /. {t → 0}];

v2 = Append [Chop [(L2 - p2) /. {t → 1}], 0];

eq2 = lineMD [p2, v2, X];

S = sylvesterMD [Join [eq1, eq2], 1, X];

r = matrixrank [S, tol];

If[r < n, Return [{0}]];

If[r > n, Return [{}]];

ans = Flatten [nullspace [S, tol]];

IfAbs[ans〚1〛] < tol, RotateLeft [Chop [ans, tol], 1], Take ans  ans〚1〛, -n


To confirm  intersection  we  should  use  a tight  tolerance,  but  to confirm  skewness  we  should  use  a loose  

one.   Here  are  two  random  parallel  lines

In[  ]:= rline1 = {-1.284743961295125` + 1.7850221750544781` t,

-1.8513906749735787` + 0.32363757592140274` t,

-1.7705832745415062` - 0.49925464276626474` t}

Out[  ]= {-1.28474 + 1.78502 t, -1.85139 + 0.323638 t, -1.77058 - 0.499255 t}

In[  ]:= rline2 = {-3.8470503573307893` + 1.3999119717968946` t,

-3.2811667316024042` + 0.253814279389482` t,

1.5989379697539752` - 0.39154278369810475` t}

Out[  ]= {-3.84705 + 1.39991 t, -3.28117 + 0.253814 t, 1.59894 - 0.391543 t}

In[  ]:= pLineIntersectionMD [rline1, rline2, t, {x, y, z}, dTol ]

Out[  ]= {-0.948688 , -0.172004 , 0.26534, 0}

Note  that  the  function  returns  a list  of length  4 with  the  last  component  0, this  means  infinite  point.   

Now  let  

In[  ]:=
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In[  ]:= rline3 = {-1.1577650571599911` + 1.609386049766386` t,

-1.66840669830856` + 0.2899071921064588` t,

-1.5955859749592347` - 0.4488387468161354` t}

Out[  ]= {-1.15777 + 1.60939 t, -1.66841 + 0.289907 t, -1.59559 - 0.448839 t}

In[  ]:= pLineIntersectionMD [rline1, rline3, t, {x, y, z}, dTol ]

Out[  ]= {}

Consider

In[  ]:= ParametricPlot3D [{rline1, rline2 }, {t, -3, 3}, ImageSize → Tiny ]

Out[  ]=

It perhaps  looks  like  these  are  skew  but  note

In[  ]:= pLineIntersectionMD [rline1, rline3, t, {x, y, z}, .003 ]

Out[  ]= {0.948813 , 0.171104 , -0.265476 , 0}

So these  lines  are  parallel  meeting  in an infinite  point.   For  our  later  work  parallel  lines  are  NOT  skew.

A nice  property  of this  function  is that  if one  only  wants  to know  whether  2 lines  meet  one  can  use  

Length [pLineIntersectionMD [line1, line2, t, {x, y, z}, tol]]

If the  result  is 0 the  lines  are  skew,  if 1 the  lines  are  equal,  3 means  an affine  intersection  and  4 means  

an infinite  intersection,  i.e.  parallel.  We  will  use  this  heavily  in later  subsections.

D . Finding  hyperboloid  generated  by  3 skew  lines  .  We  have  done  this  in Chapter  2 but  so this  

Section  can  stand  alone  we  repeat  with  3 parametric  lines.

In[  ]:= rline4 = RandomReal [{-3, 3}, {3, 2}].{1, t}

rline5 = RandomReal [{-3, 3}, {3, 2}].{1, t}

Out[  ]= {1.64127 + 1.98068 t, -2.48105 - 0.466556 t, 0.416791 + 1.84621 t}

Out[  ]= {0.52162 - 1.46426 t, 0.208229 - 1.25196 t, -2.3118 + 0.578546 t}

We  will  find  the  hyperloid generated  by lines  rl1,  rl4,  rl5.   First  we  check  skewness

In[  ]:= {pLineIntersectionMD [rl1, rl4, t, {x, y, z}, .001 ],

pLineIntersectionMD [rl1, rl5, t, {x, y, z}, .001 ],

pLineIntersectionMD [rl4, rl5, t, {x, y, z}, .001 ]}

» Line 1 error

Out[  ]= $Aborted

Next  we  find  implicit  equations
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In[  ]:= rl1eq = pl2eqMD [rline1, t, {x, y, z}]

Out[  ]= {0.124503 + 0.301341 x - 0.72363 y + 0.608319 z,

0.927707 - 0.00411915 x + 0.319782 y + 0.192568 z}

In[  ]:= rl4eq = pl2eqMD [rline4, t, {x, y, z}]

Out[  ]= {0.00276285 - 0.682579 x - 0.341924 y + 0.645884 z,

0.919497 - 0.0454673 x + 0.364185 y + 0.140812 z}

In[  ]:= rl5eq = pl2eqMD [rline5, t, {x, y, z}]

Out[  ]= {0.381565 + 0.633352 x - 0.62443 y + 0.251713 z,

0.815507 - 0.218984 x + 0.413509 y + 0.340594 z}

Then  we  find  Sylvester  matrices,   m = 2 is sufficient  for  this,  although  if we  actually  want  equation  of the  

configuration  of these  three  lines  we  should  use  at least  m = 4.  Just  finding  the  hyperboloid  loses  the  

information  about  what  lines  we  used  which  may  be important  later.

In[  ]:= syl1 = sylvesterMD [rl1eq, 2, {x, y, z}];

syl4 = sylvesterMD [rl4eq, 2, {x, y, z}];

syl5 = sylvesterMD [rl5eq, 2, {x, y, z}];

hp2 =

First [Chop [vectorSpaceIntersection3 [syl1, syl4, syl5, dTol ], dTol ].mExpsMD [2, {x, y, z}]]

Out[  ]= 0.794171 + 0.204124 x - 0.00394934 x2 + 0.27198 y + 0.0884639 x y -

0.0239499 y2 + 0.469243 z + 0.0247282 x z + 0.150685 y z + 0.0416093 z2

To look  at this  hyperboloid  and  the  lines

In[  ]:= Show [ContourPlot3D [hp2 ⩵ 0, {x, -5, 5}, {y, -5, 5}, {z, -5, 5}, Mesh → None ],

ParametricPlot3D [{rline1, rline4, rline5 }, {t, -5, 5}, PlotStyle → {Blue, Green, Cyan}],

Axes → False, Boxed → False, ImageSize → Small ]

Out[  ]=

E . Finding  two  lines  intersecting  4 skew  lines  the   last  intersecting  the  hyperboloid  generated  by  

the  first  3 in two  points.   Actually  Hilbert  stated  this  more  generally,  but  if a line  not  in,  or tangent  to,  a 

hyperboloid  intersects  a hyperboloid  in one  point  then  since  the  equation  of the  hyperboloid  has  

degree  2 there  are  exactly  2, possibly  infinite,  points  of intersection  of the  line  and  the  hyperboloid.

Using  the  above  methods  one  simply  notes  that  these  two  lines  are  the  lines  in the  opposite  ruling  of

the  first  3 lines  at the  points  of intersection.   In the  construction  of the  double  6 one  of the  lines  is 
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already  known  so one  merely  needs  to construct  the  two  tangent  lines  at the  other  intersection  point,  

one  will  be  skew  to the  first  3 lines  and  the  other  will  intersect  the  first  3 lines  so one  test  using  

pLineIntersectionMD is sufficient.   So  it is really  not  necessary  to give  an example.

A double  2 is a configuration  of 4 lines  with  the  following  diagram  :

Out[  ]=

1 2

3

4

F. Given  a double  2 find  a line  which  meets  all  4 lines.   Note  that  intersecting  lines  1,4  define  a plane  

as do  intersecting  lines  2,3.   In projective  3-space  space  any  two  distinct  planes  meet  in a unique  line.   

Rather  than  go through  the  procedure  of problem  D, we  can  assume  we  know  the  intersection  points  of 

1,4  and  2,3  and  one  more  point  on  each  line.   Then  the  equations  of the  planes  come  from  

linearSetMD, each  plane  with  a single  equation.   The  intersecting  line  is the  line  with  these  2 equa -

tions.   As  in A. if one  needs  parametric  equations  one  can  use  Solve.

G . Material  from  the  Space  Curve  Book  .  We  have  already  seen  this  in Section  1.4  The  Torus  Story  but  

just  as a reminder  these  numerical  linear  algebra  techniques  will  also  be needed  here.   Thankfully  these  

are  all  given  by functions  in my  GlobalFunctionsNS.nb so if one  is willing  to accept  these  functions  as 

given   there  is no  need  to review  this  information.     Specifically  the  functions  needed  are   

vectorSpaceIntersection3,  sylvesterMD,  hBasisMD.

3.4 Example  of Double  6 construction

I modify  the  Hilbert  Cohn-Vossen  method  by starting  out  with  the  hyperboloid  given  both  parametri -

cally  and  later  by  an implicit  quadric  equation  in Section  1.3.   This  way  I can  find  lots  of rational  points  

and  lines  in the  construction.   Lines  L1,  L8,  L9 and  L10  come  from  this  hyperboloid.   Further  lines  L5,  L6 

will  then  also  be in this  paraboloid  and  L11  and  L12  meet  the  hyperboloid  in rational  points  so will  

themselves  be rational.   In order  to give  the  construction  note  that  lines  L1,  L8,  L9,  L10,  L11,  and  L12  

can  be given  arbitrarily  as long  as L8,  L9,  L10,  L11  and  L12  met  L1 and  are  mutually  skew.

Recall  the  hyperboloid  and  its  equation  are  given  by

In[  ]:= hyp1 = 
t - s2 t

1 - s2
,
1 + s2 - 2 s t

1 - s2
,
2 s - t - s2 t

1 - s2
;

hypEq = 1 - x^2 - y^2 + z^2;

Some  rational  lines  can  be calculated  directly  from  the  parameterization  hyp1.   Given  a value  s0 ≠ 1

In[  ]:= r1[s0_] := Expand [hyp1 /. {s → s0}]

r2[s0_] := Expand [{r1[s0]〚1〛, r1[s0]〚2〛, -r1[s0]〚3〛}]
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In[  ]:= L1 = r2[-1 / 2]

L8 = r1[-2 / 3]

L9 = r1[-1 / 4]

L10 = r1[1 / 4]

Out[  ]= t,
5

3
+
4 t

3
,
4

3
+
5 t

3


Out[  ]= t,
13

5
+
12 t

5
, -

12

5
-
13 t

5


Out[  ]= t,
17

15
+
8 t

15
, -

8

15
-
17 t

15


Out[  ]= t,
17

15
-
8 t

15
,

8

15
-
17 t

15


One  can  check  using  plineIntersectionMD  that  these  meet  the  criteria.   The  following  points  are  also  on  

L1

In[  ]:= l1a = L1 /. {t → -5 / 4}

l1b = L1 /. {t → 1 / 2}

Out[  ]= -
5

4
, 0, -

3

4


Out[  ]= 
1

2
,
7

3
,
13

6


Line  L11  will  be  chosen  arbitrarily,  but  not  actually  randomly

L11 = t,
5

13
+
4 t

13
,

4

13
+
11 t

13
;

It can  be checked   that  l1a  is on  L11   these  lines  are  skew  to each  other  and  the  lines  L8,  L9,  L10.

Now  we  need  to find  L6 which  meets  L8,  L9,  L10  and  L11.   Now  L8,  L9 and  L10  were  chosen  inside  the  

hyperbola  hyp1  so we  don’t  need  to do  problem  D here.   But  then  the  line  we  need  is the  line  in the  

opposite  ruling  to L8,  L9,  L10  through  the  second  point  of intersection  of hyp1  with  L11.   To  do  this  it 

helps  to find  the  implicit  equation  of L11,  using  problem  B above.   L11  goes  through  l1a  above,  a 

second  point  is

In[  ]:= l11a = L11 /. {t → 1}

Out[  ]= 1,
9

13
,
15

13


In[  ]:= L11eq = ratLine3D [l1a, l11a ]

Out[  ]= 
5

4
+ x -

13 y

4
,

4

11
+ x -

13 z

11

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We  then  solve,  using  just  Solve  to get  rational  solutions

In[  ]:= SolveValues [hypEq ⩵ 0 && L11eq ⩵ 0, {x, y, z}]

Out[  ]= -
5

4
, 0, -

3

4
, {2, 1, 2}

But  the  first  solution  is just  l1a  so the  desired  point  is 

In[  ]:= l11b = {2, 1, 2}

Out[  ]= {2, 1, 2}

So using  problem  A 

In[  ]:= tp11 = tangentPlaneNS [hypEq, l11b, {x, y, z}]

Out[  ]= 2 - 4 x - 2 y + 4 z

In[  ]:= Solve [hypEq ⩵ 0 && tp11 ⩵ 0, {x, y, z}]

Solve : Equations may not give solutions for all "solve " variables .

Out[  ]= {y → 1, z → x}, y →
1

3
× (-5 + 4 x), z →

1

3
× (-4 + 5 x)

Our  first  solution  gives  the  parametric  line {t, 1, t}  in the  hyperboloid   which  will  be  a candidate  for   L6

In[  ]:= hypEq /. Thread [{x, y, z} → {t, 1, t}]

Out[  ]= 0

In[  ]:= L6 = {t, 1, t};

In[  ]:= pLineIntersectionMD [L6, L8, t, {x, y, z}, dTol ]

pLineIntersectionMD [L6, L9, t, {x, y, z}, dTol ]

pLineIntersectionMD [L6, L10, t, {x, y, z}, dTol ]

pLineIntersectionMD [L6, L11, t, {x, y, z}, dTol ]

Out[  ]= {-0.666667 , 1., -0.666667 }

Out[  ]= {-0.25, 1., -0.25 }

Out[  ]= {0.25, 1., 0.25 }

Out[  ]= {2., 1., 2.}

Finally  we  choose  L12,  this  must  meet  L1 but  be  skew  to L8,  L9 ,L10,  L11  and  L6.   We  leave  the  check  to 

the  reader.

L12 = t,
599

180
-
179 t

90
,
409

180
-
19 t

90
;
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In[  ]:= Show [ContourPlot3D [hypEq ⩵ 0, {x, -3, 3}, {y, -3, 3}, {z, -3, 3}, Mesh → None ],

ParametricPlot3D [{L1, L8, L9, L10, L11, L12}, {t, -3, 3},

PlotStyle → {Blue, Green, Green, Green, Magenta, Magenta }],

Axes → None, Boxed → False, ImageSize → Medium ]

Out[  ]=

One  case  not  obvious  by the  picture  is whether  L11  meets  L12,  but  it doesn’t.

In[  ]:= pLineIntersectionMD [L11, L12, t, {x, y, z}, dTol ]

Out[  ]= {}

This  works  .  A similar  method  to the  one  finding  L6 will  give  the  other  lines  in the  double  6 although  in 

the  other  cases  Problem  D will  be  needed  to find  a hyperboloid  containing  3 of the  lines.   Here  are  the  

12 lines.

In[  ]:= L1 = t,
5

3
+
4 t

3
,
4

3
+
5 t

3
;

In[  ]:= L2 = {t, 1.10873690400994` - 0.4642368931192767` t,

-0.4642368931190869` + 1.669047069329676` t}

Out[  ]= {t, 1.10874 - 0.464237 t, -0.464237 + 1.66905 t}

In[  ]:= L3 = {t, 1.125206152628268` - 0.5076671846982648` t,

-0.3081725820785607` + 1.5241953578676644` t};
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In[  ]:= L4 = {t, 0.9721721581433124` - 0.4260900032234079` t,

-0.11264557902259985` + 1.3711014253079723` t}

Out[  ]= {t, 0.972172 - 0.42609 t, -0.112646 + 1.3711 t}

In[  ]:= L5 = t,
29

20
-
21 t

20
, -

21

20
+
29 t

20
;

In[  ]:= L6 = {t, 1, t};

In[  ]:= L7 = {t, 1.661032057842025` - 0.9952722110334632` t,

-0.40924299170135053` + 1.6161700818709201` t}

Out[  ]= {t, 1.66103 - 0.995272 t, -0.409243 + 1.61617 t}

In[  ]:= L8 = t,
13

5
+
12 t

5
, -

12

5
-
13 t

5
;

In[  ]:= L9 = t,
17

15
+
8 t

15
, -

8

15
-
17 t

15
;

In[  ]:= L10 = t,
17

15
-
8 t

15
,

8

15
-
17 t

15
;

In[  ]:= L11 = t,
5

13
+
4 t

13
,

4

13
+
11 t

13
;

In[  ]:= L12 = t,
599

180
-
179 t

90
,
409

180
-
19 t

90
;

The  reader  with  Mathematica  can  use  pLineIntersectionMD  to check  that  lines  that  should  intersect  

should  and  those  that  shouldn’t  don’t.    For  example

In[  ]:= pLineIntersectionMD [L1, L7, t, {x, y, z}, dTol ]

Out[  ]= {}

Here  is the  plot  of the  full  double  6 with  the  intersection  points
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3.5 the Additional  lines  

As mentioned  above  there  are  15 additional  lines  that  will  intersect  this  double  6 in 4 points,  hence  will  

in any  naive  cubic  surface  containing  these  lines.   The  construction  is outlined  in Problem  F, here  is an 

example.   The  reader  who  wants  all  15 must  work  them  out  themselves,  they  are  not  included  in the  

Appendix  A.  

We  consider  the  line  from  the  double  2 consisting  of L1,  L2,  L7 and  L8.   First  we  find  the  planes  contain -

ing  L7,  L2 and  L1,  L8.

As before  these  lines  have  the  following  implicit  equations

In[  ]:= L1eq = ratLine3D [L1 /. {t → 0}, L1 /. {t → 4}]

Out[  ]= 
5

4
+ x -

3 y

4
,
4

5
+ x -

3 z

5


In[  ]:= L2eq = ratLine3D [L2 /. {t → 0}, L2 /. {t → 4}]

Out[  ]= {-2.3883 + x + 2.15407 y, -0.278145 + x - 0.599144 z}

In[  ]:= L7eq = ratLine3D [L7 /. {t → 0}, L7 /. {t → 4}]

Out[  ]= {-1.66892 + x + 1.00475 y, -0.253218 + x - 0.618747 z}

In[  ]:= NSolve [Join [L2eq, L7eq ]]

Out[  ]= {{x → 1.04003, y → 0.625914 , z → 1.27163 }}

In[  ]:= L8eq = ratLine3D [L8 /. {t → 0}, L8 /. {t → 4}]

Out[  ]= 
13

12
+ x -

5 y

12
,
12

13
+ x +

5 z

13

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In[  ]:= L9eq = ratLine3D [L9 /. {t → 0}, L9 /. {t → 4}]

Out[  ]= 
17

8
+ x -

15 y

8
,

8

17
+ x +

15 z

17


In[  ]:= L10eq = ratLine3D [L10 /. {t → 0}, L10 /. {t → 4}]

Out[  ]= -
17

8
+ x +

15 y

8
, -

8

17
+ x +

15 z

17


In[  ]:= L11eq = ratLine3D [L11 /. {t → 0}, L11 /. {t → 4}]

Out[  ]= 
5

4
+ x -

13 y

4
,

4

11
+ x -

13 z

11


In[  ]:= L12eq = ratLine3D [L12 /. {t → 0}, L12 /. {t → 4}]

Out[  ]= -
599

358
+ x +

90 y

179
, -

409

38
+ x +

90 z

19


In[  ]:= syl7 = sylvesterMD [L7eq, 1, {x, y, z}];

syl2 = sylvesterMD [L2eq, 1, {x, y, z}];

In[  ]:= int72 = vectorSpaceIntersection [syl7, syl2, dTol ];

plane72 = int72〚1〛.mExpsMD [1, {x, y, z}]

Out[  ]= 0.277687 - 0.828887 x - 0.0481178 y + 0.483239 z

Likewise  

In[  ]:= syl1 = sylvesterMD [L1eq, 1, {x, y, z}];

syl8 = sylvesterMD [L8eq, 1, {x, y, z}];

int18 = vectorSpaceIntersection [syl1, syl8, dTol ];

plane81 = int18〚1〛.mExpsMD [1, {x, y, z}]

Out[  ]= -0.701646 - 0.613941 x + 0.350823 y + 0.0877058 z

In[  ]:= Therefore

In[  ]:= L13 = First [SolveValues [plane72 ⩵ 0 && plane81 ⩵ 0, {x, y, z}] /. {x → t}]

SolveValues : Equations may not give solutions for all "solve " variables .

