SpaceCurveBook_v2c.nb | 1

9/2020

In spite of their unsolvability, inconsistent equations arise in practice and must be solved.

[Gilbert Strang]

A Numerical Approach to Real Algebraic Curves

with the Wolfram Language, Part Il Space Curves.

https: // barryhdayton.space

Space curves present two challenges that were not present with plane curves. First, rather than

just one equation, space curves require several equations; a space curve in R"”, n = 3, requires at
least n — 1 equations, possibly more. Unlike the equation of a plane curve which is unique up to
scalar multiplication, these equations are not at all unique. Second the complement of the curve
in R", unlike in the plane case, is connected, possibly complicated, and of limited use in under -

standing the curve.

I will distinguish between two cases, first the naive case of curves given by 2 equations in R?, the
case seen in multivariable calculus textbooks. We will see that some of plane curve techniques
can still be used thanks to the existence of the cross product in R*. The general case, which
consists of perhaps more than n — 1 equations in n = 3 variables will require new techniques and,

in particular, heavy use of numerical linear algebra.

It is assumed that the reader have some familiarity with my plane curve book and Appendix I on
numerical linear algebra or the Mathematica Journal article and prior familiarity with numerical
linear algebra. All the code is in the Mathematica notebook GlobalFunctionsMD.nb available at

my website listed above.

Table of Contents

1. Naive Case: Curves in R® with two equations

1.1. Emulating Plane Curves

1.2. Projection

1.3. Ovals and Pseudo Lines

1.4. Fractional linear Transformations on 3-space
2. General Case --Theory

2.1. The Twisted cubic

2.2. Tangent Vectors and Definition of Curve

2.3. Macaulay and Sylvester Matrices

2.4. H-Bases

2.5. Duality, Intersections,Unions and Decomposition

2.6. Fractional Linear Transformations

2.7. Geometry and Projections

2.8. Fibers and plotting space curves

2.9. Fundamental Theorem

2.10. Bézout’s Theorem

15

16

19

20

24

38

47

58

62

69

82

86

2 | SpaceCurveBook v2c.nb

3. Applications

3.1. Implicitization 94

3.2. Quadratic Surface Intersection Curves (QSIC) 104

3.3. Birational Equivalence and Genus of plane curves. 133
4. References 165

We recommend that the reader be familiar with our book A Numerical Approach to
Real Algebraic Curves with the Wolfram Language, henceforth known as “my Plane
Curve book”, or at least with the Mathematica Journal summary of this book (2018).
And the reader should have some familiarity with the Wolfram Language.

Note the naming conventions: All global functions defined in this Space Curve Book
begin with a lowercase letter, compound names will capitalize first letters of subse -
quent words, (camel casing). This avoids confusion with built in Mathematica func-
tions. Also functions with polynomial and/or point arguments will end in 2D, 3D, or
MD depending on whether they work in 2,3 or all dimensions. This makes clear what
the arguments are and distinguishes these functions from my Plane Curve functions
so both sets can be initialized together without conflict, however most plane curve
functions that you may need are contained here with 2D designation. Note that
functions with suffix 3D or MD take variables as a list, but members of the list should
be atomic variables, e.g. not X[[2]] but possibly x[2].

Disclaimer

The author makes no representations, express or implied, with respect to this documentation or software it
describes, including, without limitation, any implied warranties of merchantability, interoperability or fitness for
a particular purpose, all of which are expressly disclaimed. Use of Mathematica and other related software is
subject to the terms and conditions as described at www.wolfram.com/legal .

In addition to the forgoing, users should recognize that all complex software systems and their documentation
contain errors and omissions. Barry H. Dayton and Wolfram Research a) shall not be responsible under any
circumstances for providing information or corrections to errors and omissions discovered at any time in this
book or software; b) shall not be liable for damages of any kind arising out of the use of (or inability to use) this
book or software; c) do not recommend the use of the software for applications in which errors or omissions

could threaten life, or cause injury or significant loss.

Mathematica and Wolfram Language are trademarks of Wolfram Research Inc.

ool

SpaceCurveBook_v2c.nb | 3

1 | Naive Case: curves in R3

1.1 Emulating Plane Curves

As a seemingly simple example consider the curve produced by intersecting a hyper -
boloid and an ellipsoid.

1.1.1 Example

nzao- F1={f11,f12} = {xA2-y"2-2,x"2+y"2+2"2-4};
ContourPlot3D[{f11 == 0, f12 == 0}, {x, -3, 3}, {y, -3, 3}, {z, -3, 3}, Mesh - None]

Outf239)-

The two equations {f;; =0, fi, = 0} give an under determined system but
Mathematica will still give a pseudo random points

wie- Ppl={X,y, z} . NSolve[{f1l, f12}, {x, y, z}, Reals][1]

+*= NSolve : Infinite solution set has dimension at least 1. Returning intersection of solutions with
142003 x 40299 y 69046 z
- + - == 1.
115806 38602 57903

ourag- {1.15413, 1.44616, -0.75935}

The first thing to notice is that at each point we have a tangent vector.

First we can find the normal vector to each of the surfaces at p;. Recall the gradient, Grad,
gives the vector {D[fx],DIf,y],DIf,zl}.

reas- N1 = Grad[fll, {x, y, z}] /. Thread[{x, y, z} » p1]
nv2 = Grad[f12, {x, y, z}] /. Thread[{x, y, z} - p1]

cus {2.30826,-2.89231, -1}
s {2.30826,2.89231, -1.5187)

The tangent vector is simply the cross product

s~ tvl = Cross[nvl, nv2]

ouze- {1.28487,1.19729, 13.3524}

4 | SpaceCurveBook v2c.nb

More generally we can use the function below to get a unit tangent vector.

tangentVector3D[{f_, g_}, p_, {X_, Y_, z_}] := Module[{n1, n2, bi},
IffNorm[{f, g} /. Thread[{x, y, z} - p]] > 1.»*-8, Echo[p, "not a point "];
Return[Fail]];
nl = {D[f, x1, D[f, y], DIf, z]} /. Thread[{x, y, z} - p];
n2 = {D[g, x], DIg, Y], D[g, z]} /. Thread[{x, y, z} - pl;
bi = N[Cross[n1, n2]];
IffNorm[bi] < .0001, Echo[p, "No tangent vector at "]; bi, Normalize[bi]]]

tangentVector3D[{f11, f12}, p1, {x, y, z}]

i {0.477462, 0.0784727, 0.875141)

A point with a tangent vector is called regular while one without a tangent vector is
called singular. As noticed in the plane curve book singular points may be unstable,

further there are some new technical problems with this definition that will be dis-
cussed later.

In this naive case we can get critical points just as for plane curves.

criticalPoints3D[{f_, g_}, {x_, y_, z_}] := Module[{J, ob},
ob = RandomReal[{.7, 1.3}, 3].{x"2,y "2,z 2};
J = D[{f, g, ob}, {{x, y, Z}}I;
{x, ¥, z} /. NSolve[{f, g, N[Det[J]1}, {x, y, 2}, Reals]]

critpts = criticalPoints3D[{f11, f12}, {x, y, z}]

. {{1.45718, -1.25159, 0.556915}, {1.24962, 0., 1.56155}, {0., 1.24962, -1.56155},
{-1.45718, 1.25159, 0.556915}, {1.45718, 1.25159, 0.556915},
{0., -1.24962, -1.56155}, {-1.24962, 0., 1.56155}, {-1.45718, ~1.25159, 0.556915}}

As in the plane curve case we can also find points on the curve by picking an
arbitrary point and finding the point on the curve closest to it.

closestPoint3D[{f_, g_}, p_, {X_, Y_, z_}] := Module[{J, sol},
J = DI{f, g, (x-pl10) "2+ (y-pl2]) *2+(z-pI31) " 2}, {{x, y, Z}}];
sol = {x, y, z} /. NSolve[{f, g, N[Det[J]1}, {X, Y, Z}, Reals];
MinimalBy[sol, Norm[# - p] &][1]

There may be infinitely many closest points.
2~ p2 = closestPoint3D[{f11, f12}, {1, 1, 1}, {X, y, Z}]
{1.40516, 0.962189, 1.04867}

One of the main things we can do in the naive case is to trace curves. Typically we
first attempt a plot with critical points labeled so we can trace from one critical point

SpaceCurveBook v2c.nb | 5

to the next. We use an analog of pathFinderT from my Plane Curve book.

In our code p, g will be the start and end points of the path and s will be the desired
step size. One may choose this by trial.

Options[pathFinder3D] = {maxit » 30};
pathFinder3D[{f_, g_},p_,q_,s_, {X_, ¥_, z_}, OptionsPattern[]] :=
Module[{k, p0, p1, tvl, tv, L},

pO = p;
L = Reap[Sow[p];
k = 0;

While[Norm[q-p0] > 2 s && k < OptionValue[maxit],
tvl = tangentVector3D[{f, g}, pO, {X, Y, Z}];
If[tvl.(q-p0) > 0, tv = tvl, tv = —tv1];
pO = closestPoint3D[{f, g}, p0+s*tv, {X, y, Z}];
Sow[p0];
k++];
Iffk > OptionValue[maxit], Print["Warning, iteration limit reached"]];
Sow[q]];
L[2, 113;

The reader is cautioned that in R®> we don’t have a canonical direction of
travel on curves, unlike R?. Therefore tracing in R®is somewhat different.
This tracing function takes what appears to be the shortest Euclidean dis-
tance to the end point. If the intended path does not go directly to the
desired end the trace may fail, so one should trace short or relatively
straight paths only. Also replacing the order of {f, g} or their signs makes no
difference. In particular tracing around a closed bounded component
requires at least 3 paths. Finally, in the unlikely event of a singular point
then you can trace into this point, but not out. By default the procedure will
stop after 30 steps, this can be changed to a different number 7 by the
option maxit—n. If the maximum number of iterations is reached, the path
will jump to the indicated end point as in the plane case.

6 | SpaceCurveBook v2c.nb

In Example 1.1.1 we plot

mi44- Show [ContourPlot3D [{fll == 0, f12 == 0}, {x, -3, 3},
{y, -3, 3}, {z, -3, 3}, Mesh - None, ContourStyle - Opacity[0.4]],
Graphics3D [Table[{Text[Style[i, FontSize - 14], critpts[il]}, {i, 8}111

out[144)-

This shows that our curve will be closed and bounded, in principle we can have a path from any
critical point to any other. But applying pathFinder3D to get from critical point 4 to critical point
6 we get

miozi- pth = pathFinder3D [{f11, f12}, critpts[4], critpts[6l, .6, {x, y, z}, maxit - 15]

Warning, iteration limit reached

ounos {{~1.45718, 125159, 0.556915}, {~1.41441, 1.41401, 0.00113412 },
{-1.25246, 1.45722, -0.554849}, {~0.960051 , 1.40464, -1.05132}, {-0.535693 , 1.30548 , -1.41731},
{-0.0167815, 1.24968 , -1.56142}, {0.502491 , 1.29911, -1.4352}, {~0.0196231, 1.2497, -1.56137},
{0.499898 , 1.29863 , ~1.43654}, {-0.0224445 , 1.24972, -1.56131}, {0.49732, 1.29815, —1.43787},
{-0.0252454 , 1.24975, ~1.56124}, {0.494759, 1.29768 , -1.43918}, {-0.0280255 , 1.24978, -1.56117},
{0.492214, 1.29721, -1.44048}, {-0.0307847 , 1.24982 , ~1.56109}, {0., -1.24962 , -1.56155}}

mez- - Show[ContourPlot3D[{f12 == 0}, {x, -3, 3},
{y, -3, 3}, {z, -3, 3}, Mesh » None, ContourStyle -» Opacity[0.4]],
Graphics3D[{Table[{Text[Style[i, FontSize -» 14], critptslill}, {i, 8}1, {Blue, Thick, Line[pth]}}],

ImageSize -» Small]

SpaceCurveBook_v2c.nb | 7

In this attempt we find that the tracing gets hung up at critical point 3 and doesn’t know how to
get to point 6 from there.

We could however find intermediate points and do
neeg- pthl = pathFinder3D [{f11, f12}, critpts[4], critpts[31, .3, {x, y, z}];
pth2 = pathFinder3D [{f11, f12}, critpts[3], critpts[5], .3, {x, y, z}];

pth3 = pathFinder3D [{f11, f12}, critpts[5], critpts[1], .3, {x, y, z}];
pth4 = pathFinder3D [{f11, f12}, critpts[1], critpts[6], .3, {x, y, z}];

Or, if we are only interested in getting from 4 to 6 we could simply do

pth5 = pathFinder3D [{f11, f12}, critpts[6], critpts[4], .4, {x, y, z}];

But by now we have gone all around the curve so we can plot the curve only

- Graphics3D [{{Blue, Thick, Line[{pthl, pth2, pth3, pth4}]}, {Orange, Thick, Line[pth5]},
Table[{Text[Style[i, FontSize - 14], critpts[il+{.1, .1, .1}]}, {i, 8}1}]

As with plane curves we can find infinite points of space curves. We need
forms which can just as easily be defined in any number of variables.

formMD[f _, k_,X_]:=
FromCoefficientRules[Select[CoefficientRules[f, X], Total[&[1]] == k &], X];
maxFormMD[f_, X_] := formMDIf, tDegMDIf, X], X];

infiniteRealPoints3D[{f_, g_}, {X_, y_, z_}] := Module[{sol},
sol = {x, y, z} /. NSolve[{maxFormMDIf, {x, y, z}],
maxFormMD[g, {X, ¥, Z}], xA2+yA2+2z/2-1}, {X, Y, z}, Reals];
Append[#, 0] &/@ Tally[sol, Norm[£1 + 2] < .0001 &][All, 1]]

1.1.2 Our simple example is

F2 ={x"2-y"2-1, x+y+z-1};
infiniteRealPoints3D [F2, {x, Y, z}]

{{-0.707107,0.707107, 0., 0}, {-0.408248 , -0.408248 , 0.816497 , 0}}

8 | SpaceCurveBook v2c.nb

1.2 Projection

Later in this book a major tool will be projection. Here a projection is a linear transfor -
mation R® —[R? expressed in matrix form with two orthogonal rows. While random
or pseudo-random projections are better, discussed in the next section, for our
Example 1 the simple projection by eliminating the z-coordinate will be good enough.

Projection Pxy
v Pxy={{1,0, 04,0, 1, 03);

Given a point, say p = {1, 2, 3}, in R® we can project it onto R? by

P={1,2,3}
Pxy.p
out[272} {l, 2}

Here Mathematica treats, by context, p as a column vector, that is, takes its
transpose. But typically we have a list of points, for instance

Inf274)] pts = {{1: 2, 3}: {0: 1) 4}) {0) 0: 3}}

Outj274] {{l; 2, 3}) {O; l; 4}’ {O} O} 3}}

it is easiest to implement the projection function given by Pxyas

- pts.Transpose[Pxy]

ouzrs- - {{1, 2}, {0, 13, {0, O}

A better example using Example 1.1.1

nzrsr- - Pth = Join[pthl, pth2, pth3, pth4, pth5];
pth = Pth.Transpose[Pxy];

nero- Graphics[{Blue, Thick, Line[pth]}, ImageSize - Tiny]

So if we path trace a curve in R® we can plot its projection in R?. However
the main technique in this book is to find the equation of a space curve after
projection to the plane. In Chapter 2 we will learn how to do this alge -
braically from the equations but for now we can simply project a sufficient
number of sufficiently random points and reconstruct an equation interpo -
lating by my plane interpolation function acurve. Here it is as a 2D function
in our Space Curve global functions:

SpaceCurveBook_v2c.nb

aCurve2D [pts_, x_, y_] := Module [{d, P, M, B, n, c, pow},
pow[a_, n_]:=If[n==0,1,aAn];
d = Switch[Length[pts], 2, 1, 5, 2, 9, 3, 14, 4, 20,
5,27, 6, _, Return["number of points must be 2,5,9,14,20,27"]];
P = exps[2, d];
n = Length [P];
M = Table[If[Length [p] == 2, pow[p[1], e[11]* pow[pl21, e[2]],
pow([pl1l, e[1]]* pow[pl2], e[2]]* pow[pl31, d - el[1]-el211], {p, pts}, {e, P}I;
AppendTo [M, RandomReal [{-1, 1}, n]];
B = Append [Table[0, {n-1}], 1];
¢ = LinearSolve [M, B];
FromCoefficientRules [Table[P[il » c[il, {i, n}], {x, y}
I

Note from my plane curve book that the number of points to use to get a

(d+2) (d+1) _

5 1.

d+2
polynomial of degree d is (9)—1 =
One difficult issue with space curves is calculating the degree of a projec -
tion. This depends on both the equations and the projection matrix. But
generically in the case of a naive curve given by equations of degrees
d,, d, the degree of a reasonably random plane projection is d; * d,.

For Example 1.1.1 both equations are quadratics so the degree of the curve is 4. By
interpolation we need 6 +5/2 —1 = 14 points. It turns out, relative to these specific
equations that Pxy is sufficiently random. We can get 14 points easily from our
projected path tracing.

nzos- Pts2 = RandomSample[pth, 14];

Outf.

In[29

Outf29

g = aCurve2D[pts2, x, y]

eos- 3.35997 - 6.01438x 10722 x- 0.839992 X% + 3.99152x 1071 x* - 0.839992 X" - 4.91802x 10 y -
5.67127x 1072 xy+4.48573x 107 x® y+ 1.99789x 107* x® y- 0.839992 y* +
3.16171x 1072 xy? + 1.67998 %% y? + 1.96307x 107% y* + 3.63534x 1072 x y* - 0.839992 y*

By symmetry we don’t expect terms with odd degrees in either variable so we can
chop small coefficients.

- pfl= Chop[g, 1.x"-9]

o 3.35997-0.839992 % - 0.839992 x* - 0.839992y* + 1.67998 x* y* - 0.839992 y*

In fact, this looks like an exact polynomial, so divide by the smallest coefficient

nessi- - pfl = Expand[pfl/Coefficient[pfl, y 2 4]]

oupe. Ao Lo+ L+ Ly? =27 y? 4 1y*

10 | SpaceCurveBook v2c.nb

The plot is the same as above.

msoo- ContourPlot[pfl == 0, {x, -2, 2}, {y, -2, 2}, ImageSize -» Tiny]

2F 5

1E B

out[300)= oF B
s B

2k I I I 4

-2 -1 0 1 2

But notice instead if we use a different projection we get a badly contitioned
matrix

v Pyz={{0,1,0},{0,0, 1)
pts3 = RandomSample[Pth.Transpose[Pyz], 14];
pf2 = aCurve2D[pts3, x, y]

++ LinearSolve : Result for LinearSolve of badly conditioned matrix

{{1., 1.25159, 0.556915 , 1.56647 , <7>, 1.09187 , 0.485846 , 0.216185 , 0.0961955 }, «13>, {-«<20>
, «<14>}} may contain significant numerical errors.

Instead we can suspect the possibility of a degree 2 projection and use 5
points

- Pts3 = RandomSample[Pth.Transpose[Pyz], 5];
pth2dyz = Pth.Transpose[Pyz];
pf2 = Chop[aCurve2D[pts3, x, y], 1.»"-9]

-0.9141+0.45705x +0.228525y + 0.228525 y*

This is just a circle, due partly because our curve lies on a sphere in R3.

msasi- - Show[ContourPlot[pf2 == 0, {x, -2, 2}, {y, -3, 2}, ImageSize -» Small],
Graphics[{Red, Thick, Line[pth2dyz]}1]

o0 q
1k]
oL]

Oul[335]=

1F]
—2F]
-3b L L L d

-2 -1 0 1 2

In fact, the actual point projection is only part of a circle! This is an impor -
tant lesson, the point projection of an algebraic space curve will lie in an
algebraic curve but may not be the entire curve. The smallest algebraic curve
containing the point projection is known to algebraic geometers as the
Zariski Closure of the projection.

