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0. Introduction
Surfaces  are  much  more  complicated  than  curves.   For  example   Riemann  defined  genus  of a curve  in 

the  1850’s.   But  there  was  no  genus  of a surface  until  the  1950’s.  The  interim  was  spent  abstracting  

algebra  and  topology  to build  the  tools  for  the  general  Riemann-Roch  theorem.   Unfortunately  the  new  

abstract  formulation,  while  impressive  mathematically,  gave  little  insight  into  actual  surfaces.   Instead  I 

will  attempt  to discuss  surfaces  not  with  abstractions  but  with  Mathematica  algorithms.

In this  Chapter  I will   restrict  my  attention  to surfaces  which  are  either  naive  algebraic  surfaces  or 

surfaces  defined  by a rational  parameterization.   In particular  I will  then  be able  to plot  these  surfaces,  

at least  locally,  using  Mathematica’s  ContourPlot3D in the  first  case  and ParametricPlot3D  in the  

second.   Again  my  intention  is to be  visual  and  numerical  rather  than  mathematically  exact.   

This  book  is addressed  to readers  of my  Plane  curve  book  and  my  Space  Curve  Book.  In particular  one  

should  be familiar  with  working  with  machine  numbers  in Mathematica.   Other  than  that  there  will  be  

no prerequisite.   Many  of the  functions  used  in this  book  are  already  in the  Global  Functions  notebook  

for  my  Space  Curve  book  which  already  contains  many  of the  Plane  curve  functions.   There  will  be  a 

new,  inclusive  GlobalFunctionsS.nb notebook  for  this  book.   Global  functions  specifically  for  sur -

faces  may  end  in NS  (naive  surface)  or RS  (rational  surface).
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recommend  the  use  of the  so�ware  for  applications  in which  errors  or omissions  could  threaten  life,  or  cause  injury  

or significant  loss.

Mathematica  and  Wolfram  Language  are  trademarks  of Wolfram  Research  Inc.                         
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1.1 Introduction to Naive Surfaces
A naive surface is a surface in ℝ3 which is the full zero set of a single polynomial equation f=f(x,y,z) in

three variables subject to a few conditions to be discussed later . For example the polynomial might be

ts3 = 1.752 - 6.4 x - 11.464 x2 + 0.64 x3 + x^4 + 1.536 y2 +

0.64 x y2 + x2 y2 + 2.88 x^2 z - 5.12 y^2 z + 3.584 z2 + 3.84 x z2 + x2 z2;

Analogously  to Gauss'  principle  in my  Plane  Curve  Book  this  zero  set  divides  the  plane  into  two  sets  

f + = {{x,y,z}  | f (x , y, z) > 0 } and  f - = {{x, y, z} f (x, y, z) < 0} which  have  the  zero  set  of f  as  the  complete  

boundary.   This  allows  us to recover  this  zero  set,  which  we  will  o�en  just  call  f , by  looking  for  points  

where  the  value  of f (x,y,z)  on  neighboring  points  changes  from  positive  to negative  or vice  versa.   In 

Mathematica this  is obtained  using  the  built-in  function  ContourPlot3D.    For  example  we  can  visu -

alise  a small  part  of the  surface ts3  by

Out[  ]=

Plot 1.1a

Note  that  in this  book  I will  generally  use  the  option  Mesh->None because  we  will  o�en  be drawing  

curves  on  our  surfaces.   It is important  to note  that  the  boundary  curves  in this  picture  are  simply  the  

curves  where  this  surface  meets  the  bounding  box,  they  are  not  intrinsic  to this  surface.   Note  the  3  

vertical  lines  colored  green  where  ts3  > 0 and  red  where  ts3  < 0.  What  we  notice  is that  they  are  red  

“inside”  the  surface  and  green  “outside”.   This  shows  that  the  surface  is two  sided  with  an inside  and  

outside.  We  talk  about  this  more  in a bit.

Note  this  plot  changes  as we  change  the  bounding  box  or orientation.   We  can  see  more  or less  of the  
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surface  or more  or less  detail.

In[  ]:= Pl1b = ContourPlot3D [ts3 ⩵ 0, {x, -10, 10}, {y, -10, 10}, {z, -10, 10}, Mesh → None ];

In[  ]:= {Pl1b, Pl1b}

Out[  ]=  , 

Some  things  can  go wrong  .  The  equation  x ^ 2 + y ^ 2 + z ^ 2 = 0  has  only  one  solution,  {0,0,0}.   We  call  

equations  that  do  not  give  a 2-dimensional  figure  degenerate.    Also  note  that  the  equation  ts3 2 = 0 has  

the  same  solution  set  as ts3  = 0 but  the  contour  plot

In[  ]:= ContourPlot3D ts32 ⩵ 0, {x, -10, 10}, {y, -10, 10}, {z, -10, 10}, Mesh → None 

Out[  ]=

is empty.   This  is because  there  is no  sign  change  from  positive  to negative.   Remember  that  since  the  

function  ContourPlot3D is numerical,   zero  is not  recognized  as a number.   So  changes  from  positive  

to zero  are  not  detected.   So  to get  a correct  picture  we  must  use  square  free  polynomials  only.   Fortu -

nately  we  have  a global  function  sqFreeMD,  this  will  not  only  tell  us  if a polynomial  is square  free  but  if 

it is not  it will  return  a square  free  polynomial  with  the  same  solution  set.   Fortunately  this  function  

does  not  require  us to factor  the  polynomial  so it works  on  numerical  as well  as integer  polynomials.

Here  is a more  complicated  problem  that  came  up  with  a surface  related  to ts3,  I call  it ts2.

In[  ]:= ts2 = NExpand (-1 + z) × 48 - 80 x + 25 x2 + 16 z2

Out[  ]= -48. + 80. x - 25. x2 + 48. z - 80. x z + 25. x2 z - 16. z2 + 16. z3

When  we  try  to plot  ts2  we  get  the  following
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In[  ]:= ContourPlot3D [ts2 ⩵ 0, {x, -1, 4}, {y, -2, 2}, {z, -2, 2}, Mesh → None ]

Out[  ]=

But  this  surface  is the  union  of a plane  and  a cylinder  so the  plot  should  be

In[  ]:= ContourPlot3D z - 1 ⩵ 0, 48 - 80 x + 25 x2 + 16 z2 ⩵ 0,
{x, -1, 4}, {y, -2, 2}, {z, -2, 2}, Mesh → None 

Out[  ]=

The  problem  is that  there  is a line  of intersection  y = 0, z =
25

16
 } of  these  two  surfaces.   Even  though  

this  line  is not  a factor  of either  component  it is somehow  counted  twice  in the  contour  plot  of the  

product,  which  is square  free.

In[  ]:= sqFreeMD [ts2, {x, y, z}, dTol ]

» Square Free

Out[  ]= -48. + 80. x - 25. x2 + 48. z - 80. x z + 25. x2 z - 16. z2 + 16. z3

Here  is a picture  .
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In[  ]:= Show ContourPlot3D z - 1 ⩵ 0, 48 - 80 x + 25 x2 + 16 z2 ⩵ 0, {x, -1, 4}, {y, -2, 2}, {z, -2, 2},

Mesh → None , ParametricPlot3D [{1.5625, t, 1}, {t, -2, 2}, PlotStyle → Black ],

ParametricPlot3D [{1.5625, 0, t}, {t, 1, 2}, PlotStyle → Green ],

ParametricPlot3D [{1.5625, 0, t}, {t, -1, 1}, PlotStyle → Green ],

ParametricPlot3D [{1.5625, 0, t}, {t, -2, -1}, PlotStyle → Red],

ParametricPlot3D [{3, 0, t}, {t, 1, 2}, PlotStyle → Green ],

ParametricPlot3D [{3, 0, t}, {t, -2, 1}, PlotStyle → Red]

Out[  ]=

In some  ways  the  original,  wrong  picture,  did  a better  job  of explaining  the  inside  and  outside  of the  

surface!

1.2 Regular  and Smooth  Surfaces

Before  stating  our  main  theorem  in this  section  we  make  a definition.   A point  p in a surface  f  is regular 

if the  norm  of the  gradient  is greater  than  zero.   This  is implemented,  in the  case  of  point  p in ts2

In[  ]:= p = {25 / 16, 2, 1}

ts2 /. Thread [{x, y, z} → p]

grd = Grad [ts2, {x, y, z}] /. Thread [{x, y, z} → p]

Out[  ]= 
25

16
, 2, 1

Out[  ]= 0.

Out[  ]= {0., 0, 0.0351563 }

Here  p, and  ts2  are  exact  so the  last  component  of the  gradient  is sufficiently  large  to be  non-zero.

An important  property  of regular  points  is that  we  get  a tangent  plane  and  normal  line .
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In[  ]:= tangentPlaneNS [f_, p_, X_] := (Grad [f, X] /. Thread [{x, y, z} → p]).(X - p)

normalLineNS [f_, p_, X_] := lineMD [p, Append [(Grad [f, X] /. Thread [{x, y, z} → p]), 0], X]

In the  example  above

In[  ]:= tpp = tangentPlaneNS [ts2, {25 / 16, 2, 1}, {x, y, z}]

nlp = normalLineNS [ts2, {25 / 16, 2, 1}, {x, y, z}]

Out[  ]= 0. + 0.0351563 × (-1 + z)

Out[  ]= -0.100593 - 0.759004 x + 0.643268 y + 9.28877 × 10-17 z,

0.924931 - 0.309563 x - 0.22062 y - 1.97547 × 10-17 z

Of course  this  just  says  the  tangent  plane  to the  plane  z = 1 at the  regular  point  of ts2  is the  plane  z - 1 . 

But  this  example  exposes  a problem  because  we  want  to consider  the  points  where  the  cylinder  meets  

the  plane  tangently  as  singular.  Fortunately  we  did  give  a good  discussion  of multiplicity  in my  Space  

Curve  Book  section  2.3.3.1.  In this  example

In[  ]:= multiplicityMD [Prepend [nlp, ts2], {25 / 16, 2, 1}, {x, y, z}, 1*^-6 ]

Out[  ]= 2

Note  that  we  can  also  get  the  multiplicity  directly  from  NSolve  .

In[  ]:= NSolveValues [Append [nlp, ts2], {x, y, z}, Reals ]

Out[  ]= {{1.5625, 2., -0.998901 }, {1.5625, 2., 0.998901 }, {1.5625, 2., 1.}}

The  last  two  zeros  are  numerically  p so p is a double  point.

So our  normal  line  meets  the  surface  in a double  point,  as can  be easily  seen  from  the  plot  above  .

We  thus  define  a surface   to be  smooth or  non-singular at  point  p if both  the  gradient  is non-zero  and  

the  multiplicity  of the  intersection  of the  normal  line  and  surface  is 1.  A point  where  either  the  gradient  

is zero  or the  intersection  of the  normal  line  and  surface  has  multiplicity  2 or greater  with  a loose  

tolerance  is called  singular.

It should  be mentioned  that  [Abhyankar,  p.205]  mentions  that,  in our  notation,  the  set  of non-regular  

points  must  be  algebraic,  in our  case  a finite  point  set  or a  curve,  as in ts2,  but  the  set  of singular  points  

need  not  be  algebraic.

Our  main  theorem,  slightly  modified  from  a standard  theorem  of differential  geometry  is

Jordan  - Brouwer   Let  f  be  a  non-degenerate  square  free  polynomial  giving  a smooth  surface.   Then  the  

surface  f is two  sided,  moreover  for  p in the  surface  there  is a neighborhood  of p which  is topologically  an  

open  plane  disk.

What  this  means  is that  the  points  of a smooth  naive  surface   define   an  oriented  manifold.  To see  a 

definition  and  discussion  this  see  a differential  geometry  text  such  as [Montiel,  Ros].

We  will  only  refer  to smooth  surfaces  as having  sides.   As  an example  consider  the  surface   x y z = 0
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In[  ]:= ContourPlot3D [x y z ⩵ 0, {x, -2, 2}, {y, -2, 2}, {z, -2, 2}, Mesh → None, MaxRecursion → 4]

Out[  ]=

These  planes  actually  break  up  space  into  8 regions  rather  than  2, so sides  are  not  actually  a useful  

concept.
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1.2 Introduction to Rational Parametric Surfaces
A second  way  to define  a surface  is to use  a rational  parametric  function.   A simple  one  is 

In[  ]:= F1 = {s, t, s^2 - t^2}

Out[  ]= s, t, s2 - t2

We  can  plot  part  of this  surface  using  ParametricPlot3D.

In[  ]:= ParametricPlot3D [F1, {s, -10, 10}, {t, -10, 10}, PlotRange → 10, Mesh → None ]

Out[  ]=

Unlike  contour  plots  giving  a plot  range  is optional,  but  in most  cases  a good  idea  to get  a nice  plot.   

Once  could  also  do  this  to control  each  variable  separately  with
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In[  ]:= ParametricPlot3D [F1, {s, -10, 10}, {t, -10, 10},

PlotRange → {{-10, 10}, {-10, 10}, {-5, 10}}, Mesh → None ]

Out[  ]=

As with  contour  plots  I disable  the  Mesh  because  I will  want  to draw  my  own  curves  on  this  surface.   

One  can  also  use  the  option  MaxRecursion with  parametric  plots  if the  plot  is complicated.

More  generally  a rational   parametric  surface  in ℝ 3 is given  by a function

F =  f1 (s, t)

f4 (s, t)
,

f2 (s, t)

f4 (s, t)
,
f3 (s, t)

f4 (s, t)


where the fi are polynomial functions of the two variables s, t.

We  generally   like  to have  the  common  denominator  f4  but  it is not  absolutely  required  as it can  be 

calculated,  the  important  thing  is that  no  denominator  is the  constant  0.  We  do  not  require  the  numera -

tors  and  the  denominator  to have  the  same  degree,  the  degree  of the  numerators  may  be less  than,  

equal  or greater  than  the  degree  of the  numerator  and  different  from  each  other.   In the  polynomial  

case  of F1 above  the  denominators  are  all  the  constant  1 of degree  0.  When   the   parameters  {s, t}  

make  f4(s, t) = 0 we  say  F is undefined  or  infinite,  in Chapter  2, particularly,  we  will  use  the  latter  termi -

nology.    This  zero  set  of the  denominator  may  be a discrete  point  set  or a curve.   When  working  with  

rational  parametric  surfaces  the  default  range  of s, t is  -∞ < s, t <∞ in this  chapter,  however  specific  

examples  may  have  a smaller  range.

Here  is a non-trivial  example  of a rational  parametric  surface,  the  torus.  Note  in this  case  the  definition  

does  not  give  a common  denominator  but  it is easily  seen  that  a common  denominator  would  be 

1 + s2 × 1 + t2.

In[  ]:= Ts = 
4 s 1 + t + t2

1 + s2 × 1 + t2
, -

2 × -1 + s2 - t + s2 t - t2 + s2 t2
1 + s2 × 1 + t2

,
1 - t2

1 + t2
;

In plotting  a rational  surface  we  can  not,  in general,  show  the  entire  surface  so we  pick  a large  bounded  

range.
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In[  ]:= ParametricPlot3D [Ts, {s, -10, 10}, {t, -10, 10}, PlotRange → All,

Mesh → None, MaxRecursion → 4, PlotStyle → Opacity [.8]]

Out[  ]=

We  see  this  finite  range  gives  a deformed  rectangle  curved  in both  dimensions.   We  can  easily  imagine  

that  if we  used  the  full  range   -∞ < s, t <∞ we  would  get  a torus.   The  opacity[.8]  is to help  visualize  

that  there  is a strip  missing  on  the  bottom,  the  

MaxRecursion→  4 helps  to smooth  out  the  plot.

At a given  point  of a rational  parameterization  {s0, t0} we  can  take  the  partial  derivatives  and  evaluate  

to get  vectors.   For  example  with  the  torus  Ts and  point   p = {2, 3}

In[  ]:= p = {2, 3};

vs = D[Ts, s] /. Thread [{s, t} → p]

vt = D[Ts, t] /. Thread [{s, t} → p]

Tsp = Ts /. Thread [{s, t} → p]

Out[  ]= -
78

125
, -

104

125
, 0

Out[  ]= -
16

125
,

12

125
, -

3

25


Out[  ]= 
52

25
, -

39

25
, -

4

5


The  normal  vector  is is the  cross  product  vs×vt

In[  ]:= nv = Cross [vs, vt]

Out[  ]= 
312

3125
, -

234

3125
, -

104

625


and  the  tangent  plane   is nv.(X-F(p))

In[  ]:= tp = nv.({x, y, z} - Tsp)

Out[  ]=

312 × - 52

25
+ x

3125
-

234 ×  39
25

+ y
3125

-
104

625
×

4

5
+ z

or,  better
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In[  ]:= tp = Expand [N[tp]]

Out[  ]= -0.4576 + 0.09984 x - 0.07488 y - 0.1664 z

In[  ]:= Show [ContourPlot3D [tp ⩵ 0, {x, -4, 4}, {y, -4, 4}, {z, -4, 4},

Mesh → None, ContourStyle → Directive [Cyan, Opacity [.5]]],

ParametricPlot3D [Ts, {s, -10, 10}, {t, -10, 10}, PlotRange → All,

Mesh → None, MaxRecursion → 4, PlotStyle → Opacity [.8], PlotRange → All],

Graphics3D [{Black, Arrow [{Tsp, Tsp + 10 nv}]}]]

Out[  ]=

The  general  code  is

In[  ]:= normalVectorRS [F_, st0_, st_] := Module [{pv, vs, vt},

vs = D[F, st〚1〛] /. Thread [st → st0];

vt = D[F, st〚2〛] /. Thread [st → st0];

Cross [vs, vt]]

tangentPlaneRS [F_, st0_, st_, X_] := Module [{nv, p},

p = F /. Thread [st → st0];

nv = normalVectorRS [F, st0, st];

N[Expand [nv.(X - p)]]]

For  this  example
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In[  ]:= normalVectorRS [Ts, {2, 3}, {s, t}]

tangentPlaneRS [Ts, {2, 3}, {s, t}, {x, y, z}]

Out[  ]= 
312

3125
, -

234

3125
, -

104

625


Out[  ]= -0.4576 + 0.09984 x - 0.07488 y - 0.1664 z

As with  naive  surfaces  a rationally  parameterized  surface  F (s, t) is regular  at {s0, t0}  if there  is a tangent  

plane  at F(s0, t0).  But  as with  naive  algebraic  surfaces  regularity  at {s0,t0}   does  not  imply  smoothness  

at F(s0,t0).    But  the  situation  is very  different.   For  naive  surfaces  it is a local  problem,  for  rationally  

parameterized  surfaces  it is a global  problem.   Here  are  two  examples.

In[  ]:= node3D = {t^2 - 1, t^3 - t, s}

Out[  ]= -1 + t2, -t + t3, s

In[  ]:= Show [ParametricPlot3D [node3D, {s, -3, 3}, {t, -1.5, 1.5}, Mesh → None ],

Graphics3D [{Red, Thickness [.01], Line [{{0, 0, -3}, {0, 0, 3}}]}]]

Out[  ]=

Note  the  line  x = y = 0 appears  to be a singular  locus  of this  surface.   But  points  on  this  line  are  of the  

form

In[  ]:= node3D /. Thread [{s, t} → {s, -1}]

node3D /. Thread [{s, t} → {s, 1}]

Out[  ]= {0, 0, s}

Out[  ]= {0, 0, s}

However  
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In[  ]:= normalVectorRS [node3D, {s, -1}, {s, t}]

normalVectorRS [node3D, {s, 1}, {s, t}]

Out[  ]= {-2, -2, 0}

Out[  ]= {-2, 2, 0}

are  non  - zero,  so all  of  these  points  are  regular  in the  the  parameters.  The  problem  is that  different  

parameter  values  give  the  same  points.    While  harder  to deal  with  the  problem  is no  worse  than  with  

ts2  so we  have  nothing  to do.

A second  example  is similar  but  causes  an additional  problem.

In[  ]:= ribbon = {t^3 + 2, s^2 - 3 t^2, t^2 + t - 2 + 1}

Out[  ]= 2 + t3, s2 - 3 t2, -1 + t + t2

In[  ]:= ParametricPlot3D [ribbon, {s, -1, 1}, {t, -2, 2}, Mesh → None, PlotStyle → Opacity [.8]]

Out[  ]=

Here  the  plot  does  not  show  a self  intersection.   However

normalVectorRS [ribbon, {s, b}, {s, t}]

Out[  ]= 2 s + 4 b s, 0, -6 b2 s

so when  s = 0 this  is not  regular.   When s , t  are  both  non-zero  then  it is regular  but  note  that  rib -

bon3D(s,t)  = ribbon3D(-s,t)  so each  point  on  the  surface  is double,  that  is,  comes  from  two  different  

parameter  values  so cannot  be  considered  smooth.

This  reminds  one  of Einstein’s  “spooky  action  at a distance”.   If we  can  only  see  a parameter  space  for  

the  universe  rather  than  the  actual  universe  then  an atom  seemingly  far  away  perhaps  behaves  the  

same  as one  nearby   because  in the  universe  it may  actually  be  the  same  atom.   A spooky  alien  transmis -

sion  from  a planet  circling  a distant  star  could  just  be  Fox  News.

This  is not  a pleasant  thought.   For  the  ribbon  example  we  can  fix  this  problem  by insisting  that  s > 0 .  

But  this  parametric  surface  has  an edge,  it does  not  go on  infinitely  in the  negative  s direction.

In the  next  section  we  will  discover  the  real  answer  to this  problem  that  we  can  not  see  the  true  nature  
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of a point  of the  parametric  surface  just  working  locally,  mainly  that  rational  parametric  surfaces,  even  

the  ribbon,  are  subsets  of naive  algebraic  surfaces.

I leave  you  with  a plot  of a more  complicated  rational  parametric  example  using  only  cubic  functions.   I 

will  not  try  to analyze  this  here.

In[  ]:= strange1 = -3 - 3 s2 - 3 s3 + 3 s t - s2 t + 2 t2 - 3 s t2 + 3 t3,

-2 - 3 s2 - s3 + 2 t - s2 t - t2 + s t2, s + 2 s2 + 3 s3 - 3 t - s t - 2 t2 - 3 s t2 + 3 t3;

In[  ]:= ParametricPlot3D [strange1 , {t, -5, 5}, {s, -5, 5},

PlotRange → {{-8, 8}, {-8, 1}, {-8, 5}}, Mesh → None, MaxRecursion → 4]

Out[  ]=
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1.3 Implicit Equation Theorem for Rational Parametric 

Surfaces
Here  we  give  two  proofs  that  every  rational  parametric  surface  is contained  in a naive  in a naive  sur -

face.   The  first  is more  theoretical,  the  second  somewhat  more  practical.