Out[  ]= {t, 2.09159 + 1.28909 t, -0.366371 + 1.84363 t}

Checking  :

In[  ]:= p131 = pLineIntersectionMD [L13, L1, t, {x, y, z}, dTol ]

Out[  ]= {9.60473, 14.473, 17.3412 }

In[  ]:= p132 = pLineIntersectionMD [L13, L2, t, {x, y, z}, dTol ]

Out[  ]= {-0.560566 , 1.36897, -1.39985 }

In[  ]:= p137 = pLineIntersectionMD [L13, L7, t, {x, y, z}, dTol ]

Out[  ]= {-0.188482 , 1.84862, -0.713861 }

SurfaceStoryPartII.nb |   166



In[  ]:= p138 = pLineIntersectionMD [L13, L8, t, {x, y, z}, dTol ]

Out[  ]= {-0.45765, 1.50164, -1.21011 }

3.6 The Implicit  Cubic

We  can  proceed  as in Section  4, the  torus,   to find  the  equation  of a cubic  containing  the  double  6 

obtained  in subsection  4.  It is important  to note  that  we  are  aiming  to find  the  equations  of a reducible  

curve  which  is a union  of the  lines.  We  know  from  the  Space  Curve  Book  that  these  are  generally  not  

naive  curves  and  will  have  more  than  two  equations.  For  this  reason  we  go one  at a time  and  use  a 

higher  degree  in the  calculation.   From  past  experience   we  can  surmise  that  degree  5 will  be  sufficient,  

initially  even  degree  4 may  work.   But  in each  step  we  are  adding  to the  curve  so we  want  to avoid,  say,   

using  the  equation  of the  hyperboloid  alone  containing  many  of the  lines  because  this  hyperboloid  also  

has  many  points  that  will  not  be in the  final  cubic.   We  may  at some  point  see  the  equation  of the  

hyperboloid  but  with  additional  equations  removing  these  unwanted  points.

We  will  see  in our  calculation  a new  idea,  at least  to me,  that  we  do  not  need  to use  all  the  lines  in the  

double  6.  Since  we  saw  that  half  the  lines  in the  double  6 were  determined  by the  earlier  lines  the  other  

lines  already  exist  in any  cubic  equation  in the  system.   In fact  when  we  have  made  all  the  choices  

allowed  we  see  that  there  is a unique  cubic  which  continues  through  the  rest  of the  construct  if we  

choose  to continue.   Once  we  have  a unique  cubic  at this  point  we  are  actually  done.   This  will  happen  

once  we  have  lines  L1,  L8,  L9,  L10,  L11  and  L12.   Although  Hilbert’s  construction  puts  L6 before   choos -

ing  L12  I will  show  that  adding  L6 was  unnecessary  to get  the  cubic  equation  since  it was  already  in the  

cubics  at the  L11  step.

So actually  we  have  a new,  to me,  theorem.   

Given  a line  in 3 space  and  5 mutually  skew  lines  intersecting  that  line,  the  intersections  necessarily  are  

distinct  and  of multiplicity  1 due  to the  skewness,  there  is a unique  cubic  containing  these  lines  as  well  as  

the  21 other  lines  constructed  from  these  as  in subsections  4 and  5.  

There  is one  disclaimer.   As  long  as all  the  lines  are  chosen  randomly  there  should  be no  problem,  but  if 

the  lines  are  arbitrarily  chosen  then  one  must  check  that  L12  is also  skew  to the  constructed   L6 which  

depends  on  the  first  5 lines.

Here  is our  construction,  new  to this  edition  of the  book.

The  first  step  is to find  the  implicit  equations  for  the  6 lines.   We  presumably  did  this  in the  previous  

section  using  the  method  used  above  in constructing  L6.  We  call  these  L1eq,  L2eq  ...

We  do  the  following  4 calculations
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In[  ]:= X4 = mExpsMD [4, {x, y, z}];

sylL1 = sylvesterMD [L1eq, 4, {x, y, z}];

sylL8 = sylvesterMD [L8eq, 4, {x, y, z}];

int18 = vectorSpaceIntersection [sylL1, sylL8, dTol ].X4;

Basis18 = hBasisMD [int18, 4, {x, y, z}, dTol ]

tDegMD [#, {x, y, z}] & /@ Basis18

» Initial Hilbert Function {1, 2, 2, 2, 2}

» Final Hilbert Function {1, 2, 2, 2, 2}

Out[  ]= -8. - 7. x + 4. y + 1. z, 4.33333 + 7.46667 x + 3.2 x2 - 4.26667 y - 3.73333 x y + 1. y2

Out[  ]= {1, 2}

In[  ]:= sylL11 = sylvesterMD [L11eq, 4, {x, y, z}];

sylL9 = sylvesterMD [L9eq, 4, {x, y, z}];

int911 = vectorSpaceIntersection [sylL11, sylL9, dTol ].X4;

Basis911 = hBasisMD [int911, 4, {x, y, z}, dTol ]

tDegMD [#, {x, y, z}] & /@ Basis911

» Initial Hilbert Function {1, 3, 2, 2, 2}

» Final Hilbert Function {1, 3, 2, 2, 2}

Out[  ]= -2.45455 - 7.63636 x - 3.54545 x2 + 3.72727 y + 8.77273 x y + 3.31818 z + 1. x z,

0.435897 + 0.553846 x + 0.164103 x2 - 1.51795 y - 0.841026 x y + 1. y2,

-0.960373 - 2.94965 x - 1.43963 x2 + 1.68019 y + 3.83263 x y + 0.636364 z + 1. y z,

0.540793 + 1.39301 x + 0.0592075 x2 - 1.0704 y - 2.51935 x y - 0.727273 z + 1. z2

Out[  ]= {2, 2, 2, 2}

In[  ]:= sylL10 = sylvesterMD [L10eq, 4, {x, y, z}];

sylL12 = sylvesterMD [L12eq, 4, {x, y, z}];

int1012 = vectorSpaceIntersection [sylL10, sylL12, dTol ].X4;

Basis1012 = hBasisMD [int1012, 4, {x, y, z}, dTol ]

tDegMD [#, {x, y, z}] & /@ Basis1012

» Initial Hilbert Function {1, 3, 2, 2, 2}

» Final Hilbert Function {1, 3, 2, 2, 2}

Out[  ]= -0.549873 - 2.3229 x + 1.47125 x2 + 1.19466 y + 0.633588 x y - 1.50763 z + 1. x z,

3.77148 - 4.02889 x + 1.06074 x2 - 4.46111 y + 2.52222 x y + 1. y2,

2.86845 - 0.212231 x - 0.672072 x2 - 2.90937 y - 0.126802 x y - 0.329262 z + 1. y z,

1.95113 + 0.435233 x - 1.73875 x2 - 1.60615 y - 0.851824 x y - 0.778626 z + 1. z2

Out[  ]= {2, 2, 2, 2}
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In[  ]:= sylB18 = sylvesterMD [Basis18, 4, {x, y, z}];

sylB911 = sylvesterMD [Basis911 , 4, {x, y, z}];

sylB1012 = sylvesterMD [Basis1012 , 4, {x, y, z}];

In[  ]:= intAll = vectorSpaceIntersection3 [sylB18, sylB911, sylB1012 , 10^ (-11)].X4;

BasisAll = hBasisMD [intAll, 4, {x, y, z}, dTol ];

tDegMD [#, {x, y, z}] & /@ BasisAll

» Initial Hilbert Function {1, 3, 6, 9, 6}

» Final Hilbert Function {1, 3, 6, 9, 6}

Out[  ]= {3, 4, 4, 4, 4, 4, 4}

We  notice  that  there  is one  cubic  and  6 4th degree  equations.   This  cubic  must  be  the  unique  cubic  

through  the  six  lines.   Further,  since  each  of the  other  21 lines  intersects  three  of the  six  lines  then  they  

must  also  lie  in this  cubic.   The  skeptical  reader  who  has  calculated  all  21 of these  lines  can  easily  check  

these  last  assertions  directly.   Here  is a graphic  showing  the  6 lines  and  the  cubic  

In[  ]:= SScubic = BasisAll 〚1〛
Out[  ]= -1.9593 - 3.01427 x + 0.746586 x2 + 2.14804 x3 + 5.29948 y + 2.26374 x y - 1.01454 x2 y -

4.24981 y2 + 0.695088 x y2 + 0.909641 y3 + 2.21734 z + 0.461988 x z - 1.25871 x2 z -

1.82023 y z - 0.480467 x y z - 0.341667 y2 z + 0.121951 z2 - 1.88933 x z2 + 0.164481 y z2 + 1. z3

In[  ]:= Show [ContourPlot3D [SScubic ⩵ 0, {x, -10, 10}, {y, -10, 10}, {z, -10, 10}, Mesh → None ],

ParametricPlot3D [{L1, L8, L9, L10, L11, L12}, {t, -10, 10},

PlotStyle → {Magenta, Blue, Blue, Blue, Blue, Blue}], Axes → None, Boxed → False ]

Out[  ]=
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You  should  recognize  this  as the  cover  illustration  of the  Surface  Story.

Here  is a closeup  view  of the  middle  of the  graphic  showing   first  the  magenta  line  intersecting  all  5 blue  

lines  and  the  blue  lines  not  intercepting  each  other.    There  are  actually  2 small  holes  in the  surface  not  

visible  in the  large  view.

3.7 Finding  lines  on a given  smooth  cubic,  Example  1

In this  subsection  I go the  opposite  direction  .  I start  with  a smooth  cubic  surface  and  try  to find  the  27 

lines.   Based  on  the  previous  work  one  might  think  of looking  for  one  line  and  then  looking  for   5 skew  

lines  intersecting  this  line.   From  there  I can  find  the  other  21 lines  using  the  previous  techniques.

It actually  turns  out  that  it is easier  to try  to find  all  27 lines  at once.   The  trick  is that  for  a parametric  

line  with  parametric  function  F to lie  on  the  surface  f = 0 we  simply  need

f /. Thread[{x, y, z} → F] ⩵ 0

Letting  F  be  a generic  curve  it is easy  to set  up  the  equation  which  NSolve  can  solve.   Given  previous  

examples  most  lines  do  not  have  a constant  first  component.   So  we  find  these  lines  first

In[  ]:= F1 = {t, a1 + b1 t, a2 + b2 t}

Out[  ]= {t, a1 + b1 t, a2 + b2 t}

We  illustrate  with  an easy  equation  .

In[  ]:= cubic1 = 16 * x^3 + 16 * y^3 - 31 * z^3 + 24 * x^2 * z -

48 * x^2 * y - 48 * x * y^2 + 24 * y^2 * z - 93.5307 * z^2 - 72 * z;

Our  main  equation  is
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In[  ]:= mainEq = Collect [Expand [cubic1 /. Thread [{x, y, z} → F1]], t]

Out[  ]= 16 a13 - 72 a2 + 24 a12 a2 - 93.5307 a22 - 31 a23 +

-48 a12 + 48 a12 b1 + 48 a1 a2 b1 - 72 b2 + 24 a12 b2 - 187.061 a2 b2 - 93 a22 b2 t +

-48 a1 + 24 a2 - 96 a1 b1 + 48 a1 b12 + 24 a2 b12 + 48 a1 b1 b2 - 93.5307 b22 - 93 a2 b22 t2 +

16 - 48 b1 - 48 b12 + 16 b13 + 24 b2 + 24 b12 b2 - 31 b23 t3

We  want  this  to be essentially  zero  for  all  t.  So  the  coefficients  of  tk  must  be  zero.  Let

In[  ]:= Clear [a1, a2, b1, b2]

Now  just  solve  this  non-linear  system  of 4 equations  in 4 unknowns

In[  ]:= cf0 = 16 a13 - 72 a2 + 24 a12 a2 - 93.5307` a22 - 31 a23;

cf1 = -48 a12 + 48 a12 b1 + 48 a1 a2 b1 - 72 b2 + 24 a12 b2 - 187.0614` a2 b2 - 93 a22 b2;

cf2 = -48 a1 + 24 a2 - 96 a1 b1 + 48 a1 b12 + 24 a2 b12 + 48 a1 b1 b2 - 93.5307` b22 - 93 a2 b22;

cf3 = 16 - 48 b1 - 48 b12 + 16 b13 + 24 b2 + 24 b12 b2 - 31 b23;

In[  ]:= {time, solcubic1 } = Timing [NSolve [{cf0, cf1, cf2, cf3}]];

In[  ]:= time

Out[  ]= 0.391518

In[  ]:= Length [solcubic1 ]

Out[  ]= 27

This  takes  a long  time  for  a computer,  but  not  much  in  human  time.   We  now  display  the  lines

In[  ]:= Do[Print ["line [", i, "]=", line [i] = F1 /. solcubic1 〚i〛], {i, 27}]
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line [1]={t, - 3.73243 + 13.9293 t, - 5.46452 + 14.9294 t}

line [2]={t, 3.22448 + 4.08729 t, - 3.00967 - 3.5649 t}

line [3]={t, 2.73814 + 3.4304 t, 1.87092 + 3.02721 t}

line [4]={t, - 0.476643 - 1.47664 t, - 1.90652 - 1.90653 t}

line [5]={t, 1.1547 - 1. t, - 2.3094 }

line [6]={t, 1.44663 + 6.17467 t, - 2.47977 - 4.18706 t}

line [7]={t, 0.298434 - 0.815559 t, - 1.39762 - 0.863769 t}

line [8]={t, 0. + 3.73205 t, 0. }

line [9]={t, 0.297094 + 0.485438 t, - 1.62331 - 1.18835 t}

line [10 ]={t, 1.06079 - 0.957224 t, 0.265302 - 1.17278 t}

line [11 ]={t, 0.577351 - 1. t, - 1.1547 }

line [12 ]={t, 0.651252 + 2.63242 t, - 1.11635 + 1.88495 t}

line [13 ]={t, 3.1547 + 3.73205 t, - 2.3094 }

line [14 ]={t, - 0.234285 + 0.161952 t, - 1.4988 - 0.678101 t}

line [15 ]={t, 0.365925 - 1.22615 t, - 1.71369 + 1.05911 t}

line [16 ]={t, - 0.845298 + 0.267949 t, - 2.3094 }

line [17 ]={t, 1.10819 - 1.04469 t, - 1.03437 + 1.22519 t}

line [18 ]={t, - 0.612013 + 2.05999 t, - 0.896026 - 2.448 t}

line [19 ]={t, - 0.798198 + 0.291512 t, - 0.545395 + 0.882467 t}

line [20 ]={t, 0. - 1. t, 0. }

line [21 ]={t, - 0.42265 + 0.267949 t, - 1.1547 }

line [22 ]={t, 0.267956 + 0.0717912 t, - 1.4641 + 1.0718 t}

line [23 ]={t, 1.57735 + 3.73205 t, - 1.1547 }

line [24 ]={t, - 0.247397 + 0.379879 t, - 1.58268 + 0.716051 t}

line [25 ]={t, - 0.788904 + 0.244661 t, - 0.197304 - 0.872192 t}

line [26 ]={t, 0. + 0.267949 t, 0. }

line [27 ]={t, - 0.322788 - 0.677211 t, - 1.29112 + 1.29112 t}

We  can  now  check  with  an incidence  matrix  using  pLineIntersectionMD  .  We  make  this  a little  compli -

cated  for  later  use  . Note  an entry  0 means  the  lines  are  skew,  1 means  they  are  the  same,  3 means  they  

intersect  in the  affine  plane  and  4 is an infinite  intersection,  that  is the  lines  are  parallel  in affine  3 

space.

In[  ]:= lineList = Range [27]

Out[  ]= {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,

14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27}
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In[  ]:= incidence =

SparseArray [Flatten [Table [{i, j} → Length [pLineIntersectionMD [line [lineList 〚i〛],
line [lineList 〚j〛], t, {x, y, z}, .003 ]], {i, 27}, {j, 27}], 1]]

Out[  ]= SparseArray  Specified elements : 297

Dimensions : {27, 27}


In[  ]:= M = Join [Partition [Prepend [lineList , 0], 1], Prepend [incidence , lineList ], 2];

Grid [M,

Background → {None, None, {{{1, 1}, {1, 28}} → LightGray , {{1, 28}, {1, 1}} → LightGray }}]

Out[  ]=

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

1 1 0 3 3 0 0 0 3 0 0 3 0 0 3 3 3 3 3 0 0 0 3 0 0 0 0 0

2 0 1 3 3 0 3 3 0 0 0 3 0 3 0 0 0 3 3 0 0 0 0 0 0 3 3 0

3 3 3 1 0 0 0 0 0 3 3 0 3 3 3 0 0 0 0 3 3 3 0 0 0 0 0 0

4 3 3 0 1 0 3 0 0 3 3 0 0 0 0 0 3 0 0 0 3 0 0 3 3 0 0 3

5 0 0 0 0 1 3 0 0 3 3 4 0 3 3 0 3 3 3 0 4 0 0 0 0 0 0 0

6 0 3 0 3 3 1 0 3 0 0 0 3 0 3 3 0 0 0 3 0 3 3 0 0 0 0 0

7 0 3 0 0 0 0 1 0 0 3 0 3 0 3 3 3 0 3 0 3 0 3 3 0 0 0 0

8 3 0 0 0 0 3 0 1 0 3 0 3 4 0 0 0 0 3 0 3 0 0 4 0 3 3 0

9 0 0 3 3 3 0 0 0 1 0 0 3 0 0 3 0 0 3 0 0 0 3 3 0 3 3 0

10 0 0 3 3 3 0 3 3 0 1 0 0 0 0 0 0 3 0 0 0 3 3 0 3 3 0 0

11 3 3 0 0 4 0 0 0 0 0 1 3 0 0 0 0 0 0 0 4 3 3 3 3 3 0 0

12 0 0 3 0 0 3 3 3 3 0 3 1 0 0 0 3 3 0 0 0 0 0 0 3 0 0 3

13 0 3 3 0 3 0 0 4 0 0 0 0 1 0 3 3 0 0 0 0 0 3 4 3 0 0 3

14 3 0 3 0 3 3 3 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 3 3 3 3 3

15 3 0 0 0 0 3 3 0 3 0 0 0 3 0 1 0 3 0 0 3 3 0 0 3 3 0 0

16 3 0 0 3 3 0 3 0 0 0 0 3 3 0 0 1 0 0 3 0 4 0 0 0 3 4 0

17 3 3 0 0 3 0 0 0 0 3 0 3 0 0 3 0 1 0 3 0 0 0 3 0 0 3 3

18 3 3 0 0 3 0 3 3 3 0 0 0 0 0 0 0 0 1 3 0 3 0 0 3 0 0 3

19 0 0 3 0 0 3 0 0 0 0 0 0 0 0 0 3 3 3 1 3 0 3 3 3 3 0 0

20 0 0 3 3 4 0 3 3 0 0 4 0 0 0 3 0 0 0 3 1 0 0 0 0 0 3 3

21 0 0 3 0 0 3 0 0 0 3 3 0 0 0 3 4 0 3 0 0 1 0 3 0 0 4 3

22 3 0 0 0 0 3 3 0 3 3 3 0 3 0 0 0 0 0 3 0 0 1 0 0 0 3 3

23 0 0 0 3 0 0 3 4 3 0 3 0 4 3 0 0 3 0 3 0 3 0 1 0 0 0 0

24 0 0 0 3 0 0 0 0 0 3 3 3 3 3 3 0 0 3 3 0 0 0 0 1 0 3 0

25 0 3 0 0 0 0 0 3 3 3 3 0 0 3 3 3 0 0 3 0 0 0 0 0 1 0 3

26 0 3 0 0 0 0 0 3 3 0 0 0 0 3 0 4 3 0 0 3 4 3 0 3 0 1 0

27 0 0 0 3 0 0 0 0 0 0 0 3 3 3 0 0 3 3 0 3 3 3 0 0 3 0 1

Notice  the  1’s  lie  all  on  the  diagonal,  so all  these  lines  are  distinct.   Thus  we  have  all  27  lines.

