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0. Introduction

Surfaces are much more complicated than curves. For example Riemann defined genus of a curve in
the 1850’s. But there was no genus of a surface until the 1950’s. The interim was spent abstracting
algebra and topology to build the tools for the general Riemann-Roch theorem. Unfortunately the new
abstract formulation, while impressive mathematically, gave little insight into actual surfaces. Instead |
will attempt to discuss surfaces not with abstractions but with Mathematica algorithms.

In this Chapter | will restrict my attention to surfaces which are either naive algebraic surfaces or
surfaces defined by a rational parameterization. In particular | will then be able to plot these surfaces,
at least locally, using Mathematica’s ContourPlot3D in the first case and ParametricPlot3D in the
second. Again my intention is to be visual and numerical rather than mathematically exact.

This book is addressed to readers of my Plane curve book and my Space Curve Book. In particular one
should be familiar with working with machine numbers in Mathematica. Other than that there will be
no prerequisite. Many of the functions used in this book are already in the Global Functions notebook
for my Space Curve book which already contains many of the Plane curve functions. There will be a
new, inclusive GlobalFunctionsS.nb notebook for this book. Global functions specifically for sur-
faces may end in NS (naive surface) or RS (rational surface).
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There are 3 appendices to Section 1.9 giving most of the calculations. These are available separately

on my website in notebook form only. Also on my website is the GlobalFunctionsS notebook with the

global functions | use here along with many of the functions from my previous books, some of which

are updated, and an alphabetical index to these functions with syntax.
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1.1

outf « ]=

Introduction to Naive Surfaces

A naive surface is a surface in R® which is the full zero set of a single polynomial equation f=f(x,y,z) in

three variables subject to a few conditions to be discussed later. For example the polynomial might be

ts3=1.752-6.4x-11.464 x> +0.64 x> +x"4+1.536 y* +
0.64 xy*+x*y*+2.88x"2z-5.12y"22z+3.584 2> +3.84 x 2% + x* z%}

Analogously to Gauss' principle in my Plane Curve Book this zero set divides the plane into two sets
f*={{xyz |f(x,y,z)>0}and f~={{x, y, z} | f(x, y, z) <0} which have the zero set of f as the complete
boundary. This allows us to recover this zero set, which we will often just call f, by looking for points
where the value of f(x,y,z) on neighboring points changes from positive to negative or vice versa. In
Mathematica this is obtained using the built-in function ContourPlot3D. For example we can visu-

alise a small part of the surface ts3 by

Plot 1.1a

Note that in this book | will generally use the option Mesh->None because we will often be drawing
curves on our surfaces. Itisimportant to note that the boundary curves in this picture are simply the
curves where this surface meets the bounding box, they are not intrinsic to this surface. Note the 3
vertical lines colored green where ts3 >0 and red where ts3 <0. What we notice is that they are red
“inside” the surface and green “outside”. This shows that the surface is two sided with an inside and

outside. We talk about this more in a bit.

Note this plot changes as we change the bounding box or orientation. We can see more or less of the
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surface or more or less detail.
m-1- Pllb = ContourPlot3D [ts3 == 0, {x, -10, 10}, {y, -10, 10}, {z, -10, 10}, Mesh - None];

m- - {Pl1b, P11b}

Out[

Some things can go wrong . The equation x"2+y”2+2z22=0 has only one solution, {0,0,0}. We call
equations that do not give a 2-dimensional figure degenerate. Also note that the equation ts3? =0 has

the same solution set as ts3 = 0 but the contour plot

- - ContourPlot3D [ts32 =0, {x, -10, 10}, {y, -10, 10}, {z, -10, 10}, Mesh > None]

outf « ]=

is empty. This is because there is no sign change from positive to negative. Remember that since the
function ContourPlot3Dis numerical, zero is not recognized as a number. So changes from positive
to zero are not detected. So to get a correct picture we must use square free polynomials only. Fortu -
nately we have a global function sqFreeMD, this will not only tell us if a polynomial is square free but if
it is not it will return a square free polynomial with the same solution set. Fortunately this function
does not require us to factor the polynomial so it works on numerical as well as integer polynomials.

Here is a more complicated problem that came up with a surface related to ts3, | call it ts2.

w1~ ts2 = N[Expand[(-1+z) « (48 - 80 x + 25 X + 16 z°)]]
ouf- - ~48. +80. x-25. x> +48. z-80. xz+25. x* z-16. 2" +16. z°

When we try to plot ts2 we get the following
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n - - ContourPlot3D [ts2 == 0, {x, -1, 4}, {y, -2, 2}, {z, -2, 2}, Mesh - None]

Out[ » ]=

But this surface is the union of a plane and a cylinder so the plot should be

u -1~ ContourPlot3D [{z-1== 0, 48-80 x+25 x” +16 z* == 0},
{x, -1, 4}, {y, -2, 2}, {z, -2, 2}, Mesh - None]

4

The problem is that there is a line of intersection {y =0, z= % } of these two surfaces. Even though

this line is not a factor of either component it is somehow counted twice in the contour plot of the
product, which is square free.

m- - sqFreeMD[ts2, {x, y, z}, dTol]
» Square Free

our- - -48. +80. x-25. x2+48. z-80. xz+25. x> z-16. z2+16. Z°

Here is a picture .
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u - - Show[ContourPlot3D [{z-1 == 0, 48-80 x+25 x*+16 z* == 0}, {x, -1, 4}, {y, -2, 2}, {z, -2, 2},
Mesh - None], ParametricPlot3D [{1.5625, t, 1}, {t, -2, 2}, PlotStyle - Black],
ParametricPlot3D [{1.5625, 0, t}, {t, 1, 2}, PlotStyle - Green],
ParametricPlot3D [{1.5625, 0, t}, {t, -1, 1}, PlotStyle - Green],
ParametricPlot3D [{1.5625, 0, t}, {t, -2, -1}, PlotStyle - Red],
ParametricPlot3D [{3, 0, t}, {t, 1, 2}, PlotStyle - Green],
ParametricPlot3D [{3, 0, t}, {t, -2, 1}, PlotStyle - Red]]

outf + J=

4

In some ways the original, wrong picture, did a better job of explaining the inside and outside of the
surface!

1.2 Regular and Smooth Surfaces
Before stating our main theorem in this section we make a definition. A point p in a surface fis regular
if the norm of the gradient is greater than zero. This is implemented, in the case of point pin ts2

m--p={25116, 2, 1}
ts2 /. Thread[{x, y, z} - p]
grd = Grad[ts2, {x, y, z}]/. Thread[{x, y, z} - p]
25

out + J- {— y 2, l}
16

ouf - - O.

ou - {0., 0, 0.0351563}

Here p, and ts2 are exact so the last component of the gradient is sufficiently large to be non-zero.

An important property of regular points is that we get a tangent plane and normal line.
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In[

B
I=

tangentPlaneNS [f_, p_, X_] := (Grad[f, X]/. Thread[{x, y, z} -» pl).(X-p)
normalLineNS [f_, p_, X_] := LineMD[p, Append[(Grad[f, X]/. Thread[{x, y, z} - pl), 0], X]

In the example above

n - - tpp = tangentPlaneNS [ts2, {25/16, 2, 1}, {x, Yy, Z}]

outf

outf

nlp = normalLineNS [ts2, {25/16, 2, 1}, {X, ¥, z}]
0. +0.0351563 « (-1+2)
{-0.100593 - 0.759004 x +0.643268 y +9.28877 x 107" z,

0.924931 - 0.309563 x-0.22062 y-1.97547 x 107t Z}

Of course this just says the tangent plane to the plane z =1 at the regular point of ts2 is the plane z-1 .
But this example exposes a problem because we want to consider the points where the cylinder meets
the plane tangently as singular. Fortunately we did give a good discussion of multiplicity in my Space

Curve Book section 2.3.3.1. In this example

multiplicityMD [Prepend[nlp, ts2], {25/16, 2, 1}, {x, ¥, z}, 1x"-6]

2

Note that we can also get the multiplicity directly from NSolve .

NSolveValues [Append[nlp, ts2], {x, Yy, z}, Reals]

- {{1.5625, 2., -0.998901}, {1.5625, 2., 0.998901}, {1.5625, 2., 1.}}

The last two zeros are numerically p so pis a double point.
So our normal line meets the surface in a double point, as can be easily seen from the plot above .

We thus define a surface to be smooth or non-singular at point p if both the gradient is non-zero and
the multiplicity of the intersection of the normal line and surface is 1. A point where either the gradient
is zero or the intersection of the normal line and surface has multiplicity 2 or greater with a loose

tolerance is called singular.

It should be mentioned that [Abhyankar, p.205] mentions that, in our notation, the set of non-regular
points must be algebraic, in our case a finite point set or a curve, as in ts2, but the set of singular points

need not be algebraic.
Our main theorem, slightly modified from a standard theorem of differential geometry is

Jordan - Brouwer Let f be a non-degenerate square free polynomial giving a smooth surface. Then the
surface fis two sided, moreover for p in the surface there is a neighborhood of p which is topologically an

open plane disk.

What this means is that the points of a smooth naive surface define an oriented manifold. To see a

definition and discussion this see a differential geometry text such as [Montiel, Ros].

We will only refer to smooth surfaces as having sides. As an example consider the surface xyz=0
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n - - ContourPlot3D [xy z == 0, {x, -2, 2}, {y, -2, 2}, {z, -2, 2}, Mesh » None, MaxRecursion - 4]

-2 -1 0 1 2

— T

outf « J=

-2

-2

These planes actually break up space into 8 regions rather than 2, so sides are not actually a useful

concept.
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1.2 Introduction to Rational Parametric Surfaces

A second way to define a surface is to use a rational parametric function. A simple one is
Inf« Ji= Fl={s, t, s"2-t72}
ouf - J= {S , &, s?- tz}

We can plot part of this surface using ParametricPlot3D.

n - - ParametricPlot3D [F1, {s, -10, 10}, {t, -10, 10}, PlotRange -» 10, Mesh - None]

outf « J=

Unlike contour plots giving a plot range is optional, but in most cases a good idea to get a nice plot.
Once could also do this to control each variable separately with
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n - - ParametricPlot3D [F1, {s, -10, 10}, {t, -10, 10},
PlotRange - {{-10, 10}, {-10, 10}, {-5, 10}}, Mesh - None]

ouf- - g

o

Y
-10 -5

As with contour plots | disable the Mesh because | will want to draw my own curves on this surface.
One can also use the option MaxRecursion with parametric plots if the plot is complicated.
More generally a rational parametric surface in R?is given by a function
B fi(s, t) fa(s, t) fs(s, 1)
_{f4(s, t) fa(s, t) fa(s, t)}

where the f; are polynomial functions of the two variables s, t.

We generally like to have the common denominator f, but it is not absolutely required as it can be
calculated, the important thing is that no denominator is the constant 0. We do not require the numera -
tors and the denominator to have the same degree, the degree of the numerators may be less than,
equal or greater than the degree of the numerator and different from each other. In the polynomial

case of F1 above the denominators are all the constant 1 of degree 0. When the parameters {s, t}

make f4(s, t) = 0 we say F is undefined or infinite, in Chapter 2, particularly, we will use the latter termi-
nology. This zero set of the denominator may be a discrete point set or a curve. When working with
rational parametric surfaces the default range of s, tis —o < s, t <ooin this chapter, however specific

examples may have a smaller range.

Here is a non-trivial example of a rational parametric surface, the torus. Note in this case the definition
does not give a common denominator but it is easily seen that a common denominator would be
(1+5s?)«(1+1t?).

4s(l+t+t?) 2:(-1+s’-t+s’t-t?+s?t?) 1-+t2

Inf « Ji= Ts ={ y = 5 };

(L+s?)«(1+1t?) (L+s?)«(1+t?) 1+t?

In plotting a rational surface we can not, in general, show the entire surface so we pick a large bounded

range.
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n- - ParametricPlot3D [Ts, {s, -10, 10}, {t, -10, 10}, PlotRange - All,

Mesh -» None, MaxRecursion - 4, PlotStyle - Opacity[.8]]

In[

Out[

outf « |

Outf

In[

Outf

In[

Outf

We see this finite range gives a deformed rectangle curved in both dimensions. We can easily imagine
that if we used the full range -oo < s, t <o we would get a torus. The opacity[.8] is to help visualize
that there is a strip missing on the bottom, the

MaxRecursion— 4 helps to smooth out the plot.

At a given point of a rational parameterization {s,, to} we can take the partial derivatives and evaluate

to get vectors. For example with the torus Ts and point p ={2, 3}

- p={2, 3};

J=

I

I

=

vs = D[Ts, s]/. Thread[{s, t} = p]
vt = D[Ts, t]/. Thread[{s, t} » p]
Tsp = Ts /. Thread[{s, t} = p]

78 104
SN
125 125

{16 12 3}
125 125 25

52 39 4

I {_) ) __}
25 25 5

The normal vector is is the cross product vsxvt

nv = Cross[vs, vt]
{ 312 234 104}

3125 3125 ° 625
and the tangent plane is nv.(X-F(p))
tp=nv.({x, y, z}-Tsp)

312 (-2 +x) 234 (2 +y) 104 (4 )

—+z

3125 3125 625 5

or, better
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n - - tp = Expand [N[tp]]
ouf- - -0.4576 + 0.09984 x-0.07488 y-0.1664 z

- - Show[ContourPlot3D [tp == 0, {x, -4, 4}, {y, -4, 4}, {z, -4, 4},
Mesh - None, ContourStyle - Directive[Cyan, Opacity[.5]l],
ParametricPlot3D [Ts, {s, -10, 10}, {t, -10, 10}, PlotRange - All,

Mesh - None, MaxRecursion - 4, PlotStyle - Opacity[.8], PlotRange - All],
Graphics3D [{Black, Arrow[{Tsp, Tsp + 10 nv}]}]]

4

outf + J=

The general code is

m-1- normalVectorRS [F_, st@®_, st_] := Module[{pv, vs, vt},
vs = D[F, st[1]]/. Thread[st » st0];
vt = D[F, stl2]]/. Thread[st » st0];

Cross[vs, vt]]

tangentPlaneRS [F_, st0_, st_, X_] := Module[{nv, p},
p=F/. Thread[st » st0];
nv = normalVectorRS [F, st0, st];
N[Expand[nv . (X - p)Il]

For this example
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In[

Out

Out

In[

Out

In[

Out[

;- normalVectorRS [Ts, {2, 3}, {s, t}]
tangentPlaneRS [Ts, {2, 3}, {s, t}, {x, y, z}]
{ 312 234 104}

3125 3125 625

--0.4576 +0.09984 x-0.07488 y-0.1664 z

As with naive surfaces a rationally parameterized surface F (s, t)is regular at {s0, t0} if there is a tangent
plane at F(s0, t0). But as with naive algebraic surfaces regularity at {s0,t0} does not imply smoothness

at F(s0,t0). But the situation is very different. For naive surfaces it is a local problem, for rationally

parameterized surfaces it is a global problem. Here are two examples.

- node3D = {t"2-1, t"3-1t, s}
F{-1+t?, -t+t?, s}

- Show[ParametricPlot3D [node3D, {s, -3, 3}, {t, -1.5, 1.5}, Mesh - None],
Graphics3D [{Red, Thickness[.01], Line[{{0, 0, -3}, {0, 0, 3}}]}1]

=

Note the line x =y =0 appears to be a singular locus of this surface. But points on this line are of the
form

mn - - node3D /. Thread[{s, t} » {s, -1}]

Out

Out

node3D /. Thread[{s, t} » {s, 1}]
-{0, 0, s}

-{0, 0, s}

However
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n - - normalVectorRS [node3D, {s, -1}, {s, t}]
normalVectorRS [node3D, {s, 1}, {s, t}]

ouf - - {-2, -2, 0}
ouf - - {-2, 2, 0}
are non - zero, so all of these points are regular in the the parameters. The problem is that different

parameter values give the same points. While harder to deal with the problem is no worse than with

ts2 so we have nothing to do.

A second example is similar but causes an additional problem.

n- - ribbon = {t*3+2, sf2-3tAr2, t*"2+t-2+1}
o {2+t%, =317, -1+ t+t?)

n - - ParametricPlot3D [ribbon, {s, -1, 1}, {t, -2, 2}, Mesh - None, PlotStyle - Opacity[.8]]

Outf » J=

Here the plot does not show a self intersection. However

normalVectorRS [ribbon, {s, b}, {s, t}]
o -{2s+4bs, 0, -6b’s}

so when s =0 this is not regular. When s, t are both non-zero then it is regular but note that rib-
bon3D(s,t) =ribbon3D(-s,t) so each point on the surface is double, that is, comes from two different
parameter values so cannot be considered smooth.

This reminds one of Einstein’s “spooky action at a distance”. If we can only see a parameter space for
the universe rather than the actual universe then an atom seemingly far away perhaps behaves the
same as one nearby because in the universe it may actually be the same atom. A spooky alien transmis -
sion from a planet circling a distant star could just be Fox News.

This is not a pleasant thought. For the ribbon example we can fix this problem by insisting that s> 0.
But this parametric surface has an edge, it does not go on infinitely in the negative s direction.

In the next section we will discover the real answer to this problem that we can not see the true nature



16 | SurfaceBookChapterOne_v1.0.nb

of a point of the parametric surface just working locally, mainly that rational parametric surfaces, even
the ribbon, are subsets of naive algebraic surfaces.

| leave you with a plot of a more complicated rational parametric example using only cubic functions. |
will not try to analyze this here.

n- - strangel ={-3-3s’-3s’+3st-s’t+2t’-3st’+3¢%,
-2-3s’-s*+2t-s’t-t?+st?, s+2s’+3s’-3t-st-2t°-3st’+3t%};

n - - ParametricPlot3D [strangel, {t, -5, 5}, {s, -5, 5},
PlotRange - {{-8, 8}, {-8, 1}, {-8, 5}}, Mesh » None, MaxRecursion - 4]

outf + J=
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Implicit Equation Theorem for Rational Parametric

Surfaces

In[ « ]:=

In[ » ]:=

Here we give two proofs that every rational parametric surface is contained in a naive in a naive sur-

face. The first is more theoretical, the second somewhat more practical.