1.3.1  Theoretical  Method

A proof  in the  curve  case  appeared  in my  Mathematica  Journal  article  [Dayton,  Degree  vs Dimension  of 

Rational  Parametric  Curves].   Another  discussion  is in my  Space Curve Book 3.1.4.

The  proof  for  surface  is slightly  modified  but  the  idea  is the  same:  a rational  parametric  function  can  be 

viewed  as Fractional  Linear  Transformation  (FLT)  from  an appropriate  generic  curve.

 We  write  our  parametric  surface  in the  standard  form  of §1.1  with  a common  denominator.   Since  we  

now  have  two  parameters  if m  is the  largest  degree  of a monomial  there  are  binomial  coefficient  

m + 2

2
 bivariate  monomials  of degree  m  or  less.   This  number,  the  dimension  of the  space  of generic  

curves  of degree  m, can  become  uncomfortably  large.   It turns  out  that  it enough  to just  use  the  mono -

mials  actually  used  in the  rational  parametric  function  and  monomials  that  divide  these.

 The  method  is thus  to take  this  set  of n monomials,  calling  them  X [1], X [2].…, X [n].  We  take  a set  of 

relations  between  these  variables  and  find  a HBasis  for  this  using,  because  it is faster  in this  case,  a 

Groebner  basis  for  this  basis.   We  construct  a (n+1)×4  matrix  for  our  FLT  matrix.   Then  an application  of 

FLTMD  will  give  an equation  set  defining  the  smallest  algebraic  surface  in ℝ3 containing  the  image  

surface  of our  FLT.   Any  equation  of this  set  will  contain  our  parameterized  surface  so we  can  just  pick  

one.   While  this  single  equation,  defining  a naive  surface,  may  not  completely  describe  our  surface  

which  may  be smaller  it will  serve  to give  us a Jordan-Brouwer  theorem  and  this  surface  can  find  locally  

the  local  behaviour  of this  function  at a smooth  point.

We  proceed  with  an example

In[  ]:= hyperboloid = 
t - s^2 t

1 - s^2
,
1 + s2 - 2 s t

1 - s2
,
2 s - t - s2 t

1 - s2
;

I collect  the  monomials  used

In[  ]:= V = s, t, s t, s2, s2 t;

I now  find  a 8×4 matrix  which  produces  this  rational  function  via  a transformation  function,  note  the  

first  7 columns  can  be indexed  by the  monomials  in V and  the  last  column  is the  constant.   The  first  3 

rows  are  from  the  numerator,  the  last  from  the  denominator.
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In[  ]:= A = {{0, 1, 0, 0, -1, 0}, {0, 0, -2, 1, 0, 1}, {2, -1, 0, 0, -1, 0}, {0, 0, 0, -1, 0, 1}};

A // MatrixForm

Out[  ]//MatrixForm=

0 1 0 0 -1 0

0 0 -2 1 0 1

2 -1 0 0 -1 0

0 0 0 -1 0 1

To check  

In[  ]:= TransformationFunction [A][V]

Out[  ]= 
t - s2 t

1 - s2
,
1 + s2 - 2 s t

1 - s2
,
2 s - t - s2 t

1 - s2


Next  I treat  the  monomials  as variables

In[  ]:= Clear [Y]

In[  ]:= AY = Table [Y[i] → V〚i〛, {i, 5}]

Out[  ]= Y[1] → s, Y[2] → t, Y[3] → s t, Y[4] → s2, Y[5] → s2 t

Note  that  the  Y[i]  have  only  one  bracket,  thus  these  are  independent  variables  rather  than  members  of 

a list.   However  I don’t  want  these  to be  independent  so I give  a set  of relations  on  these  Y[i]s.

In[  ]:= sys = {Y[3] - Y[1] × Y[2], Y[4] - Y[1]^2, Y[5] - Y[2] × Y[4]};

To find  a H - basis  for  this  large  exact  system  I use  Groebner  Bases.

In[  ]:= gBasis = GroebnerBasis [sys, Keys [AY], MonomialOrder → DegreeLexicographic ]

Out[  ]= -Y[3]2 + Y[2] × Y[5], Y[2] × Y[4] - Y[5], -Y[3] × Y[4] + Y[1] × Y[5],

Y[1] × Y[3] - Y[5], Y[1] × Y[2] - Y[3], Y[1]2 - Y[4], Y[3]2 Y[4] - Y[5]2

Note

In[  ]:= Length [gBasis ]

Out[  ]= 7

I now  find  my  implicit  equation  by

In[  ]:= {time, eq} = Timing [FLTMD [gBasis, A, 4, Keys [AY], {x, y, z}, dTol ]]

» Initial Hilbert Function {1, 4, 9, 16, 25 }

» Final Hilbert Function {1, 4, 9, 16, 25 }

Out[  ]= 2.68174, 1. - 1. x2 - 1. y2 + 1. z2

In[  ]:= qpEq = eq〚1〛
Out[  ]= 1. - 1. x2 - 1. y2 + 1. z2

So I get  my  equation  in under  3 seconds.  

Finally  I check  by comparing  plots  . The  second  one  has  the  mesh.  
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In[  ]:= Show [ContourPlot3D [qpEq ⩵ 0, {x, -3, 3}, {y, -3, 3}, {z, -3, 3}, Mesh → None ],

ParametricPlot3D [hyperboloid , {s, -20, 20}, {t, -3, 3}, PlotStyle → LightGray ]]

Out[  ]=

1.3.2   Direct  Method

Although  I was  able  compute  the  example  above  in around  3 seconds  of computer  time  this  is an 

eternity  for  Mathematica.   With  many  more  monomials  this  method  is impractical.   The  following  

method  may  work  better,  but  we  must  first  consider  polynomial  parameterizations.

The  function  here  is based  on  the  Space  Curve  Book  function  p2aRawMD  which  in turn  was  based  on  

the  algorithm  in Appendix  1.5  of the  plane  curve  book.   The  reader  who  wants  an explanation  of how  

this  works  should  look  there.   This  routine  expects  exact  or very  accurate  numerical  coefficients.   Here F  

is the  polynomial  parameterization,  d is the  maximal  degree  of a monomial  in F ,  md is the  maximum  

degree  you  are  allowing  an implicit  equation,  T  are  the  variable  in F  and  X  are  the  variables  in ℝ3.  

Actually  this  works  for  parameterized  surfaces  in ℝn for  any  n so X will  be  the  variables  there.
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par2affRS [F_, d_, md_, T_, X_] :=

Module [{n, TB, ar, cr, SA, AK, mon, ncr, nak, NSA, medNSA, FA, SAA},

n = Length [X];

If[Length [F] ≠ n, Echo ["Dimension mismatch F,X"]; Abort []];

TB = Expand [Table [mon /. Thread [X → F], {mon, mExpsMD [md, X]}]];

cr = CoefficientRules [#, T] & /@ TB;

ncr = Length [cr];

AK = exps [2, md * d];

nak = Length [AK];

SAA = Reap [For[i = 1, i ≤ ncr, i++, For[j = 1, j ≤ nak, j++,

If[KeyExistsQ [cr〚i〛, AK〚j〛], Sow[{i, j} → cr〚i〛[AK〚j〛]]]]]]〚2, 1〛;
SA = Transpose [SparseArray [SAA]];

NSA = NullSpace [SA];

If[Length [NSA] ⩵ 0, Return ["Fail, try higher md"],

Echo [Length [NSA], "Number of equations "]];

medNSA = Median [Abs[Flatten [NSA]]] + 1;

N[NSA / medNSA ].mExpsMD [md, X]

]

We  demonstrate  this  on  our  ribbon  example  from  the  previous  section.

In[  ]:= {time, ribboneqs } = Timing [par2affRS [ribbon, 3, 3, {s, t}, {x, y, z}]]

» Number of equations 1

Out[  ]= 0.018665 , 5. - 1. x2 + 9. z - 3. x z + 3. z2 + 1. z3

In[  ]:= ribboneq = roundPolyMD [ribboneqs 〚1〛, {x, y, z}, 1]

Out[  ]= 5 - x2 + 9 z - 3 x z + 3 z2 + z3
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In[  ]:= Show [ContourPlot3D [ribboneq ⩵ 0, {x, -5, 10},

{y, -12, 10}, {z, -5, 5}, Mesh → None, ContourStyle → Opacity [.5]],

ParametricPlot3D [ribbon, {s, .001, 6}, {t, -5, 5}, PlotStyle → LightGray ]]

Out[  ]=

Again  the  parameterized  image  is given  by the  mesh.   We  note  that  there  is a lower  part  of the  plot  of 

the  implicit  surface  that  is not  covered  by the  parameterized  surface  which  had  a domain  of s > 0.   But  

even  if we  used  parameter  values  of s < 0 we  would  not  get  more  coverage.   Thus  the  parameterization  

ribbon  only  parameterizes  part  of the  implicit   surface.

Here  is a discouraging  example.   We  try  to implicitize  a polynomial  parameterized  surface  with  coordi -

nates  of degree  3.  We  start  with  a random  A:

In[  ]:= A = Append [RandomInteger [{-4, 4}, {3, 10}], {0, 0, 0, 0, 0, 0, 0, 0, 0, 1}]

Out[  ]= {{2, 3, -3, 1, -3, 3, -1, -2, 1, 0}, {1, -2, -4, -4, -3, -2, 2, 3, -4, 1},

{1, -4, -4, -2, 0, 1, -1, -4, 1, -3}, {0, 0, 0, 0, 0, 0, 0, 0, 0, 1}}

In[  ]:= Dimensions [A]

Out[  ]= {4, 10}

In[  ]:= Y = Drop [ mExpsMD [3, {s, t}], 1]

Out[  ]= s, t, s2, s t, t2, s3, s2 t, s t2, t3
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In[  ]:= TransformationFunction [A][Y]

Out[  ]= 2 s - 3 s2 + 3 s3 + 3 t + s t - s2 t - 3 t2 - 2 s t2 + t3,

1 + s - 4 s2 - 2 s3 - 2 t - 4 s t + 2 s2 t - 3 t2 + 3 s t2 - 4 t3,

-3 + s - 4 s2 + s3 - 4 t - 2 s t - s2 t - 4 s t2 + t3

Eqns = par2affNS [F, 3, 3, {s, t}, {x, y, z}];

Out[  ]= Fail, try higher md

Eqns = par2affNS [F, 3, 5, {s, t}, {x, y, z}];

Out[  ]= Fail, try higher md

Eqns = par2affNS [F, 3, 8, {s, t}, {x, y, z}];

Out[  ]= Fail, try higher md

In[  ]:= Eqns = par2affNS [F, 3, 9, {s, t}, {x, y, z}];

» Number of equations 1

In[  ]:= Length [Eqns〚1〛]
Out[  ]= 148

Our  smallest  implicit  equation  is of degree  9 with  148  terms!   In fact  this  will  almost  always  be the  case  

but  it shows  that  there  is an implicit  equation.   Of  course  this  gets  much  worse  for  higher  degrees.

There  is a trick  we  can  use  to handle  a rational  parameterization  :   see  my  Mathematica  Journal  article  

[Degree  vs Dimension  of Rational  Parametric  Curves].

Take  the  original  parameterization  and  strip  all  constants,  also  put  the  common  denominator  as a 4th  

component.   Check  to make  sure  components  are  independent  in space  of 2 variable  polynomials,  if 

not  see  my  Mathematica  Journal  article  for  a reduction.   Use  pol2affNS  to find  an implicit  polynomial  

system  with  variables  {x,y,z,w}.   If this  is more  than  2 or 3 equations  reduce  by hBasisMD.   Now  create  a 

matrix  by  taking  the  first  4 rows  of the  5×5 identity  matrix.   In the  5th  column  replace  the  constants  that  

you  stripped.   Then  apply  FLTMD  to the  implicit  polynomial  system  using  this  4×5 matrix.   You  should  

get  your  implicit  system  of the  rational  parametric  surface.   We  illustrate  using  the  above

In[  ]:= hyperboloid = 
t - s2 t

1 - s2
,
1 + s2 - 2 s t

1 - s2
,
2 s - t - s2 t

1 - s2
;

Strip  off  the  constants  from  each  term  in the  numerator  and  denominator.

In[  ]:= strippedh = {t - s^2 t, s^2 - 2 s t, 2 s - t - s^2 t, -s^2};

Note  we  can  recover  hyperboloid  from  strippedh by  an FLT:   Let
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In[  ]:= AH = {{1, 0, 0, 0, 0}, {0, 1, 0, 0, 1}, {0, 0, 1, 0, 0}, {0, 0, 0, 1, 1}};

AH // MatrixForm

Out[  ]//MatrixForm=

1 0 0 0 0

0 1 0 0 1

0 0 1 0 0

0 0 0 1 1

In[  ]:= TransformationFunction [AH][strippedh ]

Out[  ]= 
t - s2 t

1 - s2
,
1 + s2 - 2 s t

1 - s2
,
2 s - t - s2 t

1 - s2


In[  ]:= raweq = pol2affNS [strippedh , 3, 3, {s, t}, {x, y, z, w}]

» Number of equations 8

Out[  ]= 0. + 2. w - 1. w3 - 1. x2 + 2. w x2 - 2. y + 1. w y2 - 2. w x z + 1. z2,

0. + 1. w x + 1. x3 + 1. x y + 1. w x y + 1. x y2 - 1. w z - 1. w2 z - 1. y z - 1. w y z - 1. x z2,

0. + 2. w - 1. x2 - 1. w x2 - 2. y + 2. w y - 2. y2 + 2. w x z + 1. z2 - 1. w z2, 0. - 1. w x - 1. x3 -

1. x y - 1. w x y - 1. x y2 - 1. w z + 1. x2 z + 3. y z + 1. w y z + 1. y2 z + 1. x z2 - 1. z3,

0. + 1. w - 2. x2 - 1. w x2 - 3. y - 2. w y - 1. w2 y - 2. y2 - 1. w y2 - 1. x z + 1. w x z + 1. z2,

0. - 1. w + 2. x2 + 1. w x2 + 3. y + 1. x2 y + 4. y2 + 1. w y2 + 1. y3 + 1. x z - 1. w x z - 1. z2 - 1. y z2,

0. - 2. w x - 1. w2 x + 1. x3 + 2. x y + 1. x y2 - 1. x z2, 0. - 2. w - 1. w2 + 1. x2 + 2. y + 1. y2 - 1. z2

We  have  lots  of equations  so we  can  reduce  the  system

In[  ]:= hbeq = hBasisMD [raweq, 3, {x, y, z, w}, 1.*^-10 ]

» Initial Hilbert Function {1, 4, 9, 13 }

» Final Hilbert Function {1, 4, 9, 13 }

Out[  ]= 2. w + 1. w2 - 1. x2 - 2. y - 1. y2 + 1. z2,

1. w - 2. x2 - 1. w x2 - 3. y - 1. x2 y - 4. y2 - 1. w y2 - 1. y3 - 1. x z + 1. w x z + 1. z2 + 1. y z2,

1. w x + 1. x3 + 1. x y + 1. w x y + 1. x y2 + 1. w z - 1. x2 z - 3. y z - 1. w y z - 1. y2 z - 1. x z2 + 1. z3,

-2. w + 1. x2 + 1. w x2 + 2. y - 2. w y + 2. y2 - 2. w x z - 1. z2 + 1. w z2

Now  produce  the  transformation  matrix  AH  adding  back  the  1 in the  second  and  4 component.

In[  ]:= eq = FLTMD [raweq, AH, 3, {x, y, z, w}, {x, y, z}, dTol ]〚1〛
» Initial Hilbert Function {1, 4, 9, 16 }

» Final Hilbert Function {1, 4, 9, 16 }

Out[  ]= 1. - 1. x2 - 1. y2 + 1. z2

which  is exactly  what  we  got  before!

The  point  of this  section  is not  really  about  how  to implicitize  an actual  example  but  just  to emphasize  

the  theorem  that  theoretically  every  rational  parametric  surface  is contained  in a naive  implicit  surface.   

Thus  we  can  apply  the  Jordan-Brouwer  Theorem  of Section  1.1  about  smooth  points.   But  the  plot  at 

the  end  of Section  1.2  shows  there  can  be many  non-smooth  points!
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1.4 The Torus Story
This  example  has  served  as motivation  for  this  book.   Here  I have  a simpler,  but  more  ad-hoc,   method  

for  implicitizing   rational  parametric  functions.   The  theme  of studying  surfaces  by curves  on  the  sur -

face  will  be  a major  technique  in this  book  and  has  been  a major  tool  also  in classical  algebraic  geome -

try.   Some  of the  surfaces  mentioned  in Section  1.1  are  constructed  here.

1.4.1 Preliminaries  

 Before  getting  into  this  I remind  the  reader  that  the  first  method  in the  previous  section  1.3  is based  on  

the  method  in section  3.1.4  of my  Space  Curves  Book  for  finding  implicit  equations  of rationally  parame -

terized  space  curves.   For  degrees   d = 2,3,4  and  5 one  writes  the  curve  in the  form

TransformationFunction [A]td, td-1, …, t
or the  equivalent  

fltMDtd, td-1, …, t, A
for  an appropriate  (d + 1)⨯ (n + 1) transformation  matrix  A.  Here  n = 3.  Essentially  we  are  viewing  the  

parametric  curve  as an image  of the  rational  normal  curve  of degree  d. Then  the  implicit  equation  is 

given  by 

FLTMD[tBasisd, A, m, {x1, x2, … xd}, {x, y, z}, tol]

for  appropriate  m.  O�en  m = d  but  a possibly  smaller  m  might  work  or a larger  m  may  be needed.   

Naive  space  curves  have  2 equations,  rather  than  the  one  for  surfaces,  but  o�en  the  correct  system  of 

equations  for  a rational  parametric  curve  will  not  be naive  and  require  more  than  2 equations  but  for  

our  use  we  may  find  2 equations  that  serve  our  purposes.

One  other  important  preliminary  idea  from  Space  Curves  is that  we  can  approximate  ideals  of algebraic  

spaces  using  Sylvester  matrices.   The  rows  of a Sylvester,  or  other,  matrix  can  be viewed  as the  basis  of 

a subspace  of an appropriate n-space  ℝn where  o�en  n is large.    To  take  the  union  of two  algebraic  

spaces  a row  equivalent  matrix  to the  Sylvester  matrix  of a union  is the  intersection  of the  Sylvester  

matrices  of the  parts.   So  one  of the  main  tools  I will  use  in this  book  is the  following  simple  algorithm  

for  the  intersection  of two  vector  subspaces  of ℝn.  

Note  that  in the  Space  Curve  Book  we  adopt  some  of the  language  of Macaulay.   

Matrices A, B are  called  (Macaulay)  duals  if

1. A B  is defined  and  A B = 0

2. If  v B = 0 then  v  is in the  row  space  of A

3. If  v B = 0 then  v  is in the  row  space  of A

That  is,   A, B are  maximal  satisfying  A B = 0.  It is sufficient  that  the  columns  of B form  the  nullspace  of A 

or the  rows  of A form  the  column  space  of B.   In my  so�ware  if either   A = localDualMatrix[B,tol]  

or B = dualMatrix[A,  tol] then  A,B  are  duals,  in particular  B is the  dual  of A and  A is the  local  dual  
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of B.

Here  let  V , W  be  matrices  with  the  same  number  of columns  whose  row  spaces  are  the  two  vector  

spaces   Let  dV, dW  be the  duals  of V , W  and  dd  the  column  join  of dV, dW .

If v  is in the  intersection  of the  vector  spaces  then   v.dV  = v.dW  = 0 so v.dd=0  and  v is in the  row  space  of 

the  local  dual  of dd.

Conversely,  if v is in the  row  space  of the  local  dual  of dd  then  v. dd  = 0  meaning  v.c  = 0 for  any  column  

of dd.   In  particular  v.dV  = 0, v.dW  =0  so v is in the  row  space  of V and  the  row  space  of W,  hence  in the  

intersection.

Thus  our  algorithm  is

In[  ]:= vectorSpaceIntersection [V_, W_, tol_] := Module [{dV, dW, dd},

dV = dualMatrix [V, tol];

dW = dualMatrix [W, tol];

dd = Join [dV, dW, 2];

localDualMatrix [dd, tol]]

 This  can  be extended  to 3 or more  subspaces  if useful  , see  GlobalFunctionsS.nb

To use  this  to find  the  union  of two  algebraic  sets  we  take  Sylvester  matrices  of the  same  appropriate  

order  for  the  two  sets.   We  then  intersect  the  underlying  row  spaces  to get  a row  matrix  which  we  

multiply  by an  mExpsMD  list  of monomials  to convert  back  to equations.   If necessary  we  find  a smaller  

hBasis  of this  list.    Examples  are  below.

1.4 .2 The Torus

Here  is our  rationally  parametrized  surface  .

In[  ]:= T = 
4 s 1 + t + t2

1 + s2 × 1 + t2
, -

2 × -1 + s2 - t + s2 t - t2 + s2 t2
1 + s2 × 1 + t2

,
1 - t2 × (1 + s^2)

1 + t2 × (1 + s^2)
;

Plotting,  using  a finite  range  instead  of the  {-∞,∞}  theoretical  range,  we  get
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In[  ]:= PT := ParametricPlot3D [T, {t, -10, 10}, {s, -10, 10},

PlotRange → All, Mesh → None, MaxRecursion → 4, PlotStyle → Opacity [.8]]

PT

Out[  ]=

This  seems  to be most  of a torus.

Step 1

We  can  find   curves  on  this  surface  by restricting  to one  variable  by making  the  other  a constant,  in this  

case  we  will  set  t to 0 and  then,  for  later  consistency,  set s  to t.

In[  ]:= ft0 = T /. {t → 0, s → t}

Out[  ]= 
4 t

1 + t2
, -

2 × -1 + t2
1 + t2

, 1

Since  1 =
1+t^2

1+t^2
 we  can  use  the  transformation  matrix

In[  ]:= At0 = {{0, 4, 0}, {2, 0, -2}, {1, 0, 1}, {1, 0, 1}}

Out[  ]= {{0, 4, 0}, {2, 0, -2}, {1, 0, 1}, {1, 0, 1}}

Checking

In[  ]:= fltMD [{t^2, t}, At0]

Out[  ]= 
4 t

1 + t2
,

-2 + 2 t2

1 + t2
, 1
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In[  ]:= Show [PT, ParametricPlot3D [ft0, {t, -20, 20}]]

Out[  ]=

We  find  a basis  by

In[  ]:= ideal1 = FLTMD [tBasis2, At0, 2, {x2, x1}, {x, y, z}, dTol ]

» Initial Hilbert Function {1, 3, 5}

» Final Hilbert Function {1, 3, 5}

Out[  ]= 1. - 1. z, -0.25 x2 - 0.25 y2 + 1. z2

Using  the  second,  more  complicated  basis  element  we  see  this  curve  generates  the  surface  
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In[  ]:= Show [ContourPlot3D [ideal1 〚-1〛 ⩵ 0, {x, -2, 2}, {y, -2, 2}, {z, -2, 2}, Mesh → None ],

ParametricPlot3D [ft0, {t, -20, 20}, MaxRecursion → 4]]

Out[  ]=

Step 2

We  then  consider  a curve  on  the  torus  by making  s a constant,  we  already  have  variable  t.  Again,  we  

are  working  ad-hoc  so perhaps  a bit  of trial  and  error  is necessary.