We  re-arrange  the  lines  to find  a double  6, we  do  not  show  the  work  since  it is tedious.   Remember  that  

this  is one  example  of a double  6 in this  cubic,  but  not  the  only  one.

173   | SurfaceStoryPartII.nb



In[  ]:=

0 5 3 4 7 25 26 2 16 14 9 20 10

5 1 0 0 0 0 0 0 3 3 3 4 3

3 0 1 0 0 0 0 3 0 3 3 3 3

4 0 0 1 0 0 0 3 3 0 3 3 3

7 0 0 0 1 0 0 3 3 3 0 3 3

25 0 0 0 0 1 0 3 3 3 3 0 3

26 0 0 0 0 0 1 3 4 3 3 3 0

2 0 3 3 3 3 3 1 0 0 0 0 0

16 3 0 3 3 3 4 0 1 0 0 0 0

14 3 3 0 3 3 3 0 0 1 0 0 0

9 3 3 3 0 3 3 0 0 0 1 0 0

20 4 3 3 3 0 3 0 0 0 0 1 0

10 3 3 3 3 3 0 0 0 0 0 0 1

The  pink  squares  show  the  two  sets  of lines  are  each  mutually  skew,  the  cyan  squares  show  the  correct  

incidences  among  these  lines.   Note  that  two  of these  intersections  are  infinite.   We  can  plot  this

In[  ]:= Show [ContourPlot3D [cubic1 ⩵ 0, {x, -4, 4}, {y, -4, 4},

{z, -4, 4}, ContourStyle → Opacity [.9], Mesh → None ], ParametricPlot3D [

{line [2], line [16], line [14], line [9], line [20], line [10]}, {t, -4, 4}, PlotStyle → Green ],

ParametricPlot3D [{line [5], line [3], line [4], line [7], line [25], line [26]},

{t, -4, 4}, PlotStyle → Blue ], Axes → False, Boxed → False ]

Out[  ]=

If we  expand  the  picture  above  we  get  
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Out[  ]=

0 5 3 4 7 25 26 2 16 14 9 20 10 1 6 8 11 12 13 15 17 18 19 21 22 23 24 27

5 1 0 0 0 0 0 0 3 3 3 4 3 0 3 0 4 0 3 0 3 3 0 0 0 0 0 0

3 0 1 0 0 0 0 3 0 3 3 3 3 3 0 0 0 3 3 0 0 0 3 3 0 0 0 0

4 0 0 1 0 0 0 3 3 0 3 3 3 3 3 0 0 0 0 0 0 0 0 0 0 3 3 3

7 0 0 0 1 0 0 3 3 3 0 3 3 0 0 0 0 3 0 3 0 3 0 0 3 3 0 0

25 0 0 0 0 1 0 3 3 3 3 0 3 0 0 3 3 0 0 3 0 0 3 0 0 0 0 3

26 0 0 0 0 0 1 3 4 3 3 3 0 0 0 3 0 0 0 0 3 0 0 4 3 0 3 0

2 0 3 3 3 3 3 1 0 0 0 0 0 0 3 0 3 0 3 0 3 3 0 0 0 0 0 0

16 3 0 3 3 3 4 0 1 0 0 0 0 3 0 0 0 3 3 0 0 0 3 4 0 0 0 0

14 3 3 0 3 3 3 0 0 1 0 0 0 3 3 0 0 0 0 0 0 0 0 0 0 3 3 3

9 3 3 3 0 3 3 0 0 0 1 0 0 0 0 0 0 3 0 3 0 3 0 0 3 3 0 0

20 4 3 3 3 0 3 0 0 0 0 1 0 0 0 3 4 0 0 3 0 0 3 0 0 0 0 3

10 3 3 3 3 3 0 0 0 0 0 0 1 0 0 3 0 0 0 0 3 0 0 3 3 0 3 0

we see  each  of the  remaining  lines  intersect  the  double  6 in exactly  4 points.   Most  of these  intersec -

tions  involve  only  two  lines  intersection.   Rarely  we  may  have  3 lines  intersecting  if the  intersection  of 

the  planes  containing  the  double  2 goes  through  the  intersection  of two  of the  lines  of  the  double  2.  In 

the  literature  these  are  called  an  Eckardt  points.    These  are  easy  to identify  from  the  incidence  matrix  

regarding  the  incidence  matrix  as an Association.

In[  ]:= otherAssoc = Table [{i, j} → pLineIntersectionMD [line [i], line [j], t, {x, y, z}, .003 ],

{i, 26}, {j, i + 1, 27}];

V = Select [Values [otherAssoc ], Length [#] > 2 &];

st = Select [Tally [V], #〚2〛 > 1 &]

Out[  ]= {{{0., 0., 0.}, 3}}

So the  only  Eckardt  point  is the  origin  .  Finding  the  lines

In[  ]:= KeySelect [otherAssoc , otherAssoc [#] ⩵ {0, 0, 0} &]

Out[  ]= {8, 20} → {0., 0., 0.}, {8, 26} → {0., 0., 0.}, {20, 26} → {0., 0., 0.}

So the  single  Eckardt  is the  intersection  of lines  20 and  26 of the  double  2 and  8 outside  the  double  2.  
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In[  ]:= Show [ContourPlot3D [cubic1 ⩵ 0, {x, -2, 2}, {y, -2, 2}, {z, -2, 2}, Mesh → None ],

ParametricPlot3D [{line [8], line [20], line [26]}, {t, -3, 3}, PlotStyle → {Red, Blue, Blue}],

Axes → False, Boxed → False ]

Out[  ]=

3.8 Finding  lines,  Clebsch  Diagonal  Cubic

My second  example  is the  famous   surface  known  as the  Clebsch  diagonal  Cubic.  Not  only  does  this  

surface  have  27 real  lines  they  lie  in such  a way  as to make  a pleasing  plot.   This  is also  symmetric  in all  

the  variables.   One  discussion  is at http://mathworld.wolfram.com/ClebschDiagonalCubic.html.  This  is 

also  known  in the  literature  as Klein’s  icosahedral  cubic.   A more  complete  discussion  with  moving  

pictures  is by  John  Baez  in https://blogs.ams.org/visualinsight/2016/03/01/clebsch-surface/ where  he

includes  several  plots  by the  science  fiction  writer  Greg  Egan.   So  I will  not  attempt  a full  computation   

Another  interesting  thing  is that  there  are  reportedly  10 Eckardt  points.   I will  find  some  of these  points,  

following  the  method  above.

In[  ]:= cdc = 81 (x^3 + y^3 + z^3) - 189 (x^2 y + x^2 z + y^2 x + y^2 z + z^2 x + z^2 y) +

54 x y z + 126 (x y + x z + y z) - 9 (x^2 + y^2 + z^2) - 9 (x + y + z) + 1;

We  first  find  all  the  lines  .
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In[  ]:= cdcEq = Collect [Expand [cdc /. Thread [{x, y, z} → F1]], t]

Out[  ]= 1 - 9 a1 - 9 a12 + 81 a13 - 9 a2 + 126 a1 a2 - 189 a12 a2 - 9 a22 - 189 a1 a22 + 81 a23 +

-9 + 126 a1 - 189 a12 + 126 a2 + 54 a1 a2 - 189 a22 - 9 b1 - 18 a1 b1 + 243 a12 b1 + 126 a2 b1 -

378 a1 a2 b1 - 189 a22 b1 - 9 b2 + 126 a1 b2 - 189 a12 b2 - 18 a2 b2 - 378 a1 a2 b2 + 243 a22 b2
t + -9 - 189 a1 - 189 a2 + 126 b1 - 378 a1 b1 + 54 a2 b1 - 9 b12 + 243 a1 b12 -

189 a2 b12 + 126 b2 + 54 a1 b2 - 378 a2 b2 + 126 b1 b2 -

378 a1 b1 b2 - 378 a2 b1 b2 - 9 b22 - 189 a1 b22 + 243 a2 b22 t2 +

81 - 189 b1 - 189 b12 + 81 b13 - 189 b2 + 54 b1 b2 - 189 b12 b2 - 189 b22 - 189 b1 b22 + 81 b23 t3

In[  ]:= cdc0 = 1 - 9 a1 - 9 a12 + 81 a13 - 9 a2 + 126 a1 a2 - 189 a12 a2 - 9 a22 - 189 a1 a22 + 81 a23;

cdc1 = -9 + 126 a1 - 189 a12 + 126 a2 + 54 a1 a2 - 189 a22 - 9 b1 - 18 a1 b1 + 243 a12 b1 + 126 a2 b1 -

378 a1 a2 b1 - 189 a22 b1 - 9 b2 + 126 a1 b2 - 189 a12 b2 - 18 a2 b2 - 378 a1 a2 b2 + 243 a22 b2;

cdc2 = -9 - 189 a1 - 189 a2 + 126 b1 - 378 a1 b1 + 54 a2 b1 - 9 b12 + 243 a1 b12 - 189 a2 b12 + 126 b2 +

54 a1 b2 - 378 a2 b2 + 126 b1 b2 - 378 a1 b1 b2 - 378 a2 b1 b2 - 9 b22 - 189 a1 b22 + 243 a2 b22;

cdc3 = 81 - 189 b1 - 189 b12 + 81 b13 - 189 b2 + 54 b1 b2 - 189 b12 b2 - 189 b22 - 189 b1 b22 + 81 b23;

In[  ]:= solcdc = NSolve [{cdc0, cdc1, cdc2, cdc3}];

Do[Print ["cline [", i, "]=", cline [i] = F1 /. solcdc 〚i〛], {i, 22}]
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cline [1]={t, 2.2847 - 5.23607 t, 0.872678 - 2.23607 t}

cline [2]={t, 0.390273 - 0.447214 t, 0.241202 + 2.34164 t}

cline [3]={t, - 0.333333 + 3. t, 0. }

cline [4]={t, 0.0486327 - 0.763932 t, 0.127322 + 2.23607 t}

cline [5]={t, 0.127322 + 2.23607 t, 0.0486327 - 0.763932 t}

cline [6]={t, 0., - 0.333333 + 3. t}

cline [7]={t, 0.666667 - 1. t, 0.333333 }

cline [8]={t, 0.269672 - 2.92705 t, 0.063661 - 1.30902 t}

cline [9]={t, 0.241202 + 2.34164 t, 0.390273 - 0.447214 t}

cline [10 ]={t, 0.872678 - 2.23607 t, 2.2847 - 5.23607 t}

cline [11 ]={t, 0.333333 - 1. t, 0. }

cline [12 ]={t, - 0.333333 , 0. - 1. t}

cline [13 ]={t, 0.436339 - 0.190983 t, - 0.103006 + 0.427051 t}

cline [14 ]={t, 0.063661 - 1.30902 t, 0.269672 - 2.92705 t}

cline [15 ]={t, 0.0921311 - 0.341641 t, - 0.0569401 + 0.447214 t}

cline [16 ]={t, - 0.0569401 + 0.447214 t, 0.0921311 - 0.341641 t}

cline [17 ]={t, 0. - 1. t, - 0.333333 }

cline [18 ]={t, 0., 0.333333 - 1. t}

cline [19 ]={t, 0., 0.111111 + 0.333333 t}

cline [20 ]={t, 0.333333 , 0.666667 - 1. t}

cline [21 ]={t, 0.111111 + 0.333333 t, 0. }

cline [22 ]={t, - 0.103006 + 0.427051 t, 0.436339 - 0.190983 t}

In[  ]:= Length [solcdc ]

Out[  ]= 22

So we  don'  t get  all  the  lines  but  one  can  get  the  other  lines  by symmetry  .

In[  ]:= cline [23] = {0, -1 / 3 + 3 t, t};

cline [24] = {0, 1 / 3 - t, t};

cline [25] = {-1 / 3, -t, t};

cline [26] = {0, t, -1 / 3 + 3 t};

cline [27] = {1 / 3, t, 2 / 3 - t};

In[  ]:= Simplify [cdc /. Thread [{x, y, z} → cline [27]]]

Out[  ]= 0

Our  incidence  chart  can  be calculated  .
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In[  ]:= lineList = Range [27]

Out[  ]= {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,

14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27}

In[  ]:= incidence2 =

SparseArray [Flatten [Table [{i, j} → Length [pLineIntersectionMD [cline [lineList 〚i〛],
cline [lineList 〚j〛], t, {x, y, z}, .003 ]], {i, 27}, {j, 27}], 1]]

Out[  ]= SparseArray  Specified elements : 297

Dimensions : {27, 27}


In[  ]:= M2 = Join [Partition [Prepend [lineList , 0], 1], Prepend [incidence2 , lineList ], 2];

Grid [M2,

Background → {None, None, {{{1, 1}, {1, 28}} → LightGray , {{1, 28}, {1, 1}} → LightGray }}]

Out[  ]=

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

1 1 0 0 0 0 0 0 3 3 3 0 0 3 0 0 3 3 3 0 0 3 0 3 0 0 0 3

2 0 1 0 3 0 3 0 3 3 3 3 0 3 0 0 0 0 0 0 3 0 0 3 0 3 0 0

3 0 0 1 0 0 3 0 0 3 0 3 3 3 3 3 0 0 0 0 0 3 0 3 0 0 0 3

4 0 3 0 1 3 0 0 0 0 0 0 0 0 3 3 0 3 3 0 0 3 3 3 0 0 0 3

5 0 0 0 3 1 0 0 3 3 0 3 3 3 0 0 3 0 0 3 0 0 0 0 0 0 3 3

6 0 3 3 0 0 1 0 3 0 0 0 0 0 0 0 3 3 3 3 0 0 3 0 0 0 3 3

7 0 0 0 0 0 0 1 3 3 0 4 0 0 0 3 0 4 0 3 3 0 3 3 0 0 0 3

8 3 3 0 0 3 3 3 1 0 0 0 3 0 3 3 0 0 0 0 0 3 0 0 3 0 0 0

9 3 3 3 0 3 0 3 0 1 0 0 0 0 3 0 0 0 3 0 0 0 3 0 0 3 3 0

10 3 3 0 0 0 0 0 0 0 1 3 3 0 3 3 0 0 0 3 0 0 3 0 0 0 3 3

11 0 3 3 0 3 0 4 0 0 3 1 0 0 0 0 3 4 3 0 0 3 0 0 3 0 0 0

12 0 0 3 0 3 0 0 3 0 3 0 1 0 0 0 0 3 4 0 4 0 3 3 0 3 0 0

13 3 3 3 0 3 0 0 0 0 0 0 0 1 0 3 0 3 0 3 3 0 3 0 3 0 0 0

14 0 0 3 3 0 0 0 3 3 3 0 0 0 1 0 3 3 0 3 3 0 0 0 3 0 0 0

15 0 0 3 3 0 0 3 3 0 3 0 0 3 0 1 3 0 3 0 0 0 0 0 0 3 3 0

16 3 0 0 0 3 3 0 0 0 0 3 0 0 3 3 1 0 0 0 3 0 3 3 0 3 0 0

17 3 0 0 3 0 3 4 0 0 0 4 3 3 3 0 0 1 0 0 0 0 0 0 0 3 3 0

18 3 0 0 3 0 3 0 0 3 0 3 4 0 0 3 0 0 1 3 4 0 0 0 3 0 0 0

19 0 0 0 0 3 3 3 0 0 3 0 0 3 3 0 0 0 3 1 0 3 0 3 0 3 0 0

20 0 3 0 0 0 0 3 0 0 0 0 4 3 3 0 3 0 4 0 1 3 0 0 0 0 3 3

21 3 0 3 3 0 0 0 3 0 0 3 0 0 0 0 0 0 0 3 3 1 3 0 0 3 3 0

22 0 0 0 3 0 3 3 0 3 3 0 3 3 0 0 3 0 0 0 0 3 1 0 3 0 0 0

23 3 3 3 3 0 0 3 0 0 0 0 3 0 0 0 3 0 0 3 0 0 0 1 3 0 3 0

24 0 0 0 0 0 0 0 3 0 0 3 0 3 3 0 0 0 3 0 0 0 3 3 1 4 3 4

25 0 3 0 0 0 0 0 0 3 0 0 3 0 0 3 3 3 0 3 0 3 0 0 4 1 0 4

26 0 0 0 0 3 3 0 0 3 3 0 0 0 0 3 0 3 0 0 3 3 0 3 3 0 1 0

27 3 0 3 3 3 3 3 0 0 3 0 0 0 0 0 0 0 0 0 3 0 0 0 4 4 0 1

 We  don’t  have  any  duplicates  so this  must  be all.