SpaceCurveBook_v2c.nb | 11

So this is why it is important to use generic, that is, random projections.
Sometimes it is useful, for replication, to have only a pseudo-random projec -
tion that we will use over and over. The one I have chosen is known as prd3D
and given by

prd3D

{{-0.305198, 0.952289, 0.}, {-0.141911, -0.0454808, 0.988834}}

e pth2dr = Pth.Transpose[prd3D];
Graphics[{Blue, Thick, Line[pth2dr]}, ImageSize -» Small]

This brings up another issue. When curves are projected the projection may
have singular points even though the original curve did not have a singular
point or at least not one that projects to this singularity. I will call such
points, non-standardly, artifactual. In fact, for many curves, including this
one, generic projections must include artifactual points, although very
possibly complex or infinite. We will discuss this at the end of this book
when considering genus. In addition to ordinary crossings these artifactual
singularities may be cusps or isolated points.

For an example of an artifactual cusp we introduce the famous twisted cubic
to be discussed at the beginning of Chapter 2. This is a curve generally given
parametrically as t = {t, ?, £*}. As we will explain in Chapter 3 such curves
are algebraic, although even in R3not necessarily naive. In fact this curve is
the poster child for non-naive curves but is contained in the naive curve

F2={y-x"2,z-xy};

where the extra component lies in the infinite plane so won’t influence this
discussion. If we project to the plane with Pyz which sends the first compo -
nent to 0 then from the parametric expression we get the parametric plane
curve t — {t?, 13} which we recognize as a cusp. Or we can easily describe a
set of points plotting the curve

twcpts = Table[{t, t* 2, t "3}, {t, -1, 1, .2}];
ptwcpts = twepts.Transpose[Pyz];

12 | SpaceCurveBook v2c.nb

e~ {ContourPlotfy A2 == x*3, {x, 0, 1}, {y, -1, 1}, ImageSize -» Small,
Axes - True, Frame - False, AspectRatio - 1.75], Invisible["xxx"],
ParametricPlot[{t*2, t A3}, {t, -1, 1}, ImageSize -» Small], Invisible["xxx"] ,
Graphics[{Blue, Line[ptwcpts]}, Axes - True, ImageSize -» Small]}

10 ol 101

05 051 05}

' 2_ 04 06 08 1.0

04 06 08 10° 04 06 08 1.0}

_o5 | -05F

As for the possibility of the projection having isolated artifactual singular
points the easiest example is projecting the z-axis, that is the naive space
curve {x =0, y = 0} with Pxy.

One can certainly find non-singular curves and projections giving more
complicated artifactual singularities. For example see the section on blow-
ing-up in Chapter 3 to see how to make any plane singularity artifactual.
But for this to happen with a truly generic projection generated indepen -
dently from the curve is very unlikely.

1.2.1 Nice Example: Viviani Curve

The Viviani Curve [see https://www.wolframalpha.com/input/?i=Vivian -
i+Curve] gives a nice example of a singular space curve which looks very
different depending on the projection. The curve, often seen as a paramet -
ric curve, is given implicitly by

nzsi- V1= XA2+yA242z702-4;
V2= (x-1)"2+y"r2-1;
V={vl, v2}

Outf286]= {—4+ X2 + y2 + ZZ, -1+(-1+)()2 + y2}

One can use either method of 1.1 or 1.2, or a parameterization, to draw the
curve:

SpaceCurveBook_v2c.nb | 13

Note that the point where the branches seem to cross is actually the singular
point {2, 0, 0} where they do cross

- tangentVector3D[V, {2, 0, 0}, {X, y, z}]

{2, 0, 0}

Using projections the best is, as usual our pseudo-random prd3D or FLT
version fprd3d which gives a 4th degree plane curve.

wess- vd2 = FLTMDLV, fprd3D, 4, {X, y, z}, {X, y}, dTolJ[1]

ouze 1.+4.30229x + 3.68817 X% + 0.024428x° + 0.000444366 X" - 2.00048y + 0.312204 X y +
1.0116x*y-3.77986y* - 1.05115x y* + 0.0400199x* y* + 0.511479y* + 0.901056 y*

This curve can be drawn in color giving 4 segments where the center red
point is the image of the singularity, the other 2 are 2D critical points.

L e =

Projecting on the x,y plane using the projection fcompProj[3,3] gives the

14 | SpaceCurveBook v2c.nb

circle
s~ vxy = FLTMDIV, fCompProj[3, 31, 4, {X, Y, 2}, {X, y}, dTolJ[1]
ouppos- —=2.X+ 1. X2 +1. y2

mas- ContourPlotfvxy == 0, {x, -.5, 2.5}, {y, -1.5, 1.5},
Epilog - {Red, PointSize[Large], Point[s2d1]}]

15F al

0.5]

-05r *

where again the red point is the image of the singular point. Each other
point of the circle has a 2 point fiber. This is an example of how a non-
generic projection can take a singular point to a non-singular point.

It is weirder to project onto the x,z plane
vxz = FLTMD[V, fCompProj[2, 3], 4, {X, Y, Z}, {X, z}, dTol][1]

ouon- 1.-0.5X~-0.25 22

Here we get a parabola. But the bounded Viviani curve can’t linearly project
on the unbounded parabola. In fact the image

4F 7

-4 I
-2 -1 0 1 2 3

lies in the range 0 < x < 2 where each point image other than the end points
has a two point fiber. As one starts at the singularity of the Viviani curve and
goes around a loop the projection starts at {2, 0} goes out one colored

branch of the parabola and back on the same branch to {2, 0}. This is a good

SpaceCurveBook_v2c.nb | 15

example of where a space curve may not map onto the FLT projection curve,
particularly in the case of a non-random projection.

The non-random projection on the y-z plane does act somewhat like the
random prd3d projection giving a 4th degree curve.

Another random projection with FLT matrix

oueo- RA = {{0.5611043190123369", 0.6690386434437178 ", -0.4873902304772753", 0},
{0.6953402146462944", -0.7004233312648177",
-0.1609631725443459", 0}, {0, 0, 0, 1}};

gives the following degree 4 projection

20 q

0.0 b

-0.5 B

-10+t I I I I I I Il
-1.0 -05 0.0 0.5 1.0 15 2.0

The red point is the image of the singular point of the Viviani curve and the
other 2 singularities are artifactual singularities from the projection. This is
expected since the Viviani curve having a rational parameterization means it
has genus 0 so we expect, generically 3 singular points in the projection.
Actually the fprd3p[2,3] and non-random projection on the y-z plane have
isolated singularities, the former a double singularity at the infinite point
{1,0,0} and the later two real plane isolated singularities. So all the projec -
tions remain rational curves.

1.3 Ovals and Pseudo Lines

InR", n = 3, we can still distinguish between ovals and pseudo-lines by counting,
according to multiplicity, infinite points, but things work differently than in the plane
case. Because higher dimensional projective spaces allow skew lines, pseudo-lines
may not intersect, thus non-singular space curves, even in even degree, can have
multiple pseudo-lines. Ovals no longer separate projective space into two compo -
nents and do not have well-defined interiors. A curve can intersect an oval in an odd
number of points. The basic difference between an oval and pseudo-line is that an
oval can be deformed continuously in projective space to a point, whereas a pseudo-
line cannot. For this reason some authors call an oval a null-homotopic component
and a pseudo-line a non-null-homotopic component.

16 | SpaceCurveBook v2c.nb

1.4 Fractional Linear Transformations on 3-Space.

In the plane curve book I defined Fractional Linear Transformations in
Chapter 6 and use them heavily there. On the point level these are given in
the Wolfram Language under the name TransformationFunction. My abbrevia -
tion for TransformationFunction was flt. Since TransformationFunction works in all
dimensions this appears here as fltMD[p,A]. Note neither the curve we are
working with nor the variables matter so we need to know only the point p
and the transformation matrix A which needs to be neither square nor
invertible. However, in the affine case the number of columns needs to be 1
more than the length of p and the length of the output will be one less than
the number of rows. That is, a (n + 1) X (m + 1) transformation matrix takes a
point in R™ to a point in R"”. If p is an infinite point then
TransformationFunction should be replaced by either matrix multiplication A.p
or fltiMD[p,A]. Then a (n + 1) X (m+1) transformation matrix takes projective
[P" to projective [P™. Actually fltiMD[p,A] will accept either an affine point of
length m or an infinite point of length m + 1 and if the result is not an infi-
nite point it will be represented as an affine point of length n.

However an important observation was that invertible Transformation
Matrices actually take curves to curves on the equation level. In the plane
case this was simple as each curve is given by a single bivariate polynomial.
This plane case is represented here by FLT2D[f,A,x,y]. This is easily extended to
the naive case and given by FLT3D[F,AX].

FLT3D[F_, A_, X_] := Module[{B, d, g, h, t, n},
n = Length[X];
If[Dimensions[A] # {n+1, n+1}, Echo[{n+1, n+1}, "need A to be of size"];
Abort[]];
If[MatrixRank[A] £ n+1, Echo["A must be invertible"]; Abort[]];
B = Inverse[A].Append[X, t];
Reap[Do[
d = tDegMDIf, X];
g = Expand[tAd (f /. Thread[X - X/t])];
h = Expand[g /. Thread[Append[X, t] - B]];
Sow[Chop[h/.{t - 1}, dTol]], {f, F}112, 11]

Although we will keep the name FLT3D to distinguish this version from the
much more complicated general FLTMD, the main workhorse and contribu -
tion of this book, we note that FLT3D actually works in all dimensions and for
systems of any number of equations as long as the transformation matrix is
square and invertible. Unlike the more general FLTMD this works separately
on each equation so the number of equations returned is the same as the

SpaceCurveBook_v2c.nb | 17

number entered.

The Wolfram Language has many transformation matrices, see, for example

the examples under in the help page Geomet-

ric Transforms . In addition see the symbolic transformation functions,

example

TranslationTransform[{3, -3, 2}]
1 00|3

. .0
TransformationFu nctlor{ 0

so to translate the curve given by

use

out[114]

F={z-X*-y?, X+y+Z};

100]|3

01
FLT3D[F, (

00 1|20y

0001

{-20+6x—x2—6y-y2+z,—2+x+y+z}

Wolfram also has rotations, reflections and scaling (homothety) transforms
in n dimensions.

In addition we import klRotation2D and ip2z2D from our plane curve book (code

in GlobalFunctions.nb) but note that the latter does not need the dummy
variables x, y entered, the syntax is simply ip2z2D[ip]where ip is the infinite

point.

For 3 dimensions we have a generalization of klRotation2D , uvRotationMD[u,v]

which takes the vector u and rotates it about the origin until it is in the
direction of v and a transformation matrix ip2z3D[ip] which takes the infinite

point ip and places it at the origin.

In[197].

Out[198]

ip2z3D[ip_] := Module[{p, A}, p = Takelip, 3];
A={{1,0,0,0}0,1,0,0},{0,0,0,1},{1,1,1,0}};
IffNorm[Take[p, 2]] < 1.+"-6, A, A.uvRotationMD[p, {0, 0, 1}]]]

F={z(x"2+y"2)-1,x +Yy};
ips = infiniteRealPoints3D [F, {x, y, z}]

{{0., 0., -1.,, 0}, {0., 0., -1., 0}, {-0.707107, 0.707107, 0., 0}}

18 | SpaceCurveBook v2c.nb

In[199]:= Alpl = ip213D {0, 0, 1}]

{{1,0,0,0}{0,1,0,0}{0, 0,0, 1},{1, 1, 1, O}}

sz~ F1 = FLT3D[F, Aipl, {X, y, z}]

oueor X=X =Xy +y?-xy* -y - 2%, x+y}

tangentVector3D[F1, {0, 0, 0}, {x, y, z}]

{0, 0, 0}

ouziz- {0., 0., 0.}

showProjection3D [F1, fprd3D, 4, {x, y, z}, {X, y}, 1]

{-1.22291 x* - 0.00045095 X’ +0.0176417 X’y -0.230054 xy*+ 1. y*}

x=1

So this infinite point has a cusp-like singularity at {0, 0, 1, 0}.

nerz- Aip2 = ip2z3D [ips[31]
F2 = FLT3D[F, Aip2, {x, y, z}]

{{0.5, 0.5, 0.707107, 0.}, {0.5, 0.5, -0.707107, 0.}, {0., 0., 0., 1.}, {0.292893 , 1.70711, 0., 0.}}

ouerg- {0.707107 x - 1.41421 x* + 1.06066 x* - 0.707107 y+
1.06066 x*y + 1.41421 y* - 1.06066 x y* - 1.06066 y* - 1.2°, 1. x+ 1.y}

nezis- tangentVector3D [F2, {0, 0, 0}, {x, Yy, z}]

So this other infinite point is non-singular.

SpaceCurveBook_v2c.nb | 19

2 | General Case

We now treat the general case of a curve in R"”, n = 3with kK = n — 1 polynomial
equations F = {f, f>,.... fy}in the nvariables. But first, some more numerical linear

algebra.

2.1 The Twisted Cubic

The standard example of a curve requiring more than n — 1 equations is the
twisted cubic.

mie- twCubic={xz=y"2,y-x"2,z-xy};

The claim is that no two of these equations describe this curve, all 3 are
needed. In fact the naive curve defined by any two contains a line in addi -
tion to the curve. Later, in section 3.2 we will learn how to analyze these
curves defined by two quadratics known as QSIC. For now we use a trick. In
R3 given a line and a plane they need not intersect but usually will, the
exception is when the line is parallel to the plane. But if the line is given
then a random choice of plane will intersect that line with probability very
near 1. Now if we intersect the twisted cubic defined by all three equations
with a random plane we get 3 points, possibly 2 are complex.

| = RandomReal[{-1, 1}, 41.{x, y, Z, 1}

ourrzz- - 0.539366-0.665691 x-0.249707y-0.4497162

nei- sol={X,y, z} I. NSolve[Append[twCubic, []]

urier- {{-0.561007+1.342174, -1.4867-1.5059414, 2.85528 - 1.15057 i},
{-0.561007-1.3421717,-1.4867+1.505941, 2.85528 + 1.15057 7},
{0.566758, 0.321214, 0.182051}}

Thus it is enough to show that intersecting the QSIC defined by two of the
three equations actually gives 4 intersection points, meaning the QSIC must
have an extra component. This works fine in the first two cases

20 | SpaceCurveBook v2c.nb

29~ NSolve[{xz-y"2,y-x"2,}]

urrza- {{X » -0.561007+1.342174,y » -1.4867-1.505941, z -» 2.85528 - 1.15057 i},
{x > -0.561007-1.342174,y » -1.4867+1.505941, z -» 2.85528 + 1.15057 i},
{x-0.,y-0.,2z- 1.19935}, {x » 0.566758, y -» 0.321214, z » 0.182051}}

NSolve[{xz-y*2,z-xYy, [}]

{{X » -0.561007- 1.342174,y - ~1.4867+ 1.50594, z > 2.85528 + 1.15057 },
{X > -0.561007+ 1.342174, y - -1.4867- 1505944, z » 2.85528 - 1.15057},
{X - 0.810235,y - 0.,z 0.}, {x » 0.566758, y -» 0.321214, z > 0.182051}}

But this fails for the last two equations!
NSolve[{y-x"2, z- xy, [}]

ouss {{X > ~0.561007+1.342174,y - ~1.4867- 1.505944, z -» 2.85528 - 1.15057 i},
(X > -0.561007- 1.342174,y - -1.4867+ 1.50594, z - 2.85528 + 1.15057 i},
(X > 0.566758, y - 0.321214, z 5 0.182051}}

The reason is that the extra line is contained in the infinite plane! So we use
the trick from Chapter 6 of my plane curve book, we bring most of the line
back into the affine plane by ip2z3D[{0,0,1,0}]

- A=ip2z3D[{0, 0, 1, 0}];
eq= FLT3D[{V- XAZ, z- Xy}, A’ {X, Y, Z}]

ouzr {-X2+YZ, -Xy+Z-XZ-YyZ}

{x,y, z} I.NSolve[Append[eq, l]]

ourzas- {{1.80204 +1.6065714, -2.37285+0.1261974, -0.150579- 2.4482 1},
{1.80204-1.606574,-2.37285-0.12619717, -0.150579+ 2.4482 i},
{0., 2.16, 0.}, {0.384404, 0.330846, 0.446632}}

Again we get 4, not 3 solutions. We conclude it takes all 3 equations to
define the twisted cubic! We will see this curve several more times.

2.2 Tangent Vectors and Definition of curve.

So suppose we have a system of k = n — 1 polynomial equations in n unknowns. Our
first task is to say what we mean by a curve. For example, if k = n the typical situation
is that the solution set is a set of isolated points. The key feature of curves, rather than
other point sets is that there are infinitely many solutions with tangent vectors and at
most finitely many points without. Here is a simple function using the Jacobian of the
system, D[F,{X}], to find the tangent vector at a point or to indicate that one does
not exist, F is a list of polynomials in the n variables X.

SpaceCurveBook_v2c.nb | 21

7~ tangentVectorJMD[F_, p_, X_] := Module[{J, ns},
IffNorm[F /. Thread[X - p]] > 1.+*-7, Echo["Large Residue, use tangentVectorMD"];
Return[Fail]];
J = D[F, {X}] /. Thread[X - p];
ns = NullSpace[J];
If[Length[ns] == 1, Return[ns[1]], Echo[p, "No unique tangent vector"]];
Table[0, {Length[X]}1]

If a non-zero list of length 7 is returned then it is a tangent vector and p is

called a regular point. Otherwise p is called a non-regular point point.