In[  ]:= fs2 = T /. {s → 2}

Out[  ]= 
8 × 1 + t + t2
5 × 1 + t2

, -
2 × 3 + 3 t + 3 t2

5 × 1 + t2
,
1 - t2

1 + t2


A transformation  matrix  is 

In[  ]:= As2 = {{8, 8, 8}, {-6, -6, -6}, {-5, 0, 5}, {5, 0, 5}};

Checking

In[  ]:= fltMD [{t^2, t}, As2]

Out[  ]= 
8 + 8 t + 8 t2

5 + 5 t2
,

-6 - 6 t - 6 t2

5 + 5 t2
,
5 - 5 t2

5 + 5 t2

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In[  ]:= Show [PT, ParametricPlot3D [{fs2, ft0}, {t, -20, 20}, PlotStyle → Blue, MaxRecursion → 4]]

Out[  ]=

These  curves  are  on  the  torus  as the  plot  shows,  but  we  want  to see  what  sort  of surface  is determined  

by these  curves  alone.   We  now  use  ideas  of 1.4.1.

In[  ]:= ideal2 = FLTMD [tBasis2, As2, 2, {x2, x1}, {x, y, z}, dTol ]

» Initial Hilbert Function {1, 3, 5}

» Final Hilbert Function {1, 3, 5}

Out[  ]= 0.75 x + 1. y, 1. - 1.66667 x + 0.520833 x2 + 0.333333 z2

We  use  m = 4 because  we  think  the  torus  will  have  an equation  of degree  4.

In[  ]:= syl1 = sylvesterMD [ideal1, 4, {x, y, z}];

syl2 = sylvesterMD [ideal2, 4, {x, y, z}];

In[  ]:= intersec2 = vectorSpaceIntersection [syl1, syl2, 1.*^-10 ];

Length [intersec2 ]

Out[  ]= 18

This  says  we  will  get  a basis  of 18 polynomials,  which  is too  cumbersome.   So  we  do

In[  ]:= basis2 = hBasisMD [intersec2 .mExpsMD [4, {x, y, z}], 4, {x, y, z}, 1.*^-10 ]

» Initial Hilbert Function {1, 3, 5, 4, 4}

» Final Hilbert Function {1, 3, 5, 4, 4}

Out[  ]= -0.75 x - 1. y + 0.75 x z + 1. y z, 4.8 - 5. x - 1.6 x2 + 1. x3 - 1.6 y2 + 1. x y2 + 1.6 z2 + 1. x z2,

-3. x + 0.75 x3 - 4. y + 1. x2 y + 0.75 x y2 + 1. y3,

-3. + 5. x - 1.5625 x2 + 3. z - 5. x z + 1.5625 x2 z - 1. z2 + 1. z3

to get  a basis  of 4 polynomials  .  Plotting  the  last  one  w2  have
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In[  ]:= Show [ContourPlot3D [basis2 〚-1〛 ⩵ 0, {x, -2, 3}, {y, -2, 2}, {z, -2, 2}, Mesh → None ],

ParametricPlot3D [{fs2, ft0}, {t, -20, 20}, PlotStyle → Blue, MaxRecursion → 4]]

Out[  ]=

This  is just  the  surface  ts2  of section  1.1.   We  saw  that  this  is the  union  of a plane  with  an infinite  cylin -

der  and  the  intersection  line  was  regular  but  not  smooth  so ContourPlot3D can  not  plot  this  correctly,  

but  the  upper  circle  is in ts2.

Step 3

We  now  add  another  vertical  circle  .

In[  ]:= ftp5 = Expand [T /. {t → .5, s → t}]

Out[  ]= 
5.6 t

1 + t2
,

2.8

1 + t2
-
2.8 t2

1 + t2
, 0.6

Putting  the  last  component  over  the  common  denominator  gives  transformation  matrix

In[  ]:= Atp5 = {{0, 5.6, 0}, {-2.8, 0, 2.8}, {.6, 0, .6}, {1, 0, 1}};

In[  ]:= fltMD [{t^2, t}, Atp5 ]

Out[  ]= 
5.6 t

1. + 1. t2
,
2.8 - 2.8 t2

1. + 1. t2
,
0.6 + 0.6 t2

1. + 1. t2

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In[  ]:= Show [PT,

ParametricPlot3D [{ftp5, fs2, ft0}, {t, -20, 20}, PlotStyle → Blue, MaxRecursion → 4]]

Out[  ]=

In[  ]:= ideal3 = FLTMD [tBasis2, Atp5, 2, {x2, x1}, {x, y, z}, dTol ]

» Initial Hilbert Function {1, 3, 5}

» Final Hilbert Function {1, 3, 5}

Out[  ]= 1. - 1.66667 z, -0.0459184 x2 - 0.0459184 y2 + 1. z2

In[  ]:= syl3 = sylvesterMD [ideal3, 4, {x, y, z}];

syl3b = sylvesterMD [basis2, 4, {x, y, z}];

intersect3 = vectorSpaceIntersection [syl3, syl3b, 1.*^-10 ];

Length [intersect3 ]

Out[  ]= 12

In[  ]:= basis3 = hBasisMD [intersect3 .mExpsMD [4, {x, y, z}], 4, {x, y, z}, 1.*^-10 ]

» Initial Hilbert Function {1, 3, 6, 7, 6}

» Final Hilbert Function {1, 3, 6, 7, 6}

Out[  ]= -10.2 x + 0.75 x3 - 13.6 y + 1. x2 y + 0.75 x y2 + 1. y3 + 7.2 x z + 9.6 y z,

0.45 x + 0.6 y - 1.2 x z - 1.6 y z + 0.75 x z2 + 1. y z2,

-6. + 8.125 x - 0.625 x3 - 0.625 x y2 + 3. z - 5. x z + 1. x2 z + 1. y2 z - 2. z2 - 0.625 x z2 + 1. z3,

10.752 - 6.4 x - 11.464 x2 + 0.64 x3 + 1. x4 + 1.536 y2 + 0.64 x y2 +

1. x2 y2 + 2.88 x2 z - 5.12 y2 z + 3.584 z2 + 3.84 x z2 + 1. x2 z2
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In[  ]:= Show [ContourPlot3D [basis3 〚-1〛 ⩵ 0, {x, -4, 3}, {y, -4, 4}, {z, -2, 2}, Mesh → None ],

ParametricPlot3D [{ftp5, fs2, ft0}, {t, -20, 20}, PlotStyle → Blue, MaxRecursion → 4]]

Out[  ]=

Step 4.

We  find  another  vertical  circle

In[  ]:= fs4 = T /. {s → 4}

Out[  ]= 
16 × 1 + t + t2
17 × 1 + t2

, -
2 × 15 + 15 t + 15 t2

17 × 1 + t2
,
1 - t2

1 + t2


In[  ]:= As4 = {{16, 16, 16}, {-30, -30, -30}, {-17, 0, 17}, {17, 0, 17}};

Checking  :

In[  ]:= fltMD [{t^2, t}, As4]

Out[  ]= 
16 + 16 t + 16 t2

17 + 17 t2
,

-30 - 30 t - 30 t2

17 + 17 t2
,
17 - 17 t2

17 + 17 t2

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In[  ]:= Show [PT, ParametricPlot3D [{ftp5, fs2, ft0}, {t, -20, 20}, PlotStyle → Blue ],

ParametricPlot3D [fs4, {t, -20, 20}, PlotStyle → Green ]]

Out[  ]=

Continuing  as above

In[  ]:= ideal4 = FLTMD [tBasis2, As4, 2, {x2, x1}, {x, y, z}, dTol ]

» Initial Hilbert Function {1, 3, 5}

» Final Hilbert Function {1, 3, 5}

Out[  ]= 1.875 x + 1. y, 1. - 2.83333 x + 1.50521 x2 + 0.333333 z2

In[  ]:= syl4 = sylvesterMD [ideal4, 4, {x, y, z}];

syl4b = sylvesterMD [basis3, 4, {x, y, z}];

intersect4 = vectorSpaceIntersection [syl4, syl4b, 1.*^-10 ];

Length [intersect4 ]

Out[  ]= 7

In[  ]:= basis4 = hBasisMD [intersect4 .mExpsMD [4, {x, y, z}], 4, {x, y, z}, 1.*^-10 ]

» Initial Hilbert Function {1, 3, 6, 9, 9}

» Final Hilbert Function {1, 3, 6, 9, 9}

Out[  ]= -6. + 4.33333 x - 0.333333 x3 - 5.05556 y + 0.388889 x2 y - 0.333333 x y2 + 0.388889 y3 + 3. z -

2.66667 x z + 1. x2 z + 3.11111 y z + 1. y2 z - 2. z2 - 0.333333 x z2 + 0.388889 y z2 + 1. z3,

-6.4 + 2.03175 x - 2.92619 x2 - 0.203175 x3 + 0.154762 x4 - 2.37037 y - 13. x y + 0.237037 x2 y +

1. x3 y - 0.914286 y2 - 0.203175 x y2 + 0.154762 x2 y2 + 0.237037 y3 + 1. x y3 + 4.28571 x2 z +

8. x y z + 3.04762 y2 z - 2.13333 z2 - 1.21905 x z2 + 0.154762 x2 z2 + 1.42222 y z2 + 1. x y z2,

-19.125 x2 + 1.40625 x4 - 35.7 x y + 2.625 x3 y - 13.6 y2 + 2.40625 x2 y2 +

2.625 x y3 + 1. y4 + 13.5 x2 z + 25.2 x y z + 9.6 y2 z,

16.8 - 5.33333 x + 8.525 x2 + 0.533333 x3 - 0.40625 x4 + 6.22222 y + 35.7 x y -

0.622222 x2 y - 2.625 x3 y + 3. y2 + 0.533333 x y2 - 0.40625 x2 y2 - 0.622222 y3 - 2.625 x y3 -

13.5 x2 z - 25.2 x y z - 9.6 y2 z + 5.6 z2 + 3.2 x z2 + 1. x2 z2 - 3.73333 y z2 + 1. y2 z2
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In[  ]:= Length [basis4 ]

Out[  ]= 4

As before  the  last  equation  gives  an example  of a surface  of degree  4 containing  these  4 curves  .

In[  ]:= Show [ContourPlot3D [basis4 〚-1〛 ⩵ 0, {x, -3, 4}, {y, -3, 3}, {z, -3, 3}, Mesh → None ],

ParametricPlot3D [{fs4, ftp5, fs2, ft0}, {t, -20, 20}, PlotStyle → Blue ]]

Out[  ]=

Step 5.

Now  we  add  another  vertical  circle  .

In[  ]:= fsp5 = T /. {s → .5}

Out[  ]= 
1.6 × 1 + t + t2

1 + t2
, -

1.6 × -0.75 - 0.75 t - 0.75 t2
1 + t2

,
1 - t2

1 + t2

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In[  ]:= Show [PT, ParametricPlot3D [{fs4, ftp5, fs2, ft0}, {t, -20, 20}, PlotStyle → Blue ],

ParametricPlot3D [fsp5, {t, -20, 20}, PlotStyle → Green ]]

Out[  ]=

In[  ]:= Asp5 = {{1.6, 1.6, 1.6}, {1.2, 1.2, 1.2}, {-1, 0, 1}, {1, 0, 1}};

Checking

In[  ]:= fltMD [{t^2, t}, Asp5 ]

Out[  ]= 
1.6 + 1.6 t + 1.6 t2

1. + 1. t2
,
1.2 + 1.2 t + 1.2 t2

1. + 1. t2
,
1. - 1. t2

1. + 1. t2


In[  ]:= ideal5 = FLTMD [tBasis2, Asp5, 2, {x2, x1}, {x, y, z}, dTol ]

» Initial Hilbert Function {1, 3, 5}

» Final Hilbert Function {1, 3, 5}

Out[  ]= -0.75 x + 1. y, 1. - 1.66667 x + 0.520833 x2 + 0.333333 z2

In[  ]:= syl5 = sylvesterMD [ideal5, 4, {x, y, z}];

syl5b = sylvesterMD [basis4, 4, {x, y, z}];

intersect5 = vectorSpaceIntersection [syl5, syl5b, 1.*^-10 ];

Length [intersect5 ]

Out[  ]= 3

In[  ]:= basis5 = hBasisMD [intersect5 .mExpsMD [4, {x, y, z}], 4, {x, y, z}, 1.*^-10 ]
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» Initial Hilbert Function {1, 3, 6, 10, 12 }

» Final Hilbert Function {1, 3, 6, 10, 12 }

Out[  ]= 40.5 x - 47.5313 x2 + 3.65625 x4 - 13. y2 + 4.65625 x2 y2 + 1. y4 - 20.25 x z + 29.25 x2 z -

6.75 x3 z + 8. y2 z - 6.75 x y2 z + 13.5 x z2 + 3.65625 x2 z2 + 1. y2 z2 - 6.75 x z3,

-11.25 x + 15.2344 x2 - 1.17188 x4 - 6. y + 8.125 x y - 0.625 x3 y - 1.17188 x2 y2 -

0.625 x y3 + 5.625 x z - 9.375 x2 z + 1.875 x3 z + 3. y z - 5. x y z + 1. x2 y z + 1.875 x y2 z +

1. y3 z - 3.75 x z2 - 1.17188 x2 z2 - 2. y z2 - 0.625 x y z2 + 1.875 x z3 + 1. y z3,

9. - 81. x + 85.0625 x2 - 6.3125 x4 + 16. y2 - 7.3125 x2 y2 - 1. y4 + 40.5 x z - 58.5 x2 z +

13.5 x3 z - 16. y2 z + 13.5 x y2 z + 6. z2 - 27. x z2 - 5.3125 x2 z2 + 13.5 x z3 + 1. z4

In[  ]:= Show [ContourPlot3D [basis5 〚-1〛 ⩵ 0, {x, -3, 4}, {y, -3, 3}, {z, -3, 3}, Mesh → None ],

ParametricPlot3D [{fsp5, fs4, ftp5, fs2, ft0}, {t, -20, 20}, PlotStyle → Blue ]]

Out[  ]=

We  will  name  this  surface  ts5  for  later  use  .

Step 6.

One  more  horizontal  circle  .

In[  ]:= ft2 = Expand [N[T /. {t → 2, s → t}]]

Out[  ]= 
5.6 t

1. + t2
,

2.8

1. + t2
-
2.8 t2

1. + t2
, -0.6
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In[  ]:= Show [PT, ParametricPlot3D [{fsp5, fs4, ftp5, fs2, ft0}, {t, -20, 20}, PlotStyle → Blue ],

ParametricPlot3D [ft2, {t, -20, 20}, PlotStyle → Green ]]

Out[  ]=

At2 = {{0, 5.6, 0}, {-2.8, 0, 2.8}, {-.6, 0, -.6}, {1, 0, 1}};

fltMD [{t^2, t}, At2]

Out[  ]= 
5.6 t

1. + 1. t2
,
2.8 - 2.8 t2

1. + 1. t2
,

-0.6 - 0.6 t2

1. + 1. t2


In[  ]:= ideal6 = FLTMD [tBasis2, At2, 2, {x2, x1}, {x, y, z}, dTol ]

» Initial Hilbert Function {1, 3, 5}

» Final Hilbert Function {1, 3, 5}

Out[  ]= 1. + 1.66667 z, -0.0459184 x2 - 0.0459184 y2 + 1. z2

In[  ]:= syl6 = sylvesterMD [ideal6, 4, {x, y, z}];

syl6b = sylvesterMD [basis5, 4, {x, y, z}];

intersect6 = vectorSpaceIntersection [syl6, syl6b, dTol ];

Length [intersect6 ]

Out[  ]= 1

Since  the  length  is 1 we  do  not  need  an hBasis  calculation

In[  ]:= Teq = Chop [intersect6 .mExpsMD [4, {x, y, z}], dTol ]〚1〛
Out[  ]= 0.493939 - 0.548821 x2 + 0.0548821 x4 - 0.548821 y2 + 0.109764 x2 y2 +

0.0548821 y4 + 0.329293 z2 + 0.109764 x2 z2 + 0.109764 y2 z2 + 0.0548821 z4

We  check  that  this  is a surface  containing  our  original  parameterization

In[  ]:= Chop [Simplify [Teq /. Thread [{x, y, z} → T]], 1.*^-10 ]

Out[  ]= 0

Simplifying  a little  more

In[  ]:= Teq = Expand 9 Teq  Teq〚1〛
Out[  ]= 9. - 10. x2 + 1. x4 - 10. y2 + 2. x2 y2 + 1. y4 + 6. z2 + 2. x2 z2 + 2. y2 z2 + 1. z4
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In[  ]:= Teq = FromCoefficientRules [Normal [Round [CoefficientRules [Teq, {x, y, z}]]], {x, y, z}]

Out[  ]= 9 - 10 x2 + x4 - 10 y2 + 2 x2 y2 + y4 + 6 z2 + 2 x2 z2 + 2 y2 z2 + z4

we actually  get  an integer  coefficient  surface.

In[  ]:= Simplify [Teq /. Thread [{x, y, z} → T]]

Out[  ]= 0

In[  ]:= Show [ContourPlot3D [Teq ⩵ 0, {x, -3, 3}, {y, -3, 3}, {z, -3, 3},

Mesh → None, ContourStyle → Opacity [.8]], ParametricPlot3D [

{ft2, fsp5, fs4, ftp5, fs2, ft0}, {t, -20, 20}, PlotStyle → Blue, MaxRecursion → 6]]

Out[  ]=

Thus  we  have  implicitized  our  torus!   In other  words  the  torus  Teq  is the  only  surface  of degree  4 contain -

ing  these  6 curves.
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1.5 Curves in surfaces
Our  calculation  shows  that  one  can  find  out  a lot  about  a curve  by studying  curves  in the  surface  .  This  

is a classical  idea  where  these  curves  are  called  divisors.  However  rarely  did  one  see  an actual  example.  

In our  own,  explicit,  way  we  will  find  these  curves  a major  technique  for  studying  surfaces.

1.5.1 Curves in rational  parametric  surfaces.

We  study  these  first  since  since  they  are  somewhat  easier.   Since  our  parameter  space  is just  a plane  

every  plane  curve  li�s  to a curve  in the  parameterized  surface.   If our  parameterization  is not  one-to-

one  the  curve  may  be collapsed,  or if the  parameterization  has  non-regular  points  new  singularities  

may  be added,  so the  curve  may  not  look  exactly  like  it looked  in the  plane.  The  method  is easy,  how -

ever  there  are  two  cases.

We  will  use  the  torus  in the  previous  section  as we  now  know  both  a parametric  and  implicit  equation.  

In[  ]:= Tor = 
4 s 1 + t + t2

1 + s2 × 1 + t2
, -

2 × -1 + s2 - t + s2 t - t2 + s2 t2
1 + s2 × 1 + t2

,
1 - t2

1 + t2
;

TorEq = 9 - 10 x2 + x4 - 10 y2 + 2 x2 y2 + y4 + 6 z2 + 2 x2 z2 + 2 y2 z2 + z4;

We  can  just  substitute  our  plane  parameterization  for  the  parameters.   Here  is an example  from  my  

Plane  Curve  Book  section  7.3.   We  change  the  parameter  to u so it won't  conflict  with  s, t.

In[  ]:= F1 = {3 u - u^2 + 1, -2 u + u^2 - 2} / (1 + u + u^2)

Out[  ]= 
1 + 3 u - u2

1 + u + u2
,

-2 - 2 u + u2

1 + u + u2


This  is an ellipse  .

In[  ]:= A1 = {{-1, 3, 1}, {1, -2, -2}, {1, 1, 1}};

F1eq = FLTMD [tBasis2, A1, 2, {x2, x1}, {x, y}, dTol ]〚1〛
» Initial Hilbert Function {1, 3, 5}

» Final Hilbert Function {1, 3, 5}

Out[  ]= 1. - 6. x - 3. x2 - 6. y - 6. x y - 4. y2

Note  the  error  in the  Plane  Curve  book!

SurfaceBookChapterOne_v1.0.nb    39



In[  ]:= Show [ContourPlot [F1eq ⩵ 0, {x, -4, 2},

{y, -2, 2}, ContourStyle → Directive [Thick, Orange ]],

ParametricPlot [F1, {u, -20, 20}, PlotStyle → Dashed ]]

Out[  ]=

-4 -3 -2 -1 0 1 2

-2

-1

0

1

2

We  then  get  a space  curve

In[  ]:= TF1 = Simplify [Tor /. {s → F1〚1〛, t → F1〚2〛}]

Out[  ]= -
6 × -1 - 3 u + u2 × 1 + u + u2 × 1 + 2 u - u3 + u4

1 + 4 u + 5 u2 - 2 u3 + u4 × 5 + 10 u + 3 u2 - 2 u3 + 2 u4
,

12 u -1 - 3 u + 5 u3 - 3 u5 + 2 u6
1 + 4 u + 5 u2 - 2 u3 + u4 × 5 + 10 u + 3 u2 - 2 u3 + 2 u4

,
3 × -1 - 2 u + u2 + 2 u3

5 + 10 u + 3 u2 - 2 u3 + 2 u4


This  is somewhat  complicated  and  we  end  up  with  a curve  of degree  8, the  product  of the  degrees.   This  

is why  no-one  attempts  this  by  hand.   Two  views  are  given.

Show [ContourPlot3D [TorEq ⩵ 0, {x, -3, 3}, {y, -3, 3}, {z, -2, 2}, Mesh → None ],

ParametricPlot3D [TF1, {u, -20, 20}, PlotStyle → Blue ]]

In[  ]:=  , 

1.5.2 Curves in Implicit  Surface

Curves  in implicit  surfaces  can  easily  be  defined  by intersecting   with  another  implicit  surface.   In this  

case  we  get  a naive  space  curve  as defined  in my  Space  Curve  Book.   Possibly  this  curve  is empty.   In 

other  cases  we  have  to use  the  techniques  of that  book  to describe  the  curve.   Typically  the  degree  of 

this  curve  will  be  the  product  of the  two  degrees  so can  be large.   As  in the  Torus  example  of Section  1.4  

we o�en  use  a plane  as our  second  surface  to preserve  the  degree.   For  example,  when  our  surface  is 
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quadratic  using  a second  quadratic  surface  we  already  have  a hard  problem  to describe  the  curve,  this  

is the  Quadratic  Surface  Intersection  problem  of Section  3.2  of the  Space  Curve  Book.   