We  now  look  for  the  famous  Eckart  points  in this  example.
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In[  ]:= otherAssoc2 = Table [{i, j} → pLineIntersectionMD [cline [i], cline [j], t, {x, y, z}, .003 ],

{i, 26}, {j, i + 1, 27}];

V2 = KeySelect [otherAssoc2 , Length [otherAssoc2 [#]] ⩵ 3 &];

In[  ]:= st = Select [Tally [Values [V2], Norm [#1 - #2] < 1.*^-9 &], #〚2〛 > 1 &]

Out[  ]= {{0.166667 , 0.166667 , 0.}, 3}, 1.4866 × 10-14, -0.333333 , -4.91517 × 10-15 , 3,
-8.17955 × 10-14, 2.72734 × 10-14, -0.333333 , 3,
0.166667 , -1.48845 × 10-16, 0.166667 , 3, {{0.333333 , 0.333333 , 0.333333 }, 3},

-0.333333 , 1.02521 × 10-14, -1.01915 × 10-14 , 3,
1.04294 × 10-17, 0.166667 , 0.166667 , 3

In[  ]:= KeySelect [V2, Norm [V2[#] - st〚1, 1〛] < 1.*^-9 &]

Out[  ]= {3, 11} → {0.166667 , 0.166667 , 0.},

{3, 21} → {0.166667 , 0.166667 , 0.}, {11, 21} → {0.166667 , 0.166667 , 0.}

In[  ]:= KeySelect [V2, Norm [V2[#] - st〚2, 1〛] < 1.*^-9 &]

Out[  ]=  {3, 12} → 1.4866 × 10-14, -0.333333 , -4.91517 × 10-15 ,
{3, 23} → 2.1065 × 10-15, -0.333333 , -2.1065 × 10-15 ,
{12, 23} → -2.79385 × 10-15, -0.333333 , 8.13327 × 10-15 

In[  ]:= KeySelect [V2, Norm [V2[#] - st〚3, 1〛] < 1.*^-9 &]

Out[  ]=  {6, 17} → -8.17955 × 10-14, 2.72734 × 10-14, -0.333333 ,
{6, 26} → -4.60317 × 10-15, 4.3122 × 10-15, -0.333333 ,
{17, 26} → 2.27423 × 10-14, -6.82551 × 10-14, -0.333333 

In[  ]:= KeySelect [V2, Norm [V2[#] - st〚4, 1〛] < 1.*^-9 &]

Out[  ]=  {6, 18} → 0.166667 , -1.48845 × 10-16, 0.166667 ,
{6, 19} → 0.166667 , 6.92135 × 10-18, 0.166667 ,
{18, 19} → 0.166667 , -4.11295 × 10-17, 0.166667 

In[  ]:= KeySelect [V2, Norm [V2[#] - st〚5, 1〛] < 1.*^-9 &]

Out[  ]= {7, 20} → {0.333333 , 0.333333 , 0.333333 },

{7, 27} → {0.333333 , 0.333333 , 0.333333 }, {20, 27} → {0.333333 , 0.333333 , 0.333333 }

In[  ]:= KeySelect [V2, Norm [V2[#] - st〚6, 1〛] < 1.*^-9 &]

Out[  ]=  {19, 21} → -0.333333 , 1.02521 × 10-14, -1.01915 × 10-14 ,
{19, 25} → -0.333333 , 2.80014 × 10-14, -8.34944 × 10-14 ,
{21, 25} → -0.333333 , -5.30136 × 10-14, 1.76712 × 10-14 

In[  ]:= KeySelect [V2, Norm [V2[#] - st〚7, 1〛] < 1.*^-9 &]

Out[  ]=  {23, 24} → 1.04294 × 10-17, 0.166667 , 0.166667 ,
{23, 26} → 1.88326 × 10-18, 0.166667 , 0.166667 ,
{24, 26} → 5.73977 × 10-17, 0.166667 , 0.166667 
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So we  find  7 Eckardt  points  ,these  are  all  rational.   The  others  are  infinite.

In[  ]:= epoints = {{1 / 6, 1 / 6, 0}, {0, -1 / 3, 0}, {0, 0, -1 / 3},

{1 / 6, 1 / 6, 0}, {1 / 3, 1 / 3, 1 / 3}, {-1 / 3, 0, 0}, {0, 1 / 6, 1 / 6, 0}};

Note  by symmetry  there  are  only  3 different  orbits,  one  of length  1.

In[  ]:= elines = DeleteDuplicates [

{3, 11, 21, 12, 23, 6, 17, 26, 6, 18, 19, 7, 20, 27, 19, 21, 25, 23, 24, 26}]

Out[  ]= {3, 11, 21, 12, 23, 6, 17, 26, 18, 19, 7, 20, 27, 25, 24}

In[  ]:= Show [ContourPlot3D [cdc ⩵ 0, {x, -1, 1},

{y, -1, 1}, {z, -1, 1}, Mesh → None, ContourStyle → Opacity [0.9]],

ParametricPlot3D [cline [#] & /@ elines, {t, -3, 3}, PlotStyle → Green ],

Axes → False, Boxed → False ]

Out[  ]=
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4. Fourth Degree and Related Surfaces
We  already  saw  in Chapter  1 some  surfaces  related  to the  torus.   Here  we  will  consider  these  again  as 

well  as some  other  4 degree  surfaces.   But  while  there  were  large  continuous  groups  of symmetries  in 

degree  2 the  symmetry  group  of higher  degree  surfaces  will  generally  be  finite.   So  we  start  our  discus -

sion  with  the  geometric  point  groups.   As  a comment  one  source  is the  book  Geometry  and  Symmetry   

by Paul  B.  Yale  (Holden  Day,  1968).   He  also  was  one  of my  undergraduate  professors,  he  made  me  get  

excited  about  abstract  algebra  while  he was  writing  this  book.   Unfortunately  it is written  in 1960’s  

algebra  speak  with  hardly  any  matrix  representations  so this  book  is not  very  relevant  to this  

discussion.

4.1 Geometric Point groups and applications
We  remind  our  readers  that  in mathematics  a matrix  group   is a set  of n×n matrices  for  some  fixed  n 

which  satisfy  the  two  rules:   1) the  product  of any  two  matrices  in the  group  is in the  group  and   2) the  

inverse  of any  matrix  in the  group  is in the  group.   In particular  the  set  of projective  linear  symmetries  of 

a surfaces  forms  a group.   We  caution  that  multiplication  of matrices  is not  commutative,  possibly  

A.B ≠ B.A,  so these  groups  do  not  satisfy  a commutative  law.   To  an algebraist  this  makes  them  more  

interesting.   They  do,  because  of matrix  multiplication  in general,  satisfy  the  associative  

law (A.B).C = A.(B.C) however.   The  identity  n×n  matrix  with  ones   down  the  main  diagonal  and  0 else -

where  is automatically  in every  matrix  group  from  rules  1) and  2) above.

As an example,  a well  known  type  of matrix  groups  are  the  crystallographic  point  groups.    There  is a 

brief  discussion  in Wolfram  Math  World  but  I recommend  instead  the  article  by this  name  in Wikipedia.  

We  will  loosely  follow  the  standard  notation  in these  sources  but  must  worry  about  compatibility  with  

Mathematica  variables.

4.1.1 Tetrahedral  groups

The  so called  tetrahedral  groups , generally  denoted  T, are  perhaps  better  called  cubic  groups  as in 

[Yale].    These  will  give  a building  base  for  the  other  groups.   We  give  an inductive  construction,  the  

reader  should  notice  the  pattern.   Tet2  and  Tet3  are  given  as 2×2,  3×3 matrices  to facilitate  the  induc -

tive  construction  but  must  be expanded  to 4×4 matrices  using  2 or 1 applications  of m2TM before  using  

fltMD or  FLTNS.

In[  ]:= Tet2 = {{{1, 0}, {0, 1}}, {{0, 1}, {1, 0}}};

MatrixForm [#] & /@ Tet2

Out[  ]=  1 0

0 1
,

0 1

1 0

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In[  ]:= Tet3 = Join [{{1, 0, 0}, Prepend [#〚1〛, 0], Prepend [#〚2〛, 0]} & /@ Tet2,

{Prepend [#〚1〛, 0], {1, 0, 0}, Prepend [#〚2〛, 0]} & /@ Tet2,

{Prepend [#〚1〛, 0], Prepend [#〚2〛, 0], {1, 0, 0}} & /@ Tet2 ];

MatrixForm [#] & /@

Tet3

Out[  ]= 
1 0 0

0 1 0

0 0 1

,

1 0 0

0 0 1

0 1 0

,

0 1 0

1 0 0

0 0 1

,

0 0 1

1 0 0

0 1 0

,

0 1 0

0 0 1

1 0 0

,

0 0 1

0 1 0

1 0 0



In[  ]:= Tet4 = Join [{{1, 0, 0, 0}, Prepend [#〚1〛, 0], Prepend [#〚2〛, 0], Prepend [#〚3〛, 0]} & /@ Tet3,

{Prepend [#〚1〛, 0], {1, 0, 0, 0}, Prepend [#〚2〛, 0], Prepend [#〚3〛, 0]} & /@ Tet3,

{Prepend [#〚1〛, 0], Prepend [#〚2〛, 0], {1, 0, 0, 0}, Prepend [#〚3〛, 0]} & /@ Tet3,

{Prepend [#〚1〛, 0], Prepend [#〚2〛, 0], Prepend [#〚3〛, 0], {1, 0, 0, 0}} & /@ Tet3 ];

MatrixForm [#] & /@

Tet4

Out[  ]= 
1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

,

1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

,

1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

,

1 0 0 0

0 0 0 1

0 1 0 0

0 0 1 0

,

1 0 0 0

0 0 1 0

0 0 0 1

0 1 0 0

,

1 0 0 0

0 0 0 1

0 0 1 0

0 1 0 0

,

0 1 0 0

1 0 0 0

0 0 1 0

0 0 0 1

,

0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0

,

0 0 1 0

1 0 0 0

0 1 0 0

0 0 0 1

,

0 0 0 1

1 0 0 0

0 1 0 0

0 0 1 0

,

0 0 1 0

1 0 0 0

0 0 0 1

0 1 0 0

,

0 0 0 1

1 0 0 0

0 0 1 0

0 1 0 0

,

0 1 0 0

0 0 1 0

1 0 0 0

0 0 0 1

,

0 1 0 0

0 0 0 1

1 0 0 0

0 0 1 0

,

0 0 1 0

0 1 0 0

1 0 0 0

0 0 0 1

,

0 0 0 1

0 1 0 0

1 0 0 0

0 0 1 0

,

0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

,

0 0 0 1

0 0 1 0

1 0 0 0

0 1 0 0

,

0 1 0 0

0 0 1 0

0 0 0 1

1 0 0 0

,

0 1 0 0

0 0 0 1

0 0 1 0

1 0 0 0

,

0 0 1 0

0 1 0 0

0 0 0 1

1 0 0 0

,

0 0 0 1

0 1 0 0

0 0 1 0

1 0 0 0

,

0 0 1 0

0 0 0 1

0 1 0 0

1 0 0 0

,

0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0



These  have  exactly  one  1 in each  row  and  column.   Note  there  are   2 symmetry  matrices  in Tet2 , 6 in 

Tet3 and   24 in Tet4.

As examples,  Tet3  provides  symmetries  of several  cubic  surfaces.   The  first  example  is the  Fermat  

surface

In[  ]:= fermat = x^3 + y^3 + z^3 + 1

Out[  ]= 1 + x3 + y3 + z3

Note  that  
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In[  ]:= FLTNS [fermat, m2TM [Tet3〚RandomInteger [{1, 6}]〛], {x, y, z}]

Out[  ]= 1 + x3 + y3 + z3

We  saw  that  this  surface  had  3 real  lines  given  parametrically

In[  ]:= lf1 = {t, -t, -1};

lf2 = {t, -1, -t};

lf3 = {-1, t, -t};

Permuting,  say  lf1 ,  with  the  6 symmetries  in Tet3

In[  ]:= Column [Table [fltMD [lf1, m2TM [Tet3〚n〛]], {n, 6}]]

Out[  ]=

{t, -t, -1}

{t, -1, -t}

{-t, t, -1}

{-1, t, -t}

{-t, -1, t}

{-1, -t, t}

sends  this  line  to one  of the  three  .  You  do  need  to notice  that  , say   for   {-t, t, -1}, changing  the  sign  on  

both  t’s merely  changes  the  direction  of the  parameterization,  so {-t, t, -1} is the  same  line  as 

{t, -t, -1}.  The  example  also  works  if lf1  is replaced  by lf2 or  lf3.

Another  cubic  example  is the  Clebsch  Diagonal  Cubic.   The  equation  below  makes  it clear   that  permut -

ing  variables  makes  no  difference.

In[  ]:= cdc = 81 (x^3 + y^3 + z^3) - 189 (x^2 y + x^2 z + y^2 x + y^2 z + z^2 x + z^2 y) +

54 x y z + 126 (x y + x z + y z) - 9 (x^2 + y^2 + z^2) - 9 (x + y + z) + 1;

so for  example

In[  ]:= cdc2 = FLTNS [cdc, m2TM [Tet3〚3〛], {x, y, z}]

Out[  ]= 1 - 9 x - 9 x2 + 81 x3 - 9 y + 126 x y - 189 x2 y - 9 y2 - 189 x y2 + 81 y3 - 9 z +

126 x z - 189 x2 z + 126 y z + 54 x y z - 189 y2 z - 9 z2 - 189 x z2 - 189 y z2 + 81 z3

In[  ]:= Expand [cdc2 - cdc]

Out[  ]= 0

Here  the  real  lines  must  also  be permuted,  but  this  is more  complicated  as there  are  27 of these  .  In 

these  cubic  cases  we  do  not  claim  that  these  are  the  only  affine  symmetries,    but  your  author  does  not  

know  of any  others  .

4.1.2 Octahedral Groups
These  also  are  considered  cubic  groups  as we  will  see  in our  example  .  Essentially  we  now  let  the  

entries  in our  matrices  take  values  in {1, -1} instead  of just  1.  Although  the  tetrahedral  groups  were  

given  as lists  the  rest  of our  groups  will  be  given  as functions  so we  don’t  need  to list  them  all.   
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The  following  function  gives  all  3×3 diagonal  matrices  with  elements  in {1,-1}.   We  are  representing  

integers  in a reverse  binary  form.   In order  for  this  to work  correctly  this  function  needs  the  domain  to 

be the  set  of integers  8 through  15.

In[  ]:= unitDiag3 [m_] := Module [{j}, If[m < 8 || m > 15, Echo ["Need 8 ≤ m ≤ 15"];

Abort [],

j = Reverse [IntegerDigits [m, 2]];

{{(-1)^j〚1〛, 0, 0}, {0, (-1)^j〚2〛, 0}, {0, 0, (-1)^j〚3〛}}]]

Then  the  group  I will  call  Oh,  or Oh(3),  note  regular  capital  O here,  is the  set  of matrices  

In[  ]:= Oh[k_, m_] := m2TM [unitDiag3 [m + 7].Tet3〚k〛]

Here,  to get  each  symmetry  once,   k=1…6  and  m =1…8  .   Thus  we  will  get  48 symmetries.   Although  

they  would  generally  be  presented  as 3×3 matrices  we  will  give  them  already  as 4×4 transformation  

matrices.  

For  example  

In[  ]:= Oh[3, 6] // MatrixForm

Out[  ]//MatrixForm=

0 -1 0 0

1 0 0 0

0 0 -1 0

0 0 0 1

This  group  of symmetries  may  be familiar  as a discrete  subgroup  of symmetries  of the  sphere,  that  is 

the  well  known  orthogonal  group    (3).

In[  ]:= sphere = x^2 + y^2 + z^2 - 1

Out[  ]= -1 + x2 + y2 + z2

In[  ]:= FLTNS [sphere, Oh[3, 6], {x, y, z}]

Out[  ]= -1 + x2 + y2 + z2

Of course  the  orthogonal  group  is a continuous  group  and  infinite.   However  when  working  with  the  

rounded  cube  one  needs  to use  a point  group.

In[  ]:= rcube = x^4 + y^4 + z^4 - 1

Out[  ]= -1 + x4 + y4 + z4
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In[  ]:= ContourPlot3D [x^4 + y^4 + z^4 ⩵ 1, {x, -1, 1}, {y, -1, 1},

{z, -1, 1}, Mesh → None, ImageSize → Small, Axes → False, Boxed → False ]

Out[  ]=

In[  ]:= FLTNS [rcube, Oh[4, 7], {x, y, z}]

Out[  ]= -1 + x4 + y4 + z4

In[  ]:= M = m2TM [Orthogonalize [RandomReal [{-2, 2}, {3, 3}]]]

Out[  ]= {{-0.802743 , -0.570305 , 0.174226 , 0}, {-0.596262 , 0.763416 , -0.248328 , 0},

{-0.00861577 , 0.303228 , 0.952879 , 0}, {0, 0, 0, 1}}

In[  ]:= FLTNS [rcube, M, {x, y, z}]

Out[  ]= -1. + 0.521955 x4 + 0.662071 x3 y + 2.52318 x2 y2 - 0.344949 x y3 + 0.469864 y4 -

0.186999 x3 z + 0.857031 x2 y z - 1.05707 x y2 z + 0.48859 y3 z + 0.34509 x2 z2 -

0.951367 x y z2 + 0.657636 y2 z2 + 0.539357 x z3 - 0.774267 y z3 + 0.832879 z4

which  is not  a symmetry  .  So  it appears  that  one  can  only  have  finitely  many  symmetries.

The  rcube reminds  one  of some  dice  which  have  rounded  edges  to roll  more  smoothly.   The  reader  is 

reminded  that  these  transformations  do  not  all  apply  to physical  objects  as they  contain  reflections  

which  turn  your  right  hand  into  your  le�  hand  which  does  not  happen  in the  physical  world.   In some  

cases  one  may  wish  to work  with  a smaller  group,  the  symmetries  of determinant  one.

In[  ]:= Clear [k, m]

In[  ]:= SO = Reap [Do[If[ Det[Oh[k, m]] ⩵ 1, Sow[{k, m}]], {k, 6}, {m, 8}]]〚2, 1〛
Out[  ]= {{1, 1}, {1, 4}, {1, 6}, {1, 7}, {2, 2}, {2, 3}, {2, 5}, {2, 8}, {3, 2}, {3, 3}, {3, 5}, {3, 8},

{4, 1}, {4, 4}, {4, 6}, {4, 7}, {5, 1}, {5, 4}, {5, 6}, {5, 7}, {6, 2}, {6, 3}, {6, 5}, {6, 8}}

There  are  24 physical  symmetries  .  For  example

In[  ]:= MatrixForm [Oh[2, 8]]

Out[  ]//MatrixForm=

-1 0 0 0

0 0 -1 0

0 -1 0 0

0 0 0 1

Note  that  as in 4.2  any  symmetry  of the  rcube transfers  to a symmetry  of any  surface  projectively  
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equivalent  to the  rcube.  An  example  motivated  by my  breakfast  today  is

In[  ]:= K = {{1, 0, 0, 0}, {0, 1, 0, 0}, {0, 0, .5, 0}, {0, 0, 0, 1}}

Out[  ]= {{1, 0, 0, 0}, {0, 1, 0, 0}, {0, 0, 0.5, 0}, {0, 0, 0, 1}}

In[  ]:= jellyDonut = FLTNS [rcube, K, {x, y, z}]

Out[  ]= -1. + 1. x4 + 1. y4 + 16. z4

In[  ]:= jrot = K.Oh[2, 3].Inverse [K]

Out[  ]= {{1., 0., 0., 0.}, {0., 0., -2., 0.}, {0., 0.5, 0., 0.}, {0., 0., 0., 1.}}

To see  this  as a rotation  of the  jelly  Donut  

In[  ]:= FLTNS [jellyDonut , jrot, {x, y, z}]

Out[  ]= -1. + 1. x4 + 1. y4 + 16. z4

Note  that  point

In[  ]:= pjd = {0, 0, .5};

jellyDonut /. Thread [{x, y, z} → pjd]

Out[  ]= 0.

is on  my  jellyDonut  . Rotating

In[  ]:= qjd = fltMD [pjd, jrot ]

Out[  ]= {0., -1., 0.}

In[  ]:= ImageCrop [Show [ContourPlot3D [jellyDonut ⩵ 0, {x, -1, 1},

{y, -1, 1}, {z, -1, 1}, Mesh → None, ContourStyle → LightPink ],

Graphics3D [{PointSize [.03], {Blue, Point [pjd]}, {Red, Point [qjd]}}],

Axes → False, Boxed → False ]]

Out[  ]=

Once  again,  this  is a theoretical  rotation,  do  not  try  this  on  your  own  jelly  donut.

4.1.2  The quartic  hyperboloid.

The  quartic  hyperboloid  is the  surface  with  equation
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In[  ]:= qhyp = x^4 + y^4 - z^4 - 1

Out[  ]= -1 + x4 + y4 - z4

In[  ]:= ContourPlot3D [qhyp ⩵ 0, {x, -2, 2}, {y, -2, 2}, {z, -2, 2},

Mesh → None, ImageSize → Small, Axes → False, Boxed → False ]

Out[  ]=

We  can  think  of this  as an opened  box,   so affine  symmetries  are  those  symmetries  of Oh  that  don’t  

move  the  upper  and  lower  faces  of the rcube.  In fact  we  can  start  with  the  symmetries  of the  quadric

hyperboloid  which  are  in Oh.