It is easy to see that the twisted cubic
twCubic = {xz-y"2,y-x"2,z-xy};
is parameterized by ¢ {r, 1%, *}
twCubic /. Thread [{x, y, z} » {t, t*2, t"3}]
{0, 0, 0}
Picking a random point on this curve
p={t, t"2,t"3}/. {t - RandomReal [{-3, 3}]}
ourizg- {~1.05995, 1.12349, -1.19085}

miss- tvl = tangentVectorJ3D [twCubic, p, {x, Y, z}]

rs3- {0.243583, -0.516372, 0.820992 }

Note that in calculus or differential geometry the tangent vector of the curve at t = p[1] would be
defined by

ez~ tv2 = D[{t, t 2, tA3}, t] /. {t » p[1I}
{1, -2.1199, 3.37048}
But tangent vectors are defined only up to a non - zero constant
Evaluate [tv1[1] tv2]
oupsy- {0.243583, -0.516372, 0.820992 }
which is tvl so the classical definition of a tangent vector to a curve agrees with ours!
We consider the apparent naive curve

missi- G ={XZz,yz};

If p=1{0, 0, r} where ris random

22 | SpaceCurveBook v2c.nb

meor- Pl = {0, 0, RandomReal [{-5, 5}1};
tangentVectorJMD [G, p1, {x, Yy, z}]

ounon {0., 0., 1)

so this is a regular point. But if p ={a, b, 0} then it is a point on algebraic set G but is not regular

nezi- P2 = Append [RandomReal [{-5, 5}, 2], 0];
tangentVectorJMD [G, p2, {x, Y, z}]

{4.52064, -4.0333, 0}

ounss- {0, 0, 0}

Finally, any other point is not on the set.

miss- p3 = RandomReal [{-5, 5}, 3];
tangentVector3D [{-5, 5}, p3, {X, Yy, z}]

{-4.90776, -2.23185, 4.7079}

oupres- Fail

So this set has infinitely many regular points but also infinitely many non-
regular points, so it is not a curve so even though it is given by 2 equations in
3 unknowns it is not a curve.
Cyclic 4
Here is well studied curve in R*, the Cyclic 4. We will examine this further later on in this Chapter.
mice- CA={W+X+Y+Z, WX+XY+YZ+ZW, WXY+XYZ+YZW+ZWX, WXYyz-1};

We note that for any random number r, possibly complex, the points {r, 1/r, —r, —1/r} and
{r, =1/r, —r, 1/r} are solutions.

nizer- Clear[r]
C4 /. Thread [{w, X, y, z} = {r, 1/r, =r, =1/r}]
C4 /. Thread [{w, X, Y, z} = {r, =1/r, =1, 1/r}]

iz {0, 0,0, 0}
oupeo {0, 0,0, 0}

But not all these points are regular

miza- r = RandomReal [{-4, 4}]

-0.30827

SpaceCurveBook_v2c.nb | 23

nize- tangentVectorJMD [C4, {r, 1/r, -r,=1/r}, {W, X, Y, Z}]
tangentVectorJMD [C4, {r,-1/r, -r, 1/r}, {wW, X, Y, z}]

{0.0668952, -0.703935, -0.0668952 , 0.703935 }

{-0.0668952 , -0.703935, 0.0668952, 0.703935}

Butif r = £1 or r = £i then

mnisi= K= 1;

tangentVectorJMD [C4,{r, 1/r,-r,-1/r}, {W, X, Y, z}]

tangentVectorJMD [C4, {r, -1/r, -1, 1/r}, {W, X, Y, Z}]
{1,1,-1,-1}

{0, 0, 0, 0}

{1,-1,-1,1}

cures {0, 0,0, 0}

r=-1;

tangentVectorJMD [C4, {r, 1/r, -1, -1/1}, {W, X, Y, Z}]
tangentVectorJMD [C4, {r,-1/r, -r, 1/r}, {wW, X, Y, z}]

{-1,-1,1,1}
{0,0,0,0}
+1,1,1,-1)
{0,0,0,0}
miez= =15

nisei- tangentVectorJMD [C4, {r, 1/r, -r,=1/r},{w, X, Y, z}]
tangentVectorJMD [C4, {r,-1/r,-r, 1/r}, {wW, X, Y, z}]

{, i, i, i}

{0,0,0,0}

{6, i, -i, -1}
s {0, 0,0, 0}

And similarly for —i. Thus this curve has 8 complex singular points. It can be shown that all
solutions are of this form and only these 8 are singular so the cyclic 4 is a curve.

A strange fact, discussed later in this chapter, is that the parametric curves

{r, 1/r, —=r, =1/r}, {r, =1/r, —r, 1/r} comprising the solution set of C4 are non-singular as
parametric curves. So singularity is based on the equation system rather than the geometry of the
point set. We have actually seen this before with plane curves x + y = 0 is non-singular but the
same solution set is given by (x + y)* = 0 where every point is singular.

One other general algorithm we can give at this point is a general critical
point finder. It does not work as well as criticalPoint3D for naive curves but

24 | SpaceCurveBook_v2c.nb

it will return some critical points using standard optimization techniques. It
does not give isolated points but it may identify possibly singular points by
repeated solutions. This method was suggested by the paper by [Wang,
Bican] but since the methods are not specifically related to this paper we
just give the code. The objective function is random so you might run this
several times.

Options [criticalPointsMD] = {solutions - Reals};
criticalPointsMD [F_, X_, OptionsPattern []] := Module [{uv, n, k, wbg, b},
n = Length [X];
k = Length [F];
uv = Table[u[i], {i, k}I;
b = RandomReal [{-1, 1}, {n, 1}];
Echo[X.b - RandomReal [{-1, 1}], "Objective Function "J;
wbg = Flatten [Expand [uv.Grad [F, X] - b]];
X 1. NSolve [Join[F, wbg], Join[X, uv], OptionValue [solutions]]]

Example 2.2.3 continued.

n4- criticalPointsMD [C4, {w, X, Y, z}]

{-0.00220762 +0.730347 w-0.564975 x - 0.446484 y +0.993358 z}

s {W, X, Y, Z}

niaer- cCp4 = criticalPointsMD [C4, {w, X, Y, z}, solutions - Complexes]

{-0.57865 +0.596792 w - 0.160889 x + 0.100207 y - 0.981373 z}

{{9.93591 x 107~ 1.4, -6.69459 x 10° + 1.4, 6.69474 x 107 + 1.4, -9.93606 x 107 - 1. i},
{1.-1.01799 x 107" 4, 1.+ 1.01799 x 10”7, -1.~ 592361 x 10~ §, -0.999999 +5.92361 x 10" i},
{-1.-6.95247 x 107" 4, -1.+6.95247 x 107" j, 1. -2.01104 x 10™" 7, 0.999999 +2.01104 x 10" i},
{1.+4.11075 x 107" 7, 1. - 4.11076 x 10" §, - 1.+ 6.44503 x 107 §, —0.999999 - 6.44503 x 10™" i}}

ms- Choplcep4, 1.47-6]

(0. 1.7,0.+1.4,0.+1.4,0.- 1.4}, {1., 1., ~1., ~0.999999},
{-1.,-1.,1.,0.999999}, {1., 1., ~1., ~0.999999)}

2.3 Macaulay and Sylvester Matrices

We first generalize the Macaulay and Sylvester matrices of my Plane Curve book to an
arbitrary number of variables. A problem often mentioned to me is that these matri-
ces can get quite large, for example even in only 4 variables a Sylvester matrix of order
10 of a system of 4 degree 5 polynomials has 505K entries and takes 13.5 seconds to
generate (64 bit,12 core 3.4GHZ Linux) while the Macaulay matrix of the same order
and degree has as many as 2860K entries and can take 76 seconds to generate. Analyz -
ing these matrices using singular value decompositions will take much longer. Fortu -
nately there are enough interesting examples already in 3-space that we will only

SpaceCurveBook_v2c.nb | 25

occasionally venture into higher dimensions.

The difference between the Macaulay and Sylvester matrices is that Macaulay matri -
ces are defined at a point and measure local properties. Essentially the rows are
germs of functions and can be truncated so monomial multiples of the defining
polynomials will appear even if the resulting degree is larger than the order. The
Sylvester matrix is independent of point and measures global properties. So if a
monomial multiple of a defining polynomial has degree greater than the order this
row is left out. This is why there are many more rows in the Macaulay matrix. For
either the number of rows is dependent on the defining polynomials so there is no
general count. The number of columns in both cases is always Length[expsMD[n,d]
where 7 is the number of variables and d is the order, that is Binomial [n+d,d].

Already in 1916 Macaulay defined the dual vectors to his arrays. Iimplement these by
the (right) null space of the Macaulay matrix as a column matrix, see for example
section 2.2 of our paper [DLZ: Dayton, Li, Zeng, Math Comp 80 (276), free from
ams.org/mcom]. Likewise we can also define the dual of a Sylvester matrix. Note that
dual vectors of a Macaulay matrix should not be truncated but the dual vectors of a
Sylvester matrix can be. So in a sense, the dual of a Macaulay matrix is a Sylvester
matrix and conversely.

One can, essentially, recover the Macaulay and Sylvester matrix from their duals by
taking the left nullspace. In afew cases later on constructions such as the important
transformation FLTMD or taking unions of curves require working with duals and
then taking the dual of the dual. Unfortunately the result can often be a system of
more equations than necessary and possibly higher degrees than necessary.

2.3.1 Construction of Macaulay and Sylvester Matrices.

As mentioned above these matrices can be large, therefore it is important to
have efficient methods for constructing these. Fortunately Mathematica has
adequate data manipulation methods which allow us to do that.

I generally use m to represent the order of a Macaulay or Sylvester Matrix,
this is the largest total degree of a monomial to be considered. The
columns of both types represent the monomials in given variables up to
total degree m. One can get a list of the monomials in the ordering used by
the routine mExpsMD. For example the columns of order 3 with 3 variables
{x, y, z} correspond to the following list.

mExpsMD[3, {x, y, z}]

2 2 2,3 2 2 2 2 .3 .2 2 3
(L, %Y, 2, X5, XY, XZ,¥°,¥2,2°, X*, XY, X" 2, XY", XY Z,XZ°, ¥°, ¥* 2,y 2°, Z°}

For Sylvester matrices the rows represent the coefficients of monomials in
this list of the multivariate polynomials defining a curve, or other algebraic
set, together with multiples of these polynomials by monomials of degree
small enough that the product is of degree less than or equal to m. For

26 | SpaceCurveBook v2c.nb

Macaulay matrices we apply a change of variables sending the given point to
the origin and then allow multiplication by all monomials of order less than
m but then truncating the result by dropping all terms of total degree

greater than m. If this truncating results in the zero row we do not add this
row to the Macaulay matrix.

Note that if m is smaller than the largest total degree of the equations the
Sylvester Matrix would be empty or will ignore some equations, so our
routine sylvesterMDwill refuse a result returning only an error message. On
the other hand, macaulayMD will return a result for any m = 1. As you will
notice in the applications we generally use small orders for the Macaulay
matrix but need larger orders for the Sylvester matrix. Although for the
same m the Macaulay matrix will have far more rows than the Sylvester
matrix it is misleading to say Macaulay matrices are larger since we use
smaller orders for the Macaulay matrices than the degrees of the equations.

In the rest this subsection I will explain the details of the construction, the
reader uninterested in these will skip to the next subsection.

Rather than using the actual variables, since only coefficients appear in these matrices we use
integer lists corresponding to the exponents of the monomials, so, for example, if our variables are

given as {x, y, z, w}then instead of the monomial x* z w?* we will use {2,0,1,3}. Note that our
variables are used in the order indicated in the last argument X. Here n is the number of variables.

Our first task is to create the list of possible exponents. We do this one degree at a time with a
recursive routine, essentially getting homogeneous monomials hence the “h”.

hExpsMD [n_, d_] := Module [{hps},
hps[0] = {Table[0, {n}]};
hps[m_] := hps[m] = DeleteDuplicates [
Flatten [Table[ReplacePart [p, i » (pLil + 1)1, {p, hps[m - 113}, {i, n}], 111;
hps[
di;

For instance

hExpsMD [4, 3]

{{3,0,0,0}42,1,0,0}1{2,0,1,0}{2,0,0,1}{1,2,0, 04 {1, 1, 1, 0},
{1,1,0,1}{1,0,2,0}{1,0, 1, 1},{1, 0, 0, 2}, {0, 3, 0, 0}, {0, 2, 1, 0}, {0, 2, 0, 1},
{0,1,2,0}40,1,1,1}4{0, 1,0, 2},{0, 0, 3, 0}, {0, 0, 2, 1}, {0, 0, 1, 2}, {0, 0, 0, 3}}

To get the list for all degrees up to d we use the trick

expsMD [n_, d_] := Drop[hExpsMD [n + 1, d], None, 1];

SpaceCurveBook_v2c.nb | 27

miss- - Timing[expsMD[4, 3]]

ourras- - {0.001096, {0, 0, 0, 0}, {1, 0, 0, 0}, {0, 1, 0, 0}, {0, 0, 1, 0}, {0, 0, 0, 1}, {2, 0, 0, 03, {1, 1, O, O3,
{1,0,1,03,11,0,0, 13,10, 2,0, 0}, {0, 1, 1, 03, {0, 1, O, 1}, {0, O, 2, 0}, {0, O, 1, 1},
{0,0,0,2},43,0,0,0,12,1,0,0},{2,0,1,0},1{2,0,0, 1},{1, 2,0, 0},{1, 1, 1, 0},
{1,1,0,1},{1,0,2,0411,0, 1, 1},{1,0, 0, 2}, {0, 3, 0, 0}, {0, 2, 1, 0}, {0, 2, O, 1},
{0,1,2,03,¢0,1,1,1}0,1,0,2},10,0, 3,0}, (0,0, 2, 1}, {0, 0, 1, 2}, {0, O, 0, 3}}}

constructing this list in about .001 seconds. Note, as an aside, that we can use this to get all the
monomials of degree less than or equal to d in an arbitrary set of variables.

119)= mExpsMD [d_, X_] := Module [{n},
n = Length [X];
Table [FromCoefficientRules [{p - 1}, X], {p, expsMD [n, d]}11;

mExpsMD [3, {x[1], x[2], X[3]}]
ourzor {1, X[11, X[21, X[3], X[11°, X[1] -+ x[2], x[1] - X[3], x[21", x[2] - x[3], X[3]°, X[1T, X[1]° (2],

X[11% X[3], X[1]X[21%, X[1] « X[2] « X[3], X[1] X[3]%, X[2]°, X[2] X[3], X[2] X[3]%, X[3]*}

Next we convert the built in CoefficientRules to an association adding missing monomials. As an
extra we calculate the total degree.

fAssocMD [f_, X_] := Module [{A, d, n, FA},
n = Length [X];
A = Association [CoefficientRules [f, X]];
d = Max[Table[Total[p], {p, Keys[A]}]];
FA = Association [Table[If[MissingQ [A[p]], p = 0, p - A[p]], {p, exps[n, d1}1];
{FA, d}]

nissi- FA = fAssocMD [1+3 x=-2 XY, {X, y}]

{<1{0,0} > 1,{1,0} » 3,{0, 1} » 0,{2,0} > 0,{1, 1} » -2,{0, 2} » O[>, 2}
We perform multiplication by a monomial by shifting and adding in missing terms.

shiftFAMD [FA_, q_, d_] := Module [{S, K, n},
K = Keys[FAJ;
n = Length [K[1]];
S = Association [Table[p + q = FA[p], {p, K}II;
Association [Table[If[MissingQ [S[p]], p = 0, p = S[pll, {p, exps[n, d1}11];

In the above example we multiply by monomial x * for use with order 4.

sFA = shiftFAMD [FAL11, {2, 0}, 4]

<[{0, 0} > 0,{1,0} - 0,{0, 1} » 0,{2, 0} » 1,{1, 1} » 0,{0, 2} » 0, {3, 0} » 3,
{2,1}>0,{1,2} > 0,{0,3} > 0,{4,0} - 0,{3, 1} » -2,{2,2} > 0,{1,3} > 0,{0,4} > 0>

Note we can recover our product x*(1+3x —2xy)

28 | SpaceCurveBook v2c.nb

FromCoefficientRules [Normal[sFA], {X, y}]

X +3x3-2x%y
Now we treat the special case of one equation

syIMD[f_, m_, X_] := Module [{FA, d},
n = Length [X];
{FA, d} = fAssocMD [f, X];
Iffld > m, Print["Degree error in syl"]; Abort[]];
Table[Values [shiftFAMD [FA, g, m]], {q, exps[n, m - d]}]];

misz- SYIMD[143 X =2 XY, 4, {X, y}] // MatrixForm

1300-2000 0000 0 0 0
0103000-20000 0 00
00103000 -2000 0 00

o " looo0o1 0030 000-20 00
00001003 0000 -2 0 0
00000 100 3000 0 -20

For the general Sylvester matrix case we apply the above equation by equation.
sylvesterMD [F_,m_,X_]:=Flatten [Table [sylMD [F[il,m,X],{i,Length [F]}],1];

The Macaulay matrix is similar with exception of using the following instead of syIMD in the one
equation case:

macaMD [f_, m_, p_, X_] := Module [{M, fp, FA, d, n},
fp = Expand [f /. Thread [X - X+ p]];
n = Length [X];
{FA, d} = fAssocMD [fp, X];
M = Table[Values[shiftFAMD [FA, g, m]], {q, expsMD [n, m - 1]}];
Select[M, AnyTrue [&, Abs[Htt] > 0 &] &]]

7- macaMD[1+3x-2xYy, 3, {-1/3, 0}, {x, y}] // MatrixForm

0350—200000
0003500—200
oooo3§oo-2o
loooo o003 2 0o
00000003 20
00000 O0OO0TO0O 3 2

To finish

Inf28)= macaulayMD [F_, m_, p_, X_] := Flatten [Table[macaMD [F[il, m, p, X], {i, Length [F]}], 11;

SpaceCurveBook_v2c.nb

Sylvester matrices will play a large role below. For those readers familiar
with contemporary algebraic geometry they essentially replace the concept
of ideal. So we give only two simple applications here which are multivari -
ate extensions procedures in Appendix 1 of our plane curve book.

2.3.2.1 Numerical Division of multivariate polynomials.

Given polynomials f, g of degrees d,, d, in variables X we note that we can
use sylMD to do matrix multiplication with the formulas

sylMD[f* g, d; +d,, X] = syl[f, d;, X].syl[g, d; +d,, X]
h = fxg=sylMD[h, d; +d,, X].mExpsMD[d, +d,, X]

Of course this will be about 100 times slower than the built - in Expand[f«g]
but it gives us a suggestion for undoing this multiplication :recover fby
multiplying sylMD[h, d, +d,, X]on the right by syllg, d; + d», X]™' . Of course this
rarely would be an invertible matrix but we can use the pseudo-inverse
instead. This gives us the procedure, using the faster FromCoefficientRules
instead of multiplying by mExps:

nDivideMD [h_, g_, X_, tol_] := Module[{n, |, m, d1, d2, P, S, f, ex},

n = Length [X];

d1 = tDegMD [g, X];

d2 = tDegMD [h, X];

If [d1 > d2, Print["Does Not Divide "]; Return [Fail]];

P = Pseudolnverse [N[sylMD[g, d2, X]], Tolerance - tol];

S = Chop[sylMD[h, d2, X].P];

ex = expsMD [n, d2 - d1];

| = Length [ex];

f = FromCoefficientRules [Table[ex[il » SI1, il, {i, }1, X];

Iff[Norm [Flatten [syIMD [f x g - h, d2, X]]] > d2 « tol,
Print["Does not divide at this tolerance "];
Return [Fail]];

fl;

Of course you cannot use this on arbitrary h, g but, especially with numeri -

cal polynomials, even if & does factor we probably need to use a looser
tolerance than dTol.

We divide three variable polynomials h by g

mig- h=10+36x+38 x> +4x3-28x*-28y-70xy-16x"y+92x>y-19y*-64xy*-57 x> y*+40y> -
5xy*+25y*-342-76x2-2x"2-6x>2-21yz-98Xyz+69Xx°yz+92y*z-14xYy* z+
65y’ 2+4722+94x 2> -5x* 22 +2yZ*+58xyz* -14y* 7 -402°-35x 2> - 65y 2* + 25 2*;

g=5+8Xx-7TxX -4y+9xy-5y°-2z-5xz-4yz+527%

30 | SpaceCurveBook v2c.nb

nDivideMD [h, g, {x, y, z}, dTol]

2.+4.X+4.X* 4. y-8.Xy-5.y"-6.2-2.X2-9.yz+5. 7>

This idea can be extended to finding the greatest common divisor of 2 n-
variable polynomials. In my plane curve book I give the code in the case of 2
variables but it is easily extended to the general n-variable case. The code is
in my GlobalFunctionsMD notebook. For more information on this algo -
rithm see our paper [Zeng,Dayton 2004].

2.3.2.2 The Membership Problem

When using more than 2 variables a more common and important question
than GCD finding is the ideal membership problem given polynomial g in n-
variables X is it a polynomial combination of n-variable polynomials

i fil?