Now  we  introduce  the  important  Fermat  surface

In[  ]:= fermat = x^3 + y^3 + z^3 + 1;

We  will  make  a curve  on  fermat by intersecting  with  the  sphere

In[  ]:= sph = (x + 1)^2 + y^2 + z^2 - 1;

In[  ]:= Show [ContourPlot3D [{fermat ⩵ 0}, {x, -2, 1}, {y, -2, 2}, {z, -2, 2}, Mesh → None ],

ContourPlot3D [sph ⩵ 0, {x, -2, 2}, {y, -2, 2}, {z, -1, 2},

Mesh → None, ContourStyle → Directive [Opacity [.6], Pink ]]]

Out[  ]=

To plot  we  need  to find  some  points  on  the  intersection  curve

In[  ]:= cp = criticalPoints3D [{fermat, sph}, {x, y, z}]

Out[  ]= {{-1.24155, 0., 0.970389 }, {-0.606468 , -0.919311 , 0.}, {-1.20364, 0.458357 , 0.865123 },

{-0.713712 , -0.75704, -0.587307 }, {-1.24155, 0.970389 , 0.}, {-0.606468 , 0., -0.919311 }}

We  can  now  find  points  on  the  curve  by

In[  ]:= P1 = pathFinder3D [{fermat, sph}, cp〚1〛, cp〚6〛, .2, {x, y, z}]

Out[  ]= {{-1.24155, 0., 0.970389 },

{-1.23247, 0.195949 , 0.952659 }, {-1.21237, 0.384334 , 0.898436 },

{-1.19336, 0.557564 , 0.8073 }, {-1.18662, 0.707692 , 0.681428 },

{-1.19629, 0.827291 , 0.526364 }, {-1.21646, 0.911499 , 0.349736 },

{-1.23537, 0.958754 , 0.159351 }, {-1.24116, 0.969773 , -0.0371887 },

{-1.22443, 0.946568 , -0.231607 }, {-1.17909, 0.892284 , -0.414435 },

{-1.10329, 0.811157 , -0.575635 }, {-1.00059, 0.707695 , -0.706518 },

{-0.880796 , 0.584756 , -0.802403 }, {-0.760452 , 0.441632 , -0.864626 },

{-0.663004 , 0.275756 , -0.900218 }, {-0.606468 , 0., -0.919311 }}
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In[  ]:= P2 = pathFinder3D [{fermat, sph}, cp〚1〛, cp〚6〛, .2, {x, y, z}, dir → -1]

Out[  ]= {{-1.24155, 0., 0.970389 },

{-1.22964, -0.195509 , 0.953437 }, {-1.18999, -0.381293 , 0.904722 },

{-1.11984, -0.547315 , 0.828302 }, {-1.02166, -0.684434 , 0.728753 },

{-0.90404, -0.787017 , 0.609422 }, {-0.782202 , -0.855196 , 0.470323 },

{-0.67842, -0.895117 , 0.30879 }, {-0.617386 , -0.915248 , 0.126204 },

{-0.609214 , -0.917986 , -0.067741 }, {-0.640588 , -0.896043 , -0.260633 },

{-0.685277 , -0.839144 , -0.443606 }, {-0.716363 , -0.741066 , -0.608581 },

{-0.715878 , -0.604332 , -0.744351 }, {-0.684168 , -0.438983 , -0.841157 },

{-0.639503 , -0.255812 , -0.896996 }, {-0.606468 , 0., -0.919311 }}

In[  ]:= Show [ContourPlot3D [fermat ⩵ 0, {x, -2, 1}, {y, -2, 2}, {z, -2, 2}, Mesh → None ],

Graphics3D [{{Blue, Thick, Line [P1]}, {Blue, Thick, Line [P2]}}]]

Out[  ]=

1.5.3   Implicit  Surface  and Parametric  Curve

A third  possibility  is to use  a parametric  curve  with  the  implicit  surface.   However  this  requires  some  

cleverness  as there  is no  general  method  for  doing  this.  For  example  one  may  observe  that  the  that  the  

Fermat  surface  above  contains  the  parametric  lines   {t, -t, -1}, {t, -1, t} and  {-1, t, -t}  in this  surface.   

We  will  see  later  there  are  no  other  real  lines  in this  surface.

In[  ]:= fermat /. Thread [{x, y, z} → {t, -t, -1}]

Out[  ]= 0
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In[  ]:= Show [ContourPlot3D [fermat ⩵ 0, {x, -2, 2}, {y, -2, 2}, {z, -2, 2}, Mesh → None ],

ParametricPlot3D [{{t, -t, -1}, {t, -1, -t}, {-1, t, -t}}, {t, -2, 2}, PlotStyle → Blue ]]

Out[  ]=

1.5.4  Some  Code

For  the  reader's  convenience  we  give  the  code  for  the  two  routines  we  used  in 1.5.2,  the  are,  of course  

in GlobalFunctionsS.nb.  But  some  readers  of the  Space  Curve  book  may  notice  that  pathFinder3D  has  

changed,  new  options  are  allowed,  in particular  the  option  dir→-1 which  allowed  us to change  

directions.

In[  ]:= criticalPoints3D [{f_, g_}, {x_, y_, z_}] := Module [{J, ob},

ob = RandomReal [{.7, 1.3}, 3].{x^2, y^2, z^2};

J = D[{f, g, ob}, {{x, y, z}}];

{x, y, z} /. NSolve [{f, g, N[Det[J]]}, {x, y, z}, Reals ]]
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In[  ]:= Options [pathFinder3D ] = {maxit → 30, tol → 1.*^-8, dir → 1};

pathFinder3D [{f_, g_}, p_, q_, s_, {x_, y_, z_}, OptionsPattern []] :=

Module [{k, p0, p1, tv1, tv, L},

p0 = p;

L = Reap [Sow[p];

k = 0;

While [Norm [q - p0] > 2 s && k < OptionValue [maxit ],

tv1 = OptionValue [dir] *

tangentVector3D [{f, g}, p0, {x, y, z}, tol → OptionValue [tol]];

If[tv1.(q - p0) > 0, tv = tv1, tv = -tv1];

p0 = closestPoint3D [{f, g}, p0 + s * tv, {x, y, z}];

Sow[p0];

k++];

If[k ≥ OptionValue [maxit ], Print ["Warning, iteration limit reached"]];

Sow[q]];

L〚2, 1〛];

1.5.5   Ovals  and Pseudo-Lines

In both  my   Plane  Curve  Book  and  Space  Curve  Book  I discuss  my  Fundamental  Theorem   as  well  as  

ovals  and  pseudo-lines  which  make  most  sense  for  non-singular  curves.   The  Euler  graph  of a curve  

may  not  be connected,  in the  graph  theory  sense.   A connected  component  of the  graph  then  refers  to a 

closed  topological  subcurve  of the  curve  which  may  or may  not  be  an entire  algebraic  curve.   This  

subcurve  will  be  an oval if it meets  the  infinite  plane  in an even  number  of points,  a pseudo-line if it 

meets  the  infinite  plane  in an odd  number  of points  counting  multiplicity  in both  cases.   Actually  any  

fixed  plane  of projective  space  can  be used  instead  of the  infinite  plane,  so any  closed  subcurve  which  

misses  some  plane  entirely  is an oval,  in particular  bounded  closed  curves  are  ovals.   

As an example  the  curve  in the  fermat  surface  of section  1.5.2  is an oval  whereas  the  lines  in 1.5.3  are,  of 

course,  pseudo-lines.   Consider  the  surface  from  Section  1.1

In[  ]:= ts3 = 1.752 - 6.4 x - 11.464 x2 + 0.64 x3 + x^4 + 1.536 y2 +

0.64 x y2 + x2 y2 + 2.88 x^2 z - 5.12 y^2 z + 3.584 z2 + 3.84 x z2 + x2 z2;

We  intersect  this  with  the  plane  z = -1 and  get  two  ovals  as shown  in the  plot  in red  and  green.   We  

suppress  the  work.
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Neither  oval  is a curve  alone,  but  the  union  is the  naive  space  curve  {ts3, z + 1}.  We  had  to use  path  

finding  to draw  these.   

There  is a new  difference  between  these  ovals.   The  red  oval  is null  homotopic   which  means  that  if one  

thinks  of this  as a ring  on  a finger  then  it can  be slipped  off  without  hurting  the  surface.   More  precisely  

it can  be moved  continuously  on  the  surface  until  it degenerates  into  a point  at the  bottom.   The  reader  

should  note  here  that  we  are  purposely  being  heuristic.   On  the  other  hand  the  green  oval  can  not  be 

obviously  deformed  to a point  or “removed”.   Another  difference  is that  the  red  oval  separates the  

surface  into  the  part  on  that  finger  which  is above  the  oval  and  the  small  part  below  the  oval.   Again  it is 

not  clear  from  this  picture  if the  green  oval  does  this,  we  will  have  to wait  until  later  when  we  treat  

these  surfaces  as projective  surfaces.   The  surface  in Section  1.4  called  ts5 (in  step  5) gives  a better  

picture,  work  suppressed.   

ts5 = 9 - 81 x +
1361 x2

16
-
101 x4

16
+ 16 y2 -

117 x2 y2

16
- y4 +

81 x z

2
-

117 x2 z

2
+
27 x3 z

2
- 16 y2 z +

27

2
x y2 z + 6 z2 - 27 x z2 -

85 x2 z2

16
+
27 x z3

2
+ z4;
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Here  the  green  oval,  a subcurve  of the  naive  curve  {ts5, y} , clearly  does  not  separate  this  surface.   Of  

course  our  6 curves  on  the  torus  in Section  1.4  also  do  not  separate  the  torus.

We  also  note  from  the  torus  example  that  the  3 horizontal  curves  each  meet  the  three  vertical  curves  in 

exactly  one  point.   This  is in stark  difference  where  any  algebraic  curve  meets  an oval  in an even  num -

ber  of points  by multiplicity.   That  property  of an oval  was  a crucial  step  in our  proof  of Harnak’s  Theo -

rem,  but  it not  true  in the  surface  case.   The  other  difference  is that,  in general,  ovals  do  not  have  an 

inside  and  outside  like  plane  ovals.   Some,  like  the  end  of the  finger  of ts3  do,  that  is,  the  end  part  is 

topologically  equivalent  to a disk  while  the  other  part  is not.

An example  here  is the  sphere  which,  if anything,  has  two  interiors  when  cut  by the  equator.   The  

equator  is clearly  null-homotopic  and  can  be deformed  to either  the  north  or south  poles.

In[  ]:= sphere = x^2 + y^2 + z^2 - 1;

equator = 
2 t

1 + t^2
,
1 - t^2

1 + t^2
, 0;
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In[  ]:= Show [ContourPlot3D [sphere ⩵ 0, {x, -1.5, 1.5}, {y, -1.5, 1.5}, {z, -1.5, 1.5},

Mesh → None ], ParametricPlot3D [equator, {t, -20, 20}, PlotStyle → Blue ]]

Out[  ]=

In summary,  there  are  three  kinds  of closed  curves/subcurves.   The  pseudo-lines,  the  non-null-homo -

topic  ovals  and  the  null-homotopic  ovals.   The  first  two  do  not  separate  a surface  into  connected  

components  while  he third   does  separate  the  surface.   O�en  we  will  call  a non-null-homotopic  oval  an 

essential  oval.
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1.6 Rational Points and Rational Surfaces
We  have  been  discussing  rationally  parameterized  surfaces,  Section  2. Here  we  make  the  distinction  

between  these  and  Rational  surfaces,  note  the  capital  R.   These  are  rationally  parameterized  surfaces  

with  the  additional  property  that  the  coefficients  of all  the  polynomials  in the  numerators  and  denomi -

nators  have  rational,  equivalently  integer,  coefficients.   In previous  sections  most  of my  examples  are  

of this  type,  but  given  my  wide  use  of Mathematica  machine  numbers  it would  certainly  be  permissible  

to use  a non-rational  machine  number  as a coefficient.

An observation  is that  because   a Rational  parameterization  has  only  rational  coefficients  then  every  

rational  value  of the  parameters  gives  a rational  point,  that  is a point  where  all  components  are  ratio -

nal  numbers.   For  example  for  the  torus

In[  ]:= Tor = 
4 s 1 + t + t2

1 + s2 × 1 + t2
, -

2 × -1 + s2 - t + s2 t - t2 + s2 t2
1 + s2 × 1 + t2

,
1 - t2 × 1 + s2
1 + t2 × 1 + s2

;

if one  takes,  say  t =
13

7
, s =

21

4
 then

In[  ]:= p = Tor /. {s → 21 / 4, t → 13 / 7}

Out[  ]= 
51 912

49 813
, -

131 325

49 813
, -

60

109


one  gets  this  horrible  denominator  but  none-the-less  a rational  number.   We  don’t  notice  since  we  

work  numerically  and  the  point  appears  as

In[  ]:= N[p]

Out[  ]= {1.04214, -2.63636, -0.550459 }

which  looks  like  any  other  point.   But  we  have  illustrated  the  following  fact:

The set of rational points in a rational surface is dense.

The  precise  meaning  is that  for  any  point  on  the  rational  surface  and  any  ϵ > 0 there  is a rational  point  

within  euclidean  distance  ϵ of  that  point.   This  also  works  for  a rational  curve  which  implies,  using  the  

fact  that  the  circle  x2 + y2 - 1 is rational ,  that  any  right  triangle  is arbitrarily  close  to a right  triangle  

with  rational  sides.   If the  early  mathematicians  knew  this  there  would  be no  need  for  irrational  num -

bers.   But  of course  Euclid  never  thought  about  fractions  like  

In[  ]:= -p〚2〛

Out[  ]=

131 325

49 813

We  may  then  ask  the  question  about  a general  surface:  are  there  many  rational  points?   For  curves  with  

only  rational  coefficients  Gerd  Faltings  proved  in 1983  a 1922  conjecture  of Louis  Mordell  that  if the  

genus  is 2 or greater  there  can  only  be finitely  many  rational  points.   It turns  out  that  this  is more  

complicated  for  surfaces.   Here  is one  of many  places  where  algebraic  geometry  meets  number  theory.

The  Fermat  surface  used  in the  previous  section  is a good  example.   This  is a surface  that  is known  to 

not  be  rational.   Yet  we  noticed  that  there  are  3 rational  lines,  {t, -t, -1}, {t, -1, -t}, {-1, t, -t}.  Thus  
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plugging  in any  rational  value  for  t gives  a rational  point  of the  surface.   So  there  are  infinitely  many  

rational  points  in this  surface.   Are  there  others?

We  can  experiment  with  Mathematica  .  A Diophantine  problem  is to find  integer  solutions  to a polyno -

mial  equation  with  integer  coefficients.   Mathematica  has  some  good  algorithms  to find  solutions  to 

these  problems.  A general  routine  is the  build  in FindInstance.  In this  case  we   can  use  it as follows.   

We  start  with  the  equation  of the  Fermat  surface

In[  ]:= fermat = x^3 + y^3 + z^3 + 1;

To get  rational  solutions  we  homogenize  this  by  replacing  1 by a new  variable  w  which  we  will  use  as a 

denominator.

In[  ]:= fermatH = x^3 + y^3 + z^3 + w^3;

In[  ]:= FindInstance [fermatH ⩵ 0, {x, y, z, w}, Integers ]

Out[  ]= {{x → 0, y → 0, z → 0, w → 0}}

That  was  rather  obvious,  but  doesn’t  actually  give  a rational  solution,  try  again.

In[  ]:= FindInstance [fermatH ⩵ 0 && w ≠ 0, {x, y, z, w}, Integers ]

Out[  ]= {{x → 1, y → -1, z → -1, w → 1}}

Still  quite  obvious  but  gives  {1, -1, 1}, a point  in one  of our  lines.   Lets  try  for  a point  not  on  one  of our  

lines.

In[  ]:= FindInstance [fermatH ⩵ 0 && (x + y) (x + z) (y + z) ≠ 0, {x, y, z, w}, Integers ]

Out[  ]= {{x → 12, y → 1, z → -9, w → -10}}

Now  this  is interesting,  the  point - 12

10
, -

1

10
,

-9

-10
 is in our  surface:

In[  ]:= fermat /. Thread {x, y, z} → -
12

10
, -

1

10
,

-9

-10


Out[  ]= 0

In principal,  FindInstance will  give  a desired  number  of solutions,  but  for  this  problem  it will  not.

In[  ]:= FindInstance [fermatH ⩵ 0 && (x + y) (x + z) (y + z) ≠ 0, {x, y, z, w}, Integers , 2]

FindInstance : The methods available to FindInstance are insufficient to find the requested instances or prove

they do not exist .

Out[  ]= FindInstance w3 + x3 + y3 + z3 ⩵ 0 && (x + y) (x + z) (y + z) ≠ 0, {x, y, z, w}, ℤ, 2

so we  must  make  do  with  one  solution  at a time,  even  though  permutations  of the  coordinates  will  give  

another  solution  due  to the  symmetry  of the  problem.

I pause  to give  a nice  way  to get  from  the FindInstance  output  to the  affine  rational  point.   Let
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In[  ]:= A = {{1, 0, 0, 0, 0}, {0, 1, 0, 0, 0}, {0, 0, 1, 0, 0}, {0, 0, 0, 1, 0}};

A // MatrixForm

Out[  ]//MatrixForm=

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

We  take  the  output  of FindInstance  using only the first instance,  changing  the 

conditions  may give a new instance

In[  ]:= inst = {x, y, z, w} /.

FindInstance [fermatH ⩵ 0 && (x + y) (x + z) (y + z) ≠ 0 && w > 5, {x, y, z, w}, Integers ]〚1〛
Out[  ]= {6, 1, -9, 8}

Now  we  use

In[  ]:= fltMD [inst, A]

Out[  ]= 
3

4
,
1

8
, -

9

8


Further  we  can  replace  A by any  permutation  of the  first  3 rows  of A to get  additional  solutions  by 

permuting  the  components.   As  the  the  lower  bound  for  w gets  larger  this  will  take  more  time

In[  ]:= inst = Timing [{x, y, z, w} /. FindInstance [fermatH ⩵ 0 &&

(x + y) (x + z) (y + z) ≠ 0 && x^2 + y^2 + z^2 + w^2 > 700, {x, y, z, w}, Integers ]〚1〛]
Out[  ]= {8.26453, {-24, -2, 18, 20}}

Proceeding  this  way  I found  6  instances  which  a�er  permuting

In[  ]:= fermatH /. Thread [{x, y, z, w} → {-24, -2, 18, 20}]

which,  a�er  permuting  gave   36 different  solutions  not  on  the  three  lines.   Plotting  I get
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In[  ]:= Show [ContourPlot3D [x^3 + y^3 + z^3 + 1 ⩵ 0, {x, -3, 3}, {y, -3, 3}, {z, -3, 3}, Mesh → None ],

ParametricPlot3D [{{t, -t, -1}, {t, -1, -t}, {-1, t, -t}}, {t, -20, 20}, PlotStyle → Blue ],

Graphics3D [{Red, PointSize [.02], Point [S]}]]

Out[  ]=

The  symmetry  is partly  due  to the  symmetry  of the  surface  and  our  permutations  but  there  are  10 

points  in 3 of the  non-central  sectors  in somewhat  of an oval  pattern.   The  symmetry  in the  central  

triangle  is completely  explained  by the  6 symmetries  of one  instance  but  not  the  other  symmetries.  

Perhaps  there  are  3 other  rational  curves  on  this  surface?     There  certainly  are  lots  of other  rational  

points  to find  here  so this  is,  to me,  an open  problem.
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1.7 Quadric Surfaces
The  study  of quadric  surfaces  is properly  a topic  in projective  geometry,  which  will  be  covered  in a later  

chapter  in this  book.   However  some  of the  ideas  recently  discussed  here  are  involved  and  this  is a 

important  topic  in elementary  mathematics  so in this  section  we  will  begin  the  discussion.

The  standard  coverage  of this  is uneven  and  misleading.   For  example  the  term  hyperboloid  of  two  

sheets is nonsense  as all  non-degenerate  quadric  surfaces  are  rationally  parameterized  surfaces  and  

hence  of one  sheet.   I will  suggest  some  non-standard  terminology  but  suggest  that  it be  widely  

adopted.

Quadric  surfaces  are  defined  from  the  affine  point  of view  by an equation

a1 x
2 + a2 x y + a3 y

2 + a4 x z + a5 y z + a6 z
2 + a7 x + a8 y + a9 z + a10 = 0

where  the  coefficients  ai are  machine  numbers  with  at least  one  of a1, a2, …, a6 not  zero.  

For  example  a random  quadric  might  be

In[  ]:= 4.492182872989918` + 1.5027217857511275` x -

3.2932471474961034` x2 - 4.861394482747162` y + 3.21859207861387` x y -

5.401643964553532` y2 + 5.226019667264691` z - 0.8091107243142233` x z +

3.7145392742572234` y z + 5.269463158972744` z2 ⩵ 0

Out[  ]= 4.49218 + 1.50272 x - 3.29325 x2 - 4.86139 y + 3.21859 x y -

5.40164 y2 + 5.22602 z - 0.809111 x z + 3.71454 y z + 5.26946 z2 ⩵ 0

Out[  ]=

Projective Quadric Surfaces
Type Degenerate Cone Ellipsoid Hyperboloid

Possible

Picture

example xz=0 z2=x2+y2 x2+
y2

2
+
z2

4
=1 x2+y2-z2=1

singularity ? line point none none

ruled? two parts single none double

essential

ovals?
no no no yes

Affine

Variants

parallel

planes
cylinder

parabolic

hyperbolic

elliptic

parabolic

Note  that  some  quadratic  polynomials  in three  variables  may  not  give  surfaces  .  Since  we  are  

working  in the  real  domain  some  may  have  solution  sets  that  are  empty  or finite.   Some  could  give  lines  

such  as the  polynomial  (y - 2 x)2 + (z + 3 x)2 = 0  which  gives  the  parametric  line  {t, 2 t, -3 t}.  Or  the  

polynomial  will  not  be square  free  such  as (x - 2 y + 3 z + 1)2.  I am  not  including  these  in this  discussion.   

They  can  easily  be  excluded  by the  fact  that  they  have  no  regular  points.
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I will  make  some  comments  on  the  types  . Again  we  are  working  in the  real  domain,  if we  allow  

complex  numbers  then  ellipsoids  are  hyperboloids  with  complex  rulings.