In[  ]:= ohyp =

Reap [Do[If[FLTNS [x^2 + y^2 - z^2 - 1, Oh[k, m], {x, y, z}] ⩵ x^2 + y^2 - z^2 - 1, Sow[{k, m}]],

{k, 6}, {m, 8}]]〚2, 1〛

Out[  ]= {{1, 1}, {1, 2}, {1, 3}, {1, 4}, {1, 5}, {1, 6}, {1, 7},

{1, 8}, {3, 1}, {3, 2}, {3, 3}, {3, 4}, {3, 5}, {3, 6}, {3, 7}, {3, 8}}

In[  ]:= MatrixForm [Oh @@ #] & /@ ohyp

Out[  ]= 
1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

,

-1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

,

1 0 0 0

0 -1 0 0

0 0 1 0

0 0 0 1

,

-1 0 0 0

0 -1 0 0

0 0 1 0

0 0 0 1

,

1 0 0 0

0 1 0 0

0 0 -1 0

0 0 0 1

,

-1 0 0 0

0 1 0 0

0 0 -1 0

0 0 0 1

,

1 0 0 0

0 -1 0 0

0 0 -1 0

0 0 0 1

,

-1 0 0 0

0 -1 0 0

0 0 -1 0

0 0 0 1

,

0 1 0 0

1 0 0 0

0 0 1 0

0 0 0 1

,

0 -1 0 0

1 0 0 0

0 0 1 0

0 0 0 1

,

0 1 0 0

-1 0 0 0

0 0 1 0

0 0 0 1

,

0 -1 0 0

-1 0 0 0

0 0 1 0

0 0 0 1

,

0 1 0 0

1 0 0 0

0 0 -1 0

0 0 0 1

,

0 -1 0 0

1 0 0 0

0 0 -1 0

0 0 0 1

,

0 1 0 0

-1 0 0 0

0 0 -1 0

0 0 0 1

,

0 -1 0 0

-1 0 0 0

0 0 -1 0

0 0 0 1



Note  that  these  all  have  the  form  of matrices  in ℍ (4)  of Chapter  2 of the  le�  type,  except  with  entries  

restricted  to {0,-1,1}.

The  interesting  thing  is these  discrete   symmetries  also  work  for  the  quartic  hyperboloid
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In[  ]:= FLTNS [qhyp, Oh @@ ohyp〚RandomInteger [{1, 16}]〛, {x, y, z}]

Out[  ]= -1 + x4 + y4 - z4

But  a general  symmetry  in ℍ (4)  of that  type  does  not  work

In[  ]:= A1 =

0.5814431788612586` 0.8135870142496832` 0.` 0.`

0.8135870142496833` -0.5814431788612587` 0.` 0.`

0.` 0.` 0.47455284783002816` 0.8802270131144638`

0.` 0.` 0.8802270131144637` -0.4745528478300281`

Out[  ]= {{0.581443 , 0.813587 , 0., 0.}, {0.813587 , -0.581443 , 0., 0.},

{0., 0., 0.474553 , 0.880227 }, {0., 0., 0.880227 , -0.474553 }}

In[  ]:= FLTNS [qhyp, A1, {x, y, z}]

Out[  ]= -0.65103 + 0.552439 x4 - 0.612791 x3 y + 2.68537 x2 y2 + 0.612791 x y3 +

0.552439 y4 - 0.918302 z - 2.09382 z2 + 0.918302 z3 - 0.65103 z4

For  qhyp we  don’t  have  circles  on  the  surface  to work  with  be we  can  see  the  results  of a symmetry  by  

looking  at arrows  from  the  point  to the  image  point.

For  example  start  with  point  {1,0,0}  on  qhyp and  apply  twice

In[  ]:= A2 = Oh[3, 6]

Out[  ]= {{0, -1, 0, 0}, {1, 0, 0, 0}, {0, 0, -1, 0}, {0, 0, 0, 1}}

In[  ]:= fltMD [{1, 0, 0}, A2]

Out[  ]= {0, 1, 0}

In[  ]:= fltMD [{0, 1, 0}, A2]

Out[  ]= {-1, 0, 0}

In[  ]:= Show [ContourPlot3D [qhyp ⩵ 0, {x, -2, 2}, {y, -2, 2}, {z, -2, 2},

Mesh → None, ContourStyle → Opacity [.55], Axes → False, Boxed → False ],

Graphics3D [{{Blue, Ball [{1, 0, 0}, .04], Ball [{0, 1, 0}, .04], Ball [{-1, 0, 0}, .04]},

{Black, Thickness [.01], Arrow [{{1, 0, 0}, {0, 1, 0}}],

Arrow [{{0, 1, 0}, {-1, 0, 0}}]}}], ImageSize → Small ]

Out[  ]=

Unlike  the  rcube which  is bounded  the  hyperboloids  have  infinite   curves  so there  can  be projective  
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symmetries.  The  maximal  form  for  the  quartic  hyperboloid  is the   cone  x4 + y4 - z4.

In[  ]:= ContourPlot3D [{x^4 + y^4 - z^4 ⩵ 0, x^2 + y^2 + z^2 ⩵ 1},

{x, -1, 1}, {y, -1, 1}, {z, -1, 1}, ContourStyle → {Orange, LightGray },

Mesh → None, Axes → False, Boxed → False, ImageSize → Small ]

Out[  ]=

To induce  a point  symmetry  of the  quadric  hyperboloid  x2 + y2 - z2 - 1  a 4×4 real  matrix  it appears  that  

the  matrix  must  be in ℍ (4)  and  Oh(4).   There  are  two  types,  we  called  le�  and  right  of these  (see  

Section  2.9  or paragraph  85 in GlobalFunctions.nb).  We  can  construct  these  as follows  :

In[  ]:= unitDiag2 [m_] := Module [{j}, If[m < 2, Abort [], j = Reverse [IntegerDigits [m, 2]];

{{(-1)^j〚1〛, 0}, {0, (-1)^j〚2〛}}]]

In[  ]:= Hyp4 [t1_, t2_, b1_, b2_, p_] := Switch [p, 1,

Join [Partition [Flatten [Riffle [unitDiag2 [b1 + 3].Tet2〚t1〛, {{0, 0}, {0, 0}}]], 4],

Partition [Flatten [Riffle [{{0, 0}, {0, 0}}, unitDiag2 [b2 + 3].Tet2〚t2〛]], 4]], 2,

Join [Partition [Flatten [Riffle [{{0, 0}, {0, 0}}, unitDiag2 [b1 + 3].Tet2〚t1〛]], 4],

Partition [Flatten [Riffle [unitDiag2 [b2 + 3].Tet2〚t2〛, {{0, 0}, {0, 0}}]], 4]]]

For  this  function  t1,t2  come  from  1,2,  while  b1,b2  go from  1 to 4, and  p goes  from  1,2.   So  we  have  128  

projective  symmetries  of the  quartic  hyperboloid.   These  all  lie  in ℍ (4)  so are  also  symmetries  of the  

quadric  hyperboloid,  but  not  vice  versa.   Note  also  if t2 = 1 and b2 = 1, 2  then  this  is in m2TM[Oh].

One  technicality  is that  transformation  matrices  are  homogeneous,  that  is a constant  multiple  of a 

transformation  gives  the  same  results.   For  example,  consider  the  IdentityMatrix[4]  and  

In[  ]:= Id = IdentityMatrix [4];

MI = -Id;

MI // MatrixForm

Out[  ]//MatrixForm=

-1 0 0 0

0 -1 0 0

0 0 -1 0

0 0 0 -1

For  the  point  
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In[  ]:= p = {-1, 0, 0};

In[  ]:= fltMD [p, Id]

fltMD [p, MI]

Out[  ]= {-1, 0, 0}

Out[  ]= {-1, 0, 0}

give  the  same  result  .  This  is actually  true  for  all  points  on  the  quartic  Hyperboloid

For  this  reason  the  function  Hyp4 above  gives  duplicate  results.   So  to count  actual  symmetries  we  can  

normalize  by

In[  ]:= Hyp4N [t1_, t2_, b1_, b2_, p_] :=

If[Total [Hyp4 [t1, t2, b1, b2, p]〚4〛] > 0, Hyp4 [t1, t2, b1, b2, p], -Hyp4 [t1, t2, b1, b2, p]]

In[  ]:= Now

Out[  ]= Sun 21 Aug 2022 10:05:11 GMT-4

In[  ]:= Length [DeleteDuplicates [

Flatten [Table [Hyp4N [t1, t2, b1, b2, p], {t1, 2}, {t2, 2}, {b1, 4}, {b2, 4}, {p, 2}], 4]]]

Out[  ]= 64

So this  group  has  only  64 distinct  symmetries  .

Here  are  some  examples,  we  must  be  a bit  careful  as this  second  type  sends  the  z-plane  to infinity.   We  

could  use  fltiMD  but  that  doesn’t  help  with  plotting.

In[  ]:= A1 = Hyp4 [2, 2, 2, 4, 2];

A1 // MatrixForm

Out[  ]//MatrixForm=

0 0 0 -1

0 0 1 0

0 -1 0 0

-1 0 0 0

In[  ]:= FLTNS [x^4 + y^4 - z^4 - 1, A1, {x, y, z}]

Out[  ]= 1 - x4 - y4 + z4

In[  ]:= P = {x, y, z} /. FindInstance [x^4 + y^4 - z^4 ⩵ 1 && z ⩵ 2, {x, y, z}, Integers , 8]

Out[  ]= {{-2, -1, 2}, {-2, 1, 2}, {-1, -2, 2}, {-1, 2, 2}, {1, -2, 2}, {1, 2, 2}, {2, -1, 2}, {2, 1, 2}}

In[  ]:= Q = fltMD [#, A1] & /@ P

Out[  ]= -
1

2
, 1,

1

2
, -

1

2
, 1, -

1

2
, {-1, 2, 2},

{-1, 2, -2}, {1, -2, -2}, {1, -2, 2}, 
1

2
, -1, -

1

2
, 

1

2
, -1,

1

2

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In[  ]:= Show [ContourPlot3D [x^4 + y^4 - z^4 ⩵ 1, {x, -3, 3}, {y, -3, 3}, {z, -3, 3}, Mesh → None,

Axes → False, Boxed → False, ContourStyle → Opacity [0.55 ]], Graphics3D [

{{Blue, PointSize [.02], Point [P]}, {Green, PointSize [.02], Point [Q]}}, ImageSize → Small ]]

Out[  ]=

So this  reminds  us of the  symmetries  of the  quadric  hyperboloid  in Chapter  2 where  the  images  of 

points  of z-height  2 lie  on  a vertical  curve.   I will  make  this  more  precise  in the  next  sub-section.

4.1.3 An orbit in the quartic  hyperboloid

The   orbit   of  a point  p under  a group  of symmetries  is the  set  of points  obtained  by applying  all  the  

symmetries  in the  group  to this  point.   In Chapter  2 the  set  of projective  symmetries  of the  quadric  

hyperboloid  was  shown,  in two  ways,  to be transitive,  that  is,  every  point  of the  hyperboloid  is in the

orbit  of any  given  point.   This  concept  of orbit  is more  interesting  when  we  look  at finite  symmetry  

groups  such  as our  group  Hyp4.  We  start  with  our  point  p1 = P〚1〛 = {-2, -1, 2}.  We  can  calculate  our  32 

point  orbit  by
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In[  ]:= p1 = {-2, -1, 2};

orbitp1 = DeleteDuplicates [Flatten [Transpose [

Table [fltMD [p1, Hyp4 [t1, t2, b1, b2, p]], {t1, 2}, {t2, 2}, {b1, 4}, {b2, 4}, {p, 2}]], 4]]

Out[  ]= {-2, -1, 2}, {-2, -1, -2}, {2, 1, -2}, {2, 1, 2}, {2, -1, 2}, {2, -1, -2}, {-2, 1, -2},

{-2, 1, 2}, {-1, -2, 2}, {-1, -2, -2}, {1, 2, -2}, {1, 2, 2}, {1, -2, 2}, {1, -2, -2},

{-1, 2, -2}, {-1, 2, 2}, -1, -
1

2
,
1

2
, -1, -

1

2
, -

1

2
, 1,

1

2
, -

1

2
, 1,

1

2
,
1

2
,

1, -
1

2
,
1

2
, 1, -

1

2
, -

1

2
, -1,

1

2
, -

1

2
, -1,

1

2
,
1

2
, -

1

2
, -1,

1

2
, -

1

2
, -1, -

1

2
,


1

2
, 1, -

1

2
, 

1

2
, 1,

1

2
, 

1

2
, -1,

1

2
, 

1

2
, -1, -

1

2
, -

1

2
, 1, -

1

2
, -

1

2
, 1,

1

2


We  can  easily  check  that  each  of these  points  lies  on  at least  one  of the  8 planes  

z - 2, z - 1 /2, z + 1 /2, z + 2, x - 2 y, x + 2 y, 2 x - y, 2 x + y.  Using  pathFinder3D from  Chapter  1 of 

my  Space  Curves  Book   one  can  trace  the  entire  curve  obtained  by intersecting  the  quartic  hyperbola  by 

the  first  plane  z = 2.  The  intersections  of the  last  4 planes  with  the  quartic  hyperbola  contain  an infinite  

point  and  hence  have  two  affine  components.   But  it is easy  to trace  the  part  of the  first  curve  cut  out  by 

x = 2 y that  lies  between  the  points  {-2, -1, 2} and  {-2, -1, -2}.  The  rest  of the  curves  or segments  in 

the  following  plot  can  be calculated  using  fltMD and  the  symmetries  in Hyp4.

In[  ]:=

Then  it can  be checked  that   orbitp1  consists  of all  the  intersection  points  in the  above  plot.   Unlike  

Chapter  2 we  cannot  construct  more  points  higher  or lower  by taking  powers  of our  symmetries  

because  Hyp4  is a group  and  all  powers  already  are  contained  there.   The  rounded  square  shape  of the  

horizontal  curves  seems  to be an obstruction  to the  existence  of more  rotational   symmetries  and  the  

vertical  curves  are  just  projective  linear  images  of the  horizontal  ones.   So  I am  comfortable  in claiming  
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that  Hyp4  contains  all  symmetries  of the  quartic  hyperbola,  but  may  be wrong  as we  saw  with  the  

strange  symmetries  of the  quadric  hyperbola.

4.1.4 More on the quartic  hyperbola.

Unlike  the  quadric  hyperbola  which  has  2 lines  through  every  point,  I know  of only  8 lines.   These  are  

given  by 

In[  ]:= hl1a = {1, t, t};

hl1b = {1, t, -t};

hl2a = {-1, t, -t};

hl2b = {-1, t, t};

hl3a = {t, 1, -t};

hl3b = {t, 1, t};

hl4a = {t, -1, t};

hl4b = {t, -1, -t};

These  lines  form  two  mutually  skew  sets  of lines  which  intersect  each  line  of the  other  set.   This  is  

somewhat  analogous  two  the  two  rulings  for  the  quadric  hyperbola.    

In[  ]:= Show [ContourPlot3D [x^4 + y^4 - z^4 ⩵ 1, {x, -3, 3},

{y, -3, 3}, {z, -3, 3}, Mesh → None, ContourStyle → Opacity [.75]],

ParametricPlot3D [{hl1a, hl2a, hl3a, hl4a}, {t, -3, 3}, PlotStyle → Cyan ],

ParametricPlot3D [{hl1b, hl2b, hl3b, hl4b}, {t, -3, 3}, PlotStyle → Magenta ],

Axes → False, Boxed → False ]

Out[  ]=
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Note,  however  that  some  meet  in infinite  points.

In[  ]:= pLineIntersectionMD [hl1a, hl2b, t, {x, y, z}, dTol ]

Out[  ]= {0, -0.707107 , -0.707107 , 0}

Unfortunately,  unlike  smooth  cubics,  these  lines  are  not  enough  to determine  the  quadric  hyperboloid,  

here  are  three  other  quadric  surfaces,  there  are  actually  many  containing  these  8 lines.

In[  ]:=  ,

, 

I also  mention  that  the  theory  of quartic  hyperboloids  is much  more  complicated  than  the  quartic,  it 

appears  there  are  many  non-projectively  equivalent  projective  quartic  surfaces,  such  as the  ones  

above.   It also  appears  that  the  quartic  saddle  surface

195   | SurfaceStoryPartII.nb



In[  ]:= ContourPlot3D [z ⩵ x^4 - y^4, {x, -3, 3}, {y, -3, 3}, {z, -3, 3},

Mesh → None, Axes → False, Boxed → False, ImageSize → Small ]

Out[  ]=

may  not  be equivalent  to the  quartic  hyperboloid.  Here  is a similar  surface  that  is equivalent  to qhyp 

along  with  a two  of the  lines.   All  8, of  course,  can  transform  to ss4  although  some  may  go to the  new  

infinite  plane  .

In[  ]:= J = iTransform3D [y - 1]

Out[  ]= {{0.788675 , 0.57735, -0.211325 , -0.366025 }, {-0.57735, 0.57735, -0.57735, 1.},

{-0.211325 , 0.57735, 0.788675 , -0.366025 }, {0, 1.73205, 0, -1.73205 }}

In[  ]:= ss4 = FLTNS [qhyp, J, {x, y, z}]

Out[  ]= -0.0624642 + 0.00564428 x + 0.908494 x2 - 2.31319 x3 + 1.95753 x4 + 0.250926 y -

1.07356 x y + 2.04904 x2 y - 1.20753 x3 y - 0.366025 y2 + 0.707532 x y2 +

0.274519 x2 y2 + 0.288675 y3 - 0.0245191 x y3 + 0.496207 z - 0.732051 x z -

0.158494 x2 z + 1.18301 x3 z - 0.390544 y z + 1.73205 x y z - 0.475481 x2 y z +

1.02452 y2 z + 0.0245191 y3 z - 1.64054 z2 + 1.89054 x z2 - 0.316987 y z2 +

0.475481 x y z2 - 0.274519 y2 z2 + 2.89054 z3 - 1.18301 x z3 + 1.20753 y z3 - 1.95753 z4

In[  ]:= lss4a = fltMD [hl4a, J]

lss4b = fltMD [hl4b, J]

Out[  ]= {-0.288675 × (-0.943376 + 0.57735 t),

-0.288675 × (0.42265 - 1.1547 t), -0.288675 × (-0.943376 + 0.57735 t)}

Out[  ]= {-0.288675 × (-0.943376 + 1. t), -0.122008 , -0.288675 × (-0.943376 - 1. t)}
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In[  ]:= Show [ContourPlot3D [ss4 ⩵ 0, {x, -3, 3}, {y, -3, 3}, {z, -3, 3}, Mesh → None ],

ParametricPlot3D [lss4a, {t, -10, 10}, PlotStyle → Blue ],

ParametricPlot3D [lss4b, {t, -10, 10}, PlotStyle → Green ], Axes → False, Boxed → False ]

Out[  ]=

Also,  because  of the  equivalence  J, all  128  symmetries  of  qhyp become  symmetries  of ss4.   For  example  

In[  ]:= Ω = J.Hyp4 [2, 1, 3, 4, 2].Inverse [J]

Out[  ]= {{0.721688 , 0.644338 , -0.0669873 , -0.221688 },

{-0.211325 , -0.788675 , -1.36603, 0.211325 },

{-0.961325 , 0.32735, -0.75, 0.67265 }, {0.549038 , 1.18301, -1.18301, 0.816987 }}

In[  ]:= Chop [FLTNS [ss4, Ω, {x, y, z}] + ss4, dTol ]

Out[  ]= 0

so ss4  is equivalent  to its  image  up  to  the  constant  -1.