1.3.1 Theoretical Method

A proof in the curve case appeared in my Mathematica Journal article [Dayton, Degree vs Dimension of
Rational Parametric Curves]. Another discussion isin my Space Curve Book 3.1.4.
The proof for surface is slightly modified but the idea is the same: a rational parametric function can be
viewed as Fractional Linear Transformation (FLT) from an appropriate generic curve.

We write our parametric surface in the standard form of §1.1 with a common denominator. Since we
now have two parameters if m is the largest degree of a monomial there are binomial coefficient

m+2
( 5 )bivariate monomials of degree m or less. This number, the dimension of the space of generic

curves of degree m, can become uncomfortably large. It turns out that it enough to just use the mono -

mials actually used in the rational parametric function and monomials that divide these.

The method is thus to take this set of n monomials, calling them X[1], X[2]...., X[n]. We take a set of
relations between these variables and find a HBasis for this using, because it is faster in this case, a
Groebner basis for this basis. We construct a (n+1)x4 matrix for our FLT matrix. Then an application of
FLTMD will give an equation set defining the smallest algebraic surface in R® containing the image
surface of our FLT. Any equation of this set will contain our parameterized surface so we can just pick
one. While this single equation, defining a naive surface, may not completely describe our surface
which may be smaller it will serve to give us a Jordan-Brouwer theorem and this surface can find locally

the local behaviour of this function at a smooth point.

We proceed with an example

]

t-sh2t 1+s’-2st 2s-t-s?t

hyperboloid ={ , s }
l-sh2 1-5s? 1-5s2

I collect the monomials used

V={s, t, st, s*, s’ t};

I now find a 8x4 matrix which produces this rational function via a transformation function, note the

first 7 columns can be indexed by the monomials in V and the last column is the constant. The first 3

rows are from the numerator, the last from the denominator.
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=y

- A={{0,1,0,0,-1, 0}, {6, 0,-2,1, 0, 1}, {2,-1, 0, 0, -1, 0}, {0, 0, 0, -1, 0, 1}};
A Il MatrixForm

Out] « J/MatrixForm=

61 o0 0 -1

6 6 -2 1 0

2 -1 06 0 -1

06 06 0 -1 0

= © + o

To check

m- - TransformationFunction [A][V]

Out[ » ] ) )

t-s?t 1+s?-2st 2s-t-s?t
L{1—52 1-s? 1-s? }
Next | treat the monomials as variables
- - Clear[Y]
w1~ AY = Table[Y[i] » VIil, {i, 5}]
o= {Y[1] » s, Y[2] » t, Y[3] » s t, Y[4] » s*, Y[5] » s® t}
Note that the Y[i] have only one bracket, thus these are independent variables rather than members of
a list. However | don’t want these to be independent so | give a set of relations on these Y[i]s.
- - sys = {Y[3] - Y[1] » Y[2], Y[4] - Y[1]" 2, Y[5]-V[2] < Y[4]};

To find a H - basis for this large exact system | use Groebner Bases.

- - gBasis = GroebnerBasis [sys, Keys[AY], MonomialOrder - DegreelLexicographic ]
our - - {=YI31* + Y[2]  Y[5], Y[2] - Y[4]- Y[5], - Y[3] - Y[4]+ Y[1] - Y[5],
Y11« Y[3] - YIS], YI1]- Y[2]- Y[3], Y[1]* - Y[4], Y3]* Y[4] - Y[5]’}

Note
n - 1- Length[gBasis]
oufe = T
I now find my implicit equation by
m- - {time, eq} = Timing[FLTMD[gBasis, A, 4, Keys[AY], {x, Yy, z}, dTol]]
{1, 4, 9, 16, 25}
{1, 4, 9, 16, 25}

our- - {2.68174, {1. - 1. x* - 1. y*+ 1. z°}}

n - 1- qpEq = eql[1]

ouf- - 1. -1.x%-1.y*+1. 22

So | get my equation in under 3 seconds.

Finally | check by comparing plots . The second one has the mesh.
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n - - Show[ContourPlot3D [qpEq == 0, {x, -3, 3}, {y, -3, 3}, {z, -3, 3}, Mesh - None],
ParametricPlot3D [hyperboloid, {s, -20, 20}, {t, -3, 3}, PlotStyle - LightGray]]

outf « J=

1.3.2 Direct Method

Although | was able compute the example above in around 3 seconds of computer time this is an
eternity for Mathematica. With many more monomials this method is impractical. The following

method may work better, but we must first consider polynomial parameterizations.

The function here is based on the Space Curve Book function p2aRawMD which in turn was based on
the algorithm in Appendix 1.5 of the plane curve book. The reader who wants an explanation of how
this works should look there. This routine expects exact or very accurate numerical coefficients. Here F
is the polynomial parameterization, d is the maximal degree of a monomial in F, md is the maximum
degree you are allowing an implicit equation, T are the variable in F and X are the variables in R®.

Actually this works for parameterized surfaces in R” for any n so X will be the variables there.
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par2affRS[F_, d_, md_, T_, X_] :=

Module[{n, TB, ar, cr, SA, AK, mon, ncr, nak, NSA, medNSA, FA, SAA},
n = Length[X];
If[Length[F] # n, Echo["Dimension mismatch F,X"]; Abort[l];
TB = Expand[Table[mon /. Thread[X -» F], {mon, mExpsMD[md, X]}I1;
cr = ¢| CoefficientRules [H#, T]|> &/@ TB;
ncr = Length[cr];
AK = exps[2, md % d];
nak = Length[AK];
SAA = Reap[For[i =1, i sncr, i++, For[j =1, j < nak, j++,

If[KeyExistsQ[crlil, AKIjIl, Sow[{i, j} » crlil[AKIjImI2, 11;
SA = Transpose [SparseArray [SAA]l;
NSA = NullSpace [SA];
If[Length[NSA] == @, Return["Fail, try higher md"],
Echo[Length[NSA], "Number of equations'"]];

medNSA = Median[Abs[Flatten[NSA]]]+ 1;
N[NSA / medNSA].mExpsMD [md, X]

We demonstrate this on our ribbon example from the previous section.

mn- - {time, ribboneqs} = Timing[par2affRS|[ribbon, 3, 3, {s, t}, {x, y, z}I]
1

our - {0.018665, {5. - 1. x*+9. z-3. xz+3. 2"+ 1. 2°}}

- - ribboneq = roundPolyMD [ribboneqs[11, {x, y, z}, 1]

o -5-x2+9z-3xz+32%+2°
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- - Show[ContourPlot3D [ribboneq == 0, {x, -5, 10},
{y, -12, 10}, {z, -5, 5}, Mesh -» None, ContourStyle - Opacity[.5]],
ParametricPlot3D [ribbon, {s, .001, 6}, {t, -5, 5}, PlotStyle - LightGray]]

outf « J=

Again the parameterized image is given by the mesh. We note that there is a lower part of the plot of
the implicit surface that is not covered by the parameterized surface which had a domain of s >0. But
even if we used parameter values of s <0 we would not get more coverage. Thus the parameterization
ribbon only parameterizes part of the implicit surface.

Here is a discouraging example. We try to implicitize a polynomial parameterized surface with coordi -
nates of degree 3. We start with a random A:

n - - A = Append[RandomInteger [{-4, 4}, {3, 10}], {0¢, 0, ®, O, ©O, O, O, O, O, 1}]
ou- - {2, 3, -3, 1, -3, 3, -1, -2, 1, 0}, {1, -2, -4, -4, -3, -2, 2, 3, -4, 1},
{l’ ‘4: _49 _2: 0’ 19 _l: _4’ l: _3}) {0, 0’ 0: 07 0’ 0: 0, 0, 0: l}}

- - Dimensions [A]

our - - {4, 10}

m- =Y =Drop[ mExpsMD[3, {s, t}], 1]

o {s, t, s?, st, t?, s*, s’ t, st?, t%}
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- - TransformationFunction [A][Y]

o -{2s-3s*+3s+3t+st-s’t-3t7-2st’+t3,
1+s-4s?-2s>-2t-4st+2s*t-3t2+3st?-41t3,
-3+s-4s’+s’-4t-2st-s’t-4st’+t%

Egns = par2affNS|[F, 3, 3, {s, t}, {x, ¥, z}I;

our- - Fail, try higher md

Egns = par2affNS|[F, 3, 5, {s, t}, {x, ¥y, z}I;

our- - Fail, try higher md

Egns = par2affNS|[F, 3, 8, {s, t}, {x, ¥, 2z}I;

our- - Fail, try higher md

mn- - Eqns = par2affNS[F, 3, 9, {s, t}, {X, ¥y, z}]}

1

m - - Length[Eqns[1]I]
our - - 148

Our smallest implicit equation is of degree 9 with 148 terms! In fact this will almost always be the case

but it shows that there is an implicit equation. Of course this gets much worse for higher degrees.

There is a trick we can use to handle a rational parameterization : see my Mathematica Journal article

[Degree vs Dimension of Rational Parametric Curves].

Take the original parameterization and strip all constants, also put the common denominator as a 4th
component. Check to make sure components are independent in space of 2 variable polynomials, if
not see my Mathematica Journal article for a reduction. Use pol2affNS to find an implicit polynomial
system with variables {x,y,z,w}. If this is more than 2 or 3 equations reduce by hBasisMD. Now create a
matrix by taking the first 4 rows of the 5x5 identity matrix. In the 5th column replace the constants that
you stripped. Then apply FLTMD to the implicit polynomial system using this 4x5 matrix. You should

get your implicit system of the rational parametric surface. We illustrate using the above

t-s?t 1+s’-2st 2s-t-s?t
n - 1- hyperboloid ={ R , }
1-5s2 1-5s2 1-5s2

’

Strip off the constants from each term in the numerator and denominator.
m- - strippedh ={t-s”*"2t, s*"2-2st,2s-t-s"2t, -s"2};

Note we can recover hyperboloid from strippedh by an FLT: Let
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n-1- AH={{1, 0, 0, 0, 0}, {¢, 1, 0, 6, 1}, {6, 0, 1, 0, 6}, {0, 0, 0, 1, 1}};
AH /I MatrixForm

outf + J/MatrixForm=

1

o 0 o
o B O O
H © © ©
P © K o

0
0
0

m- - TransformationFunction [AH][strippedh]

t-s?2t 1+s?-2st 2s-t-szt}

ouff « J- { ) )
1-s? 1-s? 1-s?

n - - raweq = pol2affNS [strippedh, 3, 3, {s, t}, {x, ¥, z, w}]
8
o {0 +2 w-1.w -1, x*+2. wx* -2, y+1l.wy?-2. wxz+1. z%,
0. +1.wx+1.x*+1.xy+1l.wxy+1l.xy’-1.wz-1.w?z-1.yz-1l.wyz-1.x2z?%,
0. +2.w-1. x2—l.wx2—2.y+2.wy—2.y2+2.wxz+l. zz—l.wzz, 0.-1.wx-1.x%-
1.xy-1l.wxy-1l.xy?’-1.wz+1l.x*z+3.yz+1l.wyz+1l.y?’z+1.xz°-1.2°,
0.+1.w-2.x*-1.wx*-3.y-2.wy-1.wy-2.y’-1.wy’-1.xz+1l.wxz+1l.z?,
0. -1l.w+2. x*°+1l.wx?+3.y+1.x*y+4.y?+1l.wy?+1.y3+1.xz-1.wxz-1.2°-1.yz?,

0. -2.wx-1.w x+1.x>+2. xXy+1. xyz—l. xzz, 0.-2.w-1.w +1. x2+2.y+l. yz—l. 22}

We have lots of equations so we can reduce the system
n - - hbeq = hBasisMD[raweq, 3, {x, ¥, z, w}, 1.%"-10]
{1, 4, 9, 13}
{1, 4, 9, 13}
o {2 w+lowi-1. x* -2, y-1.y*+1. 2%,
1.w-2.x*-1.wx?*-3. y-1. xzy—4. yz—l. wyz—l. y3—1. xz+l.wxz+1l.,z2+1. yzz,
1.wx+1.x3+1. Xy+l.wxy+1. xy2+l. wz-1.x?>z-3. yvz-l.wyz-1. yzz—l. xz?+1. 23,

—2.wH+loxP+lowxi+2.y-2.wy+2.y -2, wxz-1. 2" +1. wz?}

Now produce the transformation matrix AH adding back the 1 in the second and 4 component.
m- - eq=FLTMD[raweq, AH, 3, {Xx, ¥, Zz, w}, {X, ¥, z}, dTol]l1]
{1, 4, 9, 16}
{1, 4, 9, 16}

oo 1o =1.x*-1.y*+1. 2%

which is exactly what we got before!

The point of this section is not really about how to implicitize an actual example but just to emphasize
the theorem that theoretically every rational parametric surface is contained in a naive implicit surface.
Thus we can apply the Jordan-Brouwer Theorem of Section 1.1 about smooth points. But the plot at

the end of Section 1.2 shows there can be many non-smooth points!
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1.4 The Torus Story

This example has served as motivation for this book. Here | have a simpler, but more ad-hoc, method
for implicitizing rational parametric functions. The theme of studying surfaces by curves on the sur-
face will be a major technique in this book and has been a major tool also in classical algebraic geome -
try. Some of the surfaces mentioned in Section 1.1 are constructed here.

1.4.1 Preliminaries

Before getting into this | remind the reader that the first method in the previous section 1.3 is based on
the method in section 3.1.4 of my Space Curves Book for finding implicit equations of rationally parame -
terized space curves. For degrees d =2,3,4 and 5 one writes the curve in the form

TransformationFunction[A][{td, 41, t}]

or the equivalent
fLeMD[{t?, t*1, ..., t}, A]

for an appropriate (d + 1) = (n + 1) transformation matrix A. Here n = 3. Essentially we are viewing the
parametric curve as an image of the rational normal curve of degree d. Then the implicit equation is
given by

FLTMD[tBasisd, A, m, {x1, x2, ..xd}, {x, y, z}, tol]

for appropriate m. Often m =d but a possibly smaller m might work or a larger m may be needed.
Naive space curves have 2 equations, rather than the one for surfaces, but often the correct system of
equations for a rational parametric curve will not be naive and require more than 2 equations but for

our use we may find 2 equations that serve our purposes.

One other important preliminary idea from Space Curves is that we can approximate ideals of algebraic
spaces using Sylvester matrices. The rows of a Sylvester, or other, matrix can be viewed as the basis of
a subspace of an appropriate n-space R” where often nis large. To take the union of two algebraic
spaces a row equivalent matrix to the Sylvester matrix of a union is the intersection of the Sylvester
matrices of the parts. So one of the main tools | will use in this book is the following simple algorithm

for the intersection of two vector subspaces of R".

Note that in the Space Curve Book we adopt some of the language of Macaulay.

Matrices A, B are called (Macaulay) duals if
1. AB is defined and AB=0

2. If vB=0then visin the row space of A
3. If vB=0then visin the row space of A

That is, A, B are maximal satisfying AB =0. It is sufficient that the columns of B form the nullspace of A
or the rows of A form the column space of B. In my software if either A = localDualMatrix[B,tol]

or B = dualMatrix[A, tol] then A,B are duals, in particular B is the dual of A and A is the local dual
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of B.

Here let V, W be matrices with the same number of columns whose row spaces are the two vector
spaces Let dV, dW be the duals of V, W and dd the column join of dV, dW.

If vis in the intersection of the vector spaces then v.dV =v.dW =0 so v.dd=0 and v is in the row space of
the local dual of dd.

Conversely, if vis in the row space of the local dual of dd then v. dd =0 meaning v.c =0 for any column
of dd. In particular v.dV =0, v.dW =0 so v is in the row space of V and the row space of W, hence in the

intersection.

Thus our algorithm is

vectorSpaceIntersection [V_, W_, tol_] := Module[{dV, dW, dd},
dV = dualMatrix [V, tol];
dW = dualMatrix [W, tol];
dd = Join[dV, dw, 2];
localbDualMatrix [dd, tol]]

This can be extended to 3 or more subspaces if useful , see GlobalFunctionsS.nb

To use this to find the union of two algebraic sets we take Sylvester matrices of the same appropriate
order for the two sets. We then intersect the underlying row spaces to get a row matrix which we
multiply by an mExpsMD list of monomials to convert back to equations. If necessary we find a smaller

hBasis of this list. Examples are below.

1.4 .2 The Torus

Here is our rationally parametrized surface .

’

4s(l+t+t?) 25 (-1+s’-t+s?t-t?+s’t?) (1-t?) (1+s"2)}

T={@+sﬂ (1+t?) (1+52) - (1+1t2) T (1+t7) - (1+5A2)

Plotting, using a finite range instead of the {-c0,00} theoretical range, we get
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m-p- PT := ParametricPlot3D [T, {t, -10, 10}, {s, -10, 10},
PlotRange - All, Mesh -» None, MaxRecursion - 4, PlotStyle - Opacity[.8]]
PT

This seems to be most of a torus.

Step 1

We can find curves on this surface by restricting to one variable by making the other a constant, in this
case we will set tto 0 and then, for later consistency, sets to t.

Inf + Ji= fto=T/.{t> 0, s> t}

outf + J=

4t 2 (-1+1t?)
ovethy - 1}
1+1t2 1+t

. 1+t"2 . .
Since 1= —1+m we can use the transformation matrix
+

Inf « Ji= Ato = {{o0, 4, 0}, {2, 0, -2}, {1, 0, 1}, {1, 0, 1}}
ou - - {0, 4, 0}, {2, 0, -2}, {1, 0, 1}, {1, O, 1}}
Checking

m- - FLEMD[{t A2, t}, AtO]

, 1}

4t -2+2t?
out] ]:{

b
1+t? 1+t?



- - Show[PT, ParametricPlot3D [ftO, {t, —-20, 20}]]

We find a basis by

m- - ddeall = FLTMD[tBasis2, AtO, 2, {x2, x1}, {Xx, Yy, z}, dTol]

¥

Initial Hilbert Function {1, 3, 5}

¥

Final Hilbert Function {1, 3, 5}

o {1.-1.2z,-0.25x*-0.25 y* + 1. z%}
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Using the second, more complicated basis element we see this curve generates the surface
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n - - Show[ContourPlot3D [ideall[-1] == 0, {x, -2, 2}, {y, -2, 2}, {z, -2, 2}, Mesh - None],
ParametricPlot3D [ftO, {t, -20, 20}, MaxRecursion - 4]]

outf « ]=

Step 2

We then consider a curve on the torus by making s a constant, we already have variable t. Again, we
are working ad-hoc so perhaps a bit of trial and error is necessary.