The easiest way to handle this in general is as follows. Set a tolerance 7
which could be dTol for or weaker for numerical systems. Suppose tDeg[gX] =
dg. Then we calculate the ranks by

S = sylvesterMD[{f,, ..., fi}, m;, X];
rl = Length[SingularValueListS, Tolerance » 7]]
r2 = Length[SingularValueLisAppend[S, syIMD[g, m;, X][1]], Tolerance -]]

starting with m; = Max [{ fir oo fo dg‘}] If these are equal then g is a mem -

ber. If not then let m, = m; + 1 and try again. We continue this way for a
few more tries but give up after about 3 or 4 tries concluding that g is proba -
bly not a polynomial combination of {fj, ..., fi}.

fl=x+y-2z+y2* -2
f2=-x’+y-xy+2xz-2>-xyz>+xz*;

g=X+y-2z
We can take m, =5

- S = sylvesterMD [{f1, f2}, 5, {X, Y, z}];
rl = Length [SingularValueList [S, Tolerance - dTol]]
r2 = Length [SingularValuelList [Append [S, syIMD[g, 5, {x, y, z}][1]], Tolerance - dTol]]

ouize= 5

These are not equal. Trying m, = 6 they still are not equal, but

SpaceCurveBook_v2c.nb | 31

S = sylvesterMD [{f1, f2}, 7, {x, y, z}];
rl = Length [SingularValueList [S, Tolerance - dTol]]
r2 = Length [SingularValueList [Append [S, sylMD[g, 7, {x, y, z}][1]], Tolerance - dTol]]

30
urso- 30

So g is a polynomial combination of {f1, f2}.

Things can be much worse, that is the final m; could be much bigger than
m; and as formulated there is no stopping criterion in this method to con -
clude that g is not a polynomial combination of the f;. In the next section
2.4 we will see that there is a defect in the curve system {f;, f>}, we should
have g and one more polynomial in our system and then the first try will be
definitive.

The main application of Macaulay matrices is Macaulay’s original applica -
tion, the computation of intersection multiplicity. For this application we
will have a system of n or more equations in n variables, n = 2, and an
isolated solution. In our case isolated means a solution point p such that
there is no other solution point g such that Norm[p-ql<e for some € > 0. In
particular p will not be a regular point of a curve.

A full description of this algorithm is given in [Dayton-Li- Zeng] where we
emphasize that multiplicity is not just a number. This was known but not
well known previously. We describe this concept with a sequence called,
historically, the Hilbert Function although the reader is forewarned that
there are other different sequences with this name in the literature and even
in this book where in addition to this localHilbert Function there is a global
Hilbert Function. Essentially this measures the change in dimension of the
null space of the Macaulay matrix of order m as m increases. The first term
(m = 0) of the Hilbert Function should be 1 indicating that point p is a zero
of our system. The second term (m = 1) we call the breadth which is also
known as the embedding dimension by algebraic geometers, it is always less
than n. The fact that p is isolated implies that the numbers in this Hilbert
Function become zero at some point, once this happens it will continue to
happen if we calculated further. The order of the last non-zero number in
the Hilbert function we call the depth which should not be confused with
Macaulay’s notion of depth. Finally the sum of all non-zero numbers in the
Hilbert Function is simply called the intersection multiplicity, or just

32 | SpaceCurveBook v2c.nb

multiplicity.

As mentioned above in section 2.3.1 the Macaulay matrix for large m, n can
be very large already when m or nis greater than 3. Thus calculating null
spaces can be time consuming. Therefore I give several algorithms for
multiplicity.

The first is our original which requires the user to guess an upper bound for
the depth. It is the only version that gives the Hilbert Function. Usually this
is a small number so the calculation will be quick. If the depth turns out to
be large this version stops before termination so as not to force the user to
wait. On the other hand this version does not halt at the first occurrence of
0 in the Hilbert function. In order to make this as fast as possible we calcu -
late only the final Macaulay Matrix and deduce the Hilbert function from
that.

We need two subroutines. The first, nrrefis simply a numerical version of
the reduced row echelon form, the code, in GlobalFunctions.nb will be
discussed in the next subsection. This nrrefdoes return a sequence which
allows computation of the Hilbert function. Here is that algorithm.

Options [hilbertFunctionMD] = {diff - False};
hilbertFunctionMD [p_, m_, n_, OptionsPattern []] :=
Module [{h}, h = Table[Binomial[d+n-1,n-1]-
Length [Select[p, Binomial[d+n-1, n] < & < Binomial [d +n, n] &]], {d, 0, m}];
If[OptionValue [diff], Differences [Prepend [h, 0], h]]

Then the multiplicity algorithm is

multiplicityOMD [F_, m_, p_, X_, tol_] := Module [{M, n, |, A, h},
n = Length [X];
M = macaulayMD [F, m, p, X];
{l, A} = nrref[M, tol];
h = hilbertFunctionMD [l, m, n];
Echofh, "hilbert Function "];
Echo[Length[Select[h, # > 0 &]]-1, "Depth "];
Iffhim + 11 > 0, Echo[hlln + 11, "Warning : use higher m"]j;
Total[h]]

Here F is the equation system, m is the maximum order to compute, p is the
isolated solution point, X is the set of variables and tol is a desired tolerance.
For numerical systems, in particular, this can make a difference, for example
a very loose tolerance can pick up nearby isolated points. But the reader
should be aware that, for high depth, computation of intersection points
accurately is a problem, see our paper [Dayton-Li-Zeng]. A loose tolerance

SpaceCurveBook v2c.nb | 33

can make up for an inaccurately calculated intersection point. Note the
built-in function Timingreturns the time of execution and the value. If the last
entry of the Hilbert function is not 0 a warning message is given.

Consider the two variable system at {0,0}
nzs- F={X"2=yA24X"3,xN2-y"2+y"3};

misi- - Timing[multiplicityOMDIF, 6, {0, 0}, {x, y}, dTol]]

{1,2,2,1,1,0,0}

{0.038308, 7}

Our second version recalculates the Macaulay matrix at each step, but it
stops at the first 0 in the Hilbert function so, since low multiplicities are the
most common, is usually the fastest although this could run along time if
the depth is large. The user does not need to give an upper depth. The
subroutines are not necessary.

multiplicityMD [F_, p_, X_, tol_] := Module [{ttd, svdl, cols, rnk, k, M, h, dh, hk},
ttd = Total [tDegMD [, X] &/@ FI;
k = tDegMD [FI 11, X];
dh =1;
h = 0;
While[k < ttd && dh > 0,
M = macaulayMD [F, k, p, X];
cols = Last[Dimensions [M]];
rnk = Length [SingularValueList [N[M], Tolerance - tol]];
hk = cols - rnk;
dh = hk-h;
h = hk;
k++];
h]

mizz- Timing[multiplicityMD[{x*2-y 24+ x/3,xA2-y"24+yA3}, {0, 0}, {x, y}, dTol]]

{0.033905, 7}

The final version assumes the maximal depth will be less than the sum of
the total degrees of the equations. This seems to be valid, although the
author has no proof. The advantage is the code is short but the answer is
not guaranteed unless the multiplicity is less than the sum of total degrees.

34 | SpaceCurveBook v2c.nb

multiplicity2MD [F_, p_, X_, tol_] := Module [{ ttd, M, svdl, cols, rnk, h},
ttd = Total[tDegMD [, X] &/@ F];
M = macaulayMD [F, ttd, p, X];
cols = Last[Dimensions [M]];
rnk = Length [SingularValueList [N[M], Tolerance - tol]];
cols - rnk]
Timing[multiplicity2MD[{x*2-y A2+ x/3,x*2-y"*2+y"3}, {0, 0}, {x, y}, dTol]]
ourrss- {0.040724, T}

Here is a numerical example:
e {a, b, ¢} = N[{Sqrt[71, Sqrt[11], CubeRoot [291}]
uize- {2.64575, 3.31662, 3.07232}
nzss- FO = Expand [
{(x=-a)A3+(y-b)A2+(z-c)"2,(x-a) 2+ (y-b)"3+(z-Cc)*2, (x-a)"2+(y-b)A2+(z-Cc)"3}]

ouzss- {1.91887 +21.x~-7.93725 X’ +X° - 6.63325 y +y* - 6.14463 z+ 2,
-20.0437 - 5.2915 x + x> +33.y-9.94987 y* +y* - 6.14463 z+ 2°,
-11.-5.2915 x+X* - 6.63325 y +y’ +28.3174 - 9.21695 z* + 2°}

nes7- sol = {X, Y, z} I. NSolve [FO];
p = sol[16]

ouzss- {2.64575 +8.33743 x 107° 7, 3.31662 +4.84024 x 107° 7, 3.07232 -2.09602 x 107*° 7}

We first try multiplicityOMD to actually see what is happening

Timing [multiplicityOMD [FO, 4, p, {x, ¥, z}, dTol]]

{1,0,3,3,1}

e {0.494936, 8}
Timing [multiplicityOMD [FO, 4, p, {X, Y, z}, 1.+"-61]]
{1,3,3,1,0}
upzes- {0.263942, 8}

In both cases we get the same multiplicity but with tighter tolerance the
wrong Hilbert function.

Now using the other methods

SpaceCurveBook v2c.nb | 35

- Timing[multiplicityMD[FO, p, {x, y, z}, 1.x"-6]]
Timing[multiplicity2MD[FO, p, {x, y, z}, 1.+"-6]]

{0.057562, 8}
(3.0274, 8

In this case we see multiplicityMD is the fastest but if we tried it with dTol per -
haps getting the correct answer was luck.

2.3.3.2 Tangent Vectors

Our function tangentVectorJMD works in simple cases but may not work in near
singular cases. An alternate uses the local property of the Macaulay matrix
and gives some information about singular points encountered. Unlike the
multiplicity finders above we do not expect to apply this to an isolated point
so we will use a global Hilbert function rather than the local one used above.
These Hilbert functions are related in some sense as integrals or derivatives
of each other. The discrete built-in functions Accumulate and Differences will
connect these two Hilbert functions.

Our function nrref mentioned above is very important here so we give the
code.

nrref[M_, eps_]:= Module[{p, P, j, R, mn,n,r,s, U, S, V},
{U, S, V} = SingularValueDecomposition [N[M], Tolerance - eps];
r = Length [Select[Diagonal [S], £ > 0 &]]; (* rank =)
R = Take[Transpose [V], r]; (* row space of M %)
mn = Dimensions [R];
n=1;
While[Norm[Take[R, All, {n}]] < eps, n++];
p = {n}
For[j=n,j> 0, j++,
Iffmn[1] < Length[p], Break[],
p = Append p, jl;
P = Check[RIALl, pl, Abort[]];
s = Length [Select [SingularValueList [N[P], Tolerance - eps], & > 0 &]];
If[s < Length [p],
p = Drop[p, -1J;, Null];

I
P = R[All, pI;
{p, Chop[Inverse[P].R]}]

We consider example 2.2.1 the twisted cubic at {2,4,8}.

36 | SpaceCurveBook v2c.nb

neo7r- twCubic = {xz-y"2,y-x"2,z-xy};
p=1{2,4,8}
We calculate the Macaulay matrix at p for m = 2 since we are basically only interested in the linear
part.
wie- M = macaulayMD [twCubic, 2, {2, 4, 8}, {x, Y, z}];
M /I MatrixForm

0O 8 -82 0 0 1 -1 0 O
0O 0 0 0 8 -82 0 000
o o0 0 0 O 8 0 -8 20
o o0 0 0 O O 8 0 -82
0 -4 1 0 -1 0O 0 0 O
o o0 0 0-41 0 0 0O
0O 0 0 0 O -4 0 1 00O
0O 0 0 0 O O -40 10
0 -4-210 -10 0 000
0O 0 0 0 -4-21 0 00O
0 0O 0 0 -4 0 -2 10
o0 0 0 O O -4 0 -21
Next we apply nrref
msre- {pV, M2} = nrref[M, dTol];
pv
M2 /I MatrixForm
ouse- {2,3,5,6,7,8,9}
0 1. 0 -0.0833333 0 0 0 O O 0.00347222
0 0 1. -0.333333 0 0 0O O O 0.00694444
0 0 O 0 1. 0 0 0 O -0.00694444
o - 0 0 O 0 0 1. 0 0 0 -0.0277778
0 0 O 0 0 0 1. 0 0 -0.0833333
0 0 O 0 0O 0 0 1. 0 -0.111111
0 0 O 0 0O 0 0 01 -0.333333

Columns 2, 3, 4 give the linear span of these equations which, since we have a curve should be of
dimension n -1 =2.

msa7- vl = {1, 0, -0.08333333333333334" };
nv2 = {0, 1, -0.3333333333333334" };

Note that

Normalize [N[tangentVectorJMD [twCubic, p, {x, Y, Z}]]]

Normalize [Cross[nv1, nv2]]

{0.078811, 0.315244 , 0.945732}

ourzo- {0.078811, 0.315244, 0.945732}

SpaceCurveBook_v2c.nb

give the same result. In the case of general n the analog of the cross product of n — 1 rows is the
last row orthogonal completion of these rows

Orthogonalize [{nv1, nv2, RandomReal [{-1, 1}, 3]}] // MatrixForm

0.996546 0. -0.0830455
-0.0261796 0.949011 -0.314155
-0.078811 -0.315244 -0.945732

This is the idea behind our algorithm

Options [tangentVectorMD] = {tol » 1.#"-7, ord - 4, hilbertFunction - True};
tangentVectorMD [F_, p_, X_, OptionsPattern []] := Module [{M2, n, pv, orth, J, hf},
If[OptionValue [ord] < 2, Echo["ord must be at least 2"]; Abort[]];
n = Length [X];
{pv, M2} = nrref[macaulayMD [F, OptionValue [ord], p, X], OptionValue [tol]];
If[AnyTrue [Flatten [Take[M2, All, 1]], Abs[#] > OptionValue [tol] &],
Echo[p, "Not a solution, p ="];
Return(]];
hf = hilbertFunctionMD [pv, OptionValue [ord], n];
If[OptionValue [hilbertFunction 1, Echo[hf, "Hilbert Function "]];
Iffhf[OptionValue [ord]+ 1] == 0, Echo["point may be isolated ", "Warning "]J;
Iffhfl2] == 1, Return [Take[Orthogonalize [
Append [M2[1 ;; n-1, 2 ;; n+ 1], RandomReal [{-1, 1}, n]]], -1][1]],
Echo[p, "No unique tangent vector at "]];
Null];

tangentVectorMD [twCubic, p, {x, y, z}, ord - 2]
{1,1,1}

ourzs- {-0.078811, -0.315244 , -0.945732 }

Increasing the order of the Macaulay matrix gives more of the Hilbert
function. Since this is the accumulation of the local Hilbert function this
stabilizes at the multiplicity. In this example we had a regular point so the
multiplicity is 1. We could use this to calculate 2-dimensional singularities,
note the first argument of tangentVectorMD is a set so even with one equa -
tion we need set braces.

tangentVectorMD [{xy (x-Y)}, {0, 0}, {x, y}]
{1,2,3,3,3}
{0, 0}

Compare with

38 | SpaceCurveBook v2c.nb

nsaer- singPointMult2D [xy (x-y), {0, 0}, X, y, dTol]

3

Applying to a system with only isolated solutions

tangentVectorMD [{xz-y, yz-x"2-x,z"2-x"2-1},{0,0, 1}, {x, Y, z}]
{1,1,0,0,0}
point may be isolated

{-0.707107, -0.707107, 0.}

we get a tangent vector but it has multiplicity 0.
Going back to example 2.3.3 the cyclic-4 curve

CA={W+X+Y+Z, WX+XY+YZ+ZW, WXY+XYZ+YZW+ZWX, WXxyz-1};
tangentVectorMD [C4, {1, -1, -1, 1}, {w, X, Yy, z}]
{1,2,1,1,1}
{1,-1,-1,1}

we have a singular point of multiplicity 1. We will explain later.

2.4 H-bases

We saw in Example 2.3.2.2.1 that there is a lack of a stopping point in the
membership problem but is was suggested that an equation system could
be modified so that only one step is needed. This is the main thrust of this
section is to describe a type of equation system where this is true.

However there are infinitely many equations that any given curve, or more
generally algebraic set, will satisfy. Several algorithms we will see generate a
large number of these and we want to pick a good, but relatively small,
equation set. The equation sets that satisfy the previous paragraph are good
candidates for this.

Fortunately Macaulay in the same 1916 book where he described his
Macaulay matrix did come up with an answer. He was using homogeneous
equations for projective space and so called this an H-basis. Some authors
use the name Macaulay basis for this. In this book , even though we recog -
nize that algebraic curves live in projective space, prefer working in affine
space as it is more algorithm friendly. It turns out that H-bases work fine in
affine space too.

A system of polynomial equations in n variables is a H-basis if the member -
ship problem can always be solved in one step. Specifically a system
F ={fi, f>, ..., fx} of polynomials in n-variables is an H-basis if given any n-

SpaceCurveBook v2c.nb | 39

variable polynomial g of degree d it is a polynomial combination of the
polynomials of F if and only if there exist polynomials {gi, ..., gk} so that

gifi +g,f, + - +gcfk = h with each g;f; of total degree < d

In particular suppose k = 3, fjislinear, f,is quadratic and f; is cubic. If his
linear then to be a polynomial combination of H-basis F = {fj, f>, f3} then h
must be a constant times f;. If h is quadratic it can be a linear times f; plus
a constant times f,. If h is cubic it can be a quadratic times f; plus a linear
times f, plus a constant times f3. And so on.

H-bases do exist and every polynomial system is a subset of an H-basis. We
will see that Mathematica has a built-in algorithm GroebnerBasis to find one.
This algorithm uses abstract algebra so we will not try to explain here how it
works. A simple introduction to Grobner bases is given at the beginning of
the book by [Cox,Little and O’Shea] but unfortunately I do not know of an
elementary exposition of H-bases that does not require lots of algebra. My
position in this book has always been that any algorithm of Mathematica
does not require my explanation. The big problem using GroebnerBasis is that
this algorithm is intended for integer systems only. Mathematica will try to
handle numerical systems but we can’t rely on this working.

If F is a H-basis any larger system is also an H-basis. The trick is to find a
small H-basis and in the rest of this section I will concentrate on this.

This algorithm (revised 5/2020) which takes a large polynomial system and
attempt to find a small H-basis. It will not give an H-basis if the argument
m is not large enough, unfortunately one cannot know what m is large
enough in advance. One can check with hBasisMDQ below. The big advantage
of this version of hBasisMD is that it works fine with numerical systems
which will occur in applications.

There are essentially three steps in this algorithm. The first step is to calcu -
late the Sylvester Matrix for the user given m and use the singular value
decomposition to find a full rank row space. For numerical systems this
essentially replaces the possibly numerically inconsistent input system with
a least squares approximation of a consistent system. We then apply a
reverse row reduction to find polynomials of small degree among polynomi -
als combinations of the now consistent input system. This is the essential
reason for H-bases. These first two steps are contained in the more general
matrix reduction procedure arref below. The final, third, step is to return the
resulting Sylvester matrix back into a polynomial system and use the mem -
bership problem solution to reject polynomials which are already polyno -

40 | SpaceCurveBook v2c.nb

mial combinations inside the vector space of polynomials of degree m or
less of preceding accepted polynomials. The output is what is left after the
rejections.

arref[M_, eps_] := Module[{p, P, j,r,s, R, mn, n, U, S, V},
{U, S, V} = SingularValueDecomposition [N[M], Tolerance - eps];
r = Length [Select[Diagonal [S], # > 0 &]]; (* rank *)
R = Take[Transpose [V], r]; (x row space of M x)

mn = Dimensions [R];

n = mn[2];
While[Norm[Take[R, All, {n}]] < eps, n—1;
p = {n};

For[j=n-1,j>0, j——,
Ifimn[1] < Length [p], Break[],
p = Prepend [p, jl;
P = Check[RIAll, pl, Abort[]];
s = Length [Select[SingularValueList [N[P], Tolerance - eps], & > 0 &]];
If[s < Length [p],
p = Drop[p, 1];, Null];
I
I
P = R[All, pI;
{p, Chop[Check[Inverse [P], Abort[]].R]}]

The idea is that arref will allow us to pick out polynomial combinations of
our input of lowest degrees. We look at a previous example:

We consider example 2.3.2.2.1 where we found a linear
polynomial that was a polynomial combination of a fourth and fifth degree
polynomial.

fl=x+y-2z+yz* -7

f2=-x*+y-xy+2xz-22-xyz> +xz";
We start by picking m = 6 and calculating the Sylvester matrix and its arref decomposition.