The  degenerate  quadrics  are  reducible,  that  is they  may  be factored,  as such  they  are  necessarily  

singular.   In affine  space  they  could  be the  composite  of two  parallel  planes,  but  then  they  meet  in an 

infinite  line  in projective  space.   

A cylinder  is a quadric  that  is equivalent  to a plane  quadric  where  one  of the  variables  x, y, z is absent.     

For  example  the  equation  on  the  le�  is x ^ 2 + y ^ 2 - 1 where  that  on  the  right  is a rotation  applied  to 

this  first  equation  giving  

-1. + 0.69313 x2 - 0.77063 x y + 0.50167 y2 - 0.00975 x z - 0.24645 y z + 0.0552 z2.

 , 

In the  le�  we  have  a ruled  surface  of vertical  lines,  each  of one  has  infinite  point  {0, 0, 1, 0}.  Since  all  

these  lines  go through  this  one  point  it is a cone  in projective  space.   Rotating  it still  gives  a cone.   Thus  

in projective  space  a cylinder  is just  a cone  with  the  vertex  in the  infinite  plane.  

If we  perform  a FLT  transform  on  the  ellipsoid  above  which  sends  one  point  to an infinite  point  we  get  a 

parabolic  ellipsoid  ( called  a paraboloid  in the  literature).

  On  the  other  hand  if we  cut  the  ellipsoid  with  a plane  which  goes  to infinity  we  get
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 , 

which  wrongly  was  called  a hyperboloid  of 2 sheets  but  I call  it a hyperbolic  ellipsoid.   Since  every  

hyperbolic  ellipsoid  and  every  parabolic  ellipsoid  are  FLT  images  of the  ellipsoid  then  the  properties  of

no non-null-homotopic  (essential)  ovals  and  two  sided-ness  are  preserved  for  all  of  these.

In the  affine  plane  there  are  two  hyperboloids.   In addition  to the  one  pictured  above,  and  below  le�

there  is the  elliptic  hyperboloid  otherwise  known  as just  the  hyperboloid.  The below  right  is the   

parabolic  hyperboloid , otherwise  known  as the  hyperbolic  paraboloid.

In[  ]:= {ellhyp = ContourPlot3D [1 - x^2 - y^2 + z^2 ⩵ 0, {x, -3, 3}, {y, -3, 3},

{z, -3, 3}, Mesh → None, Axes → None, Boxed → False, ImageSize → Small ],

ContourPlot3D [z ⩵ x^2 - y^2, {x, -3, 3}, {y, -3, 3}, {z, -3, 3},

Mesh → None, Axes → None, Boxed → False, ImageSize → Small ]}

Out[  ]=  , 

The  two  hyperboloids  do  share  3 important  properties

1) These  are  doubly  ruled  surfaces  .

2. The  tangent  plane  at every  point  cuts  the  hyperboloid  in two  lines,  one  from  each  ruling.

3. The  hyperboloid  is determined  by any  3 skew  lines,  that  is any  three  skew  lines  in 3-space  are  part  of 

one  ruling  of a hyperboloid.

The  difference  is this:   in the  parabolic  hyperboloid  all  the  lines  in one  ruling  are  all  parallel  to one  

plane,  this  is not  true  of the  elliptic  paraboloid.   For  example  consider  our  parabolic  hyperboloid  
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In[  ]:= {ContourPlot3D [{h1 ⩵ 0, x - y ⩵ 0, x - y ⩵ 1, x - y ⩵ -1}, {x, -3, 3},

{y, -1.2, 1.2}, {z, -3, 3}, Mesh → None, Axes → None, Boxed → False ],

ContourPlot3D [{h1 ⩵ 0, x + y ⩵ 0, x + y ⩵ 1, x + y ⩵ -1}, {x, -3, 3},

{y, -1.2, 1.2}, {z, -3, 3}, Mesh → None, Axes → None, Boxed → False ]}

Out[  ]=  , 

Both  the  families  of planes  x + y = a, and  x - y = b as  a, b run  through  the  real  numbers  cut  this  surface  

in lines  which  must  be  skew  to each  other  but  each  plane  of the  form  x + y = a, intersects  each  plane  of 

the  form  x - y = b in a line  which  meets  the  surface  h1 in one  point.

In[  ]:= ContourPlot3D [{h1 ⩵ 0, x + y ⩵ 1, x - y ⩵ -1}, {x, -3, 3},

{y, -1.2, 1.2}, {z, -3, 3}, Mesh → None, Axes → None, Boxed → False ]

Out[  ]=

Thus   the  skew  lines  3) above  will  all  be  parallel  to one  particular  plane  if and  only  if the  surface  they  

generate  is a parabolic  hyperboloid.  This  fact  was  observed  in the  book  by Hilbert  and  Cohn-Vossen,

who  also  observed  that  the  elliptic  hyperboloids  contain  an ellipse  which  is essential  although  they  did  

not  state  this  fact  in those  words.   

Importantly  one  notes  that  the  parabolic  hyperboloid  does  not  occur  in projective  space  as there  is no  

such  thing  as parallel  planes,  any  two  planes  meet.    Moreover  if we  transform  the  parabolic  hyper -

boloid  by an appropriate  projective  FLT  it becomes  just  a hyperboloid:

In[  ]:= B = {{1, 0, 0, 0}, {0, 1, 0, 0}, {0, 0, 0, 1}, {1, 1, 1, -1}};

h2 = FLT3D [{z - x^2 + y^2}, B, {x, y, z}]〚1〛
Out[  ]= -x2 + y2 + z - x z - y z + z2
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In[  ]:= ContourPlot3D [h2 ⩵ 0, {x, -3, 3}, {y, -3, 3}, {z, -3, 3},

Mesh → None, Axes → None, Boxed → False, ImageSize → Small ]

Out[  ]=

Here  is a seemingly  impossible  set  of skew  lines  to appear  in an elliptic  hyperboloid.

Lif = {t, 0, 0};

L2f = {0, t, 1};

L3f = {-1, -1, t};

In[  ]:= ParametricPlot3D [{L1f, L2f, L3f}, {t, -3, 3}, PlotStyle → {Blue, Green, Pink}]

Out[  ]=

The  equations  are

In[  ]:= L1eq = {y, z};

L2eq = {x, z - 1};

L3eq = {x + 1, y + 1};

In[  ]:= L1syl = sylvesterMD [L1eq, 2, {x, y, z}];

L2syl = sylvesterMD [L2eq, 2, {x, y, z}];

L3syl = sylvesterMD [L3eq, 2, {x, y, z}];

hp2 = First [

Chop [vectorSpaceIntersection3 [L1syl, L2syl, L3syl, dTol ], dTol ].mExpsMD [2, {x, y, z}]]

Out[  ]= -0.5 y - 0.5 x y - 0.5 x z + 0.5 y z
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In[  ]:= Show [ContourPlot3D [hp2 ⩵ 0, {x, -3, 3}, {y, -3, 3}, {z, -3, 3}, Mesh → None ],

ParametricPlot3D [{L1f, L2f, L3f}, {t, -3, 3}, PlotStyle → {Blue, Green, Pink}]]

Out[  ]=

While  all  quadrics  have  a rational  parameterization  not  all  are  quadratic  in the  parameters,  for  example  

our  example  of the  elliptic  hyperboloid  in section  1.3  which  has  cubic  terms.   Conversely  not  every  

quadratic  parameterization  is a quadric  surface.   We  will  see  some  more  examples  in the  next  section.
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1.8 Trigonometric Parameterization
In this   section  I give  some  other  parameterized   surfaces  using  rational  parametric  functions  as proxies  

for  trigonometric  Cos, Sin  parameterizations.   It is based  on  the  parameterization  of the  circle  I have  

been  using

In[  ]:= Show [ParametricPlot [{2 t / (1 + t^2), (1 - t^2) / (1 + t^2)}, {t, -15, 15},

PlotStyle → {Directive [Thickness [.025 ], Orange ]}, PlotRange → Full, Axes → None ],

ParametricPlot [{Cos[u], Sin[u]}, {u, -Pi, Pi}, PlotStyle → Directive [Black, Dashed ]],

ImageSize → Small ]

Out[  ]=

Theoretically  the  parameter  t should  actually  run  from  -∞ ≤ t ≤ ∞  where  at the  endpoints  we  mean  of 

course  the  limit.   In practice  we  can  use  a large  bounded  range.   We  will  use  s, t exclusively  for  the  

rational  parameterizations  with  u, v  used  in the  trigonometric  ones  so there  will  be  no  notational  

confusion.  Here  u, v  will  normally  run  as above   -π ≤ u, v ≤ π .

I mention  here  that  some  of these  parameterizations  in from  the  book  

CRC Standard Curves and Surfaces with Mathematica by David  H.  von  Seggern.   Others  may  be found  at 

Wolfram  MathWorld  and  the  Wolfram  Demonstrations  Project.   

1.8.1  quadric  surfaces

The  most  famous  surface  with  such   parameterization  is the  Sphere  .

In[  ]:= trigSphere = {Sin[u] Cos[v], Sin[u] Sin[v], Cos[u]};

rationalSphere = 
1 - t2 × 2 s

1 + t2 × 1 + s2
,

1 - t2 × 1 - s2
1 + t2 × 1 + s2

,
2 t 1 + s2

1 + t2 × 1 + s2
;
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In[  ]:= Show [ParametricPlot3D [trigSphere , {u, -Pi, Pi}, {v, -Pi, Pi},

PlotRange → 1.2, PlotStyle → Directive [Orange, Opacity [.7]], Mesh → None ],

ParametricPlot3D [rationalSphere , {t, -15, 15}, {s, -15, 15},

PlotStyle → LightGray , MaxRecursion → 4], Boxed → False, Axes → None ]

Out[  ]=

Note  the  parametric  plot  with  these  rational  parameters  misses  a small  square  near  {0,1,0}.

ParametricPlot3D [rationalSphere , {t, -15, 15}, {s, -15, 15},

PlotStyle → LightGray , MaxRecursion → 4, ImageSize → Small ]

Out[  ]=

We  can  derive  parametric  equations  for  the  ellipsoid  using  the  well  known  trigonometric  equation,  for  

example

ellipsoid1 = {4 Sin[u] Cos[v], 2 Sin[u] Sin[v], Cos[u]};

Or we  may  take  our  rationalSphere  and  apply  the  FLT  with  matrix
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In[  ]:= PellipMat = {{4, 0, 0, 1}, {0, 2, 0, 2}, {0, 0, 1, 3}, {0, 0, 0, 1}};

PellipMat // MatrixForm

Out[  ]//MatrixForm=

4 0 0 1

0 2 0 2

0 0 1 3

0 0 0 1

In[  ]:= pellip = Together [fltMD [rationalSphere , PellipMat ]]

Out[  ]= 
1 + 8 s + s2 + t2 - 8 s t2 + s2 t2

1 + s2 × 1 + t2
,

4 × 1 + s2 t2
1 + s2 × 1 + t2

,
3 + 2 t + 3 t2

1 + t2


In[  ]:= ParametricPlot3D [pellip, {t, -15, 15}, {s, -15, 15}, MaxRecursion → 4, Mesh → None ]

Out[  ]=

This  also  translates  the  center  to {1,2,3}.

We  can  add  a rotation  to this.

In[  ]:= RPellipMat =

TransformationMatrix [N[RotationTransform [2 Pi / 3, {10, 1, 0}, {0, 0, 1}]]].PellipMat

Out[  ]= {{3.94059, 0.29703, 0.0861727 , 1.45452 }, {0.594059 , -0.970297 , -0.861727 , -2.54524 },

{-0.344691 , 1.72345, -0.5, 1.63728 }, {0., 0., 0., 1.}}

In[  ]:= rpellip = Together [fltMD [rationalSphere , RPellipMat ]]

Out[  ]= 
1

1. + s2 × 1. + t2
1.75155 × 1. + 4.49954 s + 0.660839 s2 +

0.0983958 t + 0.0983958 s2 t + 0.660839 t2 - 4.49954 s t2 + 1. s2 t2,

-
1

1. + s2 × 1. + t2
3.51553 × 1. - 0.337963 s + 0.447995 s2 + 0.49024 t +

0.49024 s2 t + 0.447995 t2 + 0.337963 s t2 + 1. s2 t2,
1

1. + s2 × 1. + t2
3.36074 × 1. - 0.205128 s - 0.025641 s2 - 0.297554 t -

0.297554 s2 t - 0.025641 t2 + 0.205128 s t2 + 1. s2 t2
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In[  ]:= ParametricPlot3D [rpellip, {t, -15, 15}, {s, -15, 15}, MaxRecursion → 4, Mesh → None ]

Out[  ]=

One  can  carefully  have  one  parameter  trigonometric   while  the  other  is a variable,  for  example  the  

parabolic  ellipsoid

parabell = 
2 t s

1 + s2
,
t 1 - s2
1 + s2

, t^2;

In[  ]:= ParametricPlot3D [parabell , {t, 0, 4}, {s, -15, 15}, MaxRecursion → 4, Mesh → None ]

Out[  ]=

Unfortunately  you  may  not  use  the  same  trick  here  for  the  hyperbolic  ellipsoid  that  one  uses  in calcu -

lus,  that  is 

In[  ]:= chyp = {u Cos[v], u Sin[v], Sqrt [u^2 + 1]}

chym = {u Cos[v], u Sin[v], -Sqrt [u^2 + 1]}

Out[  ]= u Cos[v], u Sin[v], 1 + u2 

Out[  ]= u Cos[v], u Sin[v], - 1 + u2 
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In[  ]:= ParametricPlot3D [{chyp, chym}, {u, 0, 3}, {v, -Pi, Pi}, Mesh → None ]

Out[  ]=

because  each  gives  only  “one  sheet”  and  is not  a rational  function  of u.

However  we  saw  in the  last  section  transforming  the  ellipsoid  by a projective  FLT  did  give  a hyperbolic  

ellipsoid.

In[  ]:= A = {{1, 0, 0, 0}, {0, 1, 0, 0}, {0, 0, 0, 1}, {1, 1, 1, 0}};

In[  ]:= he = FLT3D [{x^2 + y^2 + z^2 - 1}, A, {x, y, z}]〚1〛
Out[  ]= 1 - 2 x + 2 x2 - 2 y + 2 x y + 2 y2 - z2

In[  ]:= ContourPlot3D [he ⩵ 0, {x, -2, 2}, {y, -2, 2}, {z, -2, 2},

Mesh → None, Axes → None, Boxed → False, MaxRecursion → 3]

Out[  ]=

We  can  use  this  idea  to get  a rational  parameterization  of the  hyperbolic  ellipse.

In[  ]:= phe = Simplify [fltMD [rationalSphere , A]]

Out[  ]= -
2 s -1 + t2

1 + 2 t - t2 - 2 s -1 + t2 + s2 -1 + 2 t + t2
,

-1 + s2 × -1 + t2
1 + 2 t - t2 - 2 s -1 + t2 + s2 -1 + 2 t + t2

,
1 + s2 × 1 + t2

1 + 2 t - t2 - 2 s -1 + t2 + s2 -1 + 2 t + t2

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In[  ]:= Show [ContourPlot3D [he ⩵ 0, {x, -2, 2}, {y, -2, 2}, {z, -2, 2},

Mesh → None, Axes → None, Boxed → False, MaxRecursion → 3],

ParametricPlot3D [phe, {s, -15, 15}, {t, -15, 15}, PlotStyle → LightGray ]]

Out[  ]=

Note  that  this  one  parameterized  function  gives  both  “sheets”,  another  reason  why  this  should  not  be  

called  the  hyperboloid  of two  sheets.

Finally  we  note  that  we  can  parameterize  the  cone  by

pcone = {s Cos[t], s Sin[t], s};

In[182]:= Show [ContourPlot3D [x^2 + y^2 ⩵ z^2, {x, -3, 3},

{y, -3, 3}, {z, -3, 3}, Mesh → None, ContourStyle → Opacity [.8]],

ParametricPlot3D [pcone, {t, -Pi, Pi}, {s, -3, 3}, PlotStyle → LightGray ],

Axes → None, Boxed → False, ImageSize → Small ]

Out[182]=

1.8.2  Other  parametric  surfaces  via trigonometry
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The  Torus:   the  standard  parameterization  is the  following  where  a is the  large  radius  and  b the small .   

Our  torus  in Section  4 parameterization  is based  on  this.

trigTorus = {(a + b Cos[v]) Cos[u], (a + b Cos[v]) Sin[u], b Sin[v]};

For  large  radius  4 and  small  radius  2

In[  ]:= TrigTorus = trigTorus /. {a → 4, b → 2}

Out[  ]= {Cos[u] (4 + 2 Cos[v]), (4 + 2 Cos[v]) Sin[u], 2 Sin[v]}

In[  ]:= ParametricPlot3D [TrigTorus , {u, -Pi, Pi}, {v, -Pi, Pi}, Mesh → None ]

Out[  ]=

The  Crosscap

In[  ]:= crocap = {Sin[u] Sin[2 v] / 2, Sin[2 u] Cos[v]^2, Cos[2 u] Cos[v]^2};

In[  ]:= ParametricPlot3D [crocap, {u, -Pi, Pi}, {v, -Pi, Pi}, Boxed → False, Axes → False ]

Out[  ]=

This  is algebraic  since  elementary  trig  identities,  eg. Sin [2 u] = 2 Sin [u] Cos [u], allow  one  to write  these  

parameters  in terms  of the  proxies  for  sin3  and  cosine.   Also  the  square  of the  proxies  are  again  rational  
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functions.   These  equations  can  get  quite  involved  and  the  implicit  equations  may  be of very  high  

degree.

Astroidal  Surface

In[  ]:= astroid = {(Cos[u] Cos[v])^3, ( Sin[u] Cos[v])^3, Sin[v]^3}

Out[  ]= Cos[u]3 Cos[v]3, Cos[v]3 Sin[u]3, Sin[v]3

In[  ]:= ParametricPlot3D [astroid, {u, -Pi, Pi}, {v, -Pi, Pi},

MaxRecursion → 3, PlotRange → 1, Axes → False, Boxed → False ]

Out[  ]=

will  be  algebraic.   von  Seggern  tells  us the  equation  is 

x2/3 + y2/3 + z2/3 = 1

which  is not  algebraic.   But  our  theorems  of Section  1.3  tell  us  there  be algebraic  equations  as well.

The  Cosine  Surface   likewise  will  be  algebraic  because  of the  elementary   formula  for  Cos[u+v]   =Cos[u]  

Cos[v]-Sin[u]  Sin[v]

In[  ]:= cosSurf = {Cos[u], Cos[v], Cos[u + v]};

In[  ]:= ParametricPlot3D [cosSurf, {u, -Pi, Pi}, {v, -Pi, Pi},

MaxRecursion → 3, PlotRange → 1, Axes → False, Boxed → False ]

Out[  ]=

An example  of a surface  which  is not  algebraic  is the  Möbius  Strip.   
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In[  ]:= moeband = {Cos[u] (1 + t Cos[u / 2]), Sin[u] (1 + t Cos[u / 2]), t Sin[u / 2]}

Out[  ]=  1 + t Cos
u

2
 Cos[u], 1 + t Cos

u

2
 Sin[u], t Sin

u

2


In[  ]:= ParametricPlot3D [moeband, {u, -Pi, Pi}, {t, -.5, .5}, MaxRecursion → 3,

PlotRange → All, PlotRange → 1, Axes → False, Boxed → False ]

Out[  ]=

As pointed  out  in my  Plane  Curve  Book   this  is a one-sided  surface  and  cannot  be  a naive  algebraic  

surface.   The  problem  is not  combining  parameters  u, t, rather  the  Cos  u

2
 can  not  be  expressed  polyno -

mially  in terms  of Sin[u]  and  Cos[u].

The  spirals  likewise  cannot  be  algebraic  because  we  cannot  use  the  same  variable  as algebraic  and  

trigonometric  parameter.   For  example  van  Seggern  gives

vSspiral  = {a Cos[n  v] (1 + Cos[u])  + c Cos[n  v],  a Sin[n  v] (1 + Cos[u])  + c Sin[n  v],  b v/2/Pi  + a Sin[u]};

where  a, b, c are  positive  numbers  and  n is a positive  integer.

The  example  given  has

In[  ]:= vSspiral1 = vSspiral /. {a → .1, b → 1, c → .5, n → 4}

Out[  ]= 0.5 Cos[4 v] + 0.1 × (1 + Cos[u]) Cos[4 v], 0.5 Sin[4 v] + 0.1 × (1 + Cos[u]) Sin[4 v],
v

2 π
+ 0.1 Sin[u]
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In[  ]:= ParametricPlot3D [vSspiral1 , {u, 0, 2 Pi}, {v, 0, 2 Pi}]

Out[  ]=

But  parameter  v is being  used  in both  a trigonometric  and  analytic   parameter  in the  last  coordinate  so 

this  will  not  define  a naive  implicit  surface.

1.8.3  The Klein  Bottle

The  Klein  Bottle  is a simple  topological  surface  in 4-space  obtained  by gluing  the  sides  of the  square  

blue  to blue  and  red  to red  in the  indicated  directions  without  self  intersections,  the  last  instruction  

cannot  be done  in 3 space.

We  take  our  exposition  from  Wolfram  Mathworld.  An implicit  equation  of a projection  into  3-space  is 

In[  ]:= KbottEq = (x^2 + y^2 + z^2 + 2 y - 1) ((x^2 + y^2 + z^2 - 2 y - 1)^2 - 8 z^2) +

16 x z (x^2 + y^2 + z^2 - 2 y - 1);

In[  ]:= {ContourPlot3D [KbottEq ⩵ 0, {x, -4, 4}, {y, -4, 4}, {z, -4, 4}, Mesh → None,

ContourStyle → Opacity [.7], MaxRecursion → 4, Axes → False, Boxed → False ],

ContourPlot3D [KbottEq ⩵ 0, {x, -3, 3}, {y, -3, 3}, {z, -3, 3}, Mesh → None,

ContourStyle → Opacity [.7], MaxRecursion → 4, Axes → False ]}

Out[  ]=  , 

In the  right  hand  plot  we  slice  the  surface  by sides  of the  box  to better  see  the  interior.   Of  course  
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projecting  causes  self  intersections.   Here  is an interesting  trigonometric  parameterization  of an inter -

pretation  of this  4 dimensional  surface.