In[  ]:= lss4aJ = Chop [Simplify [fltMD [lss4a, Ω]], dTol ]

lss4bJ = Chop [Simplify [fltMD [lss4b, Ω]], dTol ]

Out[  ]= 
-0.244017 + 0.211325 t

1. + 1. t
, -

0.244017

1. + 1. t
,
0.333333 + 0.788675 t

1. + 1. t


Out[  ]= 
0.244017 + 0.455342 t

-1. + 1. t
,
0.244017 + 0.666667 t

-1. + 1. t
,
0.333333 + 0.122008 t

1. - 1. t

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In[  ]:= Show [ContourPlot3D [ss4 ⩵ 0, {x, -3, 3}, {y, -3, 3}, {z, -3, 3}, Mesh → None ],

ParametricPlot3D [{lss4a, lss4b }, {t, -10, 10}, PlotStyle → Blue ],

ParametricPlot3D [{lss4aJ, lss4bJ }, {t, -10, 10}, PlotStyle → Green ],

Axes → False, Boxed → False ]

Out[  ]=

4.2 More on the Torus
As we  have  seen,  working  with  quartics  that  there  are  many  different  types  of seemingly  similar  sur -

faces  which  are  not  projectively  equivalent.   In particular  tori  come  in different  shapes,  the  ratio  

between  the  outer  radius  and  inner  radius  must  be  the  same  in projectively  equivalent  tori.    These  are  

o�en  given  by parameters  a,b  as  a > b > 0 shown  below.
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Out[  ]=

The  trigonometric  parameterization  is 

In[  ]:= torabt = {(a + b Cos[v]) Cos[u], (a + b Cos[v]) Sin[u], b Sin[v]};

The  parameters  range  from  - to  .  From  this  we  get   the  rational  parametrization  as in Chapter  1.4   

Now  the   parameters  range  from  -∞ < u, v <∞.

In[  ]:= torabrat = Together Expand  a +
2 b v

1 + v2

2 u

1 + u2
, a +

2 b v

1 + v2

1 - u2

1 + u2
, b

1 - v2

1 + v2


Out[  ]= 
2 u a + 2 b v + a v2
1 + u2 × 1 + v2

,
a - a u2 + 2 b v - 2 b u2 v + a v2 - a u2 v2

1 + u2 × 1 + v2
,
b - b v2

1 + v2


The  implicit  equation  can  be given  by the  equation

In[  ]:= torusEqab = Collect a4 + b4 + x4 + 2 x2 y2 + y4 + 2 x2 z2 +

2 y2 z2 + z4 + b2 -2 a2 - 2 x2 - 2 y2 - 2 z2 + a2 -2 x2 - 2 y2 + 2 z2, {a, b}

Out[  ]= a4 + b4 + x4 + 2 x2 y2 + y4 + 2 x2 z2 + 2 y2 z2 + z4 + b2 -2 x2 - 2 y2 - 2 z2 + a2 -2 b2 - 2 x2 - 2 y2 + 2 z2

Since  a, b are  not  linear  factors  we  can  not  expect  tori  with  different  a,b  to be projectively  equivalent  

but  if the  ratio  of a,b  are  the  same  then  these  will  be  equivalent  

In[  ]:= torus31 = Expand [torusEqab /. {a → 3, b → 1}]

Out[  ]= 64 - 20 x2 + x4 - 20 y2 + 2 x2 y2 + y4 + 16 z2 + 2 x2 z2 + 2 y2 z2 + z4

In[  ]:= torus62 = Expand [torusEqab /. {a → 6, b → 2}]

Out[  ]= 1024 - 80 x2 + x4 - 80 y2 + 2 x2 y2 + y4 + 64 z2 + 2 x2 z2 + 2 y2 z2 + z4

Then  
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In[  ]:= Expand [16 * FLTNS [torus31, {{2, 0, 0, 0}, {0, 2, 0, 0}, {0, 0, 2, 0}, {0, 0, 0, 1}}, {x, y, z}]]

Out[  ]= 1024 - 80 x2 + x4 - 80 y2 + 2 x2 y2 + y4 + 64 z2 + 2 x2 z2 + 2 y2 z2 + z4

so torus31  is projectively  equivalent  to torus62.

4.2.1 Symmetries  of the torus

All  these  standard  tori,  using  these  equations,  have  the  same  symmetry  group.   Any  rotation  on  the  z-

axis  will  preserve  the  torus.   In addition  we  can  reflect  the  torus  in the  xy-plane.   Thus  the  obvious  

symmetries  will  have  transformation  matrices  of the  form

In[  ]:= torusSym [ang_, refh_, refv_] := If[refh ^2 + refv ^2 ⩵ 2,

Join [Join [RotationMatrix [ang].{{1, 0}, {0, refv}}, {{0, 0}, {0, 0}}, 2],

{{0, 0, refv, 0}, {0, 0, 0, 1}}], Echo ["Must have refh,refv =±1"];

Abort []]

Where  ang is any  real  number,  the  angle,  while  refh=1 gives  horizontal  rotation  and  refh = -1 gives  

horizontal  reflection,  refv = -1 gives  vertical  reflextion.

For  example

In[  ]:= Clear [α];

{torusSym [α, 1, -1] // MatrixForm , torusSym [Pi / 3, -1, 1] // MatrixForm }

Out[  ]= 
Cos[α] Sin[α] 0 0

Sin[α] -Cos[α] 0 0

0 0 -1 0

0 0 0 1

,

1

2
-

3

2
0 0

3

2

1

2
0 0

0 0 1 0

0 0 0 1



Another  way  to get  the  rotation  symmetry  is to take  two  planes  through  the  z-axis,  that  is planes  

defined  by linear  equations  involving  only  x, y, then  planeRotate3D  will  give  such  a symmetry.

In[  ]:= planeRotate3D [x - 3 y, x]

Out[  ]= {{0.316228 , -0.948683 , 0., 0.},

{0.948683 , 0.316228 , 0., 0.}, {0., 0., 1., 0.}, {0., 0., 0., 1.}}

 also  reflections  can  be obtained  by 

In[  ]:= ReflectionMatrix [{3, 4, 0, 0}]

ReflectionMatrix [{0, 0, 1, 0}]

Out[  ]= 
7

25
, -

24

25
, 0, 0, -

24

25
, -

7

25
, 0, 0, {0, 0, 1, 0}, {0, 0, 0, 1}

Out[  ]= {{1, 0, 0, 0}, {0, 1, 0, 0}, {0, 0, -1, 0}, {0, 0, 0, 1}}

where  in the  first  case  one  reflects  in the  plane  3 x + 4 y = 0 and  in the  second  gives  reflection  through  

the  xy plane.

As in other  situations  any  projective  equivalent  to these  tori  will  have  equivalent  transformation  
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groups.   For  example  consider  the  affine  equivalent  surface  from  the  transformation  

In[  ]:= A = {{.7, .8, 0, -1}, {-.1, 2, .4, 2}, {0, 0, 2, 0}, {0, 0, 0, 1}};

A // MatrixForm

Out[  ]//MatrixForm=

0.7 0.8 0 -1

-0.1 2 0.4 2

0 0 2 0

0 0 0 1

In[  ]:= g = FLTNS [torus31, A, {x, y, z}]

Out[  ]= -25.0325 - 42.7573 x + 29.5471 x2 + 23.6362 x3 + 3.35152 x4 + 22.9208 y - 35.4258 x y -

30.7072 x2 y - 5.11504 x3 y + 8.55849 y2 + 16.3294 x y2 + 3.84051 x2 y2 - 3.57051 y3 -

1.44139 x y3 + 0.26614 y4 - 4.58416 z + 7.08517 x z + 6.14143 x2 z + 1.02301 x3 z -

3.4234 y z - 6.53176 x y z - 1.5362 x2 y z + 2.14231 y2 z + 0.864837 x y2 z -

0.212912 y3 z + 7.68648 z2 + 3.8809 x z2 + 1.06898 x2 z2 - 2.15874 y z2 - 0.87147 x y z2 +

0.321817 y2 z2 + 0.37462 z3 + 0.151232 x z3 - 0.111694 y z3 + 0.0732436 z4

In[  ]:= ContourPlot3D [g ⩵ 0, {x, -10, 10}, {y, -8, 10}, {z, -4, 4}, Mesh → None, MaxRecursion → 4]

Out[  ]=

Consider  the  symmetry
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In[  ]:= Ω = torusSym [Pi / 4, -1, 1]

N[Ω] // MatrixForm

Out[  ]= 
1

2

, -
1

2

, 0, 0, 
1

2

,
1

2

, 0, 0, {0, 0, 1, 0}, {0, 0, 0, 1}

Out[  ]//MatrixForm=

0.707107 -0.707107 0. 0.

0.707107 0.707107 0. 0.

0. 0. 1. 0.

0. 0. 0. 1.

Recall  torus13  was  the  torus  of Section  1.4.   Using  the  parametric  definition  we  can  make  a circle  on  

this   

In[  ]:= circ1 = torabrat /. {a → 3, b → 1, u → 0}

Out[  ]= 0,
3 + 2 v + 3 v2

1 + v2
,
1 - v2

1 + v2


At v -> 0 we  have  the  point  on  circ1  

In[  ]:= p1 = circ1 /. {v → 0}

Out[  ]= {0, 3, 1}

In[  ]:= circ2 = fltMD [circ1, Ω]

Out[  ]= -
3 + 2 v + 3 v2

2 1 + v2
,
3 + 2 v + 3 v2

2 1 + v2
,
1 - v2

1 + v2


Now  we  get  point

In[  ]:= p2 = fltMD [p1, Ω]

Out[  ]= -
3

2

,
3

2

, 1
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In[  ]:= Show [ContourPlot3D [torus31 ⩵ 0, {x, -4, 4}, {y, -4, 4}, {z, -4, 4}, Mesh → None,

ContourStyle → Opacity [.7]], ParametricPlot3D [circ1, {v, -10, 10}, PlotStyle → Blue ],

ParametricPlot3D [circ2, {v, -10, 10}, PlotStyle → Green ],

Graphics3D [{{Blue, PointSize [.04], Point [p1]}, {Green, PointSize [.04], Point [p2]}}],

Axes → False, Boxed → False, ImageSize → Small ]

Out[  ]=

On g we  have

In[  ]:= circA1 = fltMD [circ1, A]

Out[  ]= -1. +
0.8 × 3 + 2 v + 3 v2

1 + v2
, 2. +

0.4 × 1 - v2
1 + v2

+
2. × 3 + 2 v + 3 v2

1 + v2
,
2. × 1 - v2

1 + v2


In[  ]:= q1 = fltMD [p1, A]

Out[  ]= {1.4, 8.4, 2.}

The  symmetry  is then  ψ given  by 

In[  ]:= ψ = A.Ω.Inverse [A]

Out[  ]= {{1.4381, -0.539886 , 0.107977 , 1.51787 },

{1.91588, -0.0238887 , 0.204778 , 3.96365 }, {0., 0., 1., 0.}, {0., 0., 0., 1.}}

Checking  that  we  have  a symmetry

In[  ]:= Chop [FLTNS [g, ψ, {x, y, z}] - g, dTol ]

Out[  ]= 0

In[  ]:= circA2 = Simplify [fltMD [circA1, ψ]]

Out[  ]= 
-0.787868 + 0.141421 v - 0.787868 v2

1. + v2
,
6.85477 + 2.96985 v + 6.05477 v2

1. + v2
,
2. - 2. v2

1 + v2


In[  ]:= q2 = fltMD [q1, ψ]

Out[  ]= {-0.787868 , 6.85477, 2.}
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In[  ]:= ImageCrop [Show [ContourPlot3D [g ⩵ 0, {x, -8, 8},

{y, -8, 10}, {z, -4, 4}, Mesh → None, ContourStyle → Opacity [.7]],

ParametricPlot3D [circA1, {v, -20, 20}, PlotStyle → Blue ],

ParametricPlot3D [circA2, {v, -20, 20}, PlotStyle → Green ],

Graphics3D [{{Blue, PointSize [.04], Point [q1]}, {Green, PointSize [.04], Point [q2]}}],

Axes → False, Boxed → False, ImageSize → Medium ]]

Out[  ]=

So in both  cases  we  see  we  have  something  like  a rotation  and  reflection  even  though  this  is not  exactly  

correct.

4.2.2 Intersecting  surface by plane

A parametric  conic  will  always  be taken  to a parametric  conic  by a projective  linear  transforma -

tion.   In particular  the  conic  is always  planar.   In Chapter  2 the  intersection  of a quadric  surface  and  

plane  is always  a conic  and  this  is why  we  construct  many  strange  symmetries.   But  with  quartic  sur -

faces  this  is rare.   A torus  or equivalent  surface  does  have  at least  2 conics  through  any  point,  but  

perhaps  no  more.    

The  following  function  will  help  us decide  if a plane  through  a surface  can  support  a conic.   This  first  

tries  to find  5 points  in the  intersection  then  li�s  them  to a plane,  tests  for  general  position,  if that  

checks  then  the  function  attempts  to produce  a parametric  conic  .  The  surface  may  be given  as a semi-

algebraic  set  consisting  as  surface  given  as an equation  and  one  or more  inequalities,  the  plane  is 

given  as an equation.   This  is a probabilistic  algorithm  and  may  not  work  for  any  given  run.   You  should  

try  several  times  before  giving  up.   To  check  that  the  parametric  conic  does  lie  in the  surface  write  the  

surface  in form f = 0 and  use  Simplify [f /.Thread[{x,y,z}->conic]  where  conic  is the   parametric  

output  of the  function  .
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In[  ]:= planeIntersectSurfaceNS [plane_, surfaceEq_ , V_] :=

Module [{k, sol, tbl, a, u, v, par, points, rnc, s, t},

k = 1;

n = 1;

tbl = Reap [While [k < 6 && n < 25, n++;

sol = NSolveValues [plane && surfaceEq && RandomReal [{0, 4}, 3].V ⩵ 3, V, Reals ];

If[Length [sol] > 0, k++; Sow[sol〚1〛]]]]〚2, 1〛;
If[Length [tbl] < 5, Echo ["5 points not found, try again or change equation "];

Abort []];

a = tbl〚1〛;
u = tbl〚2〛 - a;
v = tbl〚3〛 - a;
par = a + s * u + t * v;

points = Table [First [SolveValues [tbl〚i〛 ⩵ par, {s, t}]], {i, 5}];

If[! gpTestMD [points, 2, .003 ], Echo ["Fails,try again"]; Abort []];

rnc = rncInterpolate [points, 1, 2];

Simplify [par /. Thread [{s, t} → rnc〚2〛]]]

This  is listed  as paragraph  86 in GlobalFunctions.nb.

If we  apply  this  to our  example  torus31  and  a horizontal  plane z = c, -1 < c < 1 we  should  get  success.

In[  ]:= conic1 = planeIntersectSurfaceNS [z ⩵ .7, torus31 ⩵ 0, {x, y, z}]

Out[  ]= 
3.14809 + 6.23321 t + 2.80623 t2

0.858926 + 1.78349 t + 1. t2
,

-0.516455 - 2.9227 t - 2.43309 t2

0.858926 + 1.78349 t + 1. t2
, 0.7

In[  ]:= Simplify [torus31 /. Thread [{x, y, z} → conic1 ]]

Out[  ]= -9.9476 × 10-14
- 6.82121 × 10-13 t + 3.63798 × 10-12 t2 +

1.45519 × 10-11 t3 + 1.81899 × 10-11 t4 + 1.00044 × 10-11 t5 - 9.09495 × 10-13 t6 -

2.27374 × 10-13 t7 + 7.10543 × 10-13 t8  0.858926 + 1.78349 t + 1. t24

On the  other  hand  if we  take  a vertical  plane  through  the  line  {x = 0, y = 0} we  should  also  get  success   

(perhaps  a�er  several  tries)

In[  ]:= conic2 = planeIntersectSurfaceNS [2 x ⩵ 3 y, torus31 ⩵ 0, {x, y, z}]

Out[  ]= 
0.142124 - 0.212296 t + 1.69074 t2

0.0427706 - 0.0753224 t + 1. t2
,

0.0947495 - 0.141531 t + 1.12716 t2

0.0427706 - 0.0753224 t + 1. t2
,
0.00480237 - 0.412591 t + 0.25102 t2

0.0427706 - 0.0753224 t + 1. t2


In[  ]:= Simplify [torus31 /. Thread [{x, y, z} → conic2 ]]

Out[  ]= 64 - 24 conic22
+ 9 conic24

But  if we  take  a random  plane  intersecting  the  torus  we  get
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In[  ]:= plane3 = RandomReal [{-4, 4}, 3].{x, y, z} - .2

Out[  ]= -0.2 + 1.57775 x - 2.55377 y + 3.18539 z

In[  ]:= conic3 = planeIntersectSurfaceNS [plane3 ⩵ 0, torus31 ⩵ 0, {x, y, z}]

Out[  ]= 
0.586069 - 1.46416 t + 0.631606 t2

0.320132 - 1.13073 t + 1. t2
,

0.901848 - 3.28888 t + 2.90138 t2

0.320132 - 1.13073 t + 1. t2
,

-0.298704 + 1.10884 t - 0.99953 t2

0.320132 - 1.13073 t + 1. t2


In[  ]:= Chop [Simplify [torus31 /. Thread [{x, y, z} → conic3 ]]]

Out[  ]= 64 - 24 conic32
+ 9 conic34

So this  function  fails  , indicating  that  there  may  be no  such  conic.   One  can  try  this  last  experiment  

many  times  and  it will  generally  fail.   There  are  few,  if any,  planes  other  than  the  horizontal  and  vertical  

ones  which  support  conics.   Thus  the  odds  of finding  a symmetry  other  than  the  ones  in 4.2.1  are  very  

small.   