Inf e J= fs2=T/.{s » 2}

8x(L+t+t?) 2-(3+3t+3t%) 1-t2

outf ]:{ y ) }
5% (1+1t?) 5 (1+1t?) 1+t?

A transformation matrix is
Inf = J:= As2 = {{8, 8, 8}, {-6, -6, -6}, {-5, 0, 5}, {5, 0, 5}};

Checking

m- - FLEMD[{t A2, t}, As2]

ouf + J= {

8+8t+8t2 -6-6t-61t2 5—5t2}

b b
5+5t? 5+5t? 5+5t?
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- - Show[PT, ParametricPlot3D [{fs2, ft0}, {t, -20, 20}, PlotStyle - Blue, MaxRecursion - 4]]

These curves are on the torus as the plot shows, but we want to see what sort of surface is determined
by these curves alone. We now use ideas of 1.4.1.

w - ideal2 = FLTMD[tBasis2, As2, 2, {x2, x1}, {X, y, z}, dTol]

» Initial Hilbert Function {1, 3, 5}
» Final Hilbert Function {1, 3, 5}

o - {0.75x+1.y, 1. -1.66667 x +0.520833 x*+0.333333 2%}

We use m =4 because we think the torus will have an equation of degree 4.

n- - syll = sylvesterMD [ideall, 4, {x, y, z}];
syl2 = sylvesterMD [ideal2, 4, {x, vy, z}];

m- - intersec2 = vectorSpaceIntersection [syll, syl2, 1.x"-10];

Length[intersec2]

ouf - - 18

This says we will get a basis of 18 polynomials, which is too cumbersome. So we do

m-- basis2 = hBasisMD[intersec2 .mExpsMD[4, {x, ¥, z}], 4, {X, ¥, z}, 1.x"-10]

» Initial Hilbert Function {1, 3, 5, 4, 4}
» Final Hilbert Function {1, 3, 5, 4, 4}

o - {~0.75x-1.y+0.75xz+1.yz, 4.8-5.x-1.6x"+1.x>-1.6y°+1.xy*+1.62z*+1. x2z*,
—3.Xx+0.75 x4, y+1.x3y+0.75 xy*+1.y>,
-3.45.x-1.5625 x> +3.2z-5.x2+1.5625 x> z-1. z*+ 1. 2%}

to get a basis of 4 polynomials . Plotting the last one w2 have
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n - - Show[ContourPlot3D [basis2[-1] == 0, {x, -2, 3}, {y, -2, 2}, {z, -2, 2}, Mesh - None],
ParametricPlot3D [{fs2, ftO}, {t, -20, 20}, PlotStyle - Blue, MaxRecursion - 4]]

outf « J=

This is just the surface ts2 of section 1.1. We saw that this is the union of a plane with an infinite cylin-
der and the intersection line was regular but not smooth so ContourPlot3D can not plot this correctly,
but the upper circle is in ts2.

Step 3
We now add another vertical circle .

1=  ftp5 = Expand[T /. {t » .5, s » t}]

5.6t 2.8 2.8¢t?
outf 1:{ , - ,0.6}
1+t2 1+t2 1+t?

Putting the last component over the common denominator gives transformation matrix
w- -  Atp5 ={{®, 5.6, 0}, {~2.8, 0, 2.8}, {.6, 0, .6}, {1, 0, 1}};

m- - FLEMD[{t A2, t}, Atp5]

5.6t 2.8-2.8t%> 0.6+0.6t?
out] ]:{

b b }
1.+1.t2 1.+1.t2 1.+1.t2
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- - Show[PT,
ParametricPlot3D [{ftp5, fs2, ftO}, {t, -20, 20}, PlotStyle - Blue, MaxRecursion - 4]]

Oout[ » ]=

mn- - ideal3 = FLTMD[tBasis2 , Atp5, 2, {x2, x1}, {x, y, z}, dTol]
» Initial Hilbert Function {1, 3, 5}
» Final Hilbert Function {1, 3, 5}

our- - {1. -1.66667 z, -0.0459184 x” - 0.0459184 y”+ 1. z%}

m- - syl3 = sylvesterMD [ideal3, 4, {x, y, z}];
syl3b = sylvesterMD [basis2, 4, {x, y, z}];
intersect3 = vectorSpaceIntersection [syl3, syl3b, 1.x"-10];

Length[intersect3]

ouf - - 12

n- - basis3 = hBasisMD[intersect3 .mExpsMD[4, {Xx, ¥, z}], 4, {X, ¥, z}, 1.%"-10]
» Initial Hilbert Function {1, 3, 6, 7, 6}
» Final Hilbert Function {1, 3, 6, 7, 6}
o - {~10.2x+0.75x>-13.6 y+1. x’y+0.75 xy*+1. y>+7.2x2+9.6y z,
0.45Xx+0.6y-1.2xz-1.6yz+0.75xz°+1.yz,
-6.+8.125 x-0.625 x>-0.625 xy*+3.z-5.xz+1.x*z+1.y?*z-2.2-0.625xz*+1. z°,
10.752 - 6.4 x-11.464 x> +0.64 x>+ 1. x* +1.536 y* +0.64 x y° +
1.x*y*+2.88x%2-5.12y*z+3.584 2" +3.84 x 2" + 1. x* 27}
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- - Show[ContourPlot3D [basis3[-1] == 0, {x, -4, 3}, {y, -4, 4}, {z, -2, 2}, Mesh - None],
ParametricPlot3D [{ftp5, fs2, ftO}, {t, -20, 20}, PlotStyle - Blue, MaxRecursion - 4]]

4

outf + J=

Step 4.
We find another vertical circle
m-1- fs4=T/l.{s > 4}

16« (L+t+t?) 2-(15+15t+15t%) 1-+t2

Out[ ]:{ y ~ ) }
17 < (1+t2) 17 < (1+t2) 1+t?

w - As4 = {16, 16, 16}, {-30, -30, -30}, {-17, 0, 17}, {17, 0, 17}};

Checking :

m- - FLEMD[{t A2, t}, As4]

outf + J= {

16+16t+16t2 -30-30t-30t? 17—17t2}

b b
17 +17 t2 17 +17 t2 17 +17 t2
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- - Show[PT, ParametricPlot3D [{ftp5, fs2, ftO}, {t, -20, 20}, PlotStyle - Blue],

ParametricPlot3D [fs4, {t, -20, 20}, PlotStyle - Green]]

Oout[ » ]=

Continuing as above

m- - ideald = FLTMD[tBasis2, As4, 2, {x2, x1}, {x, y, z}, dTol]
» Initial Hilbert Function {1, 3, 5}
» Final Hilbert Function {1, 3, 5}

ou - {1.875 x+ 1.y, 1. -2.83333 x+1.50521 x* + 0.333333 2%}

m- - syl4 = sylvesterMD [ideald, 4, {x, y, z}];
syl4b = sylvesterMD [basis3, 4, {x, y, z}];

intersect4 = vectorSpaceIntersection [syl4, syl4db, 1.x"-10];

Length[intersect4]

ouf« - T

n- - basis4 = hBasisMD[intersect4 .mExpsMD[4, {Xx, ¥, z}], 4, {X, ¥, z}, 1.%"-10]

» Initial Hilbert Function {1, 3, 6, 9, 9}

» Final Hilbert Function {1, 3, 6, 9, 9}

our - {~6. +4.33333 x-0.333333 x>-5.05556 y +0.388889 x’y-0.333333 xy*+0.388889 y*+3. z-
2.66667 xz+1.x>z+3.11111yz+1.y*z-2.z?-0.333333 xz>+0.388889 yz>+1. z°,
-6.4+2.03175 x-2.92619 x*-0.203175 x> +0.154762 x*-2.37037 y-13. xy+0.237037 x*y+
1. x>y -0.914286 y?-0.203175 x y* +0.154762 x® y*>+0.237037 y>+ 1. xy> +4.28571 x* z +
8.Xyz+3.04762 y*z-2.13333 z?-1.21905 x z* +0.154762 x>z +1.42222 yz*+1. xy z?,
-19.125 x?+1.40625 x*-35.7 xy+2.625 x> y-13.6 y> +2.40625 x> y* +

2.625 xy +1.y*+13.5x*z+25.2xyz+9.6y%z,

16.8 -5.33333 x+8.525 x*+0.533333 x>-0.40625 x*+6.22222 y+35.7 xy -
0.622222 x*y-2.625 x>y +3. y?+0.533333 xy?-0.40625 x*y*-0.622222 y*-2.625 x y° -
13.5x°2-25.2xyz-9.6y*z+5.62z°+3.2x2z°+1.x*>2°-3.73333 y z* + 1. y* 2%}
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mn- - Length[basis4]
ouf - - 4
As before the last equation gives an example of a surface of degree 4 containing these 4 curves .

- - Show[ContourPlot3D [basis4[-1] == 0, {x, -3, 4}, {y, -3, 3}, {z, -3, 3}, Mesh - None],
ParametricPlot3D [{fs4, ftp5, fs2, fte}, {t, -20, 20}, PlotStyle - Blue]]

Step 5.

Now we add another vertical circle .

nf e J= fsp5=T/.{s » .5}

1.6 (1+t+t?) 1.6-(-0.75-0.75t-0.75t%) 1-t2

outf ]:{ y - ) }
1+ t2 1+ t2 1+t?
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n - - Show[PT, ParametricPlot3D [{fs4, ftp5, fs2, ftO}, {t, -20, 20}, PlotStyle - Blue],
ParametricPlot3D [fsp5, {t, -20, 20}, PlotStyle - Green]]

n- - Asp5 = {{1.6, 1.6, 1.6}, {1.2, 1.2, 1.2}, {-1, 0, 1}, {1, 0, 1}};
Checking

m- - FLEMD[{t A2, t}, Asp5]

outf + J=

{1.6+l.6t+1.6t2 1.2+1.2t+1.2t%2 1.-1.+¢t?

b b }
1.+1.t2 1.+1.t2 1.+1.t2

n- - ideals5 = FLTMD[tBasis2, Asp5, 2, {x2, x1}, {x, y, z}, dTol]

P

¥

Initial Hilbert Function {1, 3, 5}
» Final Hilbert Function {1, 3, 5}

our - {~0.75 x+1.y, 1. -1.66667 x+0.520833 x* +0.333333 z°}

n- - syl5 = sylvesterMD [ideal5, 4, {x, y, z}];
syl5b = sylvesterMD [basis4, 4, {x, Yy, z}];
intersect5 = vectorSpacelntersection [syl5, syl5b, 1.%/-10];

Length[intersect5]

ouf - - 3

n - - basis5 = hBasisMD[intersect5 .mExpsMD[4, {x, Yy, z}], 4, {X, YV, z}, 1.%x"-10]
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» Initial Hilbert Function {1, 3, 6, 10, 12}
» Final Hilbert Function {1, 3, 6, 10, 12}

our- - {40.5 x - 47.5313 x* +3.65625 x* - 13. y*+4.65625 x> y*+ 1. y*-20.25 x 2+29.25 x* z -
6.75x>z+8.y*7z-6.75xy?z+13.5 xz>+3.65625 x* z°+1. y* z2 - 6.75 x z*,
-11.25 x+15.2344 x> -1.17188 x*-6. y+8.125 x y-0.625 x> y-1.17188 x* y* -
0.625 Xy +5.625 xz-9.375 x> z+1.875 x> z+3.yz-5.xyz+1.x*yz+1.875 xy’ z+
1.y*z-3.75x2z>-1.17188 x> z°-2.yz>-0.625 xy z>+1.875 x 2>+ 1.y z°,
9.-81. x+85.0625 x*-6.3125 x*+16. y?-7.3125 x*y*-1.y*+40.5 xz-58.5 x> z +
13.5x>z-16.y*z+13.5xy* z+6. 2" -27. xz°-5.3125 x* z° +13.5 x 2> + 1. 2%}

- - Show[ContourPlot3D [basis5[-1] == 0, {x, -3, 4}, {y, -3, 3}, {z, -3, 3}, Mesh - None],
ParametricPlot3D [{fsp5, fs4, ftp5, fs2, fto}, {t, -20, 20}, PlotStyle - Blue]]

outf « |=

We will name this surface ts5 for later use .

Step 6.

One more horizontal circle .

- - ft2 = Expand[N[T /. {t » 2, s > t}]]

5.6t 2.8 2.8 t2
outf ]:{ , - ,—0.6}
1. +t% 1. +t? 1. +t2
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m - 1- Show[PT, ParametricPlot3D [{fsp5, fs4, ftp5, fs2, fto}, {t, -20, 20}, PlotStyle - Blue],
ParametricPlot3D [ft2, {t, -20, 20}, PlotStyle - Green]]

At2 = {0, 5.6, 0}, {-2.8, 0, 2.8}, {-.6, 0, -.6}, {1, 0, 1}};
FLEMD[{t A2, t}, At2]

)

5.6t 2.8-2.8t?> -0.6-0.6 12
Outf ]:{ b }
1.+1.t2 1.+1.t2 1.+1.t2

m- - idealé = FLTMD[tBasis2 , At2, 2, {x2, x1}, {x, y, z}, dTol]
» Initial Hilbert Function {1, 3, 5}
» Final Hilbert Function {1, 3, 5}

o {1. +1.66667 z, -0.0459184 x* - 0.0459184 y*+ 1. z°}

mn- - sylé = sylvesterMD [ideal6, 4, {x, Yy, Z}];
syléb = sylvesterMD [basis5, 4, {x, Yy, z}];
intersect6 = vectorSpaceIntersection [syl6, syl6b, dTol];

Length[intersect6]
ouf- = 1
Since the length is 1 we do not need an hBasis calculation

n- - Teq = Chop[intersect6 .mExpsMD[4, {x, ¥, z}], dTol][1]

ouf - - ©.493939 - 0.548821 x* +0.0548821 x* - 0.548821 y? +0.109764 x*y*+
0.0548821 y*+0.329293 2%+ 0.109764 x* z* +0.109764 y* z? + 0.0548821 z*

We check that this is a surface containing our original parameterization

- 1- Chop[Simplify[Teq /. Thread[{x, y, z} » T]], 1.%"-10]

ouf-j= 0
Simplifying a little more

- Teq = Expand[9 Teq [ Teql11]

ouf- - 9. -10. x*+ 1. x*-10. y2+2. x2y2+l. y'+6. z2+2. x> 2%+ 2. yzzz+l. z*
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n - - Teq = FromCoefficientRules [Normal[Round[<| CoefficientRules [Teq, {x, y, z}]|>1l, {Xx, ¥y, z}]
o - 9-10x2+x*-10y?+2x2yr+yte 622 +2x* 22+ 2y2 2%+ Z2°

we actually get an integer coefficient surface.
- - Simplify[Teq /. Thread[{x, y, z} » TI]

our - - ©

n - - Show[ContourPlot3D [Teq == 0, {x, -3, 3}, {y, -3, 3}, {z, -3, 3},
Mesh - None, ContourStyle - Opacity[.8]], ParametricPlot3D [
{ft2, fsp5, fs4, ftp5, fs2, fto}, {t, -20, 20}, PlotStyle - Blue, MaxRecursion - 6]]

outf « J=

Thus we have implicitized our torus! In other words the torus Teq is the only surface of degree 4 contain

ing these 6 curves.
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1.5 Curves in surfaces

Our calculation shows that one can find out a lot about a curve by studying curves in the surface . This
is a classical idea where these curves are called divisors. However rarely did one see an actual example.

In our own, explicit, way we will find these curves a major technique for studying surfaces.

1.5.1 Curves in rational parametric surfaces.

We study these first since since they are somewhat easier. Since our parameter space is just a plane
every plane curve lifts to a curve in the parameterized surface. If our parameterization is not one-to-
one the curve may be collapsed, or if the parameterization has non-regular points new singularities
may be added, so the curve may not look exactly like it looked in the plane. The method is easy, how -

ever there are two cases.

We will use the torus in the previous section as we now know both a parametric and implicit equation.

4s(l+t+t?) 2 (-1les?-t+s?t-t?+s?t?) 1-+t?

Inf + J:= Tor ={ y = ) };

(1+5s?)~(1+1t?) (L+s?)«(1+1t?) 1+1t?

TorEq =9—10x2+x4-10y2+2x2y2+y4+622+2x222+2y222+z4;

We can just substitute our plane parameterization for the parameters. Here is an example from my

Plane Curve Book section 7.3. We change the parameter to u so it won't conflict with s, t.

m-p-F1l={3u-ur2+1, -2u+u”2-2}/(1+u+unr2)

ouf - J= ,

{l+3u—u2 —2—2u+u2}
l+u+u? l+u+u?

This is an ellipse .
n- - Al ={{-1, 3, 1}, {1, -2, -2}, {1, 1, 1}};
Fleq = FLTMD[tBasis2, Al, 2, {x2, x1}, {X, y}, dTol]l1]
{1, 3, 5}
{1, 3, 5}

o -1, -6.x-3.x%-6. y-6.xy-4. y2

Note the error in the Plane Curve book!
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n - - Show[ContourPlot [Fleq == 0, {x, -4, 2},
{y, -2, 2}, ContourStyle - Directive[Thick, Orangel],
ParametricPlot [F1, {u, -20, 20}, PlotStyle - Dashed]]

=]

2F

We then get a space curve

wo - TF1 = Simplify [Tor /. {s » F1[1], t » F1[2I}

6+(-1-3u+u?)«(1L+u+u?)«(1+2u-u®+u?)

Out] ],{_ )
(T1+4u+5u?-2u+ut)«(5+10u+3u>-2u+2uf)

12u(-1-3u+5u®-3u®+2u°) 3:(-1-2u+u?+2u?)

: )
(1+4u+5u?-2u+u?) (5+10u+3u”-2u’+2u*) 5+10u+3u’-2u’+2u*
This is somewhat complicated and we end up with a curve of degree 8, the product of the degrees. This
is why no-one attempts this by hand. Two views are given.