S6 = sylvesterMD [{f1, f2}, 6, {x, y, z}];
{p6, A6} = arref[S6, dTol];
Length [p6]

o2 14
This last number says we have created 14 polynomial combinations of {f1,f2}. Lets look at the first 5

Take[A6, 5].mExpsMD [6, {x, y, z}]

{-Ly+172, -1.xy+1.x2%, -Ly*+1.yZ, -l.yz+1.2°, -1.x-L.y-1.y*+2.z+ 1.7%}

SpaceCurveBook_v2c.nb | 41

mso- ST = sylvesterMD [{f1, f2}, 7, {x, y, Z}];
{p7, AT} = arref[S7, dTol];
Length [p7]
Take[A7, 5].mExpsMD [7, {x, Y, z}]

30
{-05%x-05y+1.7,-1.y+1.2%, -1.xy+1.x2°, -1.y*+1.yz*, -1.yz+1.7°}

So we have produced our linear polynomial and can hope that m = 7 is large enough, that is that
from these 30 polynomial combinations we can get all polynomial combinations of {f1,f2} without
relying on cancellation of terms to do our work.

So the algorithm hBasisMD creates a list of polynomial combinations A using
arref that we hope is a building block for all polynomial combinations of our
input system. The first entry of A is becomes an element of our proposed H-
Basis H and we proceed to go down the list A using our membership prob -
lem method to test if it is a polynomial combination of the previous choices.
If not we add it to our list H. So we hypothesize that every polynomial
combination of our input system is an appropriate combination of polynomi -
als in the list A which in turn are appropriate combinations of our list

H. The code follows:

42 | SpaceCurveBook_v2c.nb

hBasisMD [F_, m_, X_, tol_] := Module [{n, p, S, A, a, Sa, H, H1, r, s, s1, k, temp},
n = Length [X];
H={
H1={};
S = sylvesterMD [F, m, X];
{p, A} = arref[S, tol];
Echo[hilbertFunctionMD [p, m, n], "Initial Hilbert Function "J;
r = Length [p];
H1 = {A[1].mExpsMD [m, X};
H = H1;
S = sylvesterMD [H, m, X];
s = Length [SingularValuelist [S, Tolerance - tol]];
k = 2;
While[k < r,
H1 = Append [H, ATk].mExpsMD [m, X]];
Sa = sylvesterMD [H1, m, X];
sl = Length [SingularValueList [Sa, Tolerance - tol]];
If[sl >s,s =sl; H=H1];
If[r > 30 && Mod[k, 10] == 0,
temp = PrintTemporary [" ", k, "of ", rl;
Pause[3];
NotebookDelete [temp]];
k++];
S = sylvesterMD [H, m + 1, X];
{p, A} = arref[S, tol];
Echo[hilbertFunctionMD [p, m, n], "Final Hilbert Function "];
H];

Although this code is fairly simple we are finding the rank of increasingly
large matrices. This can take along time. A new feature (5/2020) is if Ahas
many rows then the procedure gives temporary output of progress. This
could give the user a chance to abort the procedure if the user does not wish
to wait. Unlike previous versions there are no options available. A global
Hilbert function of the original system and the H-basis are given, ideally the
second Hilbert function will stabilize. If not you may wish to try a larger m
or to use the algorithm hBasisMDQ below to test the output of this
algorithm.

Example 2.4.1.1 Continued. We use the algorithm to calculate a H-basis for
{f1,2}.

Timing [hBasisMD [{f1, f2}, 7, {x, y, z}, dTol]]

SpaceCurveBook_v2c.nb | 43

{1,2,5,7,9, 18, 22, 26}
{1,2,2,2,2,2,2,2}

outizs- {44.5493,{-0.5x-0.5y+1.z,-1.y+1.2°}}

Typically hBasisMD is used as a subroutine for other algorithms which return a
large set of polynomials to get a smaller set, not necessarily an actual H-
Basis. This will terminate with a warning message if some of the input
polynomials have degree greater than m. Then the one thing that should
always happen is that the set H returned will at least generate the input set,
so even if one does not get an H-basis something useful is returned.

But one will not get an H-basis if two small an m is used. There is no easy a-
priori method to guess a large enough m but the algorithm in this subsec -
tion should be able to check to see if you do have an H-basis.

So you can use the output from hBasisMDin hBasisMDQ. If using hBasisMD as a
stand-alone procedure you may wish to run hBasisMDQ first to see if you
already have an H-Basis and to get a value of m that should work.

hBasisMDQ works by comparing the input system with a known H-Basis. By
default this the output of the built-in Mathematica function GroebnerBasis
with option MonomialOrder-sDegreeLexicographic. As mentioned before this is not
cheating the reader as I have never promised to explain built-in functions,
only my own. Normally Grobner Bases only work for systems with integer
coefficients, Mathematica’s will attempt numerical systems but I offer no
guarantees. In particular GroebnerBasis will flag inconsistent systems and
abort. An over-determined numerical system that may be fine in other
places in this book may look inconsistent to GroebnerBasis.

The syntax is hBasisMDQ[F,H, X, tolJwhere F is your known system, H is the
system you wish to check to see if it is an H-basis. As usual X is the variable
set, and tol is desired tolerance. Note that m is not used as input so one
does not need to know m beforehand. Here, especially, the order of the
variables matter, Lexicographicis respect to the order in X for instance the
built in MonomialList used in GroebnerBasis returns a different list depending on
the way the variables are listed:

MonomialList{(x+y+2z) "3, {x, y, z}, "DegreelLexicographic"]
MonomialListi(x+y+2z) 3, {z, y, X}, "DegreeLexicographic"]

(%,3x%y,3x°2,3xy%, 6xyz,3x2°,y%, 3y’ 2,3y 2, 2’}

(2,3y7%,3x2%,3y%2,6xyz,3x°2,¥%,3xy?, 3x°y, X}

44 | SpaceCurveBook_v2c.nb

As an option hBasisMDQ will treat the first argument Fas a known H-basis and
check the argument H against that. This could be useful, for example, if one
has an H-basis but is concerned that it is not minimal. This may be, for
instance, the case for the H-basis returned by GroebnerBasis.

Our function hBasisMDQ gives an information notice with the size of the
Grobner Basis and a list of total degrees of polynomials present. In the case
above where the option useF-True this information refers to Frather than the
Grobner Basis which is not calculated. If it is determined that H is a Gréb -
ner basis the the procedure returns only the value True. Otherwise it stops at
the first instance an element of Fis not expressible in terms of the polynomi -
als in H. If the Grobner Basis (or optionally F) has polynomials of degree 1
but H does not then hBasisMDQ flags that fact and stops, doing no calculations.
Otherwise it gives the degree of the missing polynomial and which polyno -
mial of the Grobner Basis in that degree it is and halts. For the user’s conve -
nience this routine creates a global variable lastHBGroebner so this polyno -
mial can be retrieved.

Using the last sentence above the user could use hBasisMDQperhaps several
times to find a minimal H-basis from the Grobner basis, but if the Grobner
basis is large probably it is better to use hBasisMD with the m given by the
largest degree in the Grébner basis.

The procedure hBasisMDQ works by running the membership test above on
each member of the Grébner basis, or optionally the H-basis F. Here is the
code

SpaceCurveBook_v2c.nb | 45

Options [hBasisMDQ] = {useF - False};
hBasisMDQ [F_, H_, X_, tol_, OptionsPattern []] :=
Module [{G, m, j, degG, degH, selG, SH, SG, r1, r2},
G = If[OptionValue [useF], G = F,
G = GroebnerBasis [F, X, MonomialOrder - Degreelexicographic]1;
m = Max[tDegMD [#, X] &/@ G];
degG = Sort[DeleteDuplicates [tDegMD [#, X] &/@ G]];
G = SortBy[G, tDegMD [, X] &];
lastHBGroebner = G;
IffMemberQ [degG, 0], Echo["F not proper ideal"]; Return [False]];
Echo[{Length[G], degG}, "{size of Groebner Basis, degrees}"];
degH = Sort[DeleteDuplicates [tDegMD [, X] &/@ H]];
If[degG1] < degH[1], Echo[degG[1I, "No poly in H of degree "1;
Return [False]];
Catch[Do[SH = sylvesterMD [Select[H, tDegMD [#, X] < k &], k, X];
rl = Length [SingularValueList [N[SH], Tolerance - tol]];
r2=rl;
selG = Select[G, tDegMD [+, X] == k &];
j = Length [selG];
i=0;
While[rl == r2 &&i < j,
i++;
SG = sylMD[selG[il, k, X];
r2 = Length [SingularValueList [N[Join[SH, SG]], Tolerance - tol]]];
If[rl == r2, Continue [], Echo[{k, i}, "Problem at poly i degree k "];
Throw [Return [False]]],
{k, degG}1];

True]

Grébner bases may be large so this routine could take a long time to run,
especially if His an h-Basis. But since it stops at the first omission this
version does not give running information. Again, this could give a false
negative in the numerical case, but a return of True should be reliable.

,see 2.4.1.1

fl=x+y-2z+yz’-2*

f2=-x*+y-xy+2xz-2*-xyz>+xz*
hBasisMDQ [{f1, f2}, {f1, f2}, {x, y, z}, dTol]

{2,{1,2}}

False

Adding the previously known linear polynomial

46 | SpaceCurveBook v2c.nb

miso- hBasisMDQ [{f1, f2}, {f1, f2, x+y -2z}, {X, y, z}, dTol]
» {size of Groebner Basis, degrees}{2, {1, 2}}

» Problem at {degree, poly} {2, 1}

ourtso- Fa Ise

We see what we need from

miasi- lastHBGroebner

Oul[145]= {X +y- 2z, y- ZZ}

Example 2.4.2.2 Twisted Cubic (Section 2.1)

Consider the twisted Cubic first as a naive curve

mist- tw2 = {y-x"2,z-x"3};
hBasisMDQ [tw2, tw2, {x, Y, z}, dTol]
» {size of Groebner Basis, degrees}{4, {2, 3}}

» Problem at {degree, poly} {2, 2}

ourisz- Fa Ise

This is not an H-basis. So even without the geometric input of section 2.1 we need additional/dif -
ferent equations. The suggestion is

- lastHBGroebner
ousa {0 =y, xy=-2z,-y* +x2,y° - 7%}
But even this is bigger than necessary

mise- hBasisSMDQ [{x*2-y,xy-2z, Xxz-y 2}, {x"2-y,xy-2z, xz-y"2},{x,y, z}, dTol]

» {size of Groebner Basis, degrees}{4, {2, 3}}

oufisa- True
So the basis we found in 2.1 of thee quadratics is sufficient as an H - basis.

2.4.3 Application: Making slightly inconsistent numerical systems consistent.

The following example of 4 linear equations in 4 unknowns is motivated by
an example at the end of section 3.2.

SpaceCurveBook_v2c.nb | 47

o~ lsys = {0.277262174208273" +0.5144436627966619" x +
0.10598605713201434" y +0.8045124985078014" z,

0.7202433507070195" -0.626115747655119" x+0.27531975154910765" y+
0.1158776108984591" z,-0.258819002786987" -0.3361601677996709" x-
0.0989359825030034" y+0.9001226231727609" z, 0.4685805085964169" -
0.849601020102557" x+0.17911927833946" y-0.16287018674812506" z}

{0.277262 +0.514444 x+0.105986 y +0.804512 z, 0.720243 -0.626116 x+0.27532 y+0.115878 z,
-0.258819 -0.33616 x-0.098936 y +0.900123 z, 0.468581 - 0.849601 x+0.179119 y-0.16287 z}

mss- NSolve [lsys]

{

So this system in inconsistent. But
nssz- hsys = hBasisMD [lsys, 1, {X, Y, z}, 1.+"-8]
{1, 0}

{1, 0}

{1.x,2.61602 +1.y, 1.z}

nessr= {X, Y, Z} 1. NSolve [hsys]

{{0., -2.61602, 0.3}

is consistent.

2.5 Duality, Union , Intersection and decomposition of Curves.

Already in 1916 Macaulay talked about the dual to his Macaulay matrix.
Duality will play a small but important technical role in our considerations.

2.5.1 Duality

Given a matrix, generally a Macaulay or Sylvester matrix, M the dual matrix
is a matrix D with independent columns with the property that M.D =0
where here 0 represents the zero matrix of the appropriate size. Essentially
a dual matrix of M is just a matrix whose columns give a basis for the null
space of M. We will assume our matrix has numerical entries so instead of
using the built in NullSpace procedure we choose a tolerance and use the
following, see for example Appendix 1 of my curve theory book.

48 | SpaceCurveBook v2c.nb

dualMatrix[A_, tol_] := Module[{ns, r, c, U, S, V},
¢ = Dimensions[A][2];
{U, S, V} = SingularValueDecompositionN[A], Tolerance - tol];
r = Length[Select[Diagonal[S], # > 0 &]];
Take[V, All, r-c]]

Example 2.5.1.1 Consider the matrix

- M= RandomReal[{-1, 1}, {3, 5}];
M /I MatrixForm
-0.739775 -0.276164 0.648798 0.524576 -0.542521

MatrxForm 0.578205 -0.88494 0.0673685 -0.636653 0.309926
-0.900584 0.355809 0.975681 -0.0357853 -0.0451929

miee- D1 = NullSpace[M];
D1 // MatrixForm
D 2 = dualMatrix[M, dTol];
D 2 /I MatrixForm

0.540947 0.106097 0.497849 0.568587 0.353518
-0.468768 -0.28463 -0.284309 0.294731 0.729072

0.540947 -0.468768
0.106097 -0.28463
0.497849 -0.284309
0.568587 0.294731
0.353518 0.729072

In this case the difference is that dualMatrix gives a column vector rather than
giving the nullspace basis as rows. If we had used an integer matrix then we
would have

SpaceCurveBook v2c.nb | 49

nsa- A = Randomlnteger{{-9, 9}, {3, 5}];
A/l MatrixForm
D1 = NullSpace[A]; D1 // MatrixForm
D 2 = dualMatrix[A, dTol]; D 2 // MatrixForm
D 3 = Transpose[NullSpace[N[A]]]; D 3 // MatrixForm

8 -4 -1 2 3
-5-52 3 -5
4 9 3 1 8

-218 -159 -115 0 331
-70 119 -374 331 ©

-0.0879398 -0.487715

0.26806 -0.380637
-0.704857 -0.20789

0.646603 -0.0485011
-0.0741015 0.756095

-0.0879398 -0.487715
0.26806 -0.380637
-0.704857 -0.20789

0.646603 -0.0485011

-0.0741015 0.756095

So we see that for small well conditioned matrices we could use the formula
Transpose[Nullspace[N[M]]]
instead of dualMatrix.

On the other hand, the left dual space L of M is the matrix with indepen -
dent rows with £.M = 0. T have been calling it the localDualMatrix given by

localDualMatrix{A_, tol_] := Transpose[dualMatrix[Transpose[A], tol]];

Note that this is properly a row matrix, that is the rows form a basis for the
left null space.

Traditionally the dual of the Macaulay matrix was considered to be a space
of differentials describing the local structure. The left (or local) dual of this
should recover our original. We will typically be interested here in the dual
of the Sylvester Matrix with the left dual of that recovering our curve.

Consider the twisted cubic.
twCubic={x"2-y,xy-z, xz-y"2}

o (K=Y, Xy=2, -y +x2}

50 | SpaceCurveBook v2c.nb

miso- S2 = sylvesterMD[twCubic, 2, {x, y, z}]
D2 = dualMatrix[S2, dTol]

Out{180]= {{07 07 _1, 0, 17 07 O; 0: 07 0}; {O; 0, O: _1; 0, 17 07 07 0; 0}; {07 07 O; 0, O: 0: l: _17 07 0}}

{{0.,-0.707107, 0., 0.5, 0.5, 0., 0.}, {0.707107, 0., -0.707107, 0., 0., 0., 0.},
(0., 0.5, 0., ~0.353553, 0.353553, 0., 0.}, {0.5, 0., 0.5, 0., 0., 0., 0.},
(0., 0.5, 0., ~0.353553, 0.353553, 0., 0.}, {0.5, 0., 0.5, 0., 0., 0., 0.}, {0., 0., 0., 0.5, 0.5, 0., 0.},
(0.,0.,0.,0.5,0.5, 0., 0.3, {0., 0., 0., 0., 0., L., 0.}, {0., 0., 0., 0., 0., 0., L}}

This doesn't mean much to us. Now take the local dual of this

mez- LD2 = localDualMatrix{D2, dTol]

ousz {{-1.38778x 107, 1.51669x 107*°, 0.43613, -0.244521, -0.43613, 0.244521, -0.5, 0.5, 0., 0.},
{-1.11022x 107*, -3.07488x 107*°, 0.345805, 0.6 16781,
-0.345805, -0.616781, -1.73672x 107", -9.28866x 107", 0., 0.},
{6.93889x 107", -1.59101x 107, -0.43613, 0.244521, 0.43613, -0.244521, -0.5, 0.5, 0., 0.}}

But

mies- F = Chop[LD2].mExpsMD[2, {x, y, z}]

{-0.43613x +0.43613y+0.244521xy + 0.5y? - 0.2445212- 0.5x 7,
-0.345805x* + 0.345805Yy - 0.616781xy+0.616781z,
0.43613x%-0.43613y - 0.244521xy + 0.5y? + 0.2445212- 0.5 X 2}

is actually another system for the twisted cubic. But note
mies- hBasisMDIF, 2, {X, y, z}, dTol]
{1, 3,3}

{1,3,3}

{1.x*-1.y,1.xy-1.z,1.y"-1.x7}

is our original system! This is why H-bases and our hBasisMD are so useful.

2.5.3 Intersection and Union of curves.

The intersection of two curves is typically a point set. But to find the equa -
tion set one simply combines the two equations. For the twisted cubic
system above we noticed in Section 2.1 that the naive curves {x*—y, xy -z}
and {x y — z, y* — x z} each have an extra line but these extra lines are differ -
ent so the intersection {x*—y, xy — z, y* — x z} gives just the twisted cubic
without the extra lines.

The union of two space curves is more difficult. For plane curves we simply
multiplied the equations. But in space we have several equations for each.

SpaceCurveBook_v2c.nb | 51

The trick is to go to duals, duality takes unions to intersections and vice
versa. So we take the dual matrices of appropriate Sylvester matrices and
then join these, note same m. Then we take the local dual of the combined
dual matrix. The question is how big do we make the matrices. Here the
idea of H-bases helps. We make sure each Sylvester matrix is large enough
to contain an H-basis. And at the end we give the result as an H-Basis.