In[  ]:= sq2 = N[Sqrt [2]];

kbx = Cos[u] (Cos[.5 u] (sq2 + Cos[v]) + Sin[.5 u] Sin[v] Cos[v]);

kby = Sin[u] (Cos[.5 u] (sq2 + Cos[v]) + Sin[.5 u] Sin[v] Cos[v]);

kbz = Sin[.5 u] Sin[v] + Cos[.5 u] Sin[2 v];

kbPar = {kbx, kby, kbz}

Out[  ]= {Cos[u] (Cos[0.5 u] (1.41421 + Cos[v]) + Cos[v] Sin[0.5 u] Sin[v]),

Sin[u] (Cos[0.5 u] (1.41421 + Cos[v]) + Cos[v] Sin[0.5 u] Sin[v]),

Sin[0.5 u] Sin[v] + Cos[0.5 u] Sin[2 v]}

In[  ]:= ParametricPlot3D [kbPar, {u, 0, 4 Pi},

{v, 0, 4 Pi}, PlotRange → All, Axes → False, Boxed → False ]

Out[  ]=

In[  ]:= Simplify [KbottEq /. Thread [{x, y, z} → (kbPar /. {u → 3, v → 2})]]

Out[  ]= 1.15968

This  does  not  satisfy  the  implicit  equation  given  and  is not  guaranteed  to give  such  an equation  

because  of the  use  of half  angles  , .5 u, .5 v.  But  it does  show  another  self  intersecting  parametric  

surface.
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1.9 Lines on a Cubic Surface
In 1849  Arthur  Cayley  and  George  Salmon  showed  that  every  smooth  cubic  contains  exactly  27 lines.  

Elsewhere  I have  written   extensively  about  this  topic,  notably  my  article  [Ideals  of  Numeric  Realizations  

of Configurations  of Lines],  A variation  of this  article  together  with  some  additional  information  is 

available  on  my  website.   In this  section  and  its   notebook  appendices  I am  giving  a new  take  on  this  

material.

In general,  even  if the  cubic  surface  is a real  surface,  many   of these  lines  may  be complex,  in fact  the  

number  of real  lines  can  only  be 3, 7, 15  or 27.   For  example  the  Fermat  Surface  of Section  1.5  and  1.6  

contains,  as we  saw,  3 real  lines  and  hence  24 complex  lines.   These  lines  are  easy  to write  down  by 

inspection  using  the  pattern  established  for  the  three  real  lines.   Let  α,β be  the  two  cube  roots  of -1 

other  than  -1 itself,  that  is  α=.5-Sqrt[3]/2  ⅈ , β = .5+Sqrt[3]/2ⅈ .   

In[  ]:= α = .5 - Sqrt [3] / 2 I

β = .5 + Sqrt [3] / 2 I

Out[  ]= 0.5 - 0.866025 ⅈ
Out[  ]= 0.5 + 0.866025 ⅈ

In[  ]:= α^3
Out[  ]= -1. - 1.11022 × 10-16 ⅈ

The  three  real  lines  are

In[  ]:= lf1 = {t, -t, -1};

lf2 = {t, -1, -t};

lf3 = {-1, t, -t};

By replacing  the  - 1' s, including  the  coefficient  of -t,  by α, and  or β we  can  easily  construct  the  remain -

ing  24 lines,    a few  more  will  be  listed  below

In[  ]:= lf4 = {t, α t, -1};

lf5 = {β, t, -t};

lf6 = {α, t, β t};
Note,  for  example

In[  ]:= (x^3 + y^3 + z^3 + 1) /. Thread [{x, y, z} → lf6]

Out[  ]= 2.22045 × 10-16
- 1.11022 × 10-16 ⅈ + 2.22045 × 10-16

+ 1.11022 × 10-16 ⅈ t3

The  reader  can  write  down  the   rest  if they  choose  to.   I will  note  that  in my  GlobalFunctions.nb that  

there  is a function  called  pLineIntersectionMD  which  finds  the  intersection  of two  parametric  lines  in 

any  dimensional  space.   This  will  be  discussed  with  code  in section  1.9.3.  It does  specifically  work  for  all   

lines  including  pairs  of lines  with  possible  infinite  or complex  intersections.   The  empty  set  is returned  if 

the  lines  are  skew.
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In[  ]:= pLineIntersectionMD [lf1, lf6, t, {x, y, z}, dTol ]

Out[  ]= 0.5 - 0.866025 ⅈ, -0.5 + 0.866025 ⅈ, -1. + 1.17961 × 10-16 ⅈ

1.9.1  The double  Six configuration

In H . S . M . Coxeter'  s review  of Volume  II of  Ludwig  Schläfli’s  collected  works  he says  that  one  paper

 . . is modestly  entitled  "An  attempt  to determine  the  27 lines  upon  a surface  of the  third  order,  and  

to divide  such  surfaces  into  species  in reference  to the  reality  of the  lines  upon  the  surface  ." The  

existence  of 27 such  lines  had  already  been  discovered  by Cayley  and  Salmon,  but  this  paper  of 1856  

gives  the  first  complete  description  of this  configuration  . .

The  key  to Schläfli’s  analysis  is his  discovery  of  12  line  sub-configurations  of the  27 lines,  this  configura -

tion  called  a double  6 .  From  these  one  may  extract  the  remaining  15 lines  easily.

A double  6  configuration  consists  of two  sets  of 6 mutually  skew  lines  such  that  a line  in the  first  set  

intersects  5 lines  of the  second  set,  we  number  the  lines  in each  set  so that  the  kth line  in the  first  set   is 

skew  from  the  kth line  of the  second  set  but  intersects  all  the  other  lines  of the  second  set.   We  can  draw  

this  where  a blank  area  indicates  no  intersection.

Out[  ]=

12

11

10

9

8

7

1 2 3 4 5 6

In a double  6 there  are  15 double  2 configurations,  two  lines  from  each  skew  set  which  do  not  intersect  

the  other  set,  for  example  L1,  L2 ,L7,  L8 is a double  2.  For  each  double  2 there  is a unique  line  which  

intersects  all  4 lines.   Since  a line  which  meets  a cubic  surface  in 4 points,  counting   multiplicities  is in 

the  cubic  surface  the  cubic  that  contains  the  double  6 also  contains  these  15 lines.

1.9.2  The theory

[Hilbert  and  Cohn-Vossen]  show  in their  book  how  to construct  a double  6 configuration  in ℝ3 making  6 

somewhat  arbitrary,  or if you  prefer  random,  choices.   I gave  an example  of this  in my  Configuration   

paper  mentioned  above.    Given  a double  6 there  is an explicit  construction  of  15  additional  lines  which  

meet  the  double  4 in 4 points.   The  theorem  is that  for  any  particular  double  6 there  is a unique  smooth  
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cubic  surface  containing  this  double  6.  It then  must  also  contain  the  other  15 lines  which  meet  the  

double  4 in 4 points  for  a total  of 27 lines.

Conversely   every  smooth  cubic  contains  27 lines  and  within  these  27 lines  there  are  double  6  configura -

tions  determining  all  of  these  lines.

I will  construct  a double  6 using  the  Hilbert  Cohn-Vossen  method  in appendix  A.  Here  is their  method  

which  I will  modify  slightly.

In[  ]:=

In the  next  subsection  we  discuss  some  of the  problems   that  must  be  solved  with  the  tools  to solve  

them.   The  major  work  will  be  in the  notebook  appendices.

1.9.3  The Problems

The  appendices  depend  on  being  able  to solve  certain  problems,  particularly  problem  E below  which  is 

needed  to find  lines  6, 5,4,3  2 and  7.  I describe  here,  through  examples,   how  to use  a combination  of 

built-in  functions  and  my  global  functions  to do  this.

A . Find  the  two  tangent  lines  through  a point  on  a hyperboloid.    Let  the  hyperboloid  and  nice  

integer  point   be

In[  ]:= h1Eq = -y - x y - x z + y z;

q1 = {-1, -1, 2};

h1Eq /. Thread [{x, y, z} → q1]

Out[  ]= 0

We  first  find  the  tangent  plane  at this  point  .

In[  ]:= tP = tangentPlaneNS [h1Eq, q1, {x, y, z}]

Out[  ]= -1 - x + 2 × (1 + y)

The  two  lines  are  the  intersections  of the  tangent  plane  with  the  hyperboloid  .  In this  nice  exact  case  it 

is easy
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In[  ]:= Solve [h1Eq ⩵ 0 && tP ⩵ 0, {x, y, z}]

Solve : Equations may not give solutions for all "solve " variables .

Out[  ]= {{x → 1 + 2 y, z → -2 y}, {x → -1, y → -1}}

We  can  now  just  write  down  either  the  implicit  equations  or parametric  formula  for  these  lines.

In[  ]:= l1eq = {1 + 2 y - x, -2 y - z};

l1p = {1 + 2 t, t, -2 t};

In[  ]:= l2eq = {x + 1, y + 1};

l2p = {-1, -1, t};

Note  for  line  1, line  2 is similar,  we  can  verify  these  formulas

In[  ]:= l1eq /. Thread [{x, y, z} → l1p]

Simplify [h1Eq /. Thread [{x, y, z} → l1p]]

Out[  ]= {0, 0}

Out[  ]= 0

Unfortunately  if  these  are  given  numerically  Solve may  not  work.   Consider  a different  point.

In[  ]:= q2 = {-0.5820528096134947` , -0.41794719038650535` , -1.0644355432484727` };

h1Eq /. Thread [{x, y, z} → q2]

Out[  ]= -3.37508 × 10-14

In[  ]:= tP2 = Expand [tangentPlaneNS [h1Eq, q2, {x, y, z}]]

Out[  ]= 0.417947 + 1.48238 x - 1.48238 y + 0.164106 z

The  first  solution  from  Solve is 

In[  ]:= Solve [h1Eq ⩵ 0 && tP2 ⩵ 0, {x, y, z}]〚1〛
Solve : Solve was unable to solve the system with inexact coefficients . The answer was obtained by solving a

corresponding exact system and numericizing the result .

Solve : Equations may not give solutions for all "solve " variables .

Out[  ]= x → 1.88744 × 10-23
× -7.4689 × 1021 + 5.59143 × 1022 y -

6332.47 1.39113 × 1036 + 6.65696 × 1036 y + 7.96388 × 1036 y2 ,

z → 1.36396 × 10-21
× -9.33613 × 1020 - 3.6658 × 1020 y +

791.559 1.39113 × 1036 + 6.65696 × 1036 y + 7.96388 × 1036 y2 

This  solution  is not  satisfactory  .  The  technique  is to find  two  points  other  than  q2 in the  intersection  

and,  by  the  theory,   we  can  then  find  the  lines  from  q2 to these  points.
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In[  ]:= sol2 = NSolveValues [{h1Eq, tP2}, {x, y, z}]

NSolveValues : Infinite solution set has dimension at least 1. Returning intersection of solutions with

-
69046 x

57903

+
40299 y

38602

-
142003 z

115806

== 1.

Out[  ]= {{-0.444331 , -0.226149 , -0.575961 }, {-0.792106 , -0.568778 , -0.529467 }}

The  first  line  is

In[  ]:= l1eq = lineMD [q2, sol2〚1〛, {x, y, z}]

Out[  ]= {-0.142566 - 0.505657 x - 0.733816 y + 0.430697 z,

0.221125 + 0.784292 x - 0.57961 y + 0.00645667 z}

Now  we  can  find  the  first  line  using   Solve

In[  ]:= sol2b = Solve [l1eq ⩵ 0, {x, y, z}]

Solve : Equations may not give solutions for all "solve " variables .

Out[  ]= {{y → 0.392647 + 1.39265 x, z → 1. + 3.54682 x}}

The  solution  is given  using  the  parameter  x,  replacing  this  by  t we  have

In[  ]:= l1p = {x, y, z} /. sol2b〚1〛 /. {x → t}

Out[  ]= {t, 0.392647 + 1.39265 t, 1. + 3.54682 t}

Checking

In[  ]:= Simplify [l1eq /. Thread [{x, y, z} → l1p]]

Simplify [h1Eq /. Thread [{x, y, z} → l1p]]

Out[  ]= 0., 2.77556 × 10-17 

Out[  ]= 5.64271 × 10-13
+ 2.04947 × 10-12 t + 1.75637 × 10-12 t2

which  is good  to approximately  our  default  tolerance  .

B . Going  from  parametric  equation  of line  to implicit  equations  .  In principle  one  can  use  the  

general  implicitization  method  as in Section  1.4  but  with  lines  it is easiest  to find  two  points  and  use  the  

Global  Function  lineMD .  This  is automated  by Global  Function  pl2eqMD which handles  

parametric  lines in ℝn for  any  n.

It doesn't  need  to be automated,  for  example  consider

In[  ]:= line1 = {t, 0.39264678170294964` + 1.3926467817030561` t,

1.000000000001437` + 3.5468182768858614` t}

Out[  ]= {t, 0.392647 + 1.39265 t, 1. + 3.54682 t}

We  calculate
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In[  ]:= p = line1 /. {t → 0}

q = line1 /. {t → 4}

Out[  ]= {0, 0.392647 , 1.}

Out[  ]= {4, 5.96323, 15.1873 }

In[  ]:= line1Eq = lineMD [p, q, {x, y, z}]

Out[  ]= {-0.20001 - 0.709398 x - 0.536696 y + 0.410741 z,

-0.170932 - 0.606265 x + 0.765762 y - 0.129742 z}

But  sometimes  to get  more  accuracy  or  if the  2 points  are  rational  we  would  like  an equation  system  

with  rational  coefficients  .   But  lineMD  returns  floating  point  numbers  as do  the  methods  in section  1.3  

.  A simple  routine  specifically  for  lines  in ℝ3 is

In[  ]:= ratLine3D [p_, q_] := Module [{form, formp, formq, sol},

form = { x - a y + b, x - c z + d};

formp = form /. Thread [{x, y, z} → p];

formq = form /. Thread [{x, y, z} → q];

sol = Solve [formp ⩵ 0 && formq ⩵ 0]〚1〛;
form /. sol]

Note  that  it is assumed  that  the  variables  are  x, y, z and  that  x is a parameter,  meaning  the  two  points  p,  

q have  distinct  first  component.   If not  rename  the  variables,  run  then  name  them  back  again.   It is 

somewhat  surprising  that  the  equation  solved  appears  to be  underdetermined,  but  Solve  apparently  

needs  the  extra  variable.  Anyway  we  only  need  one  solution  so if the  Solve  returns  several  we  are  only  

using  the  first.   Here  is an example:

In[  ]:= p = -
14

15
, -

17

15
, 0;

q = 
1

13
, -

11

13
,
11

13
;

In[  ]:= l = ratLine3D [p, q]

Out[  ]= -
171

56
+ x -

197 y

56
,
14

15
+ x -

197 z

165


Test:  Note  that  r1 p + r2 q will  be  in the  line  through  p,q  for  any  r1+r2=1  

In[  ]:= r = 3 / 7 p + 4 / 7 q

Out[  ]= -
162

455
, -

63

65
,
44

91


In[  ]:= l /. Thread [{x, y, z} → r]

Out[  ]= {0, 0}

C . Find  intersection  point  or determine  parallel  or  skew  given  two  parametric  lines  .  The  reader  is 

reminded  that  we  are  actually  working  in projective  3 space  but  seeing  only  affine  space.   Two  lines  are  
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parallel  if they  have  a common  infinite  point.   Skew  means  they  do  not  intersect  or are  parallel.   Fortu -

nately  we  have  a very  good  Global  Function  to tell  the  difference.   I have  mentioned  it before  but  here  is 

the  code  based  directly  on  the  SVD.

In[  ]:= nullspace [M_, tol_] :=

Take [SingularValueDecomposition [N[M]]〚3〛, All, - (Dimensions [M]〚2〛 - matrixrank [M, tol])]

pLineIntersectionMD [L1_, L2_, t_, X_, tol_] :=

Module {n, cr1, cr2, p1, p2, v1, v2, eq1, eq2, S, r, ans},

n = Length [X];

If[Length [L1] ≠ n, Echo ["Line 1 error"]; Abort []];

If[Length [L2] ≠ n, Echo ["Line 2 error"]; Abort []];

p1 = Chop [L1 /. {t → 0}];

v1 = Append [Chop [(L1 - p1) /. {t → 1}], 0];

eq1 = lineMD [p1, v1, X];

p2 = Chop [L2 /. {t → 0}];

v2 = Append [Chop [(L2 - p2) /. {t → 1}], 0];

eq2 = lineMD [p2, v2, X];

S = sylvesterMD [Join [eq1, eq2], 1, X];

r = matrixrank [S, tol];

If[r < n, Return [{0}]];

If[r > n, Return [{}]];

ans = Flatten [nullspace [S, tol]];

IfAbs[ans〚1〛] < tol, RotateLeft [Chop [ans, tol], 1], Take ans  ans〚1〛, -n


To confirm  intersection  we  should  use  a tight  tolerance,  but  to confirm  skewness  we  should  use  a loose  

one.   Here  are  two  random  parallel  lines

In[  ]:= rline1 = {-1.284743961295125` + 1.7850221750544781` t,

-1.8513906749735787` + 0.32363757592140274` t,

-1.7705832745415062` - 0.49925464276626474` t}

Out[  ]= {-1.28474 + 1.78502 t, -1.85139 + 0.323638 t, -1.77058 - 0.499255 t}

In[  ]:= rline2 = {-3.8470503573307893` + 1.3999119717968946` t,

-3.2811667316024042` + 0.253814279389482` t,

1.5989379697539752` - 0.39154278369810475` t}

Out[  ]= {-3.84705 + 1.39991 t, -3.28117 + 0.253814 t, 1.59894 - 0.391543 t}

In[  ]:= pLineIntersectionMD [rline1, rline2, t, {x, y, z}, dTol ]

Out[  ]= {-0.948688 , -0.172004 , 0.26534, 0}

Note  that  the  function  returns  a list  of length  4 with  the  last  component  0, this  means  infinite  point.   

Now  let  
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In[  ]:=

In[  ]:= rline3 = {-1.1577650571599911` + 1.609386049766386` t,

-1.66840669830856` + 0.2899071921064588` t,

-1.5955859749592347` - 0.4488387468161354` t}

Out[  ]= {-1.15777 + 1.60939 t, -1.66841 + 0.289907 t, -1.59559 - 0.448839 t}

In[  ]:= pLineIntersectionMD [rline1, rline3, t, {x, y, z}, dTol ]

Out[  ]= {}

Consider

In[  ]:= ParametricPlot3D [{rline1, rline2 }, {t, -3, 3}, ImageSize → Tiny ]

Out[  ]=

It perhaps  looks  like  these  are  skew  but  note

In[  ]:= pLineIntersectionMD [rline1, rline3, t, {x, y, z}, .003 ]

Out[  ]= {0.948813 , 0.171104 , -0.265476 , 0}

So these  lines  are  parallel  meeting  in an infinite  point.   For  our  later  work  parallel  lines  are  NOT  skew.

A nice  property  of this  function  is that  if one  only  wants  to know  whether  2 lines  meet  one  can  use  

Length [pLineIntersectionMD [line1, line2, t, {x, y, z}, tol]]

If the  result  is 0 the  lines  are  skew,  if 1 the  lines  are  equal,  3 means  an affine  intersection  and  4 means  

an infinite  intersection,  i.e.  parallel.  We  will  use  this  heavily  in later  subsections.

D . Finding  hyperboloid  generated  by  3 skew  lines  .  We  have  done  this  in Section  7 but  so this  Sec -

tion  can  stand  alone  we  repeat  with  3 parametric  lines.

In[  ]:= rline4 = RandomReal [{-3, 3}, {3, 2}].{1, t}

rline5 = RandomReal [{-3, 3}, {3, 2}].{1, t}

Out[  ]= {1.64127 + 1.98068 t, -2.48105 - 0.466556 t, 0.416791 + 1.84621 t}

Out[  ]= {0.52162 - 1.46426 t, 0.208229 - 1.25196 t, -2.3118 + 0.578546 t}

We  will  find  the  hyperloid  generated  by lines  rl1,  rl4,  rl5.   First  we  check  skewness

In[  ]:= {pLineIntersectionMD [rl1, rl4, t, {x, y, z}, .001 ],

pLineIntersectionMD [rl1, rl5, t, {x, y, z}, .001 ],

pLineIntersectionMD [rl4, rl5, t, {x, y, z}, .001 ]}

» Line 1 error

Out[  ]= $Aborted
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Next  we  find  implicit  equations

In[  ]:= rl1eq = pl2eqMD [rline1, t, {x, y, z}]

Out[  ]= {0.124503 + 0.301341 x - 0.72363 y + 0.608319 z,

0.927707 - 0.00411915 x + 0.319782 y + 0.192568 z}

In[  ]:= rl4eq = pl2eqMD [rline4, t, {x, y, z}]

Out[  ]= {0.00276285 - 0.682579 x - 0.341924 y + 0.645884 z,

0.919497 - 0.0454673 x + 0.364185 y + 0.140812 z}

In[  ]:= rl5eq = pl2eqMD [rline5, t, {x, y, z}]

Out[  ]= {0.381565 + 0.633352 x - 0.62443 y + 0.251713 z,

0.815507 - 0.218984 x + 0.413509 y + 0.340594 z}

Then  we  find  Sylvester  matrices,   m = 2 is sufficient  for  this,  although  if we  actually  want  equation  of the  

configuration  of these  three  lines  we  should  use  at least  m = 4.  Just  finding  the  hyperboloid  loses  the  

information  about  what  lines  we  used  which  may  be important  later.

In[  ]:= syl1 = sylvesterMD [rl1eq, 2, {x, y, z}];

syl4 = sylvesterMD [rl4eq, 2, {x, y, z}];

syl5 = sylvesterMD [rl5eq, 2, {x, y, z}];

hp2 =

First [Chop [vectorSpaceIntersection3 [syl1, syl4, syl5, dTol ], dTol ].mExpsMD [2, {x, y, z}]]

Out[  ]= 0.794171 + 0.204124 x - 0.00394934 x2 + 0.27198 y + 0.0884639 x y -

0.0239499 y2 + 0.469243 z + 0.0247282 x z + 0.150685 y z + 0.0416093 z2

To look  at this  hyperboloid  and  the  lines

In[  ]:= Show [ContourPlot3D [hp2 ⩵ 0, {x, -5, 5}, {y, -5, 5}, {z, -5, 5}, Mesh → None ],

ParametricPlot3D [{rline1, rline4, rline5 }, {t, -5, 5}, PlotStyle → {Blue, Green, Cyan}],

Axes → False, Boxed → False, ImageSize → Small ]

Out[  ]=

E . Finding  two  lines  intersecting  4 skew  lines  the   last  intersecting  the  hyperboloid  generated  by  

the  first  3 in two  points.   Actually  Hilbert  stated  this  more  generally,  but  if a line  not  in,  or tangent  to,  a 

hyperboloid  intersects  a hyperboloid  in one  point  then  since  the  equation  of the  hyperboloid  has  

degree  2 there  are  exactly  2, possibly  infinite,  points  of intersection  of the  line  and  the  hyperboloid.
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Using  the  above  methods  one  simply  notes  that  these  two  lines  are  the   lines  in the  opposite  ruling  of 

the  first  3 lines  at the  points  of intersection.   In the  construction  of the  double  6 one  of the  lines  is 

already  known  so one  merely  needs  to construct  the  two  tangent  lines  at the  other  intersection  point,  

one  will  be  skew  to the  first  3 lines  and  the  other  will  intersect  the  first  3 lines  so one  test  using  

pLineIntersectionMD is sufficient.  So  it is really  not  necessary  to give  an example.