Show[ContourPlot3D [TorEq == 0, {x, -3, 3}, {y, -3, 3}, {z, -2, 2}, Mesh » None],
ParametricPlot3D [TF1, {u, -20, 20}, PlotStyle - Blue]]

1.5.2 Curves in Implicit Surface

Curves in implicit surfaces can easily be defined by intersecting with another implicit surface. In this
case we get a naive space curve as defined in my Space Curve Book. Possibly this curve is empty. In
other cases we have to use the techniques of that book to describe the curve. Typically the degree of
this curve will be the product of the two degrees so can be large. As in the Torus example of Section 1.4

we often use a plane as our second surface to preserve the degree. For example, when our surface is
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quadratic using a second quadratic surface we already have a hard problem to describe the curve, this
is the Quadratic Surface Intersection problem of Section 3.2 of the Space Curve Book.

Now we introduce the important Fermat surface
- - fermat = x"3+y~"3+z7A3+1;

We will make a curve on fermat by intersecting with the sphere
m-1-sph=(X+1)A"24+yr24+2z72-1;

n - - Show[ContourPlot3D [{fermat == 0}, {x, -2, 1}, {y, -2, 2}, {z, -2, 2}, Mesh -» None],
ContourPlot3D [sph == 0, {x, -2, 2}, {y, -2, 2}, {z, -1, 2},
Mesh - None, ContourStyle - Directive[Opacity[.6], Pinkl]]

Out[ » ]=

To plot we need to find some points on the intersection curve

m- - cp = criticalPoints3D [{fermat, sph}, {x, y, z}]
our- - {{-1.24155, 0., 0.970389}, {-0.606468 , -0.919311, 0.}, {-1.20364, 0.458357 , 0.865123},
{-0.713712, -0.75704 , -0.587307}, {-1.24155, 0.970389, 0.}, {-0.606468, 0., -0.919311}

We can now find points on the curve by

w1~ P1 = pathFinder3D [{fermat , sph}, cpl1l, cpl6l, .2, {x, y, z}]
ou - {{-1.24155, 0., 0.970389},

{-1.23247, 0.195949 , 0.952659}, {-1.21237 , 0.384334, 0.898436},
{-1.19336, 0.557564 , 0.8073}, {-1.18662, 0.707692 , 0.681428},
{-1.19629, 0.827291, 0.526364}, {-1.21646, 0.911499 , 0.349736},
{-1.23537, 0.958754 , 0.159351}, {-1.24116, 0.969773 , -0.0371887},
{-1.22443, 0.946568 , -0.231607}, {-1.17909 , 0.892284 , -0.414435},
{-1.10329, 0.811157 , -0.575635}, {-1.00059 , 0.707695 , -0.706518},

{-0.880796 , 0.584756 , -0.802403}, {-0.760452 , 0.441632 , -0.864626},
{-0.663004 , 0.275756 , -0.900218}, {-0.606468 , 0., -0.919311}}
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n - - P2 = pathFinder3D [{fermat, sph}, cpll1l, cpl6l, .2, {x, y, z}, dir -» -1]

ouf - {{-1.24155, 0., 0.970389},
{-1.22964, -0.195509 , 0.953437}, {-1.18999, -0.381293, 0.904722},
{-1.11984, -0.547315, 0.828302}, {-1.02166, -0.684434 , 0.728753},
{-0.90404 , -0.787017 , 0.609422}, {-0.782202 , -0.855196 , 0.470323},
(-0.67842, -0.895117 , 0.30879}, {-0.617386 , -0.915248 , 0.126204},
{-0.609214 , -0.917986 , -0.067741}, {-0.640588 , -0.896043 , -0.260633},
{-0.685277 , -0.839144 , -0.443606}, {-0.716363 , -0.741066 , -0.608581},
{-0.715878 , -0.604332, -0.744351}, {-0.684168 , -0.438983 , -0.841157},
{(-0.639503 , -0.255812 , -0.896996}, {-0.606468 , 0., -0.919311}}

n - - Show[ContourPlot3D [fermat == 0, {x, -2, 1}, {y, -2, 2}, {z, -2, 2}, Mesh » None],
Graphics3D [{{Blue, Thick, Line[P1]}, {Blue, Thick, Line[P2]}}]]

outf « ]=

1.5.3 Implicit Surface and Parametric Curve

A third possibility is to use a parametric curve with the implicit surface. However this requires some
cleverness as there is no general method for doing this. For example one may observe that the that the
Fermat surface above contains the parametric lines {t, -t, -1}, {t, -1, t}and {-1, t, -t} in this surface.

We will see later there are no other real lines in this surface.

n- - fermat /. Thread[{x, y, z} » {t, -t, -1}]

ouf - - O
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n - - Show[ContourPlot3D [fermat == 0, {x, -2, 2}, {y, -2, 2}, {z, -2, 2}, Mesh - None],
ParametricPlot3D [{{t, -t, -1}, {t, -1, -t}, {-1, t, -t}}, {t, -2, 2}, PlotStyle - Blue]]

outf « ]=

1.5.4 Some Code

For the reader's convenience we give the code for the two routines we used in 1.5.2, the are, of course
in GlobalFunctionsS.nb. But some readers of the Space Curve book may notice that pathFinder3D has
changed, new options are allowed, in particular the option dir—-1 which allowed us to change

directions.

m-p= criticalPoints3D [{f_, g_}, {Xx_, Y_, Z_}] := Module[{J, ob},
ob = RandomReal [{.7, 1.3}, 3].{x"2, yA2, zA2};
J = D[{f, g, ob}, {{x, ¥y, z}}1;
{x, y, z}/. NSolve[{f, g, N[Det[JI]]}, {X, YV, z}, Reals]]
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In[ « J:=

Options[pathFinder3D] = {maxit -» 30, tol » 1.x"-8, dir -» 1};
pathFinder3D[{f_, g}, P_, 9_, S_, {X_, Y_, Zz_}, OptionsPattern[]] :=
Module[{k, po, p1, tvl, tv, L},

PO =p;
L = Reap[Sow][p];
k=03

While[Norm[g-p0O] > 2 s && k < OptionValue [maxit],
tvl = OptionValue [dir] *
tangentVector3D [{f, g}, pO, {x, ¥, z}, tol -» OptionValue [tol]];
If(tvl.(q-p0O)>0, tv=1tvl, tv=-tvl];
pO = closestPoint3D [{f, g}, pO +s*tv, {x, y, z}];
Sow[p0O];
k++]3
If[k > OptionValue [maxit], Print["Warning, iteration 1limit reached'"]];
Sow[q]];
Li2, 11];

1.5.5 Ovals and Pseudo-Lines

In both my Plane Curve Book and Space Curve Book | discuss my Fundamental Theorem as well as

ovals and pseudo-lines which make most sense for non-singular curves. The Euler graph of a curve
may not be connected, in the graph theory sense. A connected component of the graph then refers to a
closed topological subcurve of the curve which may or may not be an entire algebraic curve. This
subcurve will be an oval if it meets the infinite plane in an even number of points, a pseudo-line if it
meets the infinite plane in an odd number of points counting multiplicity in both cases. Actually any
fixed plane of projective space can be used instead of the infinite plane, so any closed subcurve which

misses some plane entirely is an oval, in particular bounded closed curves are ovals.

As an example the curve in the fermat surface of section 1.5.2 is an oval whereas the lines in 1.5.3 are, of

course, pseudo-lines. Consider the surface from Section 1.1

ts3=1.752-6.4x-11.464 x> +0.64 x> +x"4+1.536 y* +
0.64 xy*+x*y*+2.88 x"2z-5.12y"22z+3.584 2> +3.84 x 2% + x* z%}

We intersect this with the plane z=-1 and get two ovals as shown in the plot in red and green. We

suppress the work.
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Neither oval is a curve alone, but the union is the naive space curve {ts3, z + 1}. We had to use path
finding to draw these.

There is a new difference between these ovals. The red oval is null homotopic which means that if one
thinks of this as a ring on a finger then it can be slipped off without hurting the surface. More precisely
it can be moved continuously on the surface until it degenerates into a point at the bottom. The reader
should note here that we are purposely being heuristic. On the other hand the green oval can not be
obviously deformed to a point or “removed”. Another difference is that the red oval separates the
surface into the part on that finger which is above the oval and the small part below the oval. Again itis
not clear from this picture if the green oval does this, we will have to wait until later when we treat
these surfaces as projective surfaces. The surface in Section 1.4 called ts5 (in step 5) gives a better
picture, work suppressed.

1361 x* 101 x* 117 x> y? 8lxz
ts5=9-81x+ - +16y% - -y*+ -
16 16 16 2
117 x*z 27%x%z 27 85 x?z? 27x2°
+ -16y’z+— xy’z+62z*-27x2z*- + +z%

2 2 2 16 2
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In[« ]=

-2

Here the green oval, a subcurve of the naive curve {ts5, y}, clearly does not separate this surface. Of

course our 6 curves on the torus in Section 1.4 also do not separate the torus.

We also note from the torus example that the 3 horizontal curves each meet the three vertical curves in
exactly one point. This is in stark difference where any algebraic curve meets an oval in an even num -
ber of points by multiplicity. That property of an oval was a crucial step in our proof of Harnak’s Theo -
rem, but it not true in the surface case. The other difference is that, in general, ovals do not have an
inside and outside like plane ovals. Some, like the end of the finger of ts3 do, that is, the end part is

topologically equivalent to a disk while the other part is not.

An example here is the sphere which, if anything, has two interiors when cut by the equator. The

equator is clearly null-homotopic and can be deformed to either the north or south poles.

sphere = xA2+y"2+z7r2-1;
2t 1-t72

equator ={ s s O};
1+t"r2 1+tr2
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n - - Show[ContourPlot3D [sphere == 0, {x, -1.5, 1.5}, {y, -1.5, 1.5}, {z, -1.5, 1.5},
Mesh - None], ParametricPlot3D [equator , {t, -20, 20}, PlotStyle - Bluel]]

In summary, there are three kinds of closed curves/subcurves. The pseudo-lines, the non-null-homo -
topic ovals and the null-homotopic ovals. The first two do not separate a surface into connected

components while he third does separate the surface. Often we will call a non-null-homotopic oval an

essential oval.
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1.6 Rational Points and Rational Surfaces

In[

Inf

Outf

Inf

Outf

Inf

Outf

I=

=

We have been discussing rationally parameterized surfaces, Section 2. Here we make the distinction
between these and Rational surfaces, note the capital R. These are rationally parameterized surfaces
with the additional property that the coefficients of all the polynomials in the numerators and denomi -
nators have rational, equivalently integer, coefficients. In previous sections most of my examples are
of this type, but given my wide use of Mathematica machine numbers it would certainly be permissible

to use a non-rational machine number as a coefficient.

An observation is that because a Rational parameterization has only rational coefficients then every
rational value of the parameters gives a rational point, that is a point where all components are ratio -

nal numbers. For example for the torus

4s(l+t+t?) 2x(-1as’-t+s’t-t?+s’t?) (1-t?)«(1+s?)

Tor={ y = ) };

(L+s?)«(1+t?) (L+s?)«(1+1t?) (1+t%)~(1+5?)

if one takes, say t= 1—73, s= 271 then

p=Tor/.{s—>21/4, t-> 13/7}
51912 131325 60 }

{49813’ 49813 109

one gets this horrible denominator but none-the-less a rational number. We don’t notice since we

work numerically and the point appears as

N[p]
{1.04214 , -2.63636 , -0.550459}

which looks like any other point. But we have illustrated the following fact:
The set of rational points inarational surface is dense.

The precise meaning is that for any point on the rational surface and any € > 0 there is a rational point
within euclidean distance € of that point. This also works for a rational curve which implies, using the
fact that the circle x? + y* — 1is rational , that any right triangle is arbitrarily close to a right triangle

with rational sides. If the early mathematicians knew this there would be no need for irrational num -

bers. But of course Euclid never thought about fractions like
-pl2]

131325

49813

We may then ask the question about a general surface: are there many rational points? For curves with
only rational coefficients Gerd Faltings proved in 1983 a 1922 conjecture of Louis Mordell that if the
genus is 2 or greater there can only be finitely many rational points. It turns out that this is more

complicated for surfaces. Here is one of many places where algebraic geometry meets number theory.

The Fermat surface used in the previous section is a good example. This is a surface that is known to
not be rational. Yet we noticed that there are 3 rational lines, {t, -t, -1}, {t, -1, -t}, {-1, t, —t}. Thus



Out[

Out[

Inf

Out[

In[

Out

SurfaceBookChapterOne_v1.0.nb | 49

plugging in any rational value for t gives a rational point of the surface. So there are infinitely many
rational points in this surface. Are there others?

We can experiment with Mathematica . A Diophantine problem is to find integer solutions to a polyno -
mial equation with integer coefficients. Mathematica has some good algorithms to find solutions to
these problems. A general routine is the build in FindInstance. In this case we can use it as follows.
We start with the equation of the Fermat surface

- fermat = x*3+y*r"3+z23+1;

To get rational solutions we homogenize this by replacing 1 by a new variable w which we will use as a

denominator.

- fermatH = xA3+y*3+zA3+wh3;

- FindInstance [fermatH == 0, {x, y, z, w}, Integers]

{x->0,y->0,z-50, w->0}}

That was rather obvious, but doesn’t actually give a rational solution, try again.

- FindInstance [fermatH == 0 &&w + 0, {x, Yy, z, w}, Integers]

{x->1,y->-1,z->-1, w- 1}}

Still quite obvious but gives {1, —1, 1}, a point in one of our lines. Lets try for a point not on one of our
lines.

- FindInstance [fermatH == 0 && (X +Yy) (X +z)(Yy+2) *# O, {X, ¥, z, w}, Integers]

{x->12,y->1,z-5-9, w-> -10}}

12 1 -9 ..
- - =, —}isin our surface:
> _10

Now this is interesting, the point { =, -

12 1 -9
fermat /. Thread[{x, Y, z} - {—— R —}]
10 10 10

0

In principal, FindInstance will give a desired number of solutions, but for this problem it will not.

FindInstance [fermatH == 0 && (x+y) (X +Z)(y+2) * 0, {x, Yy, z, w}, Integers, 2]

«« Findinstance : The methods available to FindIinstance are insufficient to find the requested instances or prove

they do not exist.

- FindInstance [w’ + x> +y> + 2% == 0&& (x +y) (x +2) (y +2) £ 0, {X, ¥, z, w}, Z, 2]

so we must make do with one solution at a time, even though permutations of the coordinates will give

another solution due to the symmetry of the problem.

| pause to give a nice way to get from the FindInstance output to the affine rational point. Let
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In[

- A={1,0,0,0,0),{0,1,0,0,0),{0,0,1,0,0),{0,0,0,1, 0)};

A/l MatrixForm

outf + J/MatrixForm=

Inf

Outf

Outf

Out[

In[

1 0000
0106 00
0 06100
0 060610

We take the output of FindInstance using only the first {instance, changing the

conditions may give a new 1instance

= inst ={x, y, z, w}/.
FindInstance [fermatH == 0 && (X +y) (X +Z)(y+2) + O&&w> 5, {x, y, z, w}, Integers][1i]
-{6,1, -9, 8

Now we use

o - FLEMD[inst, A]

{ 3 1 9 }
Ly’ g7 g
Further we can replace A by any permutation of the first 3 rows of A to get additional solutions by

permuting the components. As the the lower bound for w gets larger this will take more time

- inst = Timing[{x, y, z, w} /. FindInstance [fermatH == 0 &&

X+Y)(X+Z)(Yy+2Z)+ O&& X "2+yr2+zA2+wh2> 700, {X, Yy, z, w}, Integers]l1]]
- {8.26453, {-24, -2, 18, 20}}
Proceeding this way | found 6 instances which after permuting
- fermatH /. Thread[{x, vy, z, w} » {-24, -2, 18, 20}]

which, after permuting gave 36 different solutions not on the three lines. Plotting | get
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n - - Show[ContourPlot3D [x*3+y~*3+z73+1==0, {x, -3, 3}, {y, -3, 3}, {z, -3, 3}, Mesh -» None],
ParametricPlot3D [{{t, -t, -1}, {t, -1, -t}, {-1, t, -t}}, {t, -20, 20}, PlotStyle - Blue],
Graphics3D[{Red, PointSize[.02], Point[S]}]]

outf + J=

The symmetry is partly due to the symmetry of the surface and our permutations but there are 10

points in 3 of the non-central sectors in somewhat of an oval pattern. The symmetry in the central
triangle is completely explained by the 6 symmetries of one instance but not the other symmetries.
Perhaps there are 3 other rational curves on this surface? There certainly are lots of other rational

points to find here so this is, to me, an open problem.
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1.7 Quadric Surfaces

In[ = ]=

The study of quadric surfaces is properly a topic in projective geometry, which will be covered in a later
chapter in this book. However some of the ideas recently discussed here are involved and this is a
important topic in elementary mathematics so in this section we will begin the discussion.

The standard coverage of this is uneven and misleading. For example the term hyperboloid of two
sheets is nonsense as all non-degenerate quadric surfaces are rationally parameterized surfaces and

hence of one sheet. | will suggest some non-standard terminology but suggest that it be widely
adopted.

Quadric surfaces are defined from the affine point of view by an equation
arX? +a, Xy +asy’+as XZ+asyz+agz +a; X+ag Y+agZ +ap =0

where the coefficients a;are machine numbers with at least one of a,, a,, ..., ag not zero.