We will take the union of a line and the twisted cubic for a
relatively easy but non-trivial example starting from H-bases
(recommended).

twe = {x"2-y, xy-z, yr2-x2z};
In = lineMD [{-1, 1, -1}, {2, 4, 8}, {X, ¥, z}]

{0.12738 - 0.764319 x-0.477694 y +0.414004 z, 0.818223 +0.398339 x-0.414498 y + 0.00538627 z}

We don’t show the intermediate matrices but we do give their dimensions. First we calculate
duals of the Sylvester matrices

Dtwc = dualMatrix [sylvesterMD [twc, 3, {x, Y, z}], dTol];

Dimensions [Dtwc]
Dln = dualMatrix [sylvesterMD [ln, 3, {x, y, z}], dTol];

Dimensions [DIn]

ourzs- {20, 10}

ouriser {20, 4}

Join these column wise to get the dual of the union.

dualF = Join[Dtwc, DIn, 2];
Dimensions [dualF]

(20, 14}

Finally take the localDual and reduce by hBasisMD.

Fraw = localDualMatrix [dualF, dTol].mExpsMD [3, {x, y, z}];
Length [Fraw]
F = hBasisMD [Fraw, 3, {x, y, z}, dTol]

{1,3,4,4}
{1,3,4,4}
outiss- {-1.x*+1.y+l.xy-1.z,2.x*=2.y+ 1.y’ - 1.x2}
Even though the twisted cubic is not a naive curve, the union is, in fact this is a quadratic surface

intersection curve (QSIC), see section 3.2. An unintended feature of my hBasisMD function is that
even though the line was given by numeric equations the end result is integer! One could have

52 | SpaceCurveBook v2c.nb

exploited that immediately at the input level
hBasisMD [ln, 2, {x, Y, z}, dTol]
{1,1,1}
{1,1,1}

{-2.-1.x+1.y,-2.-3.x+ 1.2}

We will look at this example again. For now note that we could also calculate the intersection.
e NSolve [Join[twc, [n]]
ourrag- {}

But this is actually wrong, Mathematica does not like numerical systems of 5 equations in 3
unknowns! Using exact representations

miozi- {X, Y, 2} I. NSolve[Join[twc, {-2-x+Yy, -2-3 x+2}]]
ouproz- {{2.,4.,8},{-1., 1., -1.1}

We might expect a third point since we are intersecting a cubic and a line, but it is a well known
fact that no 3 points on the twisted cubic are co-linear [see Harris].

Note it is easy to plot this curve since both components are parametic

ParametricPlot3D[{{-1+3t,1+3t,-1+91t}, {t,t"2,t"3}},

{t, -2, 3}, ImageSize » Small, Boxed - False, Axes - False]

N

Another simple example: three lines.

One can go on for a long time constructing equations systems for unions of
lines in space, see for example my paper on [Numeric Lines].

mssi= |1 ={X, Y}
2 ={x,z};
B={z,y-1}

mser- DI1 = dualMatrix [sylvesterMD [l1, 3, {x, y, z}], dTol];
DI2 = dualMatrix [sylvesterMD [l2, 3, {x, y, z}], dTol];
DI3 = dualMatrix [sylvesterMD [I3, 3, {x, y, z}], dTol];
DG = Join[DI1, DI2, DI3, 2];
Dimensions [DG]

{20, 12}

SpaceCurveBook v2c.nb | 53

Graw = localDualMatrix [DG, dTol].mExpsMD [3, {x, y, z}];

Dimensions [Graw]

Out[204)= { lO}

In[205]. hBasisMD [Graw, 4, {x, y, z}, dTol]
{1,3,3,3, 3}
{1,3,3,3, 3}

oupzos- {-1.x+1.xy,1.xz,1.yz}

So this is the intersection of 3 quadric surfaces. In Section 3.2 below we
study the classification of curves given as the intersection of 2 quadric
surfaces, QSIC, and although there are examples with three lines, this shows
that not all unions of 3 lines in R3 are QSIC.

Here is one more example relevant to Section 3.2

ql ={x,y"2+z"2-1};

q2 ={z, x-y}

a3 ={z, x+y}

Dqgl = dualMatrix [sylvesterMD [q1, 4, {X, Y, z}], dTol];
Dg2 = dualMatrix [sylvesterMD [q2, 4, {X, Y, z}], dTol];
Dqg3 = dualMatrix [sylvesterMD [q3, 4, {x, ¥, z}], dTol];
DQ = Join[Dq1, Dq2, Dg3, 2];

Dimensions [DQ]

(35, 19}

nze- Qraw = localDualMatrix [DQ, dTol].mExpsMD [4, {x, y, z}];
Length [Qraw]

Out[129} 17

miso- Q= hBasisMD [Qraw, 4, {X, Y, z}, dTol]
{1,3,5,5, 4}
{1,3,5,5, 4}
outzo- {1.xz, -1.x° +1.xy*, -Lz+ 1.y z+1.2°, 1. X - L.x* - L.y’ + L.y* + 1.y’ %}
Since all the pieces can be parameterized it is easy to plot. Again this looks

similar to a QSIC but is not a QSIC. [See C. Tu, W. Wang, B. Mourrain, J.
Wang case numbers 23-26]

54 | SpaceCurveBook v2c.nb

2.5.4 Decomposition of reducible curves.

Unlike the plane case where the single equation of a reducible curve factors,
possibly with irrational complex coefficients, the equation system for a
reducible space curve, see our examples in the previous section, do not
factor. For Example 2.5.3.1 the two equations are give smooth quadric
surfaces and thus not factorable.

mies- {ContourPlot3D[-x*2+y+xy-z== 0, {Xx, -5, 5}, {y, -5, 5}, {z, -5, 5}, ImageSize » Small],
ContourPlot3D[{2Xx* -2y + y* - xz == 0},
{x, -5, 5}, {y, -5, 5}, {z, -5, 5}, ImageSize » Small]}

It is important not to confuse topological components with algebraic compo -
nents. For plane curves the simple example

mir7- ContourPlotly A2 == xA3-x, {x, -2, 2}, {y, -2, 2}, ImageSize - Tiny]

2

1

oulf117)= 0 O

show two topological components but this curve is irreducible. We will

SpaceCurveBook v2c.nb | 55

have plenty of examples like this for space curves later.

Another big difference between plane curves and space curves is the the
plane Bézout theorem says that a reducible curve with components of
degree d,, d, will have d; d, singular intersection points, possibly one of

d;, d, could be 1. We saw in the plane curve books that if this number is
large enough we can even use these points to factor. But reducible space
curves could have no singular points at all, for example a curve consisting of
two skew lines.

Without fully describing a space curve the only sure way to test for irre-
ducibility is to use one of the higher powered solvers such as [PHCpack] or
Bertini [Bates, Hauenstein, Sommese]. I give my solution to this problem
below but it may require plotting the curve first using methods later in the
book.

2.5.4.1 Dual Interpolation

We saw in Section 2.5.3 that duality takes unions to intersections, that is the
duals of components can have separate rows in the dual matrix. We exploit
this by considering the dual matrix of the curve and attempting to find
equations describing a given component. But first we need a technical
subroutine.

To try to explain, in principle the Sylvester Matrix of high enough order
contains all the information necessary to determine the curve. One prop -
erty of a curve is the Macaulay information at a point. Of could recover the
equation, perhaps using duality and hBasisMD and take the Taylor series at
that point which can be used to do a hand calculation of the Macaulay
matrix. Or figure out how this works within the dual matrix. At one point
your author did this in general but don’t ever ask him to show his work but
the answer is encoded in this Mathematica procedure.

56 | SpaceCurveBook v2c.nb

c2zMD[q_, n_] := Module [{m, Tn, ss, bi, bj, r1, C, s, pow},

pow[a_, m_]:=Iffm<0,1,a*mj;
s = Length[q];
Tn = expsMD [s, n];
ss = Length [Tn];
ss = Length[Tn];
C={
Do[bj = Tn[jI;

C = Append[C,

Table[Product [Binomial [Tn[illk], bjlkI] * pow[qIkI, (Tn[iIlkI - bjlkI)1, {k, s}1,
{i, ss}l,

{i, ss};

Transpose [C]]

The following example gives some idea how this might work.
See Example 2.5.3.1 the union of a line and twisted cubic.
F={-x"2+y+Xxy-z,2x"2-2y+y"2-x1z};

p={1,1,1}

I start with the answer, the Macaulay matrix at this point. Since this is a regular point the interest -
ing part of this is the first two rows. Since the two equations become separated we look at the

equivalent nrref form.

ness- Take[nrref[macaulayMD [F, 2, p, {X, y, z}], dTol][21, 2, 4] // MatrixForm

0 1. 0 -0.333333)
0 0 1. -0.666667

Now I show how to recover this from the Sylvester Matrix using my procedure ¢2zMD above.

S2 = sylvesterMD [F, 2, {x, y, z}];

DS2 = dualMatrix [S2, dTol];

ICDS2 = Inverse [c2zMD [p, 2]].DS2;

Take[nrref[localDualMatrix [ICDS2, dTol], dTol][21, 2, 4] // MatrixForm

0 1. 0 —0.333333)
0 0 1. -0.666667

Incidentally this example somewhat explains why I called the left dual the
local dual, it gives local information.

For our problem the point is that this is sort of reversible. We go back to the
original Macaulay matrix and up the order to 4.

SpaceCurveBook_v2c.nb | 57

nzos- DM = dualMatriximacaulayMDIF, 4, p, {x, y, z}], dTol];
CDM = c2zMDIp, 4].DM;
LCDM = localDualMatrix{CDM, dTol].mExpsMD[4, {x, y, z}];
hBasisMD[LCDM, 4, {x, y, z}, dTol]

{1,3,1,0,0}

{1,3,1,0,0

{1.x*-1.y,1.xy-1.z,1.y*-1.xz,
-1.+5.x-10.y+10.z-5.xz+1.yz,-5.+24.x-45.y+40.2-15.x 2+ 1.22}

We don' t quite get the original system but the surprise is the first 3 equa -
tions define the twisted cubic, not the union F which was the only input
data. This is because we started with a Macaulay matrix which gives only
local information at the point p = {1, 1, 1}and doesn’t see the line. We
would get better results if we used additional points on the twisted cubic
and/or higher order. So this will give us our algorithm for finding equations
of irreducible components of reducible curves.

Options [dualinterpolationMD] := {hBasis -» True}
dualinterpolationMD [F_, P_, m_, X_, tol_, OptionsPattern []] :=
Module [{M, DM, DSi, DS, S, G, i, np},
np = Length [P];
DS = {{}};
For[i=1,i< np, i++,
M = macaulayMD [F, m, PLil, X];
DM = dualMatrix [M, tol];
DSi = c2zMD[P[il, m].DM;
DS = Join[DS, DSi, 2]];
S = localDualMatrix [DS, tol];
If[Dimensions [S][1] == 0, Print["no curve, try larger m"]; Abort[]];
G = S.mExpsMD [m, X];
If[OptionValue [hBasis], Return [Chop [hBasisMD [G, m, X, tol], tol]], Return [G]];

F={-X"2+y+Xxy-2,2x"2-2y+y"2-x12};
P = {{0, 0, 0}, {.5, .25, .125}, {1, 1, 1}}
dualinterpolationMD [F, P, 4, {x, y, z}, 1.+"-10]

{{0, 0, 0}, {0.5, 0.25, 0.125}, {1, 1, 1}}

58 | SpaceCurveBook v2c.nb

{1,3,3,3,3}
{1,3,3,3,3}

{1.x*-1.y,1.xy-1.z,1y - 1.xz}

This is our standard H - basis for the twisted cubic.
Here are two points on the line

157
ql = N[{-, =, =};
2 22

1765
92 = N[{-—, =, =}];
4 4 4

0133 Q: {ql, q2}

{{0.5, 2.5, 3.5}, {~0.25, 1.75, 1.25}}

dualinterpolationMD [F, Q, 2, {x, y, z}, 1.+"-10]

{1,1,1}
{1,1,1}

ourrsg- {=2.-L.x+1.y,-2.-3.x+1.2}
Which is an H-basis for our line.

A slightly more difficult example is Example 2.5.3.3. One
component is the circle in the plane x = 0.
miao- G ={1.Xz,=1.Xx"3+1.xy"2,
-1.z+1.y"2z+1.273,1.x"2-1.x"4-1.y"2+1.y"4+1.y"22z"2};
P2 = N[{{0, 1, 0}, {0, 0, 1}, {0, Sqrt[2]/2, Sqrt[2]/2}}]

{{0., 1., 0.}, {0., 0., 1.}, {0., 0.707107, 0.707107 }}

mr+z- duallnterpolationMD [G, P2, 4, {x, Y, z}, 1.x"-10]
{1,2,2,2,2}
{1,2,2,2,2}

oz {1.%, =1+ 1.y*+1.2%}

We come to our most important procedure in this book. We have already
introduced Mathematica’s TransformationFunctionwhich is otherwise known as
a projective linear transformation or linear fractional transformation. As
the reader is well aware your author prefers the name fractional linear
transformation, FLT. These transformations can have any dimensional
domain and range and are given by transformation matrices which are

(n+ 1)x(k + 1) matrices where the transformation goes from R¥—R".

SpaceCurveBook v2c.nb | 59

Possibly they could be complex as well. Thus an example R*—R? could be

A = Randominteger [{-9, 9}, {3, 5}];
A= {(7’ 81 _4s 6) —8), (9’ —2, '6’ 01 _2}’ (9, 6’ '31 7’ 2)}7

A [/ MatrixForm

9 -2 -6 0 -2
9 6 -3 7 2

78—46—8]

TransformationFunction [A][{w, X, Yy, z}]

-8+7TwW+8x-4y+6z -2+9w-2x-6Yy

2+9W+6x-3y+7z 2+9wW+6Xx-3y+7z

I also have alternate notation

flEMD[{w, X, y, 2}, Al
-8+7wW+8x-4y+6z -2+9wW-2X-6Yy

{ 2+9W+6Xx-3y+7z ’ 2+9W+6x—3y+72}

In my Plane Curve Book and Chapter 1 of this book I restrict to invertible
square transformation functions and give also corresponding functions
FLT2D, FLT3D which take equations to equations. This makes these much more
useful. Actually FLT3D will work for any dimension n as long as the transfor -
mation matrix is invertible. These work equation by equation by simply
composing each equation with the inverse transformation.

In the general case, however, we don't have an inverse transformation and
the number of equations in the range may be more or fewer than equations
in the domain. In the example above a curve in R* would have 3 or more
equations but a curve in R? has only one. Thus many of the techniques we
have introduced in this chapter, in particular Sylvester matrices, duality and
H-bases, will be used.

The key is, as in FLT2D, FLT3D, is that the transformation of equations works
naturally in the opposite direction as the transformation of points. But
duality turns this around: the transform of dual spaces works in the same
direction as the transformation of points. The other thing is we will have to
deal with is the fact that these transformations are actually transformations
of projective space so we will need to work with homogeneous polynomials.
Then these FLT will be simply linear transformations rather than rational
functions. We will need the following simple subroutines

60 | SpaceCurveBook v2c.nb

fVecMD [f_, m_, X_] := Module [{n, FA, d},
n = Length [X];
{FA, d} = fAssocMD [f, X];
Values [shiftFAMD [FA, 0, m]]]
fMatMD [F_, m_, X_] := Table[fVecMD [FLil, m, X], {i, Length [F]}];
gMapMD[T_, m_,X_,Y_]:=
fMatMD [Expand [mExpsMD [m, Y] /. Thread [Y - T]], m, X]

So we take the Sylvester matrix of our domain system, dualize, map the
duals with a linear version gmapMD of our transformation, return with the
localDualMatrix getting a large system which we reduce using hBasisMD.
Because this may be time consuming we do add some options to help the
user keep track of what is going on. There are also some warning messages
included all making the code somewhat longer than usual in this book.

Options [FLTMD] = {timing - False, hilbertReport - False, hBasis - True};
FLTMD[F_,A_, m_, X_, Y_, tol_, OptionsPattern []] :=
Module [{H, XH, YH, T, S, DS, G, TDS, ST, B0, B1, B, n, s, time},
time = TimeUsed [];
n = Length [X];
s = Length[Y];
If[Dimensions [A] # {s+ 1, n+ 1}, Print[Style["Dimension Error A", Orange]];
Abort[]];
XH = Append [X, tx];
YH = Append [Y, H#y];
H = Table [homogMD [f, X, #x], {f, F}];
T = A.XH;
G = gMapMD [T, m, XH, YH];
S = sylvesterMD [H, m, XH];
If[OptionValue [timing], Echo[TimeUsed []-time, "Start Dual"]];
DS = dualMatrix [N[S], tol];
TDS = G.DS;
If[OptionValue [timing],
Echo[{Dimensions [TDS], MatrixRank [TDS]}, "Dim TDS,rank TDS"]];
ST = localDualMatrix [TDS, tol];
If[Length [ST] == 0, Print[Style["Fail, try larger m", Orange1]; Abort[]];
BO = ST.mExpsMD [m, YH];
If[! OptionValue [hBasis], Return[BO /. {&y - 1}]];
If[OptionValue [timing], Echo[TimeUsed []-time, "Start HBasis "];
B1 = hBasisMD [BO, m, YH, tol];
B =B1/ {Hy - 1};
If[OptionValue [timing], Echo[TimeUsed []-time, "Total Time"]];
BI;

F is the equation system in the domain, A is the transformation matrix, X,Y
are the variables for the domain, range respectively. m will be the order of

SpaceCurveBook_v2c.nb | 61

the Sylvester matrix used so it must be at least the largest total degree of a
polynomial in F but it often needs to be larger. Especially when dealing
with numerical data the tolerance may need to be loosened. Since most
interesting FLT are numerical this is one good reason why I have been
working numerically. It does help if F is an H-basis.

Because of the choices this some what of a trial and error type of algorithm,
it probably works in good cases but is not guaranteed. It is therefore a good
idea to check the results. The important property that the output G must
satisfy is
If F/. Thread [X = p] =0 then G/.Thread[Y - fltMD[p, A]] = 0.
where, of course, "=0" is interpreted in the numerical sense.
continued.
Consider the cyclic 4 curve of Example 2.2.3 and A above in 2.6.1.
CA4={W+X+Y+Z, WX+XY+YZ+ZW, WXY+XYZ+YZW+ZWX, WXYyz-1};
g =FLTMDIC4, A, 6, {w, X, Y, Z}, {X, Y}, L.»"-9][1]
{1, 3,6, 10, 15, 21, 27}
{1, 3,6, 10, 15, 21, 27}
ourss- 1.-2.21919x-4.23331x* - 2.28808 x° - 0.674452 X" - 0.143014x° -
0.00887454x° - 5.05948y + 10.7164 Xy + 14.1276 x* y+ 5.2559X° y + 1.06694 X" y +
0.102317x°y+10.9212y? - 18.5895x y* - 16.1773x* y* - 3.6 7542 x> y* -

0.372327x* y*-13.2113y°+ 14.2582 x y* + 7.34919x° y* + 0.747335 % y° +
9.46424y" - 4.70723xy* - 1.09081x* y* - 3.67116 y° + 0.544018 x y° + 0.556459 y°

Consider point p of the cyclic 4:

e p={2,-112,-2,1/2};
C4/.Thread[{w, X, y, z} - p]
g/.Thread[{x, y} - fltMD[p, A]]

{0, 0,0, 0}
ourss- 5.50501x 107°

Since our tolerance was 10~° this is good enough for zero. One might want
to try a few more points.

We could give more examples now, but we will have many examples in the
rest of this book so we will stop here.

62 | SpaceCurveBook v2c.nb

2.7 Geometry and Projections

In this section we discuss the the geometry of FLT and the main application, projections.

2.7.1 Some Geometry

As mentioned above a transformation matrix for a transformation R”—R*
isa(k+1)X(n+1)matrix A.

I will mention here that since transformation functions are essentially
projective transformations that that the matrix is homogeneous in that if
one multiplies all entries by the same non-zero real (or complex) number
the transformation remains the same.