4.2.3 A lateral  rotation

For  the  standard  torus  given  by torusEqab each  plane  through  the  z-axis  does  intersect  the  torus  in two  

circles.  T hese have  a rotation  symmetry.   It may  appear  that  rotating  each  of these  circles  in the  angle  

σ will  give  a symmetry  of the  torus.   This  is true  but  it is not  a projective  linear  transformation.   However  

we can  give  a function  attaining  this  rotation  using  Mathematica.    In fact  each  point  is rotated  by an 

affine  transformation  but  for  different  points  we  must  use  a different  affine  transformation.
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In[  ]:= torusLateralRotNS [p_, σ_, a_, b_] :=

Module {rΘ, J, K, RΘ, SΘ, p1, p2, q1, Θ, p0, plane, planeRo, teqab, A},

teqab = a4 - 2 a2 b2 + b4 - 2 a2 x2 - 2 b2 x2 + x4 - 2 a2 y2 -

2 b2 y2 + 2 x2 y2 + y4 + 2 a2 z2 - 2 b2 z2 + 2 x2 z2 + 2 y2 z2 + z4;

If[Abs[teqab /. Thread [{x, y, z} → p]] > 1*^-6,

Echo ["p not on torus with parameters a,b"];

Abort []];

rΘ = {{Cos[Θ], 0, Sin[Θ], 0}, {0, 1, 0, 0}, {-Sin[Θ], 0, Cos[Θ], 0}, {0, 0, 0, 1}};

J = {{1, 0, 0, -a}, {0, 1, 0, 0}, {0, 0, 1, 0}, {0, 0, 0, 1}};

K = {{-1, 0, 0, -a}, {0, 1, 0, 0}, {0, 0, 1, 0}, {0, 0, 0, 1}};

RΘ = (Inverse [J].rΘ.J) /. {Θ → σ};

SΘ = (Inverse [K].rΘ.K) /. {Θ → σ};

plane = Chop [linearSetMD [{p, {0, 0, 0}, {0, 0, 2}}, {x, y, z}]]〚1〛;
planeRo = planeRotate3D [plane, y];

p0 = NSolveValues [plane ⩵ 0 && teqab ⩵ 0 && z ⩵ b && x ≥ 0, {x, y, z}, Reals ]〚1〛;
If[p0〚1〛 * p0〚2〛 > 0,

A = Inverse [planeRo ].RΘ.planeRo, A = Inverse [planeRo ].SΘ.planeRo ];

q = fltMD [p, A];

If[Abs[teqab /. Thread [{x, y, z} → q]] < 1.*^-9, Return [q], Return [{}]]

Here  p is a point  on  the  torus  with  parameters  a,b  and  σ is the  lateral  angle  of rotation.  In rare  

instances  due  perhaps  numerical  issues  the  point  calculated  is not  close  enough  to the  torus  and  the  

empty  set  is returned.   So,  for  example,  we  could  start  with  

In[  ]:= p = {-2.2554393726474875` , 0.2032078198223429` , -0.6776061916189526` };

Then  its  image  is 

In[  ]:= q = torusLateralRotNS [p, 2 Pi / 3, 3, 1]

Out[  ]= {-2.76967, 0.249538 , 0.9757 }

In[  ]:= ImageCrop [Show [ContourPlot3D [torus31 ⩵ 0, {x, -4, 4},

{y, -4, 4}, {z, -4, 4}, Mesh → None, ContourStyle → Opacity [.5]],

Graphics3D [{{Black, PointSize [.03], Point [p]}, {Red, PointSize [.03], Point [q]}}],

ImageSize → Small, Axes → False, Boxed → False ]]

Out[  ]=

Here  the  black  point  p rotates  to the  red  point  q.

With  this  function  we  can't  enter  a parameterized  curve  for  the  argument  but  using  the  standard  

Mathematica  formulation  we  can  enter  a list  of points

207   | SurfaceStoryPartII.nb



torusLateralRotNS [#, σ, a, b] & /@ L

For  example  we  may  trace  the  horizontal  circle  of say  height  z = .8 on  the  torus31  and  then  ro
tate  by Pi/4.

In[  ]:= FindInstance [torus31 ⩵ 0 && z ⩵ .8, {x, y, z}]

Out[  ]= {{x → -3.6, y → 0, z → 0.8}}

In[  ]:= L1 = pathFinder3D [{torus31, z - .8}, {0, -3.6, .8}, {0, 3.6, .8}, .25, {x, y, z}, maxit → 60];

L2 = pathFinder3D [{torus31, z - .8}, {0, 3.6, .8}, {0, -3.6, .8}, .25, {x, y, z}, maxit → 60];

L = Join [L1, L2];

Ha = torusLateralRotNS [#, Pi / 4, 3, 1] & /@ L;

H = Reap [Do[If[Length [q] ⩵ 3, Sow[q]], {q, Ha}]]〚2, 1〛;
» not a point {3.55255 , 0.582543 , 0.8 }

» not a point {- 3.58438 , - 0.33503 , 0.8 }

In[  ]:= ImageCrop [Show [ContourPlot3D [torus31 ⩵ 0, {x, -4, 4},

{y, -4, 4}, {z, -4, 4}, Mesh → None, ContourStyle → Opacity [.75]],

Graphics3D [{{Black, Thickness [.01], Line [L]}, {Red, Thickness [.01], Line [H]}}],

ImageSize → Medium, Axes → False, Boxed → False ]]

Out[  ]=

While  these  lateral  rotations  are  not  projective  linear  transformations  they  can  be composed  with  

projective  linear  transformations  as in section  4.2.1  to get  a lateral  symmetry  of any  projective  torus,

that  is surface  projectively  equivalent  to a torus.   I will  not  illustrate  that  here.   One  application  is that  

the  group  of symmetries  including  our  projective  linear  symmetries  and  our  lateral  symmetries  is now  

transitive.

4.2.4 A characterization  of projective  tori?

It follows  from  the  above,  from  4.3.2  or directly  from  our  equations  parametric  or implicit  that  a prop -

erty  of our  standard  tori  is that  each  point  in contained  in two  circles  lying  on  the  torus.   So  each  projec -

tive  surface  equivalent  to a standard  surface  is contained  in two  plane  conics.   This  is because  plane  

conics  are  preserved  by projective  linear  transformations.

An interesting  question  for  further  thought  is whether  the  converse  is true?   Is a 4th  degree  surface  in ℝ3 

such  that  each  point  is contained  in two  distinct  conics  necessarily  a projective  torus?   A difficulty  is 
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that  unlike  the  case  of a quadric  surface  we  don’t  have  a good  handle  on  defining  projective  transforma -

tion  to a torus.   A second  problem  is that  unlike  the  quadric  surfaces  there  are  infinitely  many  equiva -

lence  classes  of the  standard  torus.   But  as in 1.4  three  pairs  of these  conics  may  give  an equation  of 

these  surfaces.

4.2.5 Some Variants  on the torus idea

4.2.5.1  Elliptic  Torus

The  center  line  of the  standard  torus  is a circle  in the xy-plane  about  the  origin.  We  can  extend  this  to a

torus-like  surface  with  centerline  an ellipse  by transforming  via  a simple  homothety  that  works  only  in 

the  y-direction.   This  actually  gives  us some  interesting  examples.   The  following  function  takes  positive  

numbers  a1,a2  and  b.  Generally  we  think  of a1 > a2 > b  but  we  will  see  that  that  is not  necessary.   In 

that  case,  however,  the  central  ellipse  will  be

x2

a1
2
+
y2

a2
2

= 1

We  will  see  below  that  vertical  planes  through  the  z-axis  do  not  necessarily  cut  out  circles.  

In[  ]:= ellipticTorus [a1_, a2_, b1_] := Module {toreq, tor1, A, tor, c, d},

If[a1 ≤ 0 || a2 ≤ 0 || b1 ≤ 0, Echo ["all values must be positive "];

Abort []];

toreq = a4 - 2 a2 b2 + b4 - 2 a2 x2 - 2 b2 x2 + x4 - 2 a2 y2 - 2 b2 y2 +

2 x2 y2 + y4 + 2 a2 z2 - 2 b2 z2 + 2 x2 z2 + 2 y2 z2 + z4;

tor1 = toreq /. {a → a1, b → b1};

A = {{1, 0, 0, 0}, {0, a2 / a1, 0, 0}, {0, 0, 1, 0}, {0, 0, 0, 1}};

tor = FLTNS [tor1, A, {x, y, z}];

c = Max[Norm /@ NSolveValues [{tor, x, z}, {x, y, z}, Reals ]];

d = Max[Norm /@ NSolveValues [{tor, y, z}, {x, y, z}, Reals ]];

Echo [{{d, 0, 0}, {0, c, 0}}, "Points on outer ellipse"];

tor

The  picture  is as follows,  since  we  are  interested  in ratios  it is best  to plot  this  with  all  three  ranges  

equal  and  the  function  echos  a suggested  value,  typically,  but  not  always,   a1 + b.

In[  ]:= etor753 = ellipticTorus [7, 5, 3]

» Points on outer ellipse {{10., 0, 0}, {0, 7.14286 , 0}}

Out[  ]= 1600 - 116 x2 + x4 -
5684 y2

25
+
98 x2 y2

25
+
2401 y4

625
+ 80 z2 + 2 x2 z2 +

98 y2 z2

25
+ z4

The  important  thing  is that   we  have  points  {a1, 0, b} and  {a2, 0, b}  on  this  torus  which  gives  the  correct  

center  ellipse.
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In[  ]:= etor753 /. Thread [{x, y, z} → {7, 0, 3}]

etor753 /. Thread [{x, y, z} → {0, 5, 3}]

Out[  ]= 0

Out[  ]= 0

The  function  ellipticTorus  also  echo’s  two  additional  points  on  the  torus,  in this  case

In[  ]:= etor753 /. Thread [{x, y, z} → {10, 0, 0}]

etor753 /. Thread [{x, y, z} → {0, 7.142857142857143` , 0}]

Out[  ]= 0

Out[  ]= 0.

In this  case  the  y value  of  the  second  point  is  
a1+b

a1/a2
 =

50

7
.  But  that  may  not  always  be the  case,  although  

it should  be near  a2+b  which  is 7 in this  case.

The  simplest  way  to plot  the  central  ellipse   
x2

72
+

y2

52
= 1  is to note  that  

{7, 0, 0}, {-7, 0, 0}, {0, 5, 0} and {0, -5, 0} lie  on  this  ellipse  as well  as the  solutions  to 

In[  ]:= sol = NSolveValues [{x^2 / 49 + y^2 / 25 - 1, x - y}, {x, y}, Reals ]

Out[  ]= {{-4.06867, -4.06867 }, {4.06867, 4.06867 }}

so we  can  get  a parametric  function  by

In[  ]:= cec = Chop [rncInterpolate [{{7, 0}, {-7, 0}, {0, 5}, {0, -5}, sol〚1〛}, 1, 2]〚2〛]

Out[  ]= 
4.48651 t

-0.102698 - 1. t2
,

-0.513489 + 5. t2

-0.102698 - 1. t2


We  should  use  the  maximum  norm  of the  two  points  on  the  xy-plane  and  ellicptic torus  echoed  by the  

ellipticToris  function  to get  the  max  and  min  for  all  components  of the  plot.   These  should  be the  same  

because  we  are  interested  in the  ratios.  
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In[  ]:= Show [ContourPlot3D [etor753 ⩵ 0, {x, -10, 10}, {y, -10, 10}, {z, -10, 10},

Mesh → None, ContourStyle → Opacity [.65]], ParametricPlot3D [{Append [cec, 0]},

{t, -20, 20}, PlotStyle → Directive [{Black, Thickness [.01], Dashed }]],

Graphics3D [{{Blue, Thickness [.005 ], Arrow [{{0, 0, 0}, {7, 0, 0}}]}, {Green, Thickness [.005 ],

Arrow [{{0, 0, 0}, {0, 5, 0}}]}, {Red, Thickness [.005 ], Arrow [{{-7, 0, 0}, {-7, 0, 3}}]}}]]

Out[  ]=

To find  the  transverse  conics  we  can  use

In[  ]:= ce1 = planeIntersectSurfaceNS [y ⩵ 0, etor753 ⩵ 0 && x > 0, {x, y, z}]

Out[  ]= 
17.6969 + 20.9185 t + 6.88412 t2

1.94042 + 2.55314 t + 1. t2
, 0,

-4.11851 - 7.7829 t - 2.99776 t2

1.94042 + 2.55314 t + 1. t2


In[  ]:= ce1 = 
1.068604887036968` - 6.295225510389116` t + 9.53963066266547` t2

0.10688305225352232` - 0.6315609392728924` t + 1.` t2
, 0,

-0.01202700100288967` + 0.5786133264878908` t - 1.596958389329299` t2

0.10688305225352232` - 0.6315609392728924` t + 1.` t2
;

ce2 = planeIntersectSurfaceNS [x ⩵ 0, etor753 ⩵ 0 && y > 0, {x, y, z}];

In[  ]:= ce2 = 0,
5.997745301899537` - 11.916147176615913` t + 6.122412060454718` t2

0.8702399822561371` - 1.8004006722223846` t + 1.` t2
,

-1.2255935960394186` + 3.831952553651778` t - 2.555538042454029` t2

0.8702399822561371` - 1.8004006722223846` t + 1.` t2
;

We  can  plot  this  in the  plane
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In[  ]:= {ParametricPlot [Delete [ce1, {2}], {t, -20, 20}, PlotStyle → Blue,

PlotRange → {{4, 10}, {-3, 3}}, ImageSize → Small, Frame → True ],

ParametricPlot [Take [ce2, -2], {t, -20, 30}, PlotStyle → Blue,

PlotRange → {{2, 8}, {-3, 3}}, ImageSize → Small, Frame → True ]}

Out[  ]= 

4 5 6 7 8 9 10

-3

-2

-1

0

1

2

3

,

2 3 4 5 6 7 8

-3

-2

-1

0

1

2

3



The  first  is a circle  but  the  second  is clearly  not  a circle  as the  horizontal  and  vertical  ranges  of the  plot  

have  equal  length.   So  these  conics  are  not  uniform  around  the  elliptic  torus.

As an amusing  application,  it has  been  pointed  out  to me  that  the  King  James  Bible  describes  Noah’s  

Ark  as having  dimensions  300,  50 and  30 cubits.   Some  scholars  see  as the  source  of this  a Babylonian  

flood  story  which  some  have  interpreted  as being  a ra�  rather  than  a boat,   the  shape  then  being  a 

torus.   This  is unlikely  as the  the  torus  was  not  likely  a Babylonian  shape,  much  less  an elliptic  torus.  

But  plotting  a 30,5,3  elliptic  torus  we  get

In[  ]:= NoahTorus = ellipticTorus [30, 5, 3]

» Points on outer ellipse {{33., 0, 0}, {0, 5.5, 0}}

Out[  ]= 793 881 - 1818 x2 + x4 - 65 448 y2 + 72 x2 y2 + 1296 y4 + 1782 z2 + 2 x2 z2 + 72 y2 z2 + z4

In[  ]:= ImageCrop [ContourPlot3D [NoahTorus ⩵ 0, {x, -33, 33}, {y, -33, 33},

{z, -33, 33}, Mesh → None, MaxRecursion → 4, Axes → False, Boxed → False ]]

Out[  ]=

which  is not  a completely  improbable  shape  for  a ra�,  especially  since  Noah  and  the  animals  were  

sealed  inside.

4.2.5.2 Octic Torus

Since  all  the  monomials  in a torus  or ellipticTorus  are  even  we  can  double  the  exponents  of x , y, z to 

get  a slightly  different  shape.
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In[  ]:= octicTorus = Expand [torusEqab /. {x → x^2, y → y^2, z → z^2}]

Out[  ]= a4 - 2 a2 b2 + b4 - 2 a2 x4 - 2 b2 x4 + x8 - 2 a2 y4 -

2 b2 y4 + 2 x4 y4 + y8 + 2 a2 z4 - 2 b2 z4 + 2 x4 z4 + 2 y4 z4 + z8

This  gives  us a squared  off  torus,  not  unlike  a donut  the  author  was  served  recently.

In[  ]:= otorus32 = octicTorus /. {a → 3, b → 2}

Out[  ]= 25 - 26 x4 + x8 - 26 y4 + 2 x4 y4 + y8 + 10 z4 + 2 x4 z4 + 2 y4 z4 + z8

In[  ]:= ImageCrop [ContourPlot3D [otorus32 ⩵ 0, {x, -4, 4},

{y, -4, 4}, {z, -8, 8}, Mesh → None, Axes → False, Boxed → False ]]

Out[  ]=

One  can  play  this  game  on  a specific  Elliptic  Torus.    As  example  we  can  square  the  NoahTorus by

In[  ]:= NoahRaft = ellipticTorus [3, .5, .3] /. {x → x^2, y → y^2, z → z^2}

» Points on outer ellipse {{3.3, 0, 0}, {0, 0.55 , 0}}

Out[  ]= 79.3881 - 18.18 x4 + 1. x8 - 654.48 y4 + 72. x4 y4 + 1296. y8 + 17.82 z4 + 2. x4 z4 + 72. y4 z4 + 1. z8

In[  ]:= ImageCrop [ContourPlot3D [NoahRaft ⩵ 0, {x, -3, 3}, {y, -3, 3},

{z, -8, 8}, Mesh → None, Axes → False, Boxed → False, MaxRecursion → 4]]

Out[  ]=

To make  this  more  like  a ra�  we  could  add  a bottom

In[  ]:= ImageCrop [ Show [ContourPlot3D [NoahRaft ⩵ 0,

{x, -4, 4}, {y, -4, 4}, {z, -8, 8}, Mesh → None, MaxRecursion → 4],

RegionPlot3D [x^4 / 3.3 ^2 + y^4 / .55 ^2 ≤ 1 && -.55 < z < -.1, {x, -2, 2}, {y, -2, 2},

{z, -2, 2}, Mesh → None, ColorFunction → Blue ], Axes → None, Boxed → False ]]

Out[  ]=

4.2.5.3  Symmetries  of elliptic  and octic  tori

The  elliptic  tori  are  projective  linear  transforms  of standard  tori  so any  projective  symmetry  of the  

latter  will  transport  to them.   Note  that  the  transform  from  the  standard  torus  torusEqab  to the  elliptic  

torus  ellipicTorus[a1,a2,b1]  is just
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In[  ]:= J := {{1, 0, 0, 0}, {0, a2 / a1, 0, 0}, {0, 0, 1, 0}, {0, 0, 0, 1}}

So,  for  example,  consider  the  elliptic  torus  above

In[  ]:= etor753 = ellipticTorus [7, 5, 3]

» Points on outer ellipse {{10., 0, 0}, {0, 7.14286 , 0}}

Out[  ]= 1600 - 116 x2 + x4 -
5684 y2

25
+
98 x2 y2

25
+
2401 y4

625
+ 80 z2 + 2 x2 z2 +

98 y2 z2

25
+ z4

Here

In[  ]:= J753 = J /. {a1 → 7, a2 → 5}

Out[  ]= {1, 0, 0, 0}, 0,
5

7
, 0, 0, {0, 0, 1, 0}, {0, 0, 0, 1}

Let

In[  ]:= sym1 = N[torusSym [-6 Pi / 11, 1, 1]]

Out[  ]= {{-0.142315 , 0.989821 , 0., 0.},

{-0.989821 , -0.142315 , 0., 0.}, {0., 0., 1., 0.}, {0., 0., 0., 1.}}

In[  ]:= esym1 = J753.sym1.Inverse [J753 ]

Out[  ]= {{-0.142315 , 1.38575, 0., 0.},

{-0.707015 , -0.142315 , 0., 0.}, {0., 0., 1., 0.}, {0., 0., 0., 1.}}

In[  ]:= Chop [etor753 - FLTNS [etor753, esym1, {x, y, z}]]

Out[  ]= 0

so we  have  a symmetry.

Consider  our  curve

In[  ]:= ce1 = 
7.456123843292054` - 16.93950360896598` t + 9.642705601053876` t2

0.7919997073644772` - 1.7753725463339702` t + 1.` t2
, 0,

-1.4103710158407021` + 2.8556585740233564` t - 1.4198968646202492` t2

0.7919997073644772` - 1.7753725463339702` t + 1.` t2
;

we have

In[  ]:= ece1 = fltMD [ce1, esym1 ]

Out[  ]= 0. -
0.142315 × 7.45612 - 16.9395 t + 9.64271 t2

0.792 - 1.77537 t + 1. t2
,

0. -
0.707015 × 7.45612 - 16.9395 t + 9.64271 t2

0.792 - 1.77537 t + 1. t2
,
1. × -1.41037 + 2.85566 t - 1.4199 t2

0.792 - 1.77537 t + 1. t2

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In[  ]:= ImageCrop [Show [ContourPlot3D [etor753 ⩵ 0, {x, -10, 10},

{y, -10, 10}, {z, -10, 10}, ContourStyle → Opacity [.75], Mesh → None ],

ParametricPlot3D [ce1, {t, -20, 20}, PlotStyle → Blue ],

ParametricPlot3D [ece1, {t, -20, 20}, PlotStyle → Green ], Axes → False, Boxed → False ]]

Out[  ]=

In[  ]:=

As in 4.2.3  we  can  port  the  lateral  rotations  to elliptic  tori  since  they  are  projectively  equivalent  to 

standard  tori.   But  again  remember  that  these  symmetries  are  not  projective  linear  symmetries.