For example a random quadric might be

4.492182872989918° +1.5027217857511275"
3.2932471474961034° x*-4.861394482747162" y+3.21859207861387" xy-
5.401643964553532" y*+5.226019667264691 z-0.8091107243142233° xz+

3.7145392742572234"° y z+5.269463158972744" z° ==

X -

ou - - 4.49218 +1.50272 x - 3.29325 x? - 4.86139 y+3.21859 xy -

outf « ]=

5.40164 y? +5.22602 z-0.809111 x z+3.71454 y z + 5.26946 z> == 0

Projective Quadric Surfaces
Type Degenerate Cone Ellipsoid Hyperboloid
Possible
Picture
example xz=0 z2=x%+y? x2+y72+272=1 x%+y?-z2=1
singularity ? line point none none
ruled? two parts single none double
essential
no no no yes
ovals?
Aff?ne parallel cylinder parabol1§ e111pt1?
Variants planes hyperbolic parabolic

Note that some quadratic polynomials in three variables may not give surfaces

. Since we are

working in the real domain some may have solution sets that are empty or finite. Some could give lines
such as the polynomial (y -2 x)?+ (z+3 x)? =0 which gives the parametric line {t, 2t, =3 t}. Or the
polynomial will not be square free such as (x =2 y +3z+1)%. lam not including these in this discussion.
They can easily be excluded by the fact that they have no regular points.
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I will make some comments on the types . Again we are working in the real domain, if we allow

complex numbers then ellipsoids are hyperboloids with complex rulings.

The degenerate quadrics are reducible, that is they may be factored, as such they are necessarily
singular. In affine space they could be the composite of two parallel planes, but then they meet in an

infinite line in projective space.

A cylinder is a quadric that is equivalent to a plane quadric where one of the variables x, y, z is absent.
For example the equation on the left is xA2 + y 2 — 1 where that on the right is a rotation applied to
this first equation giving

-1.+0.69313 x>-0.77063 xy+0.50167 y?-0.00975 x z-0.24645 y z + 0.0552 z2.

In the left we have a ruled surface of vertical lines, each of one has infinite point {0, 0, 1, 0}. Since all
these lines go through this one point it is a cone in projective space. Rotating it still gives a cone. Thus
in projective space a cylinder is just a cone with the vertex in the infinite plane.

If we perform a FLT transform on the ellipsoid above which sends one point to an infinite point we get a
parabolic ellipsoid ( called a paraboloid in the literature).

On the other hand if we cut the ellipsoid with a plane which goes to infinity we get
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which wrongly was called a hyperboloid of 2 sheets but | call it a hyperbolic ellipsoid. Since every
hyperbolic ellipsoid and every parabolic ellipsoid are FLT images of the ellipsoid then the properties of

no non-null-homotopic (essential) ovals and two sided-ness are preserved for all of these.

In the affine plane there are two hyperboloids. In addition to the one pictured above, and below left
there is the elliptic hyperboloid otherwise known as just the hyperboloid. The below right is the

parabolic hyperboloid , otherwise known as the hyperbolic paraboloid.

- - {€llhyp = ContourPlot3D [1-x"2-y*2+2z72==0, {x, -3, 3}, {y, -3, 3},
{z, -3, 3}, Mesh » None, Axes - None, Boxed » False, ImageSize - Small],
ContourPlot3D [z == x*2-yA2, {x, -3, 3}, {y, -3, 3}, {z, -3, 3},

Mesh - None, Axes -» None, Boxed -» False, ImageSize - Small]}

- { j : | v }

The two hyperboloids do share 3 important properties

1) These are doubly ruled surfaces .
2. The tangent plane at every point cuts the hyperboloid in two lines, one from each ruling.
3. The hyperboloid is determined by any 3 skew lines, that is any three skew lines in 3-space are part of

one ruling of a hyperboloid.

The difference is this: in the parabolic hyperboloid all the lines in one ruling are all parallel to one

plane, this is not true of the elliptic paraboloid. For example consider our parabolic hyperboloid
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n - - {ContourPlot3D [{h1 == 0, x-y =0, x-y ==1, x-y == -1}, {x, -3, 3},
{y, -1.2, 1.2}, {z, -3, 3}, Mesh -» None, Axes -» None, Boxed - False],
ContourPlot3D [{hl == 0, x+y == 0, x+y ==1, x+y == -1}, {x, -3, 3},
{y, -1.2, 1.2}, {z, -3, 3}, Mesh - None, Axes - None, Boxed - False]}

outf + J= {

Both the families of planes x + y =a, and x - y =b as a, b run through the real numbers cut this surface
in lines which must be skew to each other but each plane of the form x + y = a, intersects each plane of
the form x - y =bin a line which meets the surface h; in one point.

m - 1- ContourPlot3D [{hl == 0, x+y == 1, x-y == -1}, {x, -3, 3},
{y, -1.2, 1.2}, {z, -3, 3}, Mesh -» None, Axes - None, Boxed -» False]

outf « ]=

Thus the skew lines 3) above will all be parallel to one particular plane if and only if the surface they
generate is a parabolic hyperboloid. This fact was observed in the book by Hilbert and Cohn-Vossen,
who also observed that the elliptic hyperboloids contain an ellipse which is essential although they did

not state this fact in those words.

Importantly one notes that the parabolic hyperboloid does not occur in projective space as there is no
such thing as parallel planes, any two planes meet. Moreover if we transform the parabolic hyper -
boloid by an appropriate projective FLT it becomes just a hyperboloid:

n- - B={1, 0,0, 0}, {6, 1, 0, O}, {0, 0, 0, 1}, {1, 1, 1, -1}};
h2 = FLT3D[{z-x"2+Yy"2}, B, {x, y, z}][1]

ouf - =X +y?+zZ-XZ-YyzZ+Z?
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- - ContourPlot3D [h2 == 0, {x, -3, 3}, {y, -3, 3}, {z, -3, 3},

Mesh - None, Axes - None, Boxed -» False, ImageSize - Small]

outf + J=

Here is a seemingly impossible set of skew lines to appear in an elliptic hyperboloid.

Lif ={t, 0, 0};
L2f = {0, t, 1};
L3f ={-1, -1, t};

n - - ParametricPlot3D [{L1f, L2f, L3f}, {t, -3, 3}, PlotStyle - {Blue, Green, Pink}]

outf « ]=

The equations are

m- - Lleq ={y, z};
L2eq = {x, z-1};
L3eq ={x+1, y+1};

m- - L1syl = sylvesterMD [L1leq, 2, {x, ¥, z}];
L2syl = sylvesterMD [L2eq, 2, {x, Yy, Z}]};
L3syl = sylvesterMD [L3eq, 2, {x, ¥, z}];
hp2 = First[
Chop[vectorSpaceIntersection3 [L1syl, L2syl, L3syl, dTol], dTol].mExpsMD[2, {x, Vv, z}]]

ouf- - -0.5y-0.5xy-0.5xz+0.5yz
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n - - Show[ContourPlot3D [hp2 == 0, {x, -3, 3}, {y, -3, 3}, {z, -3, 3}, Mesh - None],
ParametricPlot3D [{L1f, L2f, L3f}, {t, -3, 3}, PlotStyle - {Blue, Green, Pink}]]

outf « ]=

While all quadrics have a rational parameterization not all are quadratic in the parameters, for example
our example of the elliptic hyperboloid in section 1.3 which has cubic terms. Conversely not every

quadratic parameterization is a quadric surface. We will see some more examples in the next section.
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1.8 Trigonometric Parameterization

In this section I give some other parameterized surfaces using rational parametric functions as proxies
for trigonometric Cos, Sin parameterizations. Itis based on the parameterization of the circle | have
been using

- - Show[ParametricPlot {2 t/(L+t"2), (L-tA2)/(1+t"2)}, {t, -15, 15},
PlotStyle - {Directive[Thickness[.025], Orange]}, PlotRange - Full, Axes - None],
ParametricPlot [{Cos[u], Sin[ul}, {u, -Pi, Pi}, PlotStyle - Directive[Black, Dashed]],
ImageSize - Small]

Out[ » ]=

-

......

Theoretically the parameter tshould actually run from —oo < t <o where at the endpoints we mean of
course the limit. In practice we can use a large bounded range. We will use s, t exclusively for the
rational parameterizations with u, v used in the trigonometric ones so there will be no notational

confusion. Here u, v will normally run as above -mr<u,v<7T.

I mention here that some of these parameterizations in from the book

CRC Standard Curves and Surfaces with Mathematica by David H. von Seggern. Others may be found at
Wolfram MathWorld and the Wolfram Demonstrations Project.

1.8.1 quadric surfaces

The most famous surface with such parameterization is the Sphere .

1=  trigSphere = {Sin[u] Cos[v], Sin[u] Sin[v], Cos[ul};
(1-t*)~2s (1-t?)«(1-5s?) 2t (1+s?)

rationalSphere = ’ ’ 5
’ P {(1+t2) (1+s?) (1+t?)=(1+s?) (1+1t?) (1+sz)}
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n - - Show[ParametricPlot3D [trigSphere, {u, -Pi, Pi}, {v, -Pi, Pi},
PlotRange -» 1.2, PlotStyle - Directive[Orange, Opacity[.7]], Mesh - None],
ParametricPlot3D [rationalSphere , {t, -15, 15}, {s, -15, 15},
PlotStyle - LightGray , MaxRecursion - 4], Boxed -» False, Axes - None]

Ooutf « ]=

Note the parametric plot with these rational parameters misses a small square near {0,1,0}.

ParametricPlot3D [rationalSphere , {t, -15, 15}, {s, -15, 15},
PlotStyle - LightGray , MaxRecursion - 4, ImageSize - Small]

Outl « |=

We can derive parametric equations for the ellipsoid using the well known trigonometric equation, for

example
ellipsoidl = {4 Sin[u] Cos[v], 2 Sin[u] Sin[v], Cos[ul};

Or we may take our rationalSphere and apply the FLT with matrix
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n- - PellipMat = {{4, 0, 0, 1}, {0, 2, O, 2}, {0, 0, 1, 3}, {0, 0, O, 1}};
PellipMat // MatrixForm

Outf « J/MatrixForm=

4 0 01
0 2 0 2
06 061 3
0 06 01

/- pellip = Together [fltMD[rationalSphere , PellipMat]]

5
=

1+8s+s2+t?-8st?+s2t? 4. (l+s’t?) 3+2t+3t2}

Outf ]:{ 3 )
1+s?)«(1+t? 1+s?)«(1+t? 1+ t?
(

n - - ParametricPlot3D [pellip, {t, -15, 15}, {s, -15, 15}, MaxRecursion - 4, Mesh - None]

4.0
3.5
3.0
2.5
2.0

ouf-j]- O

_2 0 2 4

This also translates the center to {1,2,3}.

We can add a rotation to this.

m- - RPellipMat =
TransformationMatrix [N[RotationTransform [2Pi/3, {10, 1, 0}, {0, O, 1}]]].PellipMat

our - {{3.94059 , 0.29703 , 0.0861727 , 1.45452}, {0.594059 , -0.970297 , -0.861727 , -2.54524},
{-0.344691, 1.72345, -0.5, 1.63728}, {0., 0., 0., 1.}

n- - rpellip = Together [fltMD[rationalSphere , RPellipMat]]

1
ou ]:{ 1.75155 « (1. +4.49954 s+ 0.660839 s +

(1. +s?) (1. +t?)

0.0983958 t+0.0983958 s” t+0.660839 t?-4.49954 s t’+1. s’ t?),

1
- 3.51553 « (1. - 0.337963 s + 0.447995 s?+0.49024 t+

(1. +s?) (1. +t?)

0.49024 s t+0.447995 t%+0.337963 s t’ + 1. s t7),
1

3.36074 (l. -0.205128 s-0.025641 s?>-0.297554 t -
(1. +52) (1. +t2)

0.297554 s® t-0.025641 t*+0.205128 st +1. s” tz)}
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n - - ParametricPlot3D [rpellip, {t, -15, 15}, {s, -15, 15}, MaxRecursion - 4, Mesh - None]

outf + J=

One can carefully have one parameter trigonometric while the other is a variable, for example the
parabolic ellipsoid
2ts  t(1-s?)
, tA2

parabell ={ ,
1+s?

b

n - - ParametricPlot3D [parabell, {t, 0, 4}, {s, -15, 15}, MaxRecursion - 4, Mesh - None]

1+s?

outf « ]=

Unfortunately you may not use the same trick here for the hyperbolic ellipsoid that one uses in calcu -
lus, that is

m - - chyp = {u Cos[v], u Sin[v], Sqrt[u”2 + 1]}
chym = {u Cos[v], u Sin[v], -Sqrt[u?2+ 1]}

ouf - J- {u Cos[v], uSin[v], A1 +u? }
outf « J= {u Cos[v], u Sin[v], - A/1+0u? }
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n - - ParametricPlot3D [{chyp, chym}, {u, 0, 3}, {v, -Pi, Pi}, Mesh - None]
202

e —T

out[ « ]=

2 0 2

because each gives only “one sheet” and is not a rational function of u.

However we saw in the last section transforming the ellipsoid by a projective FLT did give a hyperbolic
ellipsoid.

w1~ A={{1, 0, 06, 0}, {6, 1, 0, 0}, {0, 0, 0, 1}, {1, 1, 1, 0}};
m-1-he = FLT3D[{x"2+y"r2+2zA2-1}, A, {X, y, z}][1]

outf /:1—2x+2x2—2y+2xy+2y2—z2

- - ContourPlot3D [he == 0, {x, -2, 2}, {y, -2, 2}, {z, -2, 2},

Mesh - None, Axes - None, Boxed -» False, MaxRecursion - 3]

outf + J=

We can use this idea to get a rational parameterization of the hyperbolic ellipse.

n - - phe = Simplify [fltMD[rationalSphere , A]l]
2s(-1+1t?)

outf « ]= {—
l+2t-t2—2sbl+tﬂ+52@l+2t+tﬂ’

(_1+52) (—l+‘t2) (1+52) (l+t2)

1+2t-t2-2s¢1+tﬂ+szpl+2t+tﬂ’1+2t-tz-zspl+tﬂ+szpl+2t+tﬂ}
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- - Show[ContourPlot3D [he == 0, {x, -2, 2}, {y, -2, 2}, {z, -2, 2},
Mesh - None, Axes -» None, Boxed -» False, MaxRecursion - 3],
ParametricPlot3D [phe, {s, -15, 15}, {t, -15, 15}, PlotStyle - LightGray]]

outf + J=

Note that this one parameterized function gives both “sheets”, another reason why this should not be

called the hyperboloid of two sheets.
Finally we note that we can parameterize the cone by
pcone = {s Cos[t], s Sin[t], S};

nie2-  Show[ContourPlot3D [x*2+yAr2 == 2z"2, {x, -3, 3},
{y, -3, 3}, {z, -3, 3}, Mesh - None, ContourStyle - Opacity[.8]],
ParametricPlot3D [pcone, {t, -Pi, Pi}, {s, -3, 3}, PlotStyle - LightGray],

Axes -» None, Boxed -» False, ImageSize - Small]

Out[182]=

1.8.2 Other parametric surfaces via trigonometry
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The Torus: the standard parameterization is the following where a is the large radius and b the small.
Our torus in Section 4 parameterization is based on this.

trigTorus = {(a+b Cos[v]) Cos[u], (a+b Cos[v]) Sin[u]l, b Sin[v]};

For large radius 4 and small radius 2

m- - TrigTorus = trigTorus /. {a» 4, b » 2}

our - - {Cos[u] (4 + 2 Cos[V]), (4 + 2 Cos[v]) Sin[u]l, 2 Sin[v]}

n- - ParametricPlot3D [TrigTorus , {u, -Pi, Pi}, {v, -Pi, Pi}, Mesh - None]

1
outl « |=

The Crosscap
- = crocap = {Sin[u] Sin[2 v]/2, Sin[2 u] Cos[v]”*2, Cos[2 u] Cos[V]A2};

n - - ParametricPlot3D [crocap, {u, -Pi, Pi}, {v, -Pi, Pi}, Boxed » False, Axes - False]

outf « J=

This is algebraic since elementary trig identities, eg. Sin[2 u] =2 Sin[u] Cos[u], allow one to write these

parameters in terms of the proxies for sin3 and cosine. Also the square of the proxies are again rational
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functions. These equations can get quite involved and the implicit equations may be of very high
degree.

Astroidal Surface

m- - astroid = {(Cos[u] Cos[v])*3, (Sin[u] Cos[v])*3, Sin[v]"3}

our - - {Cos[ul® Cos[v]®, Cos[v]® Sin[u]®, Sin[v]*}

n - - ParametricPlot3D [astroid, {u, -Pi, Pi}, {v, -Pi, Pi},

MaxRecursion - 3, PlotRange -» 1, Axes -» False, Boxed - False]

Outl « ]=

will be algebraic. von Seggern tells us the equation is

X2/3 + y2/3+ ZZ/3 =1

which is not algebraic. But our theorems of Section 1.3 tell us there be algebraic equations as well.

The Cosine Surface likewise will be algebraic because of the elementary formula for Cos[u+v] =Cos[u]
Cos[v]-Sin[u] Sin[v]

n - - cosSurf = {Cos[u], Cos[v], Cos[u + V]};

n - - ParametricPlot3D [cosSurf, {u, -Pi, Pi}, {v, -Pi, Pi},

MaxRecursion - 3, PlotRange -» 1, Axes - False, Boxed - False]

Outl « ]=

An example of a surface which is not algebraic is the Mobius Strip.
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- - moeband = {Cos[u] (1 +t Cos[u/2]), Sin[u] (1 +t Cos[u/2]), t Sin[u/2]}

ouf + J- {(l+t Cos[g]) CosJu], (l+tCos[§]) Sin[ul, t Sin[g]}

n - - ParametricPlot3D [moeband, {u, -Pi, Pi}, {t, -.5, .5}, MaxRecursion - 3,
PlotRange -» All, PlotRange -» 1, Axes » False, Boxed - False]

Ooutf « ]=

As pointed out in my Plane Curve Book this is a one-sided surface and cannot be a naive algebraic

surface. The problem is not combining parameters u, t, rather the Cos[g] can not be expressed polyno -

mially in terms of Sin[u] and Cos[ul].

The spirals likewise cannot be algebraic because we cannot use the same variable as algebraic and

trigonometric parameter. For example van Seggern gives
vSspiral ={a Cos[n v] (1 + Cos[u]) + c Cos[n v], a Sin[n v] (1 + Cos[u]) +c Sin[n v], b v/2/Pi + a Sin[u]};
where a, b, care positive numbers and n is a positive integer.