If A is square, that is k = n, and A™'exists then the transformation is invert-
ible. Geometrically this means that if FLTMD takes curve F to curve G then
these curves are isomorphic, that is geometrically the same. G may be
rotated, reflected, translated or the infinite hyperplane may have been
moved or possibly all of the above. Some positional attributes may have
changed such as critical points, infinite points or number of affine topologi -
cal components. But geometrical attributes such as number of ovals or
pseudo-lines, algebraic irreducibility and number and characteristics of
singular points remain unchanged. For invertible transformation functions
one may use FLT3D instead of FLTMD even if n is not 3. This will be much
quicker and the number of equations will not change.

If the last rOw is {0, O, , ..., 0, 1}, or by homogeneity the last entry is some
other non-zero number, then we call this transformation function and it’s
matrix affine. This means the infinite hyperplane remains in place and we
are just messing with the affine geometry. While critical points may change
have the same infinite points and same number of topological components.
This latter fact is the original meaning of the word affine. The formula flt[X,A]
will be a list of polynomials rather than rational functions. For example

A={{1,2,3,4},{5,6,7,8},{0,0,0, 1}};
fltMD[{x, y, z}, A]

{4+x+2y+32,8+5x+6y+7Z7}

If, for an affine transformation A, the last column is {{0}, {0}, ... {0}, {1}} then
the transformation function is a linear transformation. In this case we may
strip A by removing the last row and column to get a k X n matrix, that is

A = DroplA,-1,-1]

SpaceCurveBook v2c.nb | 63

nz- A={{1, 2,3, 0}, {5, 6,7, 0}, {0, 0, 0, 1}};
A =Drop[A, -1, -1]

{{1,2,3},{5,6, T}
Then we can actually perform the transformation just by matrix
multiplication

fltMD[{x, y, 2}, A]
Afx,y, 2}

X+2y+32,5x+6y+72}
X+2y+32,5x+6y+72}

The process of stripping is reversible, that is a linear transformation

R"—R¥ given by an n x k matrix Awill give a transformation matrix in the
sense of this section by, for example

wer- B={{1,2,3},{5,6, I
B = Append[Join[B, {{0}, {0}}, 21, {0, 0, 0, 1}]
{1,2,3,0¢5,6,7,0}10,0,0, 1}}
B.{x,y, z}
fltMD[{x, y, z}, B]

{X+2y+32,5x+6y+72}

X+2y+32,5x+6y+72z}

Finally, alinear transformation B is an orthogonal transformation if the
rows, equivalently columns, form an orthonormal set. In the real case only,
for a k X n matrix, k < n this means B.Transpose[B] is the k X k identity matrix
or if k = n then Transpose[B].B is the n X n identity. For complex matrices one
uses the ConjugateTranspose. Orthogonal transformations preserve Euclidean
geometry, that is that lengths and angles are preserved which does not
necessarily happen with affine transformations in general. More impor -
tantly operations with orthogonal transformations are more numerically
stable, so since we often work with numerical transformation matrices this
is good. On the other hand orthogonal matrices almost always have irra-
tional entries and so numerical methods are preferred with them.

Two utility functions that may be useful are given below, they allow us to go
between linear transformations and FLT transformations.

64 | SpaceCurveBook v2c.nb

m2TM[M_] := With[{dim = Dimensions[M]},
Join[Append[M, Table[0, {dim[21}]]1, Append[Table[{0}, {dim[1I}], {1}, 211
tM2M[T_] := With[{dim = Dimensions[T]}, Take[T, dim[1] - 1, dim[2] - 1]]

2.7.2 Projections

In general a projection will be a linear transformation from R"—R¥, k < n,
given by a k X n matrix P. Such a matrix can be embedded into a
(k+1)x(n+ 1) matrix A by the utility functions above. This is so we can
treat the projection, as above, as an FLT and have it transform curves as well
as points. It is nice if projections are orthogonal, but we will not assume this.

Later we may start with a FLT projection, that is an FLT with fewer rows
than columns. These are more general in that infinite points may become
affine. These are not really more general as it can be shown that projecting
a curve with an arbitrary FLT projection is the same as transforming the
curve with an invertible FLT and then doing a linear projection on the
image. Itis a bit hard to show this so rather than give a proof we just give an
algorithm to accomplish this although in practice we will rarely use this.

factorFLT [A_] := Module [{n, k, m, tabl, tab2, A1, A2, A3, B, B1, B2, B3, P, M},
{n, k} = Dimensions [A]-{1, 1};
m=k+1;
tabl = Table[{i, m} » &1[i], {i, n}];
B1 = ReplacePart [IdentityMatrix [m], tab1];
Al = A.B1;
B1 = ReplacePart [IdentityMatrix [m], (tabl /. Solve[Take[Al, n, -1] == 0])[11];
Al = A.B1;
B2 = ReplacePart [IdentityMatrix [m], {{m, m} » Al[n+1, m]*-1}];
A2 = A1.B2;
B3 = ReplacePart [IdentityMatrix [m], Table[{m, i} » -A2[n +1, i, {i, k}]];
A3 = A2.B3;
B = N[B1.B2.B3];
{Chop[A3], Chop[Inverse [B]1}];

Later, for example at the end of section 3.2, we will give some examples of
how to use this.

One type of projection is projecting onto several coordinates. For conve -

nience we have a FLT projection from R”—R""! which removes the

i component.

SpaceCurveBook_v2c.nb

fCompProj [i_, n_] := Module [{F},
If[i > n, Abort[]];
F = IdentityMatrix [n +1];
Delete[F, {i}1];

We will distinguish ordinary projections like this one from generic projec -
tions. These are essentially random or pseudo-random projections
although for some purposes they are expected to be stable on a given curve
under small perturbations of the projection. This is not quite guaranteed by
randomness.

Generally different random projections will be defined as above for each
application. However we could also define a random projections, with
some constraints on the random numbers used and use this projection
many times. Such a projection is called pseudo-random. An example is our
default pseudorandom projection

prd3D = {{-0.30519764945947847" , 0.9522890290055899" , 0.},
{-0.14191095867181538" , -0.045480825358668514" , 0.9888340479238873" }};

The associated fractional linear transformation is

fprd3D =
{{-0.30519764945947847" , 0.9522890290055899" ,0.",0."}, {-0.14191095867181538" ,
-0.045480825358668514"° , 0.9888340479238873" ,0.°},{0.%,0.%,0.%, 1. }};

Both of these are assigned global variables.

Ilike this particular projection because the axes come out like the old fash -
ioned 3-space axes for pictures we drew on the blackboard in Calculus 3. It
is convenient to have a function to quickly plot the projection of a general
curve F in R3.

showProjection3D [F_, pr_, m_, X_, {u_, v_}, rng_] := Module [{PRT, AXS, marks},
PRT = FLTMDF, pr, m, X, {u, v}, dTolJ;
Echo[PRT, "projection Function"];
AXS := ListLinePlot [{{{0, 0}, fitMD [{1, 0, 0}, pr1}, {{0, 0}, fltMD {0, 1, 0}, prl},
{{0, 0}, fltMD [{0, O, 1}, pr]}}, PlotStyle » Orange, PlotRange - All];
marks := ListPlot [{{fltMD[{1.2, 0, 0}, pr1}, {fltMD[{0, 1.2, 0}, pr1}, {fltMD[{0, O, 1.2}, prl}},
PlotMarkers - {"x=1", "y=1", "z=1"}, PlotStyle - Black];
Show [ContourPlot [PRT == 0, {u, -rng, rng}, {v, -rng, rng}], AXS, marks, Frame - False]]

Here F is a general curve, pris an FLT projection, m the order of Sylvester
matrices to use, generally larger then the degrees of equations in F, X are the
variables in R3, {u,v} the variables in R? and rng the size of the image, eg. if rg
is 2 then the projection is given in the square {{x, y}, -2 < x, y < 2}.

66 | SpaceCurveBook v2c.nb

2.7.2.1 Example: The Viviani curve
oo V= {=4+X* 4y + 2%, =1+ (-1+%)* +y*}
showProjection3D [V, fprd3D, 4, {x,y, z}, {X, y}, 3]
oo =4 +x* +y* 42, -1+ (-1 +x +y*}

» projection Function {1. +4.30229 x+3.68817 x* + 0.024428 x° + 0.000444366 x* - 2.00048 y +

0.312204 xy+1.0116 X*y - 3.77986 y* - 1.05115 x y* + 0.0400199 x* y? + 0.511479 y* + 0.901056 y“}

Outf205)-

y=1

A problem with ordinary projections is that the projection may change the
geometry of curves. This may be an accident or, as we will see in Section
3.3, this may happen because of the geometry of the curve.

2.7.2.2 Example: If we take a curve such as {x* + z° — 1, y} under the
projection fCompProj[3,3]we get the curve projection as aline y = 0.

misg- FLTMD[{xA2+z"2-1,y}, fCompProj [3, 3], 3, {X, Y, z}, {X, y}, dTol]
» Initial Hilbert Function {1, 2, 3, 4}

» Final Hilbert Function {1, 2, 3, 4}
Oulf149)~ {ly}
But the point projection is just the interval —1 < x < 1 of that line. Using our default
pseudo-random projection the result

misz- - showProjection3D[{x*2+z"2-1,y}, fprd3D, 3, {x,y, z}, {X, ¥}, 2]

SpaceCurveBook_v2c.nb | 67

{1,3,57}
{1,3,5,7}

{1.-10.957 x* +0.951082 xy - 1.02271 y*}

x=(1

is correctly given as a circle.

Even our pseudorandom projection prd3D may not be
generic for some curves. For example we consider our twisted cubic:

neso- twCubic = {=y* +Xz, -X> +Y, =Xy +2};
showProjection3D [twCubic, fprd3D, 3, {x, y, z}, {X, ¥}, 2]
{-0.464981 x+ 16.8091 x” - 64.3264 x> + 1.y - 51.2934 xy + 56.8131 y° |

x=1

This appears to give a cusp.

misz- P = prd3D + RandomReal [{-.2, .2}, {2, 3}];
FP = m2TM[P]

oupres- {{-0.134773, 0.808097, 0.128253, 0}, {-0.223291, 0.0745526 , 0.884676, 0}, {0, 0, 0, 1}}

nesz- tw2 = FLTMD [twCubic, FP, 3, {x, y, z}, {X, ¥}, 1.%A-9][1]
ContourPlot [tw2 == 0, {Xx, -2, 2}, {y, -2, 2}, MaxRecursion - 4, ImageSize » Small]

68 | SpaceCurveBook v2c.nb

{1,3,6, 9}

{1,3,6,9}

-1.65679 x+19.1206 x> - 45.8792 x*+ 1.y -
23.8022 xy+19.9535 X’ y +32.7582 y*> - 2.89269 x y* + 0.139785 y*

op T

is clearly a node. In his quoted article Barry Mazur [B.Mazur] says that cusps do not occur under
generic projections of non-singular curves.

This example gives one reason why generic projections are preferred over
ordinary projections, the probability that the point projection of a curve is
not the curve projection is much less with pseudo-random projections and
even smaller with random projections. In classical algebraic geometry this
fact is often known as Noether’s Normalization Theorem”, one of the rare
algebraic geometry theorems attached to the name Noether due to the
daughter Emmy, rather than father Max, of this famous mathematical
family. Emmy Noether was known for her algebra while her father for
geometry and, in fact, this theorem was originally stated as a theorem in
algebra. In this book we take this not as a theorem but a requirement for a
random or pseudo random projection to be generic for the curve. Note that
for us this is a property of the curve, not the projection, for a randomly
generated numerical curve the projections fCompProjmay be generic but
possibly not for an integer coefficient curve.

As mentioned in Chapter 1 a singularity in a projection of a non-singular
curve will be called artifacts or artifactual singularities to distinguish from
singularities of the plane projection coming from singularities of the space
curve. The curve projection may also contain additional components that
are not part of the point projection, in the case of a generic projection I call
these ghost components although algebraists may call them embedded
components. The important result is

Under any projection of a space curve to the plane a non-singular point may
go to a singular point. For generic projections the only artifactual singulari -
ties will be normal crossings (nodes), cusps or isolated points.

SpaceCurveBook v2c.nb | 69

2.8 Fibers and Plotting Space Curves

Our general strategy for plotting space curves is to project onto R?, path
trace and lift the trace to R® with the function fFiberMD in the next subsection
and plot there.

A projection is not 1-1, in fact, in this section where we will restrict to linear projec -
tions R" —[R"™!, the set of points mapping to a given point p in R""!is a line. We call
this line the fiber over p. It is quite easy to calculate this from our original, not FLT,

projection.

Suppose P is the original projection i.e. a n X (n — 1) matrix of rank n —1and pisa

point in R""!. The fiber is returned as a parameterized line with parameter t. Note
that this function requires neither the curve or the list of variables.

pFiberMD [P_, p_, t_] := Module [{n, k, P1, ns, q},
{n, k} = Dimensions [P];
Iffn * k-1|| MatrixRank [P] # k-1, Echo[" "1;
Abort[1];
P1 = Append [P, RandomReal [{-3, 3}, K]];
ns = NullSpace [P][1];
g = Inverse [P1].Append [p, RandomReal [{-3, 3}]];

q+t*ns]

For example

miso- P = RandomReal[{-4, 4}, 2]
pFiberMD[prd3D, p, t]

{-0.257823, -0.846821}
(7.60814+0.941656t, 2.16758+0.30179t, 0.335184 + 0.149021)

Our most important function in this subsection gives the set of points in a curve
contained in the fiber over a point p, that is, the set of points on the curve projecting
to p. This function is much easier than it looks however we want it to tell us if the
number of points of the curve over p is different from 1. So this is both a diagnostic
function as well as a function to find the actual points. Further, two important
characteristics of this function are that it is very fast and it works even when the curve
is defined by an overdetermined set of numerical polynomials. As we will see is these
properties that allow us to analyze general space curves.

70 | SpaceCurveBook v2c.nb

F is the list of equations for the curve, possibly numerical and overdetermined, P is
the original projection i.e. a n X (n— 1) matrix of rank n -1, p is a point in R"™!, X is
the list of variables of F and tolis the tolerance which will often be weaker than our
default tolerance.

In[73] Options [fFiberMD] = {complex - False}
fFiberMD [F_, P_, p_, X_, tol_, OptionsPattern []] :=
Module [{Pf, FF, FFs, sol, sol0, sol1, k, n, |, q, u, j, t0},
n = Dimensions [P][2];
k = Length [F];
Pf = pFiberMD [P, p, t734];
FF = Chop[Expand [F /. Thread [X - Pf]], tol];
t0 = RandomReal [{-1, 1}];
FF = SortBy [FF, (H /. {t734 - t0}) == 0 &];
If[AllTrue [FF, & == 0 &], Print["inf many sols at", p]; Return [Fail]];
FF = Chop[FF, tol];
If[OptionValue [complex], sol = NSolve [FF[1]], sol = NSolve [FF[1], t734, Reals]];
If[Length [sol] == 0, Echo[p, "(1) no point in fiber at"]; Return [{}]];
sol0 = t734 /. sol;
i=2;
While[j < k && Length[sol0] > 0 && (FFIjI /. {t734 - t0}) = 0,
If[OptionValue [complex], sol = NSolve [FF[jI], sol = NSolve [FF[jI, t734, Reals]];
If[Length [sol] == 0, Echo[p, "(2) no point in fiber at"];
sol0 = {}; Break[]];
soll = t734 /. sol;
sol0 =
Flatten [Reap [Do[If[Norm[q - u] < tol, Sow[q]], {q, sol0}, {u, sol1}]][2]];
j++];
sol0 = DeleteDuplicates [sol0, Norm [H1 - 2] < tol &]J;
If[Length [sol0] == 0, Echo[p, "(3) no point in fiber at "]];
If[Length [sol0] > 1, Echo[p, "multiple fiber points"]];
Pf /. {t734 > H} &/@ sol0

This function returns the set of points in the fiber over p, possibly {}, in the curve as
well as possible information. If no information is given there is a unique point given
as a singleton set. When constructing a list of points in R” over a List L in R""! in the
curve use the form Flatten[Ffiber[F,P, &, X, tol]&/@L, 1]. If any warning
occurs then you can try loosening the tolerance. If this happens in list form you
may need to delete empty sets {} In the output. The numbers in parenthesis in
this warning may help in trouble shooting.

miaz- F={-9Xx-45y-9xz+9yz, 18x-0.25x"2+36y+0.5xy-0.25y"2-9xz+9xz"2,
-54+1.5x-1.5y+992z-542"2+92z"3};

SpaceCurveBook_v2c.nb | 71

We first try the projection onto the xy plane.

4= ny ={{1, 0, 0}, {0, 1, 0}};
We look at some examples of fFiberMD.

- fFiberMD [F, Pxy, RandomReal [{-5, 5}, 2], {X, ¥, z}, 1.+"-9]

{-3.62597, 4.11431}

Out[144]= {}

fFiberMD [F, Pxy, {-6, 30}, {X, Yy, z}, 1.x"-9]

ous {{=6., 30., 4.}}

47~ fFiberMD [F, Pxy, {0, 0}, {X, y, z}, 1.»"-9]
{0, 0}

{{0., 0., 1.},{0., 0., 2.},{0., 0., 3.}}

In the first case the fiber is empty which happens for most points. In the second case the fiber
consists of one point which is typical of points in the projection of the curve. In the last case there
are 3 points in the fiber.

The projection of the curve on the xy plane is
nso- £ = FLTMD[F, fCompProj [3, 3], 5, {X, Y, z}, {X, y}, 1.%"-9][1]
{1, 3, 6, 10, 15, 20}
{1, 3, 6, 10, 15, 20}
oupso- 1.x% - 0.00694444 x* +3.5 x> y+0.0277778 X’y +

3.5xy? - 0.0416667 x> y*+ 1. y*+0.0277778 xy* - 0.00694444 y*

miss- ContourPlot [f == 0, {x, -2, 2}, {y, -2, 2}, MaxRecursion - 6]

2 7

This shows the point {0, 0,} with 3 points in its fiber is a singular point of multiplicity 3 as verified
by

ms4- tangentVectorMD [{f}, {0, 0}, {X, y}]

72 | SpaceCurveBook v2c.nb

{1,2,3,3,3}
{0, 0

Our general plotting strategy calls for us to trace the plane curve f. Unfortunately it has a singular -
ity which will require us to break this into at least 6 paths always tracing into the singularity at
{0,0}. We will show one.

miss- PS = {X, y} I. NSolve [{f, x A2 +y A2 -3}, {X, y}, Reals]

ourrsg- {{1.58268, -0.70365}, {-0.70365, 1.58268 }}

nisop- pl = psll;
pthl = pathFinder2D [f, p1, {0, 0}, .1, X, y]

{{1.58268, -0.70365}, {1.48995 , —0.66622}, {1.39735, ~0.628458 }, {1.3049, -0.590356 },
{1.21259, -0.551904 }, {1.12043, -0.513092 }, {1.02842, -0.47391}, {0.936584 , ~0.434346 },
{0.844914 , -0.394389 }, {0.753423 , -0.354025 }, {0.662119, -0.313241},

{0.571011, -0.272021}, {0.480108 , -0.230349 }, {0.389423 , -0.188206 },
{0.298967 , -0.145575}, {0.208753 , -0.102433 }, {0.118797 , -0.0587558 }, {0, 0}}

We can now lift this to R* with the following

mez- Pth = Flatten [fFiberMD [F, Pxy, &, {X,V, z}, 1.»"-9] &/@ pth1l, 1]

{0, 0}

{{1.58268, -0.70365, 0.846583}, {1.48995 , -0.66622 , 0.853897 }, {1.39735, ~0.628458 , 0.861351 },
{13049, -0.590356 , 0.868949 }, {1.21259, -0.551904 , 0.8767}, {1.12043 , —0.513092 , 0.884613 },
{1.02842, -0.47391, 0.892695 }, {0.936584 , —0.434346 , 0.900956 }, {0.844914 , —0.394389 , 0.909407 },
{0.753423 , -0.354025, 0.918059}, {0.662119 , -0.313241, 0.926925},

{0.571011, -0.272021, 0.936019 }, {0.480108 , -0.230349 , 0.945356 },
{0.389423 , -0.188206 , 0.954954 }, {0.298967 , -0.145575 , 0.964832},
{0.208753, -0.102433, 0.975012 }, {0.118797 , -0.0587558 , 0.98552}, {0., 0., 1.}, {0., 0., 2.}, {0., 0., 3.}}

This is good except for the last 3 points which are all liftings of {0, 0}. We have to pick just one of
these, the one that most closely matches the previous point. We see that is {0,0,1}. The plot is the
not exciting green curve which is what we want. Had we not dropped the other points we would
have the blue dashed curve that goes though all three fiber lifts.