In[  ]:=

The  symmetries  above  are  not  symmetries  of octic  tori  but  one  can  check  that  the  symmetry  group  

containing  the   symmetries   Hyp4[i,1,j,k,1] for  i = 1, 2, j, k = 1, 2, 3, 4 are  symmetries,  for  example

In[  ]:= otorusS = FLTNS [otorus32 , Hyp4 [2, 1, 3, 4, 1], {x, y, z}] - otorus32

Out[  ]= 0

Note  by normalizing

In[  ]:= OtSym = DeleteDuplicates [Flatten [Table [Hyp4N [i, 1, j, k, 1], {i, 2}, {j, 4}, {k, 4}], 2]]

Out[  ]= {{{1, 0, 0, 0}, {0, 1, 0, 0}, {0, 0, 1, 0}, {0, 0, 0, 1}},

{{1, 0, 0, 0}, {0, 1, 0, 0}, {0, 0, -1, 0}, {0, 0, 0, 1}},

{{-1, 0, 0, 0}, {0, -1, 0, 0}, {0, 0, -1, 0}, {0, 0, 0, 1}},

{{-1, 0, 0, 0}, {0, -1, 0, 0}, {0, 0, 1, 0}, {0, 0, 0, 1}},

{{-1, 0, 0, 0}, {0, 1, 0, 0}, {0, 0, 1, 0}, {0, 0, 0, 1}},

{{-1, 0, 0, 0}, {0, 1, 0, 0}, {0, 0, -1, 0}, {0, 0, 0, 1}},

{{1, 0, 0, 0}, {0, -1, 0, 0}, {0, 0, -1, 0}, {0, 0, 0, 1}},

{{1, 0, 0, 0}, {0, -1, 0, 0}, {0, 0, 1, 0}, {0, 0, 0, 1}},

{{0, 1, 0, 0}, {1, 0, 0, 0}, {0, 0, 1, 0}, {0, 0, 0, 1}},

{{0, 1, 0, 0}, {1, 0, 0, 0}, {0, 0, -1, 0}, {0, 0, 0, 1}},

{{0, -1, 0, 0}, {-1, 0, 0, 0}, {0, 0, -1, 0}, {0, 0, 0, 1}},

{{0, -1, 0, 0}, {-1, 0, 0, 0}, {0, 0, 1, 0}, {0, 0, 0, 1}},

{{0, -1, 0, 0}, {1, 0, 0, 0}, {0, 0, 1, 0}, {0, 0, 0, 1}},

{{0, -1, 0, 0}, {1, 0, 0, 0}, {0, 0, -1, 0}, {0, 0, 0, 1}},

{{0, 1, 0, 0}, {-1, 0, 0, 0}, {0, 0, -1, 0}, {0, 0, 0, 1}},

{{0, 1, 0, 0}, {-1, 0, 0, 0}, {0, 0, 1, 0}, {0, 0, 0, 1}}}
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In[  ]:= Table [FLTNS [otorus32 , OtSym〚i〛, {x, y, z}] - otorus32 , {i, 16}]

Out[  ]= {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}

So we  have  16 distinct  symmetries  of the  otic  torus.

4.3 Gluing surfaces
I already  noticed  in my  Plane  Curve  Book  that  singularities  of curves  could  be removed  by adding  or 

subtracting  a constant  to the  equation.   One  way  to see  this  is to look  at the  actual  contour  plot.   A 

simple  example  is the  curve  x2 - y2 = 0.

In[  ]:= Clear [x, y]

In[  ]:= ContourPlot [x^2 - y^2, {x, -3, 3}, {y, -3, 3}, ImageSize → Small ]

Out[  ]=

The  default  is  x2 -y2⩵ 0, adding  or subtracting  a constant  moves  the  curve  to a different  contour  

which  should  not  contain  a singularity.

In[  ]:= ContourPlot [{x^2 - y^2 ⩵ 2, x^2 - y^2 ⩵ -2}, {x, -3, 3},

{y, -3, 3}, ContourStyle → {Orange, Blue}, ImageSize → Small ]

Out[  ]=

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

Another  example  is we  can  glue  two  curves  together  to make  a non-singular  curve  .   Here  are  two  

circles  
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In[  ]:= {ContourPlot [{(x + 2)^2 + y^2 ⩵ 4, (x - 2)^2 + y^2 ⩵ 4},

{x, -5, 5}, {y, -5, 5}, ImageSize → Small ], ContourPlot [

((x + 2)^2 + y^2 - 4) ((x - 2)^2 + y^2 - 4) - 2 ⩵ 0, {x, -5, 5}, {y, -5, 5}, ImageSize → Small ]}

Out[  ]= 

-4 -2 0 2 4

-4

-2

0

2

4

,

-4 -2 0 2 4

-4

-2

0

2

4



The  same  holds  for  surfaces  but  contour  plots  of surfaces  showing  different  contours  are  usually  ugly.

4.3.1 The double Torus

Likewise  we  can  glue  two  tori  to make  a double  torus.

In[  ]:= tor = Expand [torusEqab /. {a → 2, b → 1}]

Out[  ]= 9 - 10 x2 + x4 - 10 y2 + 2 x2 y2 + y4 + 6 z2 + 2 x2 z2 + 2 y2 z2 + z4

Note  this  torus  contains  the  points  {-3,  0, 0} and  {3,  0, 0} .  So  translating  by ±3 in the  x-direction  gives  us 

two  two  tori  touching  the  origin

In[  ]:= torp = FLTNS [tor, {{1, 0, 0, -3}, {0, 1, 0, 0}, {0, 0, 1, 0}, {0, 0, 0, 1}}, {x, y, z}];

torm = FLTNS [tor, {{1, 0, 0, 3}, {0, 1, 0, 0}, {0, 0, 1, 0}, {0, 0, 0, 1}}, {x, y, z}];

In[  ]:= ImageCrop [ContourPlot3D [{torp ⩵ 0, torm ⩵ 0}, {x, -6, 6}, {y, -6, 6},

{z, -6, 6}, Mesh → None, Axes → False, Boxed → False, ImageSize → Small ]]

Out[  ]=

So we  get  the  double  torus

In[  ]:= doublTorus = torp * torm - 600

Out[  ]= -600 + -48 x + 44 x2 - 12 x3 + x4 + 8 y2 - 12 x y2 + 2 x2 y2 + y4 + 24 z2 - 12 x z2 + 2 x2 z2 + 2 y2 z2 + z4 ×
48 x + 44 x2 + 12 x3 + x4 + 8 y2 + 12 x y2 + 2 x2 y2 + y4 + 24 z2 + 12 x z2 + 2 x2 z2 + 2 y2 z2 + z4
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In[  ]:= ImageCrop [ContourPlot3D [doublTorus ⩵ 0, {x, -6, 6},

{y, -6, 6}, {z, -6, 6}, Mesh → None, Axes → False, Boxed → False ]]

Out[  ]=

We  can  look  inside

In[  ]:= ContourPlot3D [doublTorus ⩵ 0, {x, -6, 1}, {y, -6, 6},

{z, -3, 3}, Mesh → None, Axes → False, Boxed → False ]

Out[  ]=

Thus  the  interior  is connected  but  not  simply  connected.   I note  that  we  actually  get  a nice  plane  curve  

of degree  8  out  of this,  an  oval  with  two  nested  ovals.

In[  ]:= curveDT = Expand [doublTorus /. {z → 0}]

Out[  ]= -600 - 2304 x2 + 784 x4 - 56 x6 + x8 - 448 x2 y2 -

96 x4 y2 + 4 x6 y2 + 64 y4 - 24 x2 y4 + 6 x4 y4 + 16 y6 + 4 x2 y6 + y8
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In[  ]:= ContourPlot [curveDT ⩵ 0, {x, -7, 7}, {y, -6, 6}, ImageSize → Small ]

Out[  ]=
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4.4 Breakfast  with Barry

In[  ]:=

My selection  of Donuts  is a jelly  donut  (back  le�),  octic  donut,  (front  le�)  a double  donut  and  an elliptic  

donut.   All  objects  in this  graphic  are  made  from  100%  fourth  and  eighth  degree  surfaces.   Note  how -

ever  that  the  jelly  donut  is of smaller  degree  and  has  more  symmetry  than  the  octic  donut.

Here  is the  code  for  the  graphic.

In[  ]:= CoffeeCup = 0.0625` x4 + 11.24682650380698` y +

4.743416490252569` y2 + 0.8891397050194614` y3 + 0.0625` y4 - 1.25` z ×
262.5` x2 + 2.44140625` x4 - 1344.` y - 175.` x2 y + 3520.` y2 + 50.` x2 y2 -

1792.` y3 + 256.` y4 + 96.` z2 + 12.5` x2 z2 - 448.` y z2 + 128.` y2 z2 + 16.` z4;

In[  ]:= DoubleDonut =

3.423774655931445`*^8 + 1.3655528886821947`*^8 x + 2.6047110685191058`*^7 x2 +
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3.02080968449735`*^6 x3 + 230293.87029144645` x4 + 11722.824430539758` x5 +

387.4700098060629` x6 + 7.589160493137579` x7 + 0.06776036154587124` x8 +

7.745211966466844`*^7 y + 2.307104403777339`*^7 x y + 3.1919077874500793`*^6 x2 y +

252437.3347839762` x3 y + 11945.18683298869` x4 y + 318.7447407117784` x5 y +

3.79458024656879` x6 y + 1.1841404708939653`*^7 y2 + 2.8843808155736877`*^6 x y2 +

334626.2789470098` x2 y2 + 22493.664568820335` x3 y2 + 932.9138161057081` x4 y2 +

22.76748147941274` x5 y2 + 0.27104144618348497` x6 y2 + 1.1161226979040564`*^6 y3 +

197460.24190600865` x y3 + 15977.00423657296` x2 y3 + 637.4894814235568` x3 y3 +

11.383740739706369` x4 y3 + 80825.53651895358` y4 + 10770.84013828058` x y4 +

703.4176027932275` x2 y4 + 22.767481479412737` x3 y4 + 0.4065621692752274` x4 y4 +

4031.817403584271` y5 + 318.7447407117784` x y5 + 11.383740739706369` x2 y5 +

157.97379649358237` y6 + 7.589160493137581` x y6 + 0.27104144618348497` x2 y6 +

3.7945802465687892` y7 + 0.06776036154587124` y8 + 7.140206420134889`*^7 z +

2.0700852050226893`*^7 x z + 2.808963995461423`*^6 x2 z + 219230.81126304282` x3 z +

10289.730729647046` x4 z + 273.20977775295285` x5 z + 3.25249735420182` x6 z +

1.1228074623911565`*^7 y z + 2.1596103664289545`*^6 x y z + 184227.17453733447` x2 y z +

7649.87377708268` x3 y z + 136.60488887647642` x4 y z + 1.3643985507912594`*^6 y2 z +

207806.99975593266` x y2 z + 15071.552339794564` x2 y2 z + 546.4195555059057` x3 y2 z +

9.757492062605456` x4 y2 z + 89266.74138448146` y3 z + 7649.873777082679` x y3 z +

273.20977775295285` x2 y3 z + 4781.8216101475155` y4 z + 273.2097777529528` x y4 z +

9.757492062605458` x2 y4 z + 136.60488887647642` y5 z + 3.25249735420182` y6 z +

1.0948567163463235`*^7 z2 + 2.6677540213443628`*^6 x z2 + 313646.82623042853` x2 z2 +

21547.75160495567` x3 z2 + 916.0225131795534` x4 z2 + 22.76748147941274` x5 z2 +

0.27104144618348497` x6 z2 + 1.4262920758236062`*^6 y z2 + 225866.77319824233` x y z2 +

16991.523211295593` x2 y z2 + 637.4894814235568` x3 y z2 + 11.383740739706369` x4 y z2 +

160218.91779091774` y2 z2 + 20595.76731269649` x y2 z2 + 1373.0525997341456` x2 y2 z2 +

45.53496295882548` x3 y2 z2 + 0.8131243385504549` x4 y2 z2 + 9078.153781891173` y3 z2 +

637.4894814235566` x y3 z2 + 22.767481479412737` x2 y3 z2 + 457.03008655459234` y4 z2 +

22.767481479412737` x y4 z2 + 0.813124338550455` x2 y4 z2 + 11.383740739706369` y5 z2 +

0.27104144618348497` y6 z2 + 975690.7289601153` z3 + 170227.90552527318` x z3 +

13729.44183155672` x2 z3 + 546.4195555059056` x3 z3 + 9.757492062605456` x4 z3 +

88326.8997490113` y z3 + 7649.873777082679` x y z3 + 273.2097777529528` x2 y z3 +

8221.532712057191` y2 z3 + 546.4195555059056` x y2 z3 + 19.514984125210912` x2 y2 z3 +

273.2097777529528` y3 z3 + 9.757492062605456` y4 z3 + 71772.37405939946` z4 +

9824.92717441591` x z4 + 669.6349969409181` x2 z4 + 22.767481479412737` x3 z4 +

0.4065621692752274` x4 z4 + 5046.336378306903` y z4 + 318.7447407117784` x y z4 +

11.383740739706369` x2 y z4 + 440.13878362843764` y2 z4 + 22.767481479412737` x y2 z4 +

0.8131243385504549` x2 y2 z4 + 11.383740739706369` y3 z4 + 0.4065621692752274` y4 z4 +

3439.711101909677` z5 + 273.20977775295285` x z5 + 9.757492062605458` x2 z5 +

136.60488887647642` y z5 + 9.757492062605458` y2 z5 + 141.0824935674276` z6 +

7.589160493137581` x z6 + 0.27104144618348497` x2 z6 + 3.79458024656879` y z6 +

0.27104144618348497` y2 z6 + 3.252497354201819` z7 + 0.06776036154587124` z8;
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In[  ]:= Coffee = 0.0625 x4 + 11.24682650380698` y +

4.743416490252569` y2 + 0.8891397050194614` y3 + 0.0625` y4 - 1.25` z;

In[  ]:= EllipticDonut = 9.466790363338271`*^6 + 233512.40375308643` x + 12359.174320987653` x2 +

135.26913580246912` x3 + 3.1604938271604937` x4 + 2.1823589135802467`*^6 y +

27053.827160493827` x y + 1264.1975308641975` x2 y + 194618.4691358025` y2 +

845.4320987654321` x y2 + 39.50617283950617` x2 y2 + 7901.234567901234` y3 +

123.45679012345678` y4 + 298127.53066666663` z + 3469.653333333333` x z +

162.13333333333333` x2 z + 32426.66666666666` y z + 1013.3333333333331` y2 z +

28230.897777777776` z2 + 304.3555555555555` x z2 + 14.222222222222221` x2 z2 +

2844.4444444444443` y z2 + 88.88888888888889` y2 z2 + 364.8` z3 + 16.` z4;

In[  ]:= OcticDonut = 3.469045206798153`*^8 + 1.4458678390406924`*^8 x +

2.782662290002328`*^7 x2 + 3.1595294956295667`*^6 x3 + 228959.79098600807` x4 +

10735.065996037181` x5 + 315.7372351775643` x6 + 5.306508154244778` x7 +

0.039018442310623375` x8 - 36786.78605103493` y - 7667.904282897711` x y -

676.5797896655276` x2 y - 26.53254077123711` x3 y - 0.3901844231054383` x4 y +

68976.19931089878` y2 + 14377.320530408528` x y2 + 1268.587105624203` x2 y2 +

49.748513946042294` x3 y2 + 0.7315957933242032` x4 y2 - 57483.01118730754` y3 -

11981.10044200579` x y3 - 1057.1559213534624` x2 y3 - 41.45709495503738` x3 y3 -

0.6096631611034908` x4 y3 + 17968.77554869617` y4 + 3744.093888126808` x y4 +

330.36122542295374` x2 y4 + 12.955342173449164` x3 y4 + 0.1905197378448407` x4 y4 -

6.668190824544581` y5 + 4.167619265355597` y6 - 1.4884354519128173` y7 +

0.2325680393613778` y8 + 4.6891396192918494`*^7 z + 9.76468964187654`*^6 x z +

861590.2625185181` x2 z + 33787.85343209876` x3 z + 496.88019753086417` x4 z -

2484.400987662375` y z + 4658.251851852518` y2 z - 3881.8765432098953` y3 z +

1213.0864197530864` y4 z + 1.192557005865718`*^7 z2 + 2.1539756562962956`*^6 x z2 +

190056.67555555553` x2 z2 + 7453.2029629629615` x3 z2 + 109.60592592592592` x4 z2 -

548.0296296291053` y z2 + 1027.555555555562` y2 z2 - 856.2962962962993` y3 z2 +

267.59259259259255` y4 z2 + 1.7119754005491352`*^6 z3 + 211174.0839506172` x z3 +

18633.007407407404` x2 z3 + 730.706172839506` x3 z3 + 10.74567901234568` x4 z3 -

53.72839506203309` y z3 + 100.74074074074815` y2 z3 - 83.95061728395103` y3 z3 +

26.23456790123457` y4 z3 + 182675.9776790124` z4 + 7763.75308641975` x z4 +

685.0370370370368` x2 z4 + 26.864197530864192` x3 z4 + 0.3950617283950617` x4 z4 -

1.9753086419768806` y z4 + 3.7037037037036953` y2 z4 - 3.0864197530864246` y3 z4 +

0.9645061728395061` y4 z4 + 17608.192` z5 + 1294.72` z6 + 54.4` z7 + 1.` z8;

In[  ]:= jellyDonut = 998.4833359433574` + 9.142857142857139` x +

1.959183673469388` x2 + 0.18658892128279878` x3 + 0.006663890045814243` x4 -

0.12851787945498896` y + 0.18359697064998423` y2 -

0.11656950517459316` y3 + 0.02775464408918885` y4 + 561.9712000000002` z +

120.42240000000002` z2 + 11.468800000000003` z3 + 0.4096000000000002` z4;
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In[  ]:= Show [ContourPlot3D [{CoffeeCup ⩵ 2}, {x, -25, 10}, {y, -20, 5},

{z, -20, 5}, Mesh → None, MaxRecursion → 5, ContourStyle → LightYellow ],

ContourPlot3D [DoubleDonut ⩵ 0, {x, -23, 5}, {y, -20, 5}, {z, -15, 5},

Mesh → None, ColorFunction → ColorData [1, "ColorList "]],

RegionPlot3D [Coffee < -5, {x, -5, 5}, {y, -10, 4}, {z, -15, 3},

Mesh → None, ColorFunction → ColorData [12, "ColorList "]],

ContourPlot3D [{EllipticDonut ⩵ 0, OcticDonut ⩵ 0}, {x, -25, 10}, {y, -20, 5}, {z, -18, 5},

Mesh → None, MaxRecursion → 6, ContourStyle → {LightOrange , LightYellow }],

ContourPlot3D [jellyDonut ⩵ 0, {x, -25, 10}, {y, -20, 5}, {z, -20, 5},

Mesh → None, ContourStyle → LightPink , MaxRecursion → 6]]

Out[  ]=
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