The example given has

mn- - vSspirall = vSspiral /. {a> .1, b> 1, c—> .5, n-> 4}

\%
ouf « J= {0.5 Cos[4Vv]+0.1 »(1+Cos[u]) Cos[4V], 0.5Sin[4Vv]+0.1 «(1+Cos[u]) Sin[4v], — +0.1 S'in[u]}
2
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n - - ParametricPlot3D [vSspirall, {u, 0, 2 Pi}, {v, 0, 2 Pi}]
05

But parameter v is being used in both a trigonometric and analytic parameter in the last coordinate so

this will not define a naive implicit surface.

1.8.3 The Klein Bottle

The Klein Bottle is a simple topological surface in 4-space obtained by gluing the sides of the square
blue to blue and red to red in the indicated directions without self intersections, the last instruction

cannot be done in 3 space.

A

We take our exposition from Wolfram Mathworld. An implicit equation of a projection into 3-space is

- - KbottEq = (X*2+y"r2+z22+2y-1)((Xx"2+y"r"2+z2r2-2y-1)"2-82z"2)+
16 xz(x"2+y"2+z2r2-2y-1);

- - {ContourPlot3D [KbottEq == 0, {x, -4, 4}, {y, -4, 4}, {z, -4, 4}, Mesh > None,
ContourStyle - Opacity[.7], MaxRecursion - 4, Axes - False, Boxed - False],
ContourPlot3D [KbottEq == 0, {x, -3, 3}, {y, -3, 3}, {z, -3, 3}, Mesh -» None,

ContourStyle - Opacity[.7], MaxRecursion - 4, Axes - False]}

outf « ]= { B

In the right hand plot we slice the surface by sides of the box to better see the interior. Of course
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projecting causes self intersections. Here is an interesting trigonometric parameterization of an inter-

pretation of this 4 dimensional surface.

- - sq2 = N[Sqrt[2]];
kbx = Cos[u] (Cos[.5 u] (sq2 + Cos[v]) + Sin[.5 u] Sin[v] Cos[V]);
kby = Sin[u] (Cos[.5 u] (sq2 + Cos[v]) + Sin[.5 u] Sin[v] Cos[V]);
kbz = Sin[.5 u] Sin[v] + Cos[.5 u] Sin[2 v];
kbPar = {kbx, kby, kbz}
our - - {Cos[u] (Cos[0.5 u] (1.41421 + Cos|[v]) + Cos[v] Sin[0.5 u] Sin[v]),
Sin[u] (Cos[0.5u](1.41421 + Cos[Vv]) + Cos[v] Sin[0.5 u] Sin[v]),
Sin[@.5 u] Sin[v]+ Cos[0.5 u] Sin[2 v]}

n - 1- ParametricPlot3D [kbPar, {u, 0, 4 Pi},
{v, 0, 4 Pi}, PlotRange - All, Axes - False, Boxed - False]

outf « J=

1= Simplify [KbottEq /. Thread[{x, y, z} » (kbPar /. {u > 3, v » 2})]]
our- - 1.15968

This does not satisfy the implicit equation given and is not guaranteed to give such an equation
because of the use of half angles ,.5u, .5v. But it does show another self intersecting parametric

surface.



1.9 Lines on a Cubic Surface
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In 1849 Arthur Cayley and George Salmon showed that every smooth cubic contains exactly 27 lines.

Elsewhere | have written extensively about this topic, notably my article [/deals of Numeric Realizations

of Configurations of Lines], A variation of this article together with some additional information is

available on my website. In this section and its notebook appendices |am giving a new take on this

material.

In general, even if the cubic surface is a real surface, many of these lines may be complex, in fact the

number of real lines can only be 3, 7, 15 or 27. For example the Fermat Surface of Section 1.5 and 1.6

contains, as we saw, 3 real lines and hence 24 complex lines. These lines are easy to write down by

inspection using the pattern established for the three real lines. Let a,( be the two cube roots of -1

other than -1 itself, that is a=.5-Sqrt[3]/2 i, B=.5+Sqrt[3]/2i.

-a=.5-Sqrt[3]/21I

B = .5+Sqrt[3]/21I
0.5 -0.866025 7

0.5 +0.866025 1

a3

-1.-1.11022 x 107
The three real lines are

1f1={t, -t, -1};
1f2 ={t, -1, -t};
1f3 ={-1, t, -t};

By replacing the - 1's, including the coefficient of —t, by @, and or Bwe can easily construct the remain -

ing 24 lines, afew more will be listed below

1f4 ={t, at, -1};
1f5 = {8, t, -t};
1f6 = {a, t, B t};

Note, for example

- (XA3+yArA3+2z2A3+1)/. Thread[{x, y, z} » 1f6]

(2.22045 x 107*° - 1.11022 x 107'°§) + (2.22045 x 107'° +1.11022 x 107 §) t>

The reader can write down the rest if they choose to. | will note that in my GlobalFunctions.nb that

there is a function called pLinelntersectionMD which finds the intersection of two parametric lines in

any dimensional space. This will be discussed with code in section 1.9.3. It does specifically work for all

lines including pairs of lines with possible infinite or complex intersections.

the lines are skew.

The empty set is returned if
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m- - pLineIntersectionMD [Lf1, 1f6, t, {x, y, z}, dTol]
our- - {0.5 - 0.866025 i, -0.5+0.866025 i, ~1. +1.17961 x 107*°

1.9.1 The double Six configuration

InH.S .M. Coxeter' sreview of Volume Il of Ludwig Schlafli’s collected works he says that one paper

..is modestly entitled "An attempt to determine the 27 lines upon a surface of the third order, and
to divide such surfaces into species in reference to the reality of the lines upon the surface ." The
existence of 27 such lines had already been discovered by Cayley and Salmon, but this paper of 1856
gives the first complete description of this configuration ..

The key to Schlafli’s analysis is his discovery of 12 line sub-configurations of the 27 lines, this configura -

tion called a double 6. From these one may extract the remaining 15 lines easily.

A double 6 configuration consists of two sets of 6 mutually skew lines such that a line in the first set
intersects 5 lines of the second set, we number the lines in each set so that the k™ line in the first set is
skew from the k™ line of the second set but intersects all the other lines of the second set. We can draw
this where a blank area indicates no intersection.

i1 2 3 4 5 6

S

out « ]=

10

11
12

In a double 6 there are 15 double 2 configurations, two lines from each skew set which do not intersect
the other set, for example L1, L2 ,L7, L8 is a double 2. For each double 2 there is a unique line which
intersects all 4 lines. Since a line which meets a cubic surface in 4 points, counting multiplicities is in
the cubic surface the cubic that contains the double 6 also contains these 15 lines.

1.9.2 The theory

[Hilbert and Cohn-Vossen] show in their book how to construct a double 6 configuration in R® making 6
somewhat arbitrary, or if you prefer random, choices. |gave an example of this in my Configuration
paper mentioned above. Given a double 6 there is an explicit construction of 15 additional lines which

meet the double 4 in 4 points. The theorem is that for any particular double 6 there is a unique smooth
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cubic surface containing this double 6. It then must also contain the other 15 lines which meet the

double 4 in 4 points for a total of 27 lines.

Conversely every smooth cubic contains 27 lines and within these 27 lines there are double 6 configura -

tions determining all of these lines.

I will construct a double 6 using the Hilbert Cohn-Vossen method in appendix A. Here is their method

which | will modify slightly.

line | construction

1 random line

8 | random line meeting line
9 | random line meeting line
10 | random line meeting line

[y

11 | random line meeting line 1
ol « 1= 6 | other line meeting 8,9,10,11

12 | random line meeting line 1
other line meeting 8,9,10,12
other line meeting 8,9,11,12
other line meeting 8,10,11,12
other line meeting 9,10,11,12
other line meeting 2,3,4,5

(1]

-1 N W =

In the next subsection we discuss some of the problems that must be solved with the tools to solve

them. The major work will be in the notebook appendices.

1.9.3 The Problems

The appendices depend on being able to solve certain problems, particularly problem E below which is
needed to find lines 6, 5,4,3 2 and 7. | describe here, through examples, how to use a combination of
built-in functions and my global functions to do this.
A . Find the two tangent lines through a point on a hyperboloid. Let the hyperboloid and nice
integer point be

m--hlEqQ ==y =-Xy=-Xz+y z;
ql = {-1, -1, 2};
hlgEq /. Thread[{x, y, z} » ql]

outf « ]= (0]
We first find the tangent plane at this point .

n - - tP = tangentPlaneNS [h1Eq, ql, {x, Yy, z}]

outf j:—l—X+2 (l+y)

The two lines are the intersections of the tangent plane with the hyperboloid . In this nice exact case it

is easy
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In[
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In[
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- Solve[hlEq == 0 && tP == 0, {x, y, z}]
«=«/Solve : Equations may not give solutions for all "solve " variables .
F{{XxX>1+2y, z->-2y},{x>-1,y->-1}}
We can now just write down either the implicit equations or parametric formula for these lines.

-lleq={l+2y-x, -2y-2};
llp={1+2t, t, -2 t};

- 12eq ={x+1, y+1};
12p ={-1, -1, t};

Note for line 1, line 2 is similar, we can verify these formulas

- Lleq /. Thread[{x, y, z} » 11p]
Simplify[hlEq /. Thread[{x, y, z} » 11p]]

{0, 0}
-0
Unfortunately if these are given numerically Solve may not work. Consider a different point.

- q2 = {-0.5820528096134947" , -0.41794719038650535" , —1.0644355432484727" };
hlEq /. Thread[{x, y, z} » q2]

) -3.37508 x 107

)~ tP2 = Expand[tangentPlaneNS [h1Eq, g2, {x, y, z}]]
- 0.417947 +1.48238 x-1.48238 y+0.164106 z
The first solution from Solveis

;- Solve[hlEq == 0 && tP2 == 0, {x, y, z}][1]

++« Solve : Solve was unable to solve the system with inexact coefficients . The answer was obtained by solving a

corresponding exact system and numericizing the result .

==/ Solve : Equations may not give solutions for all "solve " variables .

- {x > 1.88744 x 1072 (—7.4689 107! +5.59143 x 102 y -

6332.47 \/1.39113 x 10°6 +6.65696 x 10%° y + 7.96388 x 103 y? ),

z > 1.36396 x 1074 (—9.33613 x 10%° -3.6658 x 10%° y +

791.559 \/1.39113 x 10°° +6.65696 x 10%° y + 7.96388 x 103 y? )}

This solution is not satisfactory . The technique is to find two points other than g2 in the intersection

and, by the theory, we can then find the lines from g2 to these points.
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m- - sol2 = NSolveValues [{h1Eq, tP2}, {x, ¥y, z}]

+++/ NSolveValues : Infinite solution set has dimension at least 1. Returning intersection of solutions with
69046 x 40299 y 142003 z

- +

57903 38602 115806
our - {{~0.444331, -0.226149 , -0.575961}, {-0.792106 , -0.568778 , -0.529467 }}

== 1.

The first line is

m- - 1leq = LineMD[q2, sol2[1], {x, y, z}]
ouf - - {-0.142566 - 0.505657 x-0.733816 y+0.430697 z,
0.221125 +0.784292 x-0.57961 y + 0.00645667 z}

Now we can find the first line using Solve
mn- - sol2b = Solve[lleq == 0, {x, y, z}]

==/ Solve : Equations may not give solutions for all "solve " variables .

our- - {{y » 0.392647 +1.39265 X, z » 1. +3.54682 x}}

The solution is given using the parameter x, replacing this by t we have
mo= L1p ={X, ¥y, z} /. sol2b[1] /. {x » t}
our - {t, ©.392647 +1.39265 t, 1. +3.54682 t}

Checking

n - Simplify[lleq /. Thread[{x, y, z} » 11p]]
Simplify[hlEq /. Thread[{x, y, z} » 11p]]

our- - {0., 2.77556 x 107"}
o - 5.64271 x 10712 +2.04947 x 1072 t+1.75637 x 10712 t2

which is good to approximately our default tolerance .

B . Going from parametric equation of line to implicit equations . In principle one can use the
general implicitization method as in Section 1.4 but with lines it is easiest to find two points and use the
Global Function 1ineMD. This is automated by Global Function pl12egMD which handles

parametric lines in R”for any n.
It doesn't need to be automated, for example consider

m- = linel = {t, 0.39264678170294964" +1.3926467817030561" t,
1.000000000001437" +3.5468182768858614" t}

our - - {t, ©0.392647 +1.39265 t, 1. +3.54682 t}

We calculate
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m--p="1linel /. {t » 0}
q=Tlinel /. {t - 4}

our - {0, 0.392647 , 1.}

our - {4, 5.96323, 15.1873}

m- = linelEq = LineMD[p, q, {x, Y, z}]
ouf - - {-0.20001 - 0.709398 x - 0.536696 y+0.410741 z,
-0.170932 -0.606265 x+0.765762 y-0.129742 z}

But sometimes to get more accuracy or if the 2 points are rational we would like an equation system
with rational coefficients . But lineMD returns floating point numbers as do the methods in section 1.3

. A simple routine specifically for lines in R?is

m-1- ratLine3D[p_, q_] := Module[{form, formp, formq, sol},
form={x-a y+b, x-cz+d};
formp = form /. Thread[{x, y, z} - pl;
formq = form /. Thread[{x, y, z} - q];
sol = Solve[formp == 0 & formq == 0][1];

form /. sol]

Note that it is assumed that the variables are x, y, z and that x is a parameter, meaning the two points p,
g have distinct first component. If not rename the variables, run then name them back again. Itis
somewhat surprising that the equation solved appears to be underdetermined, but Solve apparently
needs the extra variable. Anyway we only need one solution so if the Solve returns several we are only
using the first. Here is an example:

14 17
Inf « J:= P={'_’ - 0};
15 15
1 11 11
q-= {_’ - — (5
13 13 13

m- = 1=ratLine3D[p, q]
{ 171 197y 14 197 z

+X - y — + X -

56 56 15 165 }
Test: Note that rl1 p +r2 q will be in the line through p,q for any r1+r2=1

m-=-r=317Tp+ 417q
{ 162 63 44}

outf « J , ,
455 65 91
m-= L1, Thread[{x, y, z} = r]

out

- {0, 0}

C. Find intersection point or determine parallel or skew given two parametric lines . The reader is

reminded that we are actually working in projective 3 space but seeing only affine space. Two lines are
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parallel if they have a common infinite point. Skew means they do not intersect or are parallel. Fortu -
nately we have a very good Global Function to tell the difference. | have mentioned it before but here is
the code based directly on the SVD.

n- - nullspace[M_, tol_] :=
Take[SingularValueDecomposition [N[M]I[3], All, -(Dimensions [M][2] - matrixrank[M, tol])]

pLineIntersectionMD [L1_, L2_, t_, X_, tol_] :=
Module[{n, crl, cr2, pl, p2, vli, v2, eql, eq2, S, r, ans},

n = Length[X];
If[Length[L1] # n, Echo["Line 1 error'"]; Abort[]];
If[fLength[L2] # n, Echo["Line 2 error"]; Abort[]];
pl = Chop[L1 /. {t » 0}];
vl = Append[Chop[(L1 - pl1) /. {t » 1}], O];
eql = lineMD[pl, v1, X];
p2 = Chop[L2 /. {t » 0}];
v2 = Append[Chop[(L2 - p2) /. {t » 1}], O];
eq2 = lineMD[p2, v2, X];
S = sylvesterMD [Join[eql, eq2], 1, X];
r = matrixrank[S, tol];
If[r < n, Return[{0}]];
If[r > n, Return[{}1];
ans = Flatten[nullspace[S, tol]];
If[Abs[ans[1]] < tol, RotateLeft[Chop[ans, tol], 1], Take[ans [ ans[1], -n]]

To confirm intersection we should use a tight tolerance, but to confirm skewness we should use a loose

one. Here are two random parallel lines

m- - rlinel = {-1.284743961295125" +1.7850221750544781" t,
-1.8513906749735787"° +0.32363757592140274" t,
-1.7705832745415062° -0.49925464276626474" t}

ou - - {-1.28474 +1.78502 t, -1.85139 +0.323638 t, -1.77058 - 0.499255 t}

n- - rltine2 = {-3.8470503573307893" +1.3999119717968946" t,
-3.2811667316024042° +0.253814279389482" t,
1.5989379697539752"° -0.39154278369810475° t}

ouf- - {~-3.84705 +1.39991 t, -3.28117 +0.253814 t, 1.59894 -0.391543 t}

n- 1= pLineIntersectionMD [rlinel, rline2, t, {x, y, z}, dTol]
our - - {-0.948688 , -0.172004 , 0.26534, 0}

Note that the function returns a list of length 4 with the last component 0, this means infinite point.
Now let
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j- rtine3 = {-1.1577650571599911" + 1.609386049766386" t,
-1.66840669830856° +0.2899071921064588° t,
-1.5955859749592347" - 0.4488387468161354" t}

-{-1.15777 +1.60939 t, -1.66841 +0.289907 t, -1.59559 - 0.448839 t}

j- pLineIntersectionMD [rlinel, rline3, t, {x, y, z}, dTol]
- {
Consider

- ParametricPlot3D [{rlinel, rline2}, {t, -3, 3}, ImageSize - Tiny]

It perhaps looks like these are skew but note
- pLineIntersectionMD [rlinel, rline3, t, {x, y, z}, .003]
- {0.948813, 0.171104 , -0.265476 , 0}
So these lines are parallel meeting in an infinite point. For our later work parallel lines are NOT skew.

A nice property of this function is that if one only wants to know whether 2 lines meet one can use

Length[pLineIntersectionMD [linel, line2, t, {x, y, 2z}, tol]]
If the result is 0 the lines are skew, if 1 the lines are equal, 3 means an affine intersection and 4 means
an infinite intersection, i.e. parallel. We will use this heavily in later subsections.
D . Finding hyperboloid generated by 3 skew lines . We have done this in Section 7 but so this Sec-
tion can stand alone we repeat with 3 parametric lines.