SpaceCurveBook_v2c.nb | 73

Pthl = Drop[Pth, -2];
Graphics3D [{{Green, Thick, Line[Pth1]}, {Blue, Dashed, Line[Pth]}}, ImageSize » Small]

Rather than continue on the other 5 tracings we project again using our pseudo-random projec -
tion prd3D which has no singular points.
mize- g = FLTMD[F, fprd3D, 5, {X, y, z}, {X, ¥}, 1.*"-9, quiet -» True][1]

1.+0.271206 x-0.00614083 x*+0.000532178 x> -4.49813 x 10™° x* -
1.85033 y-0.216147 xy +0.000588023 x*y-0.0000621309 x°y+1.01583 y* +
0.0494672 x y* - 0.000321821 x* y*-0.168582 y* - 0.000740863 x y* - 0.000639577 y*

mso- ContourPlot [g == 0, {x, -4, 4}, {y, -1, 4}]

4F 7

A single trace and lift suffices

nres- S0l = {xX, y} /. NSolve [{g, x*2+y"2-13}, {X, y}, Reals]

ouriss- {{1.75625, 3.1489}, {-3.60479, -0.0740102 }}

74 | SpaceCurveBook v2c.nb

nes- pth2 = pathFinder2D [g, sol[2], sol[1], .3, x, y, maxit -» 60]

outiss {{-3.60479, -0.0740102}, {-3.31723, 0.0114823}, {-3.02954, 0.096539}, {-2.74174, 0.181205},
{-2.45383, 0.265537}, {~2.16585, 0.349601}, {~1.87782, 0.433483}, {-1.58976, 0.517291},
{~1.30173, 0.601166}, {~1.01376, 0.68529}, {~0.725946, 0.769914}, {-0.438382, 0.855388},
{-0.151228, 0.942226}, {0.135258, 1.03122}, {0.420622, 1.1237}, {0.703909, 1.22217}, {0.982472, 1.33246},
{1.24036, 1.47417}, {1.30691, 1.60214}, {1.14235, 1.72082}, {0.857493, 1.80651}, {0.564651, 1.87072},
{0.270109, 1.92755}, {~0.0248564, 1.98228}, {~0.31963, 2.038}, {~0.613649, 2.09744}, {~0.906041, 2.16407},
{-1.19469, 2.24418}, {-1.46944, 2.35513}, {~1.59794, 2.49846}, {-1.49041, 2.62449}, {-1.2187, 2.73378},
{-0.928884, 2.80859}, {~0.634948, 2.86767}, {-0.339176, 2.91739}, {~0.0423628, 2.96074}, {0.25512, 2.99935},
{0.553067, 3.03426}, {0.851357, 3.06616}, {1.14991, 3.09555}, {1.44866, 3.1228}, {1.75625, 3.1489}}

Pth2 = Flatten [fFiberMD [F, prd3D, H, {x, y, z}, 1.+"-9] &/@ pth2, 1]

{{5.48543, -2.02738, 0.619139}, {4.99583, -1.88232, 0.642004}, {4.51393, -1.73466, 0.665653},
{4.03997, -1.58434, 0.69017}, {3.57421, -1.43128, 0.715652}, {3.11697, -1.27541, 0.742214},
{2.6686, -1.11665, 0.769998}, {2.22951, —0.95488, 0.799178}, {1.8002, -0.79, 0.829972},

{1.38129, -0.621866, 0.862659}, {0.973522, -0.450314, 0.897609}, {0.577872, -0.275144,, 0.935325},
{0.195637, -0.0961059, 0.976521}, {~0.171355, 0.0871173, 1.02228}, {-0.520314, 0.274941, 1.07436},
{-0.846425, 0.467907, 1.13602}, {~1.1393, 0.666562, 1.21466}, {-1.35985, 0.866691, 1.33552},
{-1.34487, 0.941369, 1.47053}, {~1.09363, 0.849083, 1.62236}, {~0.773361, 0.652601, 1.74594},
{-0.485792, 0.43725, 1.84223}, {~0.222806, 0.212235, 1.92711}, {0.0197011, -0.0197877, 2.00658},
{0.243541, -0.257592, 2.08412}, {0.449036, -0.500483, 2.16255}, {0.634915, ~0.747952, 2.24522},
{0.796855, ~0.999161, 2.33792}, {0.918955, -1.24855, 2.45619}, {0.92399, -1.38187, 2.59572},
{0.806603, -1.30657, 2.70979}, {0.623279, -1.08, 2.80443}, {0.456993, -0.828961, 2.86776},
{0.302882, -0.569689, 2.91731}, {0.157592, -0.305663, 2.9589}, {0.0192306, -0.0383221, 2.99517},
{-0.113399, 0.231558, 3.02759}, {~0.241125, 0.503499, 3.05707}, {~0.364552, 0.777176, 3.08421},
{-0.484145, 1.05236, 3.10943}, {~0.60027, 1.32886, 3.13304}, {-0.716456, 1.61462, 3.1559}}

Graphics3D[{{Blue, Thick, Line[Pth2]}, {Orange, Thick, Line[{{0, 0, -1}, {0, 0, 4}}1}}]1

The orange line is the z-axis which intersects the curve in 3 places. Again, don’t expect to find a
generic projection with no singularities, that will usually not happen as remarked above. But at
least generic projections do eliminate singularities of multiplicity greater than 2.

SpaceCurveBook_v2c.nb | 75

2.8.2 Example: Application to Cyclic 4

Recall the cyclic-4 curve, Example 2.2.3, is given by

CA={W+X+Y+Z, WX+XY+YZ+ZW, WXY+XYZ+YZW+ZWX, WXYyz-1};

Here we sketch an analysis of the cyclic-4 curve using our method. For curves in R” for n > 3 we
project first to R?, hopefully this will not introduce new singularities, then to R* preferably with a
random or pseudo-random projection. We then lift back to R® for plotting.

For definiteness here is our random affine projection R* —R?

iz~ P43 = {{0.9749194263273511" , 0.13015457882712486" , -0.1507314794304482" ,
-0.09935753060835883" }, {~0.1242169492514664" , 0.9851538622704206" ,
0.09443037927788776" , -0.07158855105228731" }, {0.17159792012482059" ,
-0.06309683839808246" , 0.9756771282924249" , 0.12094248269342328" }};

FP43 =
m2TM[
P43];

We could project directly to R? but will need to know the image of C4 in R?, it takes some time but
the answer is

mizi- C43 = FLTMD [C4, FP43, 6, {w, X, Y, Z}, {X, Y, Z}, 1.x"-9]
{1, 4,9, 15, 21, 26, 30}

{1, 4,9, 15, 21, 26, 30}

{0.515334 x* +0.0261946 xy+0.000332871 y*+1.43574 xz+0.0364895 yz+1.2’,
-0.63185 x> +0.561652 x* y+0.73255 xy” +0.0182448 y* - 0.880176 x* z+0.80476 xyz+ 1.y’ z,
1.+0.58731 x* - 1.11729 X’ y - 0.522163 x> y* +
0.249241 xy* - 0.0282582 y* +0.849617 x> z- 1.26749 x’ y z}

Now we project to R*

os- C42 = FLTMD[C43, fprd3D, 6, {X, Y, 2}, {X, y}, 1.x"-9][1]
{1, 3,6, 10, 15, 21, 27}
{1, 3,6, 10, 15, 21, 27}

~1.43989 x*+0.0789016 x°+2.68184 xy+0.323495 x° y+1.y* -
0.558284 x* y*-2.00039 X’ y* +1.90728 x* y* + 0.0432741 xy° - 0.237496 y°

76 | SpaceCurveBook v2c.nb

We plot C42

7~ ContourPlot [C42 == 0, {x, -4, 4}, {y, -4, 4}]

4F]

out[179)=

miso- €p2 = criticalPoints2D [C42, X, Y]

ounso- {{~1.48804, -0.682283}, {~1.48804, -0.682283 }, {1.48804 , 0.682283 },
{1.48804, 0.682283}, {1.51333, 0.612185}, {-1.51333, -0.612185}, {0.384516 , -1.20751},
{0.384516 , -1.20751}, {-0.384516 , 1.20751}, {-0.384516 , 1.20751}, {-0.473031, 1.16934},
{0.473031, -1.16934}, {~1.41781 x 10~**, -2.33748 x 10~**}, {0., 0.}, {0., 0.}, {0., 0.}}

It appears that we have two lines through {0,0} which will be components of the point curve V(h).

From the critical points the other singularities are clear so the two lines are

nezos- |1 = line2D [{0, 0}, cp2[2], x, y]
12 = line2D [{0, 0}, cp2[8I, x, y]

oupzos- 0. —1.5907 x + 3.46926 y
oupzo- 0. -1.58524 x-0.504796 y

Note by symmetry we expect these to be perpendicular, but they are not. By nDivideMD we get

nezo7- €42 = nDivideMD [C42, 11 %12, {X, y}, 1.+"-9]

ouzor- —0.571014 +0.0312899 x* +0.186567 x> y+0.14782 x* y* - 0.388404 x y* +0.135614 y*

nizsi- €p42 = criticalPoints2D [c42, X, Y]

ourzs- - {{-7162.89,2009.12}, {7162.89, -2009.12}, {1.51333, 0.612185},
{-1.51333, -0.612185}, {-0.473031, 1.16934}, {0.473031, -1.16934 }}

SpaceCurveBook_v2c.nb | 77

nize- ContourPlot [c42 == 0, {x, -4, 4}, {y, -4, 4}, Epilog - {Red, PointSize [Medium], Point[cp42]},]

4F]

N
——
L

o
——
L

niz7- infc42 = infiniteRealPoints2D [c42, X, y]

{{-54.2416 , -92.8895 , 0}, {-1.59294 , 0.446802 , 0}}

From the fact that there are two infinite points and apparently 4 arcs connecting with each that
these both have multiplicity 2. One could check these by inspecting the infinite points as in my
plane curve book. But this total multiplicity is too large for a reducible curve so it must be
irreducible. One could use singularFactor from the plane curve book but we can use instead

dualinterpolationMD discussed earlier in this book.

mo- c42a = dualinterpolationMD [{c42}, cp42[[{3, 4}], 2, {X, y}, L.x"-9][1]
c42b = dualinterpolationMD [{c42}, cp42[{5, 6}], 2, {X, y}, 1.%A-9][1]

{1,2,2}
{1,2,2}

ouprao- 2.05197 —0.480342 x* - 1.43202 xy+1.y*

{1, 2,2}
{1, 2,2}
jr- =2.05197 - 0.480342 x* - 1.43202 xy + 1.y
Note that these are both factors of c42 but don’t multiply to c42 because the curves are defined
only up to a constant, but checking
nei- Expand [c42a * c42b /c42a[1]/c42b[1] - c42/c42[1]]

0.+5.07927 x 107 x* - 6.8695 x 107* x* +3.88578 x 107" xy - 6.32827 x 107° X’ y +
1.75415 x 107 y* - 6.27276 x 107 x* y* + 5.9952 x 107*° x y* - 9.40914 x 107" y*

In particular, c42 is reducible as the union of two quadratics and two linear curves.

Normally we would now lift to R® to get a plot of the curve, or at least its projection in R®. We can
work with each component separately. For the lines it is possible that they lift to higher degree
curves, but not likely given our pseudo-random projection. So we could start with two points on,
say |1 but will stay away from the origin and infinite point. By very elementary algebra setting x = 3
we get

78 | SpaceCurveBook v2c.nb

me7- b = =Expand [(11 /. {x - 3})/Coefficient [l1, y]]

1.37553 - 1.y

In[169]:= p]. = {3, b1/ {y - 0}}

meg- {3, 1.37553}

plis on our line. Lifting to C43 with a very loose tolerance

fFiberMD [C43, prd3D, p1, {x, Y, z}, 1.x"-4]

{3, 1.37553}

we find there is no point! Perhaps checking this very carefully and trying other points on the lines
11,12 we suspect that these are ghost lines. Finding that they still occur in the plane but not in
space also for other projections confirms this.

We can still try to lift the quadratic curves to R* We pick 8 points on the union c42 of the
quadratics

e~ SOl ={xX, y} /. NSolve [{c42, x"2+y"2-9}]

{{-1.81015, -2.39235}, {1.81015, 2.39235}, {-1.21355, -2.74359}, {1.21355, 2.74359},
{2.96438, -0.460916 }, {-2.96438, 0.460916 }, {2.77979, -1.12817}, {-2.77979, 1.12817}}

missi- sol3 = Flatten [fFiberMD [C43, prd3D, &, {X, y, z}, 1.x»"-7] &/@ sol, 1]

ourros- {{2.88159, -0.977326, -2.05077}, {-2.88159, 0.977326, 2.05077},
{3.2387, -0.236387, -2.32065 }, {-3.2387, 0.236387 , 2.32065 }, {0.301768 , 3.20961, -0.275188},
{-0.301768, -3.20961, 0.275188 }, {1.08098, 3.2655, -0.835578 }, {-1.08098 , -3.2655, 0.835578 }}

and, surprise

planar3D [cp43]

2.48742 x 1078

-1.05818 x 107" - 3.56651 x-0.0906435 y - 4.9682 z

these points all lie on a plane!
We can further lift these on the affine projection P43 from R* to R®.

nzoi- sol4 = Flatten [fFiberMD [C4, P43, &, {w, X, Y, z}, 1.+"-T7] &/@ sol3, 1]

{{2.63725, -0.379183 , -2.63725, 0.379183 }, {~2.63725, 0.379183 , 2.63725, -0.379183},
{2.80448 , 0356572, —2.80448 , -0.356572 }, {~2.80448 , ~0.356572 , 2.80448 , 0.356572 },
{-0.336978, 2.96755, 0.336978, ~2.96755}, {0.336978 , ~2.96755, —0.336978 , 2.96755},
{0.316884, 3.15573, —0.316884 , -3.15573}, {-0.316884, -3.15573, 0.316884 , 3.15573}}

nzoa- linearSetMD [Take[sol4, 51, {w, X, Y, z}]

ouzor- {-8.88178 x 107 -0.5w-0.5x-0.5y-0.5 z}

SpaceCurveBook_v2c.nb | 79

These all lie in the vector subspace w + x + y + z = 0 which is not a surprise since that is one of the

equations in the system C4.

But since these are numerical we can calculate the rank

SingularValuelList [sol4]

{8.72602, 7.75478, 1.79033 x 10'8}

which is numerically 2. So they actually lie in a plane in R*. We numerically calculate the null
space of this set as

{U, S, V} = SingularValueDecomposition [sol4];
Takel[V, All, -2] // MatrixForm

-0.5 0.5
0.5 0.5
-05 05
0.5 0.5

which says that set lies also in the hyperplane —w+x -y +2z=0

(-w+x-y+2z) /. Thread [{w, X, y, z} » H#] &/@ sol4

{0.,-1.68754 x 107, 4.17632 x 10°, 1.77636 x 107*,
1.06581 x 107, ~2.66454 x 107", 3.9968 x 107, -2.66454 x 107*°}

So the curve C4 lies in a 2-plane of R* and the plot is the same as c42. Actually this is quite well
known, see for example the reference [Androvic, Verschelde].

The two linear equations, w +x+y+2z=0, —w + x —y + z =0 are equivalent to the two equa-
tions w = —y, x = —z. If we just look at the output of sol4 above we see that this is the case at least
for the display digits. It is easy to see from the membership problem that the second equation is
not a member of the C4 system. This is also quite obvious when we add the second equation to C4
and find the H-basis

miss- C4e = Append [C4, =W + X -y +2];
HC4e = hBasisMD [C4e, 4, {w, X, Y, 2}, dTol]
{1,2,3,4,4}
{1,2,3,4,4}

{Lw+ly,1.x+1.2z,-1.+1 w? xz}

The first two equations here are the ones we deduced above while the last says w = +-. Again this

1
x

is easy to check in sol4.

Further this is the equation of the union of two disjoint hyperbolas in the {w — y, x — z} plane of
R*, the fact we worked hard to get. This is also a well known fact but other derivations are at least
as hard as ours above.

We recall that in Section 2.2 that we noticed the strange fact

sz~ tangentVectorMD[C4, {1, -1, -1, 1}, {w, X, Y, z}]

80 | SpaceCurveBook v2c.nb

{1,2,1,1, 1}

{1,-1,-1, 1}

that this point was singular of multiplicity 1. But with our extended C4e we have

In[138]:=

Out[138]=

tangentVectorMD [C4e, {1, -1, -1, 1}, {w, X, Y, z}]
{1,1,1,1,1}

{0.5,0.5,-0.5, -0.5}

so this point is regular.

The takeaway from this discussion is that what makes the Cyclic 4 system
strange is that it is missing, by membership, an equation satisfied by the 1-

dimensional solution. This also explains the ghost lines in the projection of
the ¢4 on the plane, these are gone when projecting Cae.

2.8.3 Example 3, naive curve in R*

The previous example shows how much we can learn from our method.

Unfortunately the resulting curve was planar. Here, briefly is another exam -
ple of a more interesting curve.

This curve was originally randomly generated as the intersection of 3
quadratic hypersurfaces of 4 space.

In[238]

fl=3w-3wW’-X-X*+3y-2WY+4Xy+2Yy*-27-4Wz+XZ+5yz+57%;

f2=-4w+3wW +2wWx+X*-2y-wy+2y*-5z-4wz+4xz-2yz-57%
f3=2W-4W?-2X-WX+2X>+Y+5WY+2Xy+Yy +3Z+WZ+5X2-2yz+27%;
Fa = {f31, f32, f33};

SpaceCurveBook v2c.nb | 81

We first project with Pxyz, the simple projection setting w = 0. This gives a system of 7 equations
of degree 5 in the three variables x, y, z. We will not reproduce this. We next project by our
default pseudo-random projection PRD. We get a numerical plane curve of degree 8 with
coefficients ranging in absolute value from 0.2 to 24 500. We call it g3 but do not give this here, it
will eventually appear in my Space Curves book. The interesting parts are given below. Note that
we have 7 singularities, all of which will turn out to be artifactual.

s~ {ContourPlot [g3 == 0, {x, —.6, .6}, {y, —.2, .6}], ContourPlot [g3 =0, {x, -1, 1}, {y, -3, —.5}]}

06 -0.5 [H
“10F i
0.4
-15) 4
oul[154)- ,
20} i
0.0
-25 B
-02p d -30n . . . h
-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 -1.0 -0.5 0.0 0.5 1.0

Note the approximate position of the infinite points are

A

82 | SpaceCurveBook v2c.nb

With