A double  2 is a configuration  of 4 lines  with  the  following  diagram  :

Out[  ]=

1 2

3

4

F. Given  a double  2 find  a line  which  meets  all  4 lines.   Note  that  intersecting  lines  1,4  define  a plane  

as do  intersecting  lines  2,3.   In projective  3-space  space  any  two  distinct  planes  meet  in a unique  line.   

Rather  than  go through  the  procedure  of problem  D, we  can  assume  we  know  the  intersection  points  of 

1,4  and  2,3  and  one  more  point  on  each  line.   Then  the  equations  of the  planes  come  from  

linearSetMD, each  plane  with  a single  equation.   The  intersecting  line  is the  line  with  these  2 equa -

tions.   As  in A. if one  needs  parametric  equations  one  can  use  Solve.

I give  an example  below  in 1.9.5.

1.9.4  The double  6 construction

I modify  the  Hilbert  Cohn-Vossen  method  by starting  out  with  the  hyperboloid  given  both  parametri -

cally  and  later  by  an implicit  quadric  equation  in Section  1.3.   This  way  I can  find  lots  of rational  points  

and  lines  in the  construction.   Lines  L1,  L8,  L9 and  L10  come  from  this  hyperboloid.   Further  lines  L5,  L6 

will  then  also  be in this  paraboloid  and  L11  and  L12  meet  the  hyperboloid  in rational  points  so will  

themselves  be rational.

Recall  the  hyperboloid  and  its  equation  are  given  by

In[  ]:= hyp1 = 
t - s2 t

1 - s2
,
1 + s2 - 2 s t

1 - s2
,
2 s - t - s2 t

1 - s2
;

hypEq = 1 - x^2 - y^2 + z^2;

Here  are  the  lines  given  by their  parametric  form.

In[  ]:= L1 = t,
5

3
+
4 t

3
,
4

3
+
5 t

3
;

In[  ]:= L2 = {t, 1.10873690400994` - 0.4642368931192767` t,

-0.4642368931190869` + 1.669047069329676` t}

Out[  ]= {t, 1.10874 - 0.464237 t, -0.464237 + 1.66905 t}
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In[  ]:= L3 = {t, 1.125206152628268` - 0.5076671846982648` t,

-0.3081725820785607` + 1.5241953578676644` t};

In[  ]:= L4 = {t, 0.9721721581433124` - 0.4260900032234079` t,

-0.11264557902259985` + 1.3711014253079723` t}

Out[  ]= {t, 0.972172 - 0.42609 t, -0.112646 + 1.3711 t}

In[  ]:= L5 = t,
29

20
-
21 t

20
, -

21

20
+
29 t

20
;

In[  ]:= L6 = {t, 1, t};

In[  ]:= L7 = {t, 1.661032057842025` - 0.9952722110334632` t,

-0.40924299170135053` + 1.6161700818709201` t}

Out[  ]= {t, 1.66103 - 0.995272 t, -0.409243 + 1.61617 t}

In[  ]:= L8 = t,
13

5
+
12 t

5
, -

12

5
-
13 t

5
;

In[  ]:= L9 = t,
17

15
+
8 t

15
, -

8

15
-
17 t

15
;

In[  ]:= L10 = t,
17

15
-
8 t

15
,

8

15
-
17 t

15
;

In[  ]:= L11 = t,
5

13
+
4 t

13
,

4

13
+
11 t

13
;

In[  ]:= L12 = t,
599

180
-
179 t

90
,
409

180
-
19 t

90
;

Here  is the  plot  with  the  intersection  points
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The  work  is contained  in Appendix  1.9A  which  will  be  available  only  in Mathematica  Notebook  form.   

This  appendix  is designed  to be evaluated  rather  than  read.   In the  Mathematica  pull  down   

Evaluation menu  choose  Evaluate  Notebook   It will  do  the  computation  and  check  the  answers  

above.  The  reader  may  wish  to  skim  the  code  in these  notebooks  but  unless  you  want  to make  your  

own  double  6 it makes  poor  reading  material.

1.9.5  Additional  Lines

As mentioned  above  there  are  15 additional  lines  that  will  intersect  this  double  6 in 4 points,  hence  will  

in any  naive  cubic  surface  containing  these  lines.   The  construction  is outlined  in Problem  F, here  is an 

example.   The  reader  who  wants  all  15 must  work  them  out  themselves,  they  are  not  included  in the  

Appendix  A.  

We  consider  the  line  from  the  double  2 consisting  of L1,  L2,  L7 and  L8.   First  we  find  the  planes  contain -

ing  L7,  L2 and  L1,  L8.

Note  these  lines  have  the  following  implicit  equations

In[  ]:= L1eq = ratLine3D [L1 /. {t → 0}, L1 /. {t → 4}]

Out[  ]= 
5

4
+ x -

3 y

4
,
4

5
+ x -

3 z

5


In[  ]:= L2eq = ratLine3D [L2 /. {t → 0}, L2 /. {t → 4}]

Out[  ]= {-2.3883 + x + 2.15407 y, -0.278145 + x - 0.599144 z}

In[  ]:= L7eq = ratLine3D [L7 /. {t → 0}, L7 /. {t → 4}]

Out[  ]= {-1.66892 + x + 1.00475 y, -0.253218 + x - 0.618747 z}
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In[  ]:= NSolve [Join [L2eq, L7eq ]]

Out[  ]= {{x → 1.04003, y → 0.625914 , z → 1.27163 }}

In[  ]:= L8eq = ratLine3D [L8 /. {t → 0}, L8 /. {t → 4}]

Out[  ]= 
13

12
+ x -

5 y

12
,
12

13
+ x +

5 z

13


In[  ]:= syl7 = sylvesterMD [L7eq, 1, {x, y, z}];

syl2 = sylvesterMD [L2eq, 1, {x, y, z}];

In[  ]:= int72 = vectorSpaceIntersection [syl7, syl2, dTol ];

plane72 = int72〚1〛.mExpsMD [1, {x, y, z}]

Out[  ]= 0.277687 - 0.828887 x - 0.0481178 y + 0.483239 z

Likewise  

In[  ]:= syl1 = sylvesterMD [L1eq, 1, {x, y, z}];

syl8 = sylvesterMD [L8eq, 1, {x, y, z}];

int18 = vectorSpaceIntersection [syl1, syl8, dTol ];

plane81 = int18〚1〛.mExpsMD [1, {x, y, z}]

Out[  ]= -0.701646 - 0.613941 x + 0.350823 y + 0.0877058 z

In[  ]:= Therefore

In[  ]:= L13 = First [SolveValues [plane72 ⩵ 0 && plane81 ⩵ 0, {x, y, z}] /. {x → t}]

SolveValues : Equations may not give solutions for all "solve " variables .

Out[  ]= {t, 2.09159 + 1.28909 t, -0.366371 + 1.84363 t}

Checking  :

In[  ]:= p131 = pLineIntersectionMD [L13, L1, t, {x, y, z}, dTol ]

Out[  ]= {9.60473, 14.473, 17.3412 }

In[  ]:= p132 = pLineIntersectionMD [L13, L2, t, {x, y, z}, dTol ]

Out[  ]= {-0.560566 , 1.36897, -1.39985 }

In[  ]:= p137 = pLineIntersectionMD [L13, L7, t, {x, y, z}, dTol ]

Out[  ]= {-0.188482 , 1.84862, -0.713861 }

In[  ]:= p138 = pLineIntersectionMD [L13, L8, t, {x, y, z}, dTol ]

Out[  ]= {-0.45765, 1.50164, -1.21011 }

In  Appendix  A we  calculate  a lot  of points  called  D6Points  which  will  not  listed  here
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In[  ]:= Show [ContourPlot3D [hypEq ⩵ 0, {x, -4, 4}, {y, -4, 4}, {z, -4, 4},

ContourStyle → Directive [LightGreen , Opacity [.2]], Mesh → None ],

ParametricPlot3D [{L1, L9, L10, L5, L6}, {t, -20, 20}, PlotStyle → Green, PlotRange → 5],

ParametricPlot3D [{L2, L3, L4, L7, L11, L12}, {t, -5, 5}, PlotStyle → Magenta ],

Graphics3D [{Black, PointSize [.015 ], Point [D6Points ], Point [{p131, p132, p137, p138}]}],

ParametricPlot3D [L13, {t, -10, 10}, PlotStyle → Blue ], Boxed → False, Axes → False ]

Out[  ]=

The  blue  line  is L13,  one  intersection  point  is outside  of the  plot  range.   Again  the  green  lines  lie  in the  

original  hyperboloid,  shown  as background,  but  the  magenta  and  blue  lines  do  not.

1.9.6  The Implicit  Cubic

We  can  proceed  as in Section  4, the  torus,   to find  the  equation  of a cubic  containing  the  double  6 

obtained  in subsection  4.  It is important  to note  that  we  are  aiming  to find  the  equations  of a reducible  

curve  which  is a union  of the  lines.  We  know  from  the  Space  Curve  Book  that  these  are  generally  not  

naive  curves  and  will  have  more  than  two  equations.  For  this  reason  we  go one  at a time  and  use  a 

higher  degree  in the  calculation.   From  past  experience   we  can  surmise  that  degree  5 will  be  sufficient,  

initially  even  degree  4 may  work.   But  in each  step  we  are  adding  to the  curve  so we  want  to avoid,  say,   

using  the  equation  of the  hyperboloid  alone  containing  many  of the  lines  because  this  hyperboloid  also  

has  many  points  that  will  not  be in the  final  cubic.  We  may  at some  point  see  the  equation  of the

hyperboloid  but  with  additional  equations  removing  these  unwanted  points.

We  will  see  in our  calculation  a new  idea,  at least  to me,  that  we  do  not  need  to use  all  the  lines  in the  

double  6.  Since  we  saw  that  half  the  lines  in the  double  6 were  determined  by the  earlier  lines  the  other  
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lines  already  exist  in any  cubic  equation  in the  system.   In fact  when  we  have  made  all  the  choices  

allowed  we  see  that  there  is a unique  cubic  which  continues  through  the  rest  of the  construct  if we  

choose  to continue.   Once  we  have  a unique  cubic  at this  point  we  are  actually  done.   This  will  happen  

once  we  have  lines  L1,  L8,  L9,  L10,  L11  and  L12.   Although  Hilbert’s  construction  puts  L6 before   choos -

ing  L12  I will  show  that  adding  L6 was  unnecessary  to get  the  cubic  equation  since  it was  already  in the  

cubics  at the  L11  step.

So actually  we  have  a new,  to me,  theorem.   

Given  a line  in 3 space  and  5 skew  lines  intersecting  that  line,  the  intersections  necessarily  are  distinct  and  

of multiplicity  1 due  to the  skewness,  there  is a unique  cubic  containing  these  lines  as well  as  the  21 other  

lines  constructed  from  these  as in subsections  4 and  5.

Again  the  actual  calculations  are  in a notebook  Appendix,  Appendix  B.   This  one  is more  readable  than  

Appendix  A but  still  should  be evaluated  as a notebook  to see  that  it works.   The  result  is that  the  cubic  

The  cubic  is 

In[  ]:= f = -1.9593043005607316` - 3.0142672735884486` x +

0.7465860452458656` x2 + 2.1480399483637935` x3 + 5.299476866625` y +

2.263740743254375` x y - 1.014539031180315` x2 y - 4.2498131666479475` y2 +

0.6950879815195592` x y2 + 0.9096406005836525` y3 + 2.217338134382248` z +

0.46198790678698215` x z - 1.2587132278003588` x2 z - 1.8202323527388888` y z -

0.48046742305836376` x y z - 0.34166723282911526` y2 z + 0.12195121951197414` z2 -

1.8893267205635906` x z2 + 0.16448128269455703` y z2 + 1.` z3

Out[  ]= -1.9593 - 3.01427 x + 0.746586 x2 + 2.14804 x3 + 5.29948 y + 2.26374 x y - 1.01454 x2 y -

4.24981 y2 + 0.695088 x y2 + 0.909641 y3 + 2.21734 z + 0.461988 x z - 1.25871 x2 z -

1.82023 y z - 0.480467 x y z - 0.341667 y2 z + 0.121951 z2 - 1.88933 x z2 + 0.164481 y z2 + 1. z3

A plot  is 
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In[  ]:= Labeled [Show [

ContourPlot3D [f ⩵ 0, {x, -5, 5}, {y, -5, 5}, {z, -5, 5}, Mesh → None, MaxRecursion → 5],

ParametricPlot3D [L1, {t, -5, 5}, PlotStyle → Directive [Thick, Magenta ]],

ParametricPlot3D [{L8, L9, L10, L11, L12}, {t, -5, 5}, PlotStyle → Blue ],

ParametricPlot3D [{L7, L6, L5, L4, L3, L2}, {t, -5, 5}, PlotStyle → Green ],

Boxed → False, Axes → False, ImageSize → Large ], "Double 6 on cubic f"]

Out[  ]=

Double 6 on cubic f

1.9.7  Finding  lines  on a given  smooth  cubic,  first  example.

In this  subsection  I go the  opposite  direction  .  I start  with  a smooth  cubic  surface  and  try  to find  the  27 

lines.   Based  on  the  previous  work  one  might  think  of looking  for  one  line  and  then  looking  for   5 skew  

lines  intersecting  this  line.   From  there  I can  find  the  other  21 lines  using  the  previous  techniques.

It actually  turns  out  that  it is easier  to try  to find  all  27 lines  at once.   The  trick  is that  for  a parametric  
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line  with  parametric  function  F to lie  on  the  surface  f = 0 we  simply  need

f /. Thread[{x, y, z} → F] ⩵ 0

Letting  F  be  a generic  curve  it is easy  to set  up  the  equation  which  NSolve  can  solve.   Given  previous  

examples  most  lines  do  not  have  a constant  first  component.   So  we  find  these  lines  first

In[  ]:= F1 = {t, a1 + b1 t, a2 + b2 t}

Out[  ]= {t, a1 + b1 t, a2 + b2 t}

We  first  try  an easy  equation  .

In[  ]:= cubic1 = 16 * x^3 + 16 * y^3 - 31 * z^3 + 24 * x^2 * z -

48 * x^2 * y - 48 * x * y^2 + 24 * y^2 * z - 93.5307 * z^2 - 72 * z;

Our  main  equation  is

In[  ]:= mainEq = Collect [Expand [cubic1 /. Thread [{x, y, z} → F1]], t]

Out[  ]= 16 a13 - 72 a2 + 24 a12 a2 - 93.5307 a22 - 31 a23 +

-48 a12 + 48 a12 b1 + 48 a1 a2 b1 - 72 b2 + 24 a12 b2 - 187.061 a2 b2 - 93 a22 b2 t +

-48 a1 + 24 a2 - 96 a1 b1 + 48 a1 b12 + 24 a2 b12 + 48 a1 b1 b2 - 93.5307 b22 - 93 a2 b22 t2 +

16 - 48 b1 - 48 b12 + 16 b13 + 24 b2 + 24 b12 b2 - 31 b23 t3

We  want  this  to be essentially  zero  for  all  t.  So  the  coefficients  of  tk  must  be  zero.  Let

In[  ]:= Clear [a1, a2, b1, b2]

Now  just  solve  this  non-linear  system  of 4 equations  in 4 unknowns

In[  ]:= cf0 = 16 a13 - 72 a2 + 24 a12 a2 - 93.5307` a22 - 31 a23;

cf1 = -48 a12 + 48 a12 b1 + 48 a1 a2 b1 - 72 b2 + 24 a12 b2 - 187.0614` a2 b2 - 93 a22 b2;

cf2 = -48 a1 + 24 a2 - 96 a1 b1 + 48 a1 b12 + 24 a2 b12 + 48 a1 b1 b2 - 93.5307` b22 - 93 a2 b22;

cf3 = 16 - 48 b1 - 48 b12 + 16 b13 + 24 b2 + 24 b12 b2 - 31 b23;

In[  ]:= {time, solcubic1 } = Timing [NSolve [{cf0, cf1, cf2, cf3}]];

In[  ]:= time

Out[  ]= 0.391518

In[  ]:= Length [solcubic1 ]

Out[  ]= 27

This  takes  a long  time  for  a computer,  but  not  much  for  a human.   We  now  display  the  lines

In[  ]:= Do[Print ["line [", i, "]=", line [i] = F1 /. solcubic1 〚i〛], {i, 27}]
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line [1]={t, - 3.73243 + 13.9293 t, - 5.46452 + 14.9294 t}

line [2]={t, 3.22448 + 4.08729 t, - 3.00967 - 3.5649 t}

line [3]={t, 2.73814 + 3.4304 t, 1.87092 + 3.02721 t}

line [4]={t, - 0.476643 - 1.47664 t, - 1.90652 - 1.90653 t}

line [5]={t, 1.1547 - 1. t, - 2.3094 }

line [6]={t, 1.44663 + 6.17467 t, - 2.47977 - 4.18706 t}

line [7]={t, 0.298434 - 0.815559 t, - 1.39762 - 0.863769 t}

line [8]={t, 0. + 3.73205 t, 0. }

line [9]={t, 0.297094 + 0.485438 t, - 1.62331 - 1.18835 t}

line [10 ]={t, 1.06079 - 0.957224 t, 0.265302 - 1.17278 t}

line [11 ]={t, 0.577351 - 1. t, - 1.1547 }

line [12 ]={t, 0.651252 + 2.63242 t, - 1.11635 + 1.88495 t}

line [13 ]={t, 3.1547 + 3.73205 t, - 2.3094 }

line [14 ]={t, - 0.234285 + 0.161952 t, - 1.4988 - 0.678101 t}

line [15 ]={t, 0.365925 - 1.22615 t, - 1.71369 + 1.05911 t}

line [16 ]={t, - 0.845298 + 0.267949 t, - 2.3094 }

line [17 ]={t, 1.10819 - 1.04469 t, - 1.03437 + 1.22519 t}

line [18 ]={t, - 0.612013 + 2.05999 t, - 0.896026 - 2.448 t}

line [19 ]={t, - 0.798198 + 0.291512 t, - 0.545395 + 0.882467 t}

line [20 ]={t, 0. - 1. t, 0. }

line [21 ]={t, - 0.42265 + 0.267949 t, - 1.1547 }

line [22 ]={t, 0.267956 + 0.0717912 t, - 1.4641 + 1.0718 t}

line [23 ]={t, 1.57735 + 3.73205 t, - 1.1547 }

line [24 ]={t, - 0.247397 + 0.379879 t, - 1.58268 + 0.716051 t}

line [25 ]={t, - 0.788904 + 0.244661 t, - 0.197304 - 0.872192 t}

line [26 ]={t, 0. + 0.267949 t, 0. }

line [27 ]={t, - 0.322788 - 0.677211 t, - 1.29112 + 1.29112 t}

We  can  now  check  with  an incidence  matrix  using  pLineIntersectionMD  .  We  make  this  a little  compli -

cated  for  later  use  . Note  an entry  0 means  the  lines  are  skew,  1 means  they  are  the  same,  3 means  they  

intersect  in the  affine  plane  and  4 is an infinite  intersection,  that  is the  lines  are  parallel  in affine  3 

space.

In[  ]:= lineList = Range [27]

Out[  ]= {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,

14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27}
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In[  ]:= incidence =

SparseArray [Flatten [Table [{i, j} → Length [pLineIntersectionMD [line [lineList 〚i〛],
line [lineList 〚j〛], t, {x, y, z}, .003 ]], {i, 27}, {j, 27}], 1]]

Out[  ]= SparseArray  Specified elements : 297

Dimensions : {27, 27}


In[  ]:= M = Join [Partition [Prepend [lineList , 0], 1], Prepend [incidence , lineList ], 2];

Grid [M,

Background → {None, None, {{{1, 1}, {1, 28}} → LightGray , {{1, 28}, {1, 1}} → LightGray }}]

Out[  ]=

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

1 1 0 3 3 0 0 0 3 0 0 3 0 0 3 3 3 3 3 0 0 0 3 0 0 0 0 0

2 0 1 3 3 0 3 3 0 0 0 3 0 3 0 0 0 3 3 0 0 0 0 0 0 3 3 0

3 3 3 1 0 0 0 0 0 3 3 0 3 3 3 0 0 0 0 3 3 3 0 0 0 0 0 0

4 3 3 0 1 0 3 0 0 3 3 0 0 0 0 0 3 0 0 0 3 0 0 3 3 0 0 3

5 0 0 0 0 1 3 0 0 3 3 4 0 3 3 0 3 3 3 0 4 0 0 0 0 0 0 0

6 0 3 0 3 3 1 0 3 0 0 0 3 0 3 3 0 0 0 3 0 3 3 0 0 0 0 0

7 0 3 0 0 0 0 1 0 0 3 0 3 0 3 3 3 0 3 0 3 0 3 3 0 0 0 0

8 3 0 0 0 0 3 0 1 0 3 0 3 4 0 0 0 0 3 0 3 0 0 4 0 3 3 0

9 0 0 3 3 3 0 0 0 1 0 0 3 0 0 3 0 0 3 0 0 0 3 3 0 3 3 0

10 0 0 3 3 3 0 3 3 0 1 0 0 0 0 0 0 3 0 0 0 3 3 0 3 3 0 0

11 3 3 0 0 4 0 0 0 0 0 1 3 0 0 0 0 0 0 0 4 3 3 3 3 3 0 0

12 0 0 3 0 0 3 3 3 3 0 3 1 0 0 0 3 3 0 0 0 0 0 0 3 0 0 3

13 0 3 3 0 3 0 0 4 0 0 0 0 1 0 3 3 0 0 0 0 0 3 4 3 0 0 3

14 3 0 3 0 3 3 3 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 3 3 3 3 3

15 3 0 0 0 0 3 3 0 3 0 0 0 3 0 1 0 3 0 0 3 3 0 0 3 3 0 0

16 3 0 0 3 3 0 3 0 0 0 0 3 3 0 0 1 0 0 3 0 4 0 0 0 3 4 0

17 3 3 0 0 3 0 0 0 0 3 0 3 0 0 3 0 1 0 3 0 0 0 3 0 0 3 3

18 3 3 0 0 3 0 3 3 3 0 0 0 0 0 0 0 0 1 3 0 3 0 0 3 0 0 3

19 0 0 3 0 0 3 0 0 0 0 0 0 0 0 0 3 3 3 1 3 0 3 3 3 3 0 0

20 0 0 3 3 4 0 3 3 0 0 4 0 0 0 3 0 0 0 3 1 0 0 0 0 0 3 3

21 0 0 3 0 0 3 0 0 0 3 3 0 0 0 3 4 0 3 0 0 1 0 3 0 0 4 3

22 3 0 0 0 0 3 3 0 3 3 3 0 3 0 0 0 0 0 3 0 0 1 0 0 0 3 3

23 0 0 0 3 0 0 3 4 3 0 3 0 4 3 0 0 3 0 3 0 3 0 1 0 0 0 0

24 0 0 0 3 0 0 0 0 0 3 3 3 3 3 3 0 0 3 3 0 0 0 0 1 0 3 0

25 0 3 0 0 0 0 0 3 3 3 3 0 0 3 3 3 0 0 3 0 0 0 0 0 1 0 3

26 0 3 0 0 0 0 0 3 3 0 0 0 0 3 0 4 3 0 0 3 4 3 0 3 0 1 0

27 0 0 0 3 0 0 0 0 0 0 0 3 3 3 0 0 3 3 0 3 3 3 0 0 3 0 1

Notice  the  1’s  lie  all  on  the  diagonal,  so all  these  lines  are  distinct.   Thus  we  have  all  27  lines.