- rline4 = RandomReal [{-3, 3}, {3, 2}].{1, t}
rline5 = RandomReal [{-3, 3}, {3, 2}].{1, t}

-{1.64127 +1.98068 t, -2.48105 -0.466556 t, 0.416791 +1.84621 t}

-{0.52162 -1.46426 t, 0.208229 -1.25196 t, -2.3118 +0.578546 t}

We will find the hyperloid generated by lines rl1, rl4, rl5. First we check skewness

- {pLineIntersectionMD [rl1, r14, t, {x, ¥y, 2z}, .001],
pLineIntersectionMD [rl1, r15, t, {x, Yy, 2z}, .001],
pLineIntersectionMD [r14, r15, t, {x, ¥y, z}, .001]}

Line 1 error

- $Aborted
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Next we find implicit equations

m- - rlleq = pl2eqMD[rlinel, t, {x, y, z}]
our - - {0.124503 +0.301341 x-0.72363 y+0.608319 z,
0.927707 -0.00411915 x+0.319782 y+0.192568 z}

m- - rl4eq = pl2eqMD[rline4, t, {x, y, z}]
ouf - - {0.00276285 - 0.682579 x-0.341924 y + 0.645884 z,
0.919497 - 0.0454673 x+0.364185 y +0.140812 z}

m-1- rl5eq = pl2eqMD[rline5, t, {x, y, z}]
our - - {0.381565 + 0.633352 x-0.62443 y+0.251713 z,
0.815507 -0.218984 x +0.413509 y + 0.340594 z}

Then we find Sylvester matrices, m =2 is sufficient for this, although if we actually want equation of the
configuration of these three lines we should use at least m = 4. Just finding the hyperboloid loses the
information about what lines we used which may be important later.

m- - syll = sylvesterMD [rlleq, 2, {x, ¥, z}];

syl4 = sylvesterMD [rl4eq, 2, {X, ¥V, z}]}
syl5 = sylvesterMD [rl5eq, 2, {x, ¥, z}];
hp2 =

First[Chop[vectorSpacelntersection3 [syll, syl4, syl5, dTol], dTol].mExpsMD[2, {x, ¥, z}]]

ouf- - ©.794171 +0.204124 x - 0.00394934 x> +0.27198 y + 0.0884639 x y -
0.0239499 y2 +0.469243 z+0.0247282 xz+0.150685 yz+0.0416093 z?

To look at this hyperboloid and the lines

n - - Show[ContourPlot3D [hp2 == 0, {x, -5, 5}, {y, -5, 5}, {z, -5, 5}, Mesh - None],
ParametricPlot3D [{rlinel, rline4, rline5}, {t, -5, 5}, PlotStyle - {Blue, Green, Cyan}],

Axes -» False, Boxed » False, ImageSize - Small]

outf + J=

E . Finding two lines intersecting 4 skew lines the last intersecting the hyperboloid generated by
the first 3 in two points. Actually Hilbert stated this more generally, but if a line not in, or tangent to, a
hyperboloid intersects a hyperboloid in one point then since the equation of the hyperboloid has
degree 2 there are exactly 2, possibly infinite, points of intersection of the line and the hyperboloid.
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Using the above methods one simply notes that these two lines are the lines in the opposite ruling of
the first 3 lines at the points of intersection. In the construction of the double 6 one of the lines is
already known so one merely needs to construct the two tangent lines at the other intersection point,
one will be skew to the first 3 lines and the other will intersect the first 3 lines so one test using
pLineIntersectionMD is sufficient. So itis really not necessary to give an example.

A double 2 is a configuration of 4 lines with the following diagram :
3 —1
Outf » ]=

F. Given a double 2 find a line which meets all 4 lines. Note that intersecting lines 1,4 define a plane
as do intersecting lines 2,3. In projective 3-space space any two distinct planes meet in a unique line.
Rather than go through the procedure of problem D, we can assume we know the intersection points of
1,4 and 2,3 and one more point on each line. Then the equations of the planes come from
linearSetMD, each plane with a single equation. The intersecting line is the line with these 2 equa-

tions. Asin A.if one needs parametric equations one can use Solve.

| give an example below in 1.9.5.

1.9.4 The double 6 construction

I modify the Hilbert Cohn-Vossen method by starting out with the hyperboloid given both parametri -
cally and later by an implicit quadric equation in Section 1.3. This way I can find lots of rational points
and lines in the construction. Lines L1, L8, L9 and L10 come from this hyperboloid. Further lines L5, L6
will then also be in this paraboloid and L11 and L12 meet the hyperboloid in rational points so will

themselves be rational.

Recall the hyperboloid and its equation are given by

]

t-s?t 1+s?2-2st 2s-t-s?t
In[ » J= hypl ={ 5 5 }
1-s2 1-s? 1-s2

hypEq =1-x"2-yr2+z"2;

Here are the lines given by their parametric form.

5 4t 4 5t
Inf« Ji= Ll={t,—+—,—+—};
3 3 3 3

Inf « J= L2 ={t, 1.10873690400994" -0.4642368931192767 t,
-0.4642368931190869° +1.669047069329676° t}

our - {t, 1.10874 - 0.464237 t, -0.464237 + 1.66905 t}
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Inf + J= L3 ={t, 1.125206152628268" -0.5076671846982648" t,
-0.3081725820785607"° +1.5241953578676644° t};

Inf + Ji= L4 = {t, ©0.9721721581433124" -0.4260900032234079" t,
-0.11264557902259985"° +1.3711014253079723" t}

our - - {t, ©.972172 -0.42609 t, -0.112646 +1.3711 t}

wo- L6 ={t, 1, t};

Inf « J:= L7 = {t, 1.661032057842025" -0.9952722110334632" t,
-0.40924299170135053 " +1.6161700818709201" t}

ouf - - {t, 1.66103 -0.995272 t, -0.409243 +1.61617 t}

Inf + Ji= L8={t, —_ 4 y = — - — 33
Inf + Ji= L9={t, —+—,————};

In[« ]= L10={t,_—_,_—_

woe Lla{t, —s—, —4

599 179t 409 19t
In[« ]= L12 = {t, -_ - e
180 90 180 90

Here is the plot with the intersection points
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The work is contained in Appendix 1.9A which will be available only in Mathematica Notebook form.
This appendix is designed to be evaluated rather than read. In the Mathematica pull down
Evaluation menu choose Evaluate Notebook It will do the computation and check the answers
above. The reader may wish to skim the code in these notebooks but unless you want to make your

own double 6 it makes poor reading material.

1.9.5 Additional Lines

As mentioned above there are 15 additional lines that will intersect this double 6 in 4 points, hence will
in any naive cubic surface containing these lines. The construction is outlined in Problem F, here is an
example. The reader who wants all 15 must work them out themselves, they are not included in the

Appendix A.

We consider the line from the double 2 consisting of L1, L2, L7 and L8. First we find the planes contain -
ing L7, L2 and L1, L8.

Note these lines have the following implicit equations

Lleq = ratLine3D[L1 /. {t » 0}, L1 /. {t » 4}]

5 3y 4 3z
Cax-2, 222
4 4 5 5
L2eq = ratLine3D[L2 /. {t » 0}, L2 /. {t » 4}]

{-2.3883 + x+2.15407 y, -0.278145 + x - 0.599144 z}

L7eq = ratLine3D[L7 /. {t » 0}, L7 /. {t » 4}]
{-1.66892 +x+1.00475 y, -0.253218 +x-0.618747 z}
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m - 1- NSolve[Join[L2eq, L7eq]]
our- - {{x » 1.04003, y » 0.625914 , z » 1.27163}

m- - L8eq = ratLine3D[L8 /. {t » O}, L8 /. {t » 4}]

13 S5y 12 5z
outf « J= {— +X=——, — +x+—}
12 12 13 13
n- - syl7 = sylvesterMD [L7eq, 1, {X, V¥, Z}];

syl2 = sylvesterMD [L2eq, 1, {Xx, V, z}]}

m- - int72 = vectorSpacelntersection [syl7, syl2, dTol];
plane72 = int72[1].mExpsMD[1, {x, y, z}]

ouf- - ©.277687 - 0.828887 x-0.0481178 y +0.483239 z
Likewise

m- - syll = sylvesterMD [L1leq, 1, {Xx, Yy, z}]}
syl8 = sylvesterMD [L8eq, 1, {Xx, YV, Z}]}
intl8 = vectorSpaceIntersection [syll, syl8, dTol];
plane81 = int18[1].mExpsMD[1, {x, ¥y, z}]

ouf - - —0.701646 - 0.613941 x+0.350823 y+0.0877058 z

n - - Therefore

m- - L13 = First[SolveValues [plane72 == 0 && plane8l1 == 0, {x, y, z}] /. {Xx » t}]
«++ SolveValues : Equations may not give solutions for all "solve " variables .

our - - {t, 2.09159 +1.28909 t, -0.366371 +1.84363 t}
Checking :

m- = pl31 = pLineIntersectionMD [L13, L1, t, {x, ¥, z}, dTol]

our- - {9.60473 , 14.473, 17.3412}

m- - pl32 = pLineIntersectionMD [L13, L2, t, {x, ¥, z}, dTol]
our - {~0.560566 , 1.36897 , -1.39985}

m- = p137 = pLineIntersectionMD [L13, L7, t, {x, ¥, z}, dTol]
our- - {~0.188482, 1.84862, -0.713861}

n- - p138 = pLineIntersectionMD [L13, L8, t, {x, v, z}, dTol]
ou- - {~0.45765, 1.50164 , -1.21011}

In Appendix A we calculate a lot of points called D6Points which will not listed here
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In[ = J:=

Out[ » ]=

Show[ContourPlot3D [hypEq == 0, {x, -4, 4}, {y, -4, 4}, {z, -4, 4},
ContourStyle - Directive[LightGreen, Opacity[.2]], Mesh - None],
ParametricPlot3D [{L1, L9, L1O, L5, L6}, {t, -20, 20}, PlotStyle - Green, PlotRange - 5],
ParametricPlot3D [{L2, L3, L4, L7, L11, L12}, {t, -5, 5}, PlotStyle - Magental,
Graphics3D [{Black, PointSize[.015], Point[D6Points], Point[{p1l31, p132, p137, p138}]}],
ParametricPlot3D [L13, {t, -10, 10}, PlotStyle - Blue], Boxed -» False, Axes - False]

7

The blue line is L13, one intersection point is outside of the plot range. Again the green lines lie in the
original hyperboloid, shown as background, but the magenta and blue lines do not.

1.9.6 The Implicit Cubic

We can proceed as in Section 4, the torus, to find the equation of a cubic containing the double 6
obtained in subsection 4. It is important to note that we are aiming to find the equations of a reducible
curve which is a union of the lines. We know from the Space Curve Book that these are generally not
naive curves and will have more than two equations. For this reason we go one at a time and use a
higher degree in the calculation. From past experience we can surmise that degree 5 will be sufficient,
initially even degree 4 may work. But in each step we are adding to the curve so we want to avoid, say,
using the equation of the hyperboloid alone containing many of the lines because this hyperboloid also
has many points that will not be in the final cubic. We may at some point see the equation of the
hyperboloid but with additional equations removing these unwanted points.

We will see in our calculation a new idea, at least to me, that we do not need to use all the lines in the
double 6. Since we saw that half the lines in the double 6 were determined by the earlier lines the other
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lines already exist in any cubic equation in the system. In fact when we have made all the choices
allowed we see that there is a unique cubic which continues through the rest of the construct if we
choose to continue. Once we have a unique cubic at this point we are actually done. This will happen
once we have lines L1, L8, L9, L10, L11 and L12. Although Hilbert’s construction puts L6 before choos -
ing L12 | will show that adding L6 was unnecessary to get the cubic equation since it was already in the

cubics at the L11 step.
So actually we have a new, to me, theorem.

Given a line in 3 space and 5 skew lines intersecting that line, the intersections necessarily are distinct and
of multiplicity 1 due to the skewness, there is a unique cubic containing these lines as well as the 21 other
lines constructed from these as in subsections 4 and 5.

Again the actual calculations are in a notebook Appendix, Appendix B. This one is more readable than
Appendix A but still should be evaluated as a notebook to see that it works. The result is that the cubic

The cubic is

n- - f=-1.9593043005607316"° -3.0142672735884486" X+
0.7465860452458656° x” +2.1480399483637935" x> +5.299476866625" vy +
2.263740743254375° xy-1.014539031180315" x’y-4.2498131666479475" y’+
0.6950879815195592" x y’ +0.9096406005836525" y°+2.217338134382248" z+
0.46198790678698215" x z-1.2587132278003588° x” z-1.8202323527388888" yz-
0.48046742305836376° xy z-0.34166723282911526° y>z+0.12195121951197414" z*-
1.8893267205635906° X z° + 0.16448128269455703" yz*+1.  Z°

ouf- - —1.9593 - 3.01427 X + 0.746586 x*+2.14804 x> +5.29948 y+2.26374 xy-1.01454 x>y -
4.24981 y> +0.695088 X y> +0.909641 y> +2.21734 z+0.461988 x z-1.25871 x* z -
1.82023 yz-0.480467 xy z-0.341667 y>z+0.121951 z?-1.88933 x z2 +0.164481 yz*+1. z°

A plot is
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- - Labeled [Show[
ContourPlot3D [f == 0, {x, -5, 5}, {y, -5, 5}, {z, -5, 5}, Mesh - None, MaxRecursion - 5],
ParametricPlot3D [L1, {t, -5, 5}, PlotStyle - Directive[Thick, Magenta]],
ParametricPlot3D [{L8, L9, L10, L11, L12}, {t, -5, 5}, PlotStyle - Blue],
ParametricPlot3D [{L7, L6, L5, L4, L3, L2}, {t, -5, 5}, PlotStyle - Green],

Boxed -» False, Axes - False, ImageSize - Large], "Double 6 on cubic f'"]

outf « ]=

Double 6 on cubic f

1.9.7 Finding lines on a given smooth cubic, first example.

In this subsection | go the opposite direction . Istart with a smooth cubic surface and try to find the 27
lines. Based on the previous work one might think of looking for one line and then looking for 5 skew
lines intersecting this line. From there | can find the other 21 lines using the previous techniques.

It actually turns out that it is easier to try to find all 27 lines at once. The trick is that for a parametric



outf

Inf

Inf
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line with parametric function F to lie on the surface f =0 we simply need
f/. Thread[{x, y, z} > F] == 0

Letting F be a generic curve it is easy to set up the equation which NSolve can solve. Given previous
examples most lines do not have a constant first component. So we find these lines first

- Fl={t,al+blt, a2+b2t}
-{t, al+blt, a2 +b2 t}
We first try an easy equation .

j-cubicl =16 %*XxA3+16*xy"3-31%2"3+24%xx"2%xz~
48 x XN2 %y -48 x X %Y 2424 %xy"r2%2-93,.5307 »z"2-T72%2;

Our main equation is

- mainEq = Collect[Expand[cubicl /. Thread[{x, y, z} » F1]], t]

16 al’®-72 a2 +24 al” a2 - 93.5307 a2’ -31a2>+
(-48 al*+48 al’bl+48al a2 bl-72b2+24 al’b2-187.061 a2 b2 -93 a2’ b2) t +
(-48al+24a2-96albl+48albl®+24a2bl?+48alblb2-93.5307 b2?-93 a2 b2%)t?+
(16 -48 b1 -48b1”+16 bl®+24 b2 +24 b1% b2 - 31 b2*) t3

We want this to be essentially zero for all t. So the coefficients of t“ must be zero. Let
- Clear[al, a2, bl, b2]

Now just solve this non-linear system of 4 equations in 4 unknowns

- cf@ =16a1°-72a2+24a1?a2-93.5307" a2?-31a2’;
cfl =-48al1>+48al1’bl+48ala2bl-72b2+24a1*>b2-187.0614" a2 b2-93 a2%b2;
cf2=-48al+24a2-96albl+48albl?+24a2bl”+48alblb2-93.5307" b2%-93a2b2?;
cf3 =16-48b1-48b1%+16 b1®+24 b2 +24b1%b2-31b2%;

o - {time, solcubicl} = Timing[NSolve[{cf0®, cfl, cf2, cf3}1];

o - time

- 0.391518

- 1- Length[solcubicl]

L 27

This takes a long time for a computer, but not much for a human. We now display the lines

o 1= DO[Print["line[", i, "]=", line[i]l = F1/. solcubic1[il], {i, 27}]
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line[l]={t, -3.73243 +13.9293 t, -5.46452 + 14.9294 t}
line[2]={t, 3.22448 +4.08729 t, -3.00967 - 3.5649 t}
line[3]={t, 2.73814 +3.4304 t, 1.87092 +3.02721 t}
line[4]={t, -0.476643 - 1.47664 t, -1.90652 - 1.90653 t}
line[5]={t, 1.1547 - 1. t, -2.3094}
line[6]={t, 1.44663 +6.17467 t, -2.47977 - 4.18706 t}
line[7]={t, ©.298434 -0.815559 t, -1.39762 - 0.863769 t}
line[8]={t, 0. +3.73205 t, 0.}
line[9]={t, ©.297094 +0.485438 t, -1.62331 - 1.18835 t}
line[10]={t, 1.06079 - 0.957224 t, 0.265302 - 1.17278 t}
line[ll]={t, 0.577351 -1. t, -1.1547}
line[12]={t, 0.651252 +2.63242 t, -1.11635 + 1.88495 t}
line[13]={t, 3.1547 +3.73205 t, -2.3094}
line[14]={t, -0.234285 +0.161952 t, -1.4988 - 0.678101 t}
line[15]={t, 0.365925 - 1.22615 t, -1.71369 + 1.05911 t}
line[16]={t, - 0.845298 +0.267949 t, -2.3094}
line[17]={t, 1.10819 - 1.04469 t, -1.03437 +1.22519 t}
line[18]={t, -0.612013 +2.05999 t, -0.896026 - 2.448 t}
line[19]={t, -0.798198 +0.291512 t, -0.545395 + 0.882467 t}
line[20]={t, 0. - 1. t, 0.}
line[21]={t, -0.42265 + 0.267949 t, -1.1547}
line[22]={t, 0.267956 +0.0717912 t, -1.4641 +1.0718 t}
line[23]={t, 1.57735 +3.73205 t, -1.1547}
line[24]={t, -0.247397 +0.379879 t, -1.58268 + 0.716051 t}
line[25]={t, -0.788904 +0.244661 t, -0.197304 - 0.872192 t}
line[26]={t, 0. + 0.267949 t, 0.}
line[27]={t, -0.322788 - 0.677211 t, -1.29112 +1.29112 t}
We can now check with an incidence matrix using pLinelntersectionMD . We make this a little compli -
cated for later use . Note an entry 0 means the lines are skew, 1 means they are the same, 3 means they
intersect in the affine plane and 4 is an infinite intersection, that is the lines are parallel in affine 3
space.

m- - LineList = Range[27]

o -{1,2,3,4,5,6,7,8,9, 10, 11, 12, 13,

14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27}
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m - - incidence =

SparseArray [Flatten[Table[{i, j} » Length[pLineIntersectionMD [line[lineList[il],

-00311, {i, 27}, {j, 27}, 1]]

line[lineList[jl], t, {x, y, z},
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m- 1= M=Join[Partition[Prepend[lineList, 0], 1], Prepend[incidence, linelList], 2];

Grid[M,

Background - {None, None, {{{1, 1}, {1, 28}} » LightGray , {{1, 28}, {1, 1}} » LightGray}}]

06 123456 789 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

3
3

103 30003%0 0
2 013303300 0
3 33100006063 3
4 330103003 3
5 000013 06060603 3
6 0303 310306 0
7 030000100 3
8 30000603010 3
9 00 333006001 0

106 © © 3 3 3 0 3 3 0

1

(0]
4

0

1

11 3 3 0 0 40000 0O
12 0 © 3 0 0 3 3 3 3 0
13 0 33 0 3 0040 0

3
0
0
0

14 3 0 3 06 3 3 3 0 0 0O

=

Out

15 3 0 0 0 03303 0

16 3 0 0 3 3 03 0 0 0

17 3 3 0 0 3 0 0 06 06 3

0
0
4
3
3
3

18 3 3 0 9 3 0 3 3 3 0

19 0 0 300 3 000 06

20 0 6 3 340 3 30 0
21 6 6 3 00 3000 3

22 3 00003303 3

23 0 6 06300 3 43 0

24 0 06 06 30 00 00 3

3
0

25 06 3 06 6 0 00 33 3

26 0 3 0 0000 33 0

27 06 6 06 30 00 00 06

Notice the 1’s lie all on the diagonal, so all these lines are distinct. Thus we have all 27 lines.

In the notebook Appendix C we re-arrange the lines to find a double 6. Remember that this is one

example, not the only one.
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5
1
0
0
0
0
0

25 26 2 16 14 9 20 10

© © 06 0 F O Ww
© © OB © 0 h
© O H © © © N

nf - - 26
2
16
14
9
20
10

The pink squares show the two sets of lines are each mutually skew, the cyan squares show the correct
incidences among these lines. Note that two of these intersections are infinite. We can plot this

n - - Show[ContourPlot3D [cubicl == 0, {x, -4, 4}, {y, -4, 4},
{z, -4, 4}, ContourStyle - Opacity[.9], Mesh - None], ParametricPlot3D [
{line[2], line[16], line[14], line[9], line[20], line[10]}, {t, -4, 4}, PlotStyle - Green],
ParametricPlot3D [{line[5], line[3], line[4], line[7], line[25], line[26]},
{t, -4, 4}, PlotStyle - Blue], Axes » False, Boxed -» False]

outf « J=

If we expand the picture above we get



Inf

outf

n[

outf

SurfaceBookChapterOne_v1.0.nb | 89

0 53 4 7 25 26 2 16 14 9 20 10 1 6 8 11 12 13 15 17 18 19 21 22 23 24 27
5100606 6 6 06 3 3 3 4 3 0306 4 6 3 06 3 3 6 0 6 0 0 O
3 10006 6 ©6 30 3 3 3 3 300606 606 3 3 6 06 6 3 3 6 0 0 O
4 1 0 6 6 3 3 0 3 3 3 33606 0606 06 06 06 06 06 6 6 6 3 3 3
7 ©® 01 6 6 3 3 3 00 3 3 00O 6 3 06 3 06 3 0 0 3 3 0 o
25 6606 1 ©6 3 3 3 3 0 3 006063 3 06 06 3 6 6 3 6 06 0 o0 3
26 © 60606 ©6 1 3 4 3 3 3 0 006063 0 06 6 6 3 6 6 4 3 0 3 O
2 333 3 31606 06 0 6 06 030 3 6 3 06 3 3 0 0 0 06 o0 o
16 3 33 3 4 0 1 0 06 0 0 300 6 3 3 0 06 06 3 4 06 0606 0 O
14 3 3 03 3 3 0 06 1 06 0 0 330 06 0 0 06 06 06 06 6 o6 3 3 3
9 33300 3 3 00 6 06106 06 00060 06 3 6 3 06 3 0 0 3 3 0 o0
204333 06 3 6 6 0 61 0 0063 4 06 6 3 6 06 3 06 606 6 0 3
193333 3 0 06 6 06 06 1 06003 06 6 06 6 3 06 6 3 3 0 3 o0

we see each of the remaining lines intersect the double 6 in exactly 4 points. Most of these intersec -
tions involve only two lines intersection. Rarely we may have 3 lines intersecting if the intersection of
the planes containing the double 2 goes through the intersection of two of the lines of the double 2. In
the literature these are called an Eckardt points. These are easy to identify from the incidence matrix

regarding the incidence matrix as an Association.

;- otherAssoc = ¢|Table[{i, j} » pLineIntersectionMD [line[i], line[j], t, {Xx, V¥, z}, .003],
{i, 26}, {j, i+1, 27} ;
V = Select[Values[otherAssoc], Length[H] > 2 &];
st = Select[Tally[V], H[2] > 1 &]

-{{{e., 6., 0.}, 3}}
So the only Eckardt point is the origin . Finding the lines

;- KeySelect [otherAssoc , otherAssoc [#] == {0, 0, 0} &]
- <|{8, 20} >{0., 0., 0.}, {8, 26} > {0., 0., 0.}, {20, 26} > {0., 0., 0.}

So the single Eckardt is the intersection of lines 20 and 26 of the double 2 and 8 outside the double 2.
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n - - Show[ContourPlot3D [cubicl == 0, {x, -2, 2}, {y, -2, 2}, {z, -2, 2}, Mesh - None],
ParametricPlot3D [{line[8], line[20], line[26]}, {t, -3, 3}, PlotStyle - {Red, Blue, Blue}],

Axes - False, Boxed -» False]

out[ » ]=

1.9 .8 Finding lines, Example 2

My second example is the famous surface known as the Clebsch diagonal Cubic. Not only does this
surface have 27 real lines they lie in such a way as to make a pleasing plot. This is also symmetric in all
the variables. One discussion is at http://mathworld.wolfram.com/ClebschDiagonalCubic.html. This is
also known in the literature as Klein’s icosahedral cubic. A more complete discussion with moving
pictures is by John Baez in https://blogs.ams.org/visualinsight/2016/03/01/clebsch-surface/ where he
includes several plots by the science fiction writer Greg Egan. So | will not attempt a full computation
Another interesting thing is that there are reportedly 10 Eckardt points. |will find some of these points,

following the method above.

m-jp-cdc =8l (XxA3+y"3+z73)-189 (X 2y +Xx"2Zz+yr2Xx+yr2Zz+z"2x+2Zz72Yy)+
54Xyz+126 (XYy+XZ+Yyz)-9(X"2+y"2+2z22)-9(X+y+Z)+1;

We first find all the lines .
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n - - cdcEq = Collect[Expand[cdc /. Thread[{x, y, z} » F1]], t]
o 1-9al-9al”*+8lal®>-9a2+126ala2-189 al’a2-9a2”-189 al a2’ +81 a2+
(-9+126 al-189 al®>+ 126 a2 +54 al a2 - 189 a2 -9 bl -18 al bl + 243 al’ bl + 126 a2 bl -
378 al a2 bl -189 a2’ b1 -9b2+126 al b2 -189 al” b2 - 18 a2 b2 - 378 al a2 b2 + 243 a2’ b2)
t+(-9-189 al-189 a2 +126 b1 -378 al bl +54 a2 bl -9bl?+243 al b1® -
189 a2 b1” + 126 b2 +54 al b2 - 378 a2 b2 + 126 b1 b2 -
378 al bl b2 -378 a2 bl b2 -9 b2? - 189 al b2? +243 a2 b2?) t* +
(81-189b1-189 b1?+81b1°-189 b2 +54blb2-189 bl?*b2-189 b2”-189 bl b2 +81 b2*) t*

1-9al-9al’+81lal®>-9a2+126 ala2-189 al®a2-9a2”-189 al a2 +81 a23;

cdcl =-9+126 al-189 al®>+ 126 a2 +54 al a2 - 189 a2 -9 b1l -18 al bl +243 al’ bl +126 a2 bl -
378 al a2 b1-189 a2’ b1-9b2+126 al b2-189 al’b2-18 a2 b2 -378 al a2 b2 +243 a2? b2;

cdc2 =-9-189a1-189a2+126b1-378albl+54a2bl-9b1%+243 a1 b1*-189 a2 b1%+126 b2+
54 al b2 -378a2b2+126 b1 b2-378 al bl b2-378 a2 bl b2-9b2?-189 al b2? +243 a2 b2?;

cdc3 =81-189b1-189b1%+81b1°-189b2+54b1b2-189 b1?b2-189 b2?-189 bl b2?+81 b2°%;

- - cdcO

n - 1- soledc = NSolve[{cdcO®, cdcl, cdc2, cdc3}];
Do[Print["cline[", i, "]=", cline[i] = F1 /. solcdc[il], {i, 22}
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cline[1]={t, 2.2847 -5.23607 t, 0.872678 -2.23607 t}
cline[2]={t, 0.390273 - 0.447214 t, 0.241202 +2.34164 t}
cline[3]={t, -0.333333 +3. t, 0.}

cline [4]={t, 0.0486327 -0.763932 t, 0.127322 +2.23607 t}
cline[5]={t, 0.127322 +2.23607 t, 0.0486327 - 0.763932 t}
cline[6]={t, 0., -0.333333 +3. t}

cline[7]={t, 0.666667 - 1. t, 0.333333}

cline[8]={t, 0.269672 -2.92705 t, 0.063661 - 1.30902 t}
cline[9]={t, 0.241202 +2.34164 t, 0.390273 - 0.447214 t}
cline[10]={t, 0.872678 -2.23607 t, 2.2847 - 5.23607 t}
cline[11]={t, 0.333333 - 1. t, 0.}

cline[12]={t, -0.333333 , 0. - 1. t}

cline[13]={t, 0.436339 - 0.190983 t, -0.103006 +0.427051 t}
cline[14]={t, 0.063661 - 1.30902 t, 0.269672 - 2.92705 t}
cline[15]={t, 0.0921311 - 0.341641 t, -0.0569401 +0.447214 t}
cline[16]={t, - 0.0569401 +0.447214 t, 0.0921311 - 0.341641 t}
cline[17]={t, 0. - 1. t, -0.333333}

cline[18]={t, 0., 0.333333 - 1. t}

cline[19]={t, 0., 0.111111 +0.333333 t}

cline[20]={t, 0.333333 , 0.666667 - 1. t}

cline[21]={t, ©0.111111 +0.333333 t, 0.}

cline[22]={t, -0.103006 +0.427051 t, 0.436339 - 0.190983 t}

n- 1= Length[solcdc]
ouf -+ = 22

So we don' t get all the lines but one can get the other lines by symmetry .

m - cline[23]1={0, -1/3+3 t, t};
cline[24]=({0, 1/3-1t, t};
cline[25]={-1/3, -t, t};
cline[26]={0, t, -1/3 +3 t};
cline[27]={1/3, t, 2/3-t};

m- = Simplify[cdc /. Thread[{x, y, z} » cline[27]]]

ou+ - O

Our incidence chart can be calculated .
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m- - LineList = Range[27]

o -{1,2,3,4,5,6,7,8,9, 10, 11, 12, 13,

14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27}

;- incidence2

Inf

SparseArray [Flatten[Table[{i, j} » Length[pLineIntersectionMD [cline[lineList[il],

cline[lineList[jll, t, {x, y, z}, .00311, {i, 27}, {i, 27}, 11I

]

{27, 27}

~
[}
o
n
=
c
Q
£
9
)
el
9
h=
9]
9]
Q
(2]

Dimensions

outf « J- SparseArray[

Join[Partition[Prepend[lineList, 0], 1], Prepend[incidence2 , linelList], 2];

Grid[M2,

= M2

Inf

Background - {None, None, {{{1, 1}, {1, 28}} -» LightGray, {{1, 28}, {1, 1}} » LightGray}}]

123456 789 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

100000033 3

0
1

0
3

2 01 030306033 3
3 001006063003 0
4 03 0130000 O
5 0003100633 0
6 033 001030 0
7 0000060060133 0
8 330033310 0
9 33303063010

0

0
4

0
3

1

10 3 3 0 0 0 0 0 OO
11 © 3 3 0 3 0 400 3
12 0 0 30 3 00 3 0 3

0
0
0
0
3

13 33 3 03 0000 0O

14 0 © 3 3 0 0 0 3 3 3

I
/

Outf

15 0 0 33 00 3 30 3
16 3 0 9 09 3 3 000 0

17 3 0 © 3 0 3 40 0 0
18 3 0 0 303 00 3 0
19 0 0 0 33300 3

0

20 0 3 0 000 300 0

3

21 3 6 3 3 0 00 30 0

22 0 606303 303 3

23 33 33 00 3 00 0

3

24 0 0 00000 30 0

25 0 3 0 0 0000 3 0

0
0

26 6 600633003 3

27 3 6 3 333300 3

We don’t have any duplicates so this must be all.

We now look for the famous Eckart points in this example.
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- otherAssoc2 = ¢|Table[{i, j} » pLineIntersectionMD [cline[i], cline[]j], t, {x, Yy, 2}, .003],
{i, 26}, {j, 1+1, 27}I]>;
KeySelect [otherAssoc2 , Length[otherAssoc2 [#]] == 3 &];

=y

V2

- - st = Select[Tally[Values[V2], Norm[H1l - H2] < 1.%"-9 &], #[2] > 1 &]
our- - {{{0.166667 , 0.166667 , 0.}, 3}, {{1.4866 x 107**, -0.333333, -4.91517 x 107"}, 3},
{{-8.17955 x 1067**, 2.72734 x107**, -0.333333}, 3},
{{0.166667 , -1.48845 x 107*°, 0.166667}, 3}, {{0.333333, 0.333333, 0.333333}, 3},
{{-0.333333, 1.02521 x107**, -1.01915 x 107**}, 3},
{{

1.04294 x 107", 0.166667 , 0.166667}, 3}}

- - KeySelect [V2, Norm[V2[H] - stl1, 1]] < 1.x"-9 &]
ot - <|{3, 11} » {0.166667 , 0.166667 , 0.},
{3, 21} » {0.166667 , 0.166667 , 0.}, {11, 21} - {0.166667 , 0.166667 , 0.}|>

n - - KeySelect[V2, Norm[V2[H] - st[2, 1]] < 1.x"-9 &]

<|{3, 12} » {1.4866 x 10™**, -0.333333, -4.91517 x 107*°},
{3, 23} » {2.1065 x 107*°, -0.333333, -2.1065 x 107*°},
{12, 23} > {-2.79385 x 10"*°, -0.333333, 8.13327 x 107°}|»

Outf » -

m - - KeySelect [V2, Norm[V2[#] - stl[3, 1]] < 1.%"-9 &]
<|{6, 17} > {-8.17955 x 107**, 2.72734 x 107", -0.333333},
{6, 26} » {-4.60317 x107*°, 4.3122 x 107*°, -0.333333},

{17, 26} » {2.27423 x 107", -6.82551 x 107**, -0.333333}>

Outf » -

n- - KeySelect [V2, Norm[V2[H] - stl4, 1]] < 1.%"-9 &]

our- - <|{6, 18} » {0.166667 , -1.48845 x 107*°, 0.166667},
{6, 19} » {0.166667 , 6.92135 x 107*%, 0.166667},
{18, 19} » {0.166667 , -4.11295 x 107'", 0.166667 }|>

- - KeySelect [V2, Norm[V2[H] - st[5, 1]] < 1.%"-9 &]
our - <|{7, 20} » {0.333333, 0.333333, 0.333333},
{7, 27} > {6.333333, 0.333333, 0.333333}, {20, 27} > {0.333333, 0.333333, 0.333333}|»

m - - KeySelect [V2, Norm[V2[H] - stl6, 1]] < 1.%"-9 &]

- ¢|{19, 21} » {-0.333333, 1.02521 x107*%, -1.01915 x 107*},
{19, 25} » {-0.333333, 2.80014 x 107**, -8.34944 x 107*%},
{21, 25} » {-0.333333, -5.30136 x 107**, 1.76712 x 107"} |»

Outf

- - KeySelect [V2, Norm[V2[H] - stl[7, 1]] < 1.%"-9 &]

our- - <] {23, 24} > {1.04294 x 107'", 0.166667 , 0.166667},
{23, 26} » {1.88326 x 107'*, 0.166667 , 0.166667},
{24, 26} > {5.73977 x 107'", 0.166667 , 0.166667 }|»
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So we find 7 Eckardt points ,these are all rational. The others are infinite.

w- - epoints = {{1/6, 1/6, 0}, {8, -1/3, 0}, {0, 0, -1/3},
{1/6,1/6, 0}, {1/3, 1/3, 1/3},{-1/3, 0, 0}, {0, 1/6, 1/6, 0}};

Note by symmetry there are only 3 different orbits, one of length 1.

m- - elines = DeleteDuplicates |
(3, 11, 21, 12, 23, 6, 17, 26, 6, 18, 19, 7, 20, 27, 19, 21, 25, 23, 24, 26}]

our {3, 11, 21, 12, 23, 6, 17, 26, 18, 19, 7, 20, 27, 25, 24}

- - Show[ContourPlot3D [cdc == 0, {x, -1, 1},
{y, -1, 1}, {z, -1, 1}, Mesh -» None, ContourStyle - Opacity[0.9]],

ParametricPlot3D [cline[#] &/@ elines, {t, -3, 3}, PlotStyle - Green],

Axes - False, Boxed —» False]

Outf « |=
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