In the  notebook  Appendix  C we  re-arrange  the  lines  to find  a double  6.  Remember  that  this  is one  

example,  not  the  only  one.
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In[  ]:=

0 5 3 4 7 25 26 2 16 14 9 20 10

5 1 0 0 0 0 0 0 3 3 3 4 3

3 0 1 0 0 0 0 3 0 3 3 3 3

4 0 0 1 0 0 0 3 3 0 3 3 3

7 0 0 0 1 0 0 3 3 3 0 3 3

25 0 0 0 0 1 0 3 3 3 3 0 3

26 0 0 0 0 0 1 3 4 3 3 3 0

2 0 3 3 3 3 3 1 0 0 0 0 0

16 3 0 3 3 3 4 0 1 0 0 0 0

14 3 3 0 3 3 3 0 0 1 0 0 0

9 3 3 3 0 3 3 0 0 0 1 0 0

20 4 3 3 3 0 3 0 0 0 0 1 0

10 3 3 3 3 3 0 0 0 0 0 0 1

The  pink  squares  show  the  two  sets  of lines  are  each  mutually  skew,  the  cyan  squares  show  the  correct  

incidences  among  these  lines.   Note  that  two  of these  intersections  are  infinite.   We  can  plot  this

In[  ]:= Show [ContourPlot3D [cubic1 ⩵ 0, {x, -4, 4}, {y, -4, 4},

{z, -4, 4}, ContourStyle → Opacity [.9], Mesh → None ], ParametricPlot3D [

{line [2], line [16], line [14], line [9], line [20], line [10]}, {t, -4, 4}, PlotStyle → Green ],

ParametricPlot3D [{line [5], line [3], line [4], line [7], line [25], line [26]},

{t, -4, 4}, PlotStyle → Blue ], Axes → False, Boxed → False ]

Out[  ]=

If we  expand  the  picture  above  we  get  
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Out[  ]=

0 5 3 4 7 25 26 2 16 14 9 20 10 1 6 8 11 12 13 15 17 18 19 21 22 23 24 27

5 1 0 0 0 0 0 0 3 3 3 4 3 0 3 0 4 0 3 0 3 3 0 0 0 0 0 0

3 0 1 0 0 0 0 3 0 3 3 3 3 3 0 0 0 3 3 0 0 0 3 3 0 0 0 0

4 0 0 1 0 0 0 3 3 0 3 3 3 3 3 0 0 0 0 0 0 0 0 0 0 3 3 3

7 0 0 0 1 0 0 3 3 3 0 3 3 0 0 0 0 3 0 3 0 3 0 0 3 3 0 0

25 0 0 0 0 1 0 3 3 3 3 0 3 0 0 3 3 0 0 3 0 0 3 0 0 0 0 3

26 0 0 0 0 0 1 3 4 3 3 3 0 0 0 3 0 0 0 0 3 0 0 4 3 0 3 0

2 0 3 3 3 3 3 1 0 0 0 0 0 0 3 0 3 0 3 0 3 3 0 0 0 0 0 0

16 3 0 3 3 3 4 0 1 0 0 0 0 3 0 0 0 3 3 0 0 0 3 4 0 0 0 0

14 3 3 0 3 3 3 0 0 1 0 0 0 3 3 0 0 0 0 0 0 0 0 0 0 3 3 3

9 3 3 3 0 3 3 0 0 0 1 0 0 0 0 0 0 3 0 3 0 3 0 0 3 3 0 0

20 4 3 3 3 0 3 0 0 0 0 1 0 0 0 3 4 0 0 3 0 0 3 0 0 0 0 3

10 3 3 3 3 3 0 0 0 0 0 0 1 0 0 3 0 0 0 0 3 0 0 3 3 0 3 0

we see  each  of the  remaining  lines  intersect  the  double  6 in exactly  4 points.   Most  of these  intersec -

tions  involve  only  two  lines  intersection.   Rarely  we  may  have  3 lines  intersecting  if the  intersection  of 

the  planes  containing  the  double  2 goes  through  the  intersection  of two  of the  lines  of  the  double  2.  In 

the  literature  these  are  called  an  Eckardt  points.    These  are  easy  to identify  from  the  incidence  matrix  

regarding  the  incidence  matrix  as an Association.

In[  ]:= otherAssoc = Table [{i, j} → pLineIntersectionMD [line [i], line [j], t, {x, y, z}, .003 ],

{i, 26}, {j, i + 1, 27}];

V = Select [Values [otherAssoc ], Length [#] > 2 &];

st = Select [Tally [V], #〚2〛 > 1 &]

Out[  ]= {{{0., 0., 0.}, 3}}

So the  only  Eckardt  point  is the  origin  .  Finding  the  lines

In[  ]:= KeySelect [otherAssoc , otherAssoc [#] ⩵ {0, 0, 0} &]

Out[  ]= {8, 20} → {0., 0., 0.}, {8, 26} → {0., 0., 0.}, {20, 26} → {0., 0., 0.}

So the  single  Eckardt  is the  intersection  of lines  20 and  26 of the  double  2 and  8 outside  the  double  2.  
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In[  ]:= Show [ContourPlot3D [cubic1 ⩵ 0, {x, -2, 2}, {y, -2, 2}, {z, -2, 2}, Mesh → None ],

ParametricPlot3D [{line [8], line [20], line [26]}, {t, -3, 3}, PlotStyle → {Red, Blue, Blue}],

Axes → False, Boxed → False ]

Out[  ]=

1.9 .8 Finding  lines,  Example  2

My second  example  is the  famous   surface  known  as the  Clebsch  diagonal  Cubic.  Not  only  does  this  

surface  have  27 real  lines  they  lie  in such  a way  as to make  a pleasing  plot.   This  is also  symmetric  in all  

the  variables.   One  discussion  is at http://mathworld.wolfram.com/ClebschDiagonalCubic.html.  This  is 

also  known  in the  literature  as Klein’s  icosahedral  cubic.   A more  complete  discussion  with  moving  

pictures  is by  John  Baez  in https://blogs.ams.org/visualinsight/2016/03/01/clebsch-surface/  where  he

includes  several  plots  by the  science  fiction  writer  Greg  Egan.   So  I will  not  attempt  a full  computation   

Another  interesting  thing  is that  there  are  reportedly  10 Eckardt  points.   I will  find  some  of these  points,  

following  the  method  above.

In[  ]:= cdc = 81 (x^3 + y^3 + z^3) - 189 (x^2 y + x^2 z + y^2 x + y^2 z + z^2 x + z^2 y) +

54 x y z + 126 (x y + x z + y z) - 9 (x^2 + y^2 + z^2) - 9 (x + y + z) + 1;

We  first  find  all  the  lines  .

90     SurfaceBookChapterOne_v1.0.nb

http://mathworld.wolfram.com/ClebschDiagonalCubic.html


In[  ]:= cdcEq = Collect [Expand [cdc /. Thread [{x, y, z} → F1]], t]

Out[  ]= 1 - 9 a1 - 9 a12 + 81 a13 - 9 a2 + 126 a1 a2 - 189 a12 a2 - 9 a22 - 189 a1 a22 + 81 a23 +

-9 + 126 a1 - 189 a12 + 126 a2 + 54 a1 a2 - 189 a22 - 9 b1 - 18 a1 b1 + 243 a12 b1 + 126 a2 b1 -

378 a1 a2 b1 - 189 a22 b1 - 9 b2 + 126 a1 b2 - 189 a12 b2 - 18 a2 b2 - 378 a1 a2 b2 + 243 a22 b2
t + -9 - 189 a1 - 189 a2 + 126 b1 - 378 a1 b1 + 54 a2 b1 - 9 b12 + 243 a1 b12 -

189 a2 b12 + 126 b2 + 54 a1 b2 - 378 a2 b2 + 126 b1 b2 -

378 a1 b1 b2 - 378 a2 b1 b2 - 9 b22 - 189 a1 b22 + 243 a2 b22 t2 +

81 - 189 b1 - 189 b12 + 81 b13 - 189 b2 + 54 b1 b2 - 189 b12 b2 - 189 b22 - 189 b1 b22 + 81 b23 t3

In[  ]:= cdc0 = 1 - 9 a1 - 9 a12 + 81 a13 - 9 a2 + 126 a1 a2 - 189 a12 a2 - 9 a22 - 189 a1 a22 + 81 a23;

cdc1 = -9 + 126 a1 - 189 a12 + 126 a2 + 54 a1 a2 - 189 a22 - 9 b1 - 18 a1 b1 + 243 a12 b1 + 126 a2 b1 -

378 a1 a2 b1 - 189 a22 b1 - 9 b2 + 126 a1 b2 - 189 a12 b2 - 18 a2 b2 - 378 a1 a2 b2 + 243 a22 b2;

cdc2 = -9 - 189 a1 - 189 a2 + 126 b1 - 378 a1 b1 + 54 a2 b1 - 9 b12 + 243 a1 b12 - 189 a2 b12 + 126 b2 +

54 a1 b2 - 378 a2 b2 + 126 b1 b2 - 378 a1 b1 b2 - 378 a2 b1 b2 - 9 b22 - 189 a1 b22 + 243 a2 b22;

cdc3 = 81 - 189 b1 - 189 b12 + 81 b13 - 189 b2 + 54 b1 b2 - 189 b12 b2 - 189 b22 - 189 b1 b22 + 81 b23;

In[  ]:= solcdc = NSolve [{cdc0, cdc1, cdc2, cdc3}];

Do[Print ["cline [", i, "]=", cline [i] = F1 /. solcdc 〚i〛], {i, 22}]
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cline [1]={t, 2.2847 - 5.23607 t, 0.872678 - 2.23607 t}

cline [2]={t, 0.390273 - 0.447214 t, 0.241202 + 2.34164 t}

cline [3]={t, - 0.333333 + 3. t, 0. }

cline [4]={t, 0.0486327 - 0.763932 t, 0.127322 + 2.23607 t}

cline [5]={t, 0.127322 + 2.23607 t, 0.0486327 - 0.763932 t}

cline [6]={t, 0., - 0.333333 + 3. t}

cline [7]={t, 0.666667 - 1. t, 0.333333 }

cline [8]={t, 0.269672 - 2.92705 t, 0.063661 - 1.30902 t}

cline [9]={t, 0.241202 + 2.34164 t, 0.390273 - 0.447214 t}

cline [10 ]={t, 0.872678 - 2.23607 t, 2.2847 - 5.23607 t}

cline [11 ]={t, 0.333333 - 1. t, 0. }

cline [12 ]={t, - 0.333333 , 0. - 1. t}

cline [13 ]={t, 0.436339 - 0.190983 t, - 0.103006 + 0.427051 t}

cline [14 ]={t, 0.063661 - 1.30902 t, 0.269672 - 2.92705 t}

cline [15 ]={t, 0.0921311 - 0.341641 t, - 0.0569401 + 0.447214 t}

cline [16 ]={t, - 0.0569401 + 0.447214 t, 0.0921311 - 0.341641 t}

cline [17 ]={t, 0. - 1. t, - 0.333333 }

cline [18 ]={t, 0., 0.333333 - 1. t}

cline [19 ]={t, 0., 0.111111 + 0.333333 t}

cline [20 ]={t, 0.333333 , 0.666667 - 1. t}

cline [21 ]={t, 0.111111 + 0.333333 t, 0. }

cline [22 ]={t, - 0.103006 + 0.427051 t, 0.436339 - 0.190983 t}

In[  ]:= Length [solcdc ]

Out[  ]= 22

So we  don'  t get  all  the  lines  but  one  can  get  the  other  lines  by symmetry  .

In[  ]:= cline [23] = {0, -1 / 3 + 3 t, t};

cline [24] = {0, 1 / 3 - t, t};

cline [25] = {-1 / 3, -t, t};

cline [26] = {0, t, -1 / 3 + 3 t};

cline [27] = {1 / 3, t, 2 / 3 - t};

In[  ]:= Simplify [cdc /. Thread [{x, y, z} → cline [27]]]

Out[  ]= 0

Our  incidence  chart  can  be calculated  .
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In[  ]:= lineList = Range [27]

Out[  ]= {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,

14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27}

In[  ]:= incidence2 =

SparseArray [Flatten [Table [{i, j} → Length [pLineIntersectionMD [cline [lineList 〚i〛],
cline [lineList 〚j〛], t, {x, y, z}, .003 ]], {i, 27}, {j, 27}], 1]]

Out[  ]= SparseArray  Specified elements : 297

Dimensions : {27, 27}


In[  ]:= M2 = Join [Partition [Prepend [lineList , 0], 1], Prepend [incidence2 , lineList ], 2];

Grid [M2,

Background → {None, None, {{{1, 1}, {1, 28}} → LightGray , {{1, 28}, {1, 1}} → LightGray }}]

Out[  ]=

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

1 1 0 0 0 0 0 0 3 3 3 0 0 3 0 0 3 3 3 0 0 3 0 3 0 0 0 3

2 0 1 0 3 0 3 0 3 3 3 3 0 3 0 0 0 0 0 0 3 0 0 3 0 3 0 0

3 0 0 1 0 0 3 0 0 3 0 3 3 3 3 3 0 0 0 0 0 3 0 3 0 0 0 3

4 0 3 0 1 3 0 0 0 0 0 0 0 0 3 3 0 3 3 0 0 3 3 3 0 0 0 3

5 0 0 0 3 1 0 0 3 3 0 3 3 3 0 0 3 0 0 3 0 0 0 0 0 0 3 3

6 0 3 3 0 0 1 0 3 0 0 0 0 0 0 0 3 3 3 3 0 0 3 0 0 0 3 3

7 0 0 0 0 0 0 1 3 3 0 4 0 0 0 3 0 4 0 3 3 0 3 3 0 0 0 3

8 3 3 0 0 3 3 3 1 0 0 0 3 0 3 3 0 0 0 0 0 3 0 0 3 0 0 0

9 3 3 3 0 3 0 3 0 1 0 0 0 0 3 0 0 0 3 0 0 0 3 0 0 3 3 0

10 3 3 0 0 0 0 0 0 0 1 3 3 0 3 3 0 0 0 3 0 0 3 0 0 0 3 3

11 0 3 3 0 3 0 4 0 0 3 1 0 0 0 0 3 4 3 0 0 3 0 0 3 0 0 0

12 0 0 3 0 3 0 0 3 0 3 0 1 0 0 0 0 3 4 0 4 0 3 3 0 3 0 0

13 3 3 3 0 3 0 0 0 0 0 0 0 1 0 3 0 3 0 3 3 0 3 0 3 0 0 0

14 0 0 3 3 0 0 0 3 3 3 0 0 0 1 0 3 3 0 3 3 0 0 0 3 0 0 0

15 0 0 3 3 0 0 3 3 0 3 0 0 3 0 1 3 0 3 0 0 0 0 0 0 3 3 0

16 3 0 0 0 3 3 0 0 0 0 3 0 0 3 3 1 0 0 0 3 0 3 3 0 3 0 0

17 3 0 0 3 0 3 4 0 0 0 4 3 3 3 0 0 1 0 0 0 0 0 0 0 3 3 0

18 3 0 0 3 0 3 0 0 3 0 3 4 0 0 3 0 0 1 3 4 0 0 0 3 0 0 0

19 0 0 0 0 3 3 3 0 0 3 0 0 3 3 0 0 0 3 1 0 3 0 3 0 3 0 0

20 0 3 0 0 0 0 3 0 0 0 0 4 3 3 0 3 0 4 0 1 3 0 0 0 0 3 3

21 3 0 3 3 0 0 0 3 0 0 3 0 0 0 0 0 0 0 3 3 1 3 0 0 3 3 0

22 0 0 0 3 0 3 3 0 3 3 0 3 3 0 0 3 0 0 0 0 3 1 0 3 0 0 0

23 3 3 3 3 0 0 3 0 0 0 0 3 0 0 0 3 0 0 3 0 0 0 1 3 0 3 0

24 0 0 0 0 0 0 0 3 0 0 3 0 3 3 0 0 0 3 0 0 0 3 3 1 4 3 4

25 0 3 0 0 0 0 0 0 3 0 0 3 0 0 3 3 3 0 3 0 3 0 0 4 1 0 4

26 0 0 0 0 3 3 0 0 3 3 0 0 0 0 3 0 3 0 0 3 3 0 3 3 0 1 0

27 3 0 3 3 3 3 3 0 0 3 0 0 0 0 0 0 0 0 0 3 0 0 0 4 4 0 1

 We  don’t  have  any  duplicates  so this  must  be all.

We  now  look  for  the  famous  Eckart  points  in this  example.
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In[  ]:= otherAssoc2 = Table [{i, j} → pLineIntersectionMD [cline [i], cline [j], t, {x, y, z}, .003 ],

{i, 26}, {j, i + 1, 27}];

V2 = KeySelect [otherAssoc2 , Length [otherAssoc2 [#]] ⩵ 3 &];

In[  ]:= st = Select [Tally [Values [V2], Norm [#1 - #2] < 1.*^-9 &], #〚2〛 > 1 &]

Out[  ]= {{0.166667 , 0.166667 , 0.}, 3}, 1.4866 × 10-14, -0.333333 , -4.91517 × 10-15 , 3,
-8.17955 × 10-14, 2.72734 × 10-14, -0.333333 , 3,
0.166667 , -1.48845 × 10-16, 0.166667 , 3, {{0.333333 , 0.333333 , 0.333333 }, 3},

-0.333333 , 1.02521 × 10-14, -1.01915 × 10-14 , 3,
1.04294 × 10-17, 0.166667 , 0.166667 , 3

In[  ]:= KeySelect [V2, Norm [V2[#] - st〚1, 1〛] < 1.*^-9 &]

Out[  ]= {3, 11} → {0.166667 , 0.166667 , 0.},

{3, 21} → {0.166667 , 0.166667 , 0.}, {11, 21} → {0.166667 , 0.166667 , 0.}

In[  ]:= KeySelect [V2, Norm [V2[#] - st〚2, 1〛] < 1.*^-9 &]

Out[  ]=  {3, 12} → 1.4866 × 10-14, -0.333333 , -4.91517 × 10-15 ,
{3, 23} → 2.1065 × 10-15, -0.333333 , -2.1065 × 10-15 ,
{12, 23} → -2.79385 × 10-15, -0.333333 , 8.13327 × 10-15 

In[  ]:= KeySelect [V2, Norm [V2[#] - st〚3, 1〛] < 1.*^-9 &]

Out[  ]=  {6, 17} → -8.17955 × 10-14, 2.72734 × 10-14, -0.333333 ,
{6, 26} → -4.60317 × 10-15, 4.3122 × 10-15, -0.333333 ,
{17, 26} → 2.27423 × 10-14, -6.82551 × 10-14, -0.333333 

In[  ]:= KeySelect [V2, Norm [V2[#] - st〚4, 1〛] < 1.*^-9 &]

Out[  ]=  {6, 18} → 0.166667 , -1.48845 × 10-16, 0.166667 ,
{6, 19} → 0.166667 , 6.92135 × 10-18, 0.166667 ,
{18, 19} → 0.166667 , -4.11295 × 10-17, 0.166667 

In[  ]:= KeySelect [V2, Norm [V2[#] - st〚5, 1〛] < 1.*^-9 &]

Out[  ]= {7, 20} → {0.333333 , 0.333333 , 0.333333 },

{7, 27} → {0.333333 , 0.333333 , 0.333333 }, {20, 27} → {0.333333 , 0.333333 , 0.333333 }

In[  ]:= KeySelect [V2, Norm [V2[#] - st〚6, 1〛] < 1.*^-9 &]

Out[  ]=  {19, 21} → -0.333333 , 1.02521 × 10-14, -1.01915 × 10-14 ,
{19, 25} → -0.333333 , 2.80014 × 10-14, -8.34944 × 10-14 ,
{21, 25} → -0.333333 , -5.30136 × 10-14, 1.76712 × 10-14 

In[  ]:= KeySelect [V2, Norm [V2[#] - st〚7, 1〛] < 1.*^-9 &]

Out[  ]=  {23, 24} → 1.04294 × 10-17, 0.166667 , 0.166667 ,
{23, 26} → 1.88326 × 10-18, 0.166667 , 0.166667 ,
{24, 26} → 5.73977 × 10-17, 0.166667 , 0.166667 
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So we  find  7 Eckardt  points  ,these  are  all  rational.   The  others  are  infinite.

In[  ]:= epoints = {{1 / 6, 1 / 6, 0}, {0, -1 / 3, 0}, {0, 0, -1 / 3},

{1 / 6, 1 / 6, 0}, {1 / 3, 1 / 3, 1 / 3}, {-1 / 3, 0, 0}, {0, 1 / 6, 1 / 6, 0}};

Note  by symmetry  there  are  only  3 different  orbits,  one  of length  1.

In[  ]:= elines = DeleteDuplicates [

{3, 11, 21, 12, 23, 6, 17, 26, 6, 18, 19, 7, 20, 27, 19, 21, 25, 23, 24, 26}]

Out[  ]= {3, 11, 21, 12, 23, 6, 17, 26, 18, 19, 7, 20, 27, 25, 24}

In[  ]:= Show [ContourPlot3D [cdc ⩵ 0, {x, -1, 1},

{y, -1, 1}, {z, -1, 1}, Mesh → None, ContourStyle → Opacity [0.9]],

ParametricPlot3D [cline [#] & /@ elines, {t, -3, 3}, PlotStyle → Green ],

Axes → False, Boxed → False ]

Out[  ]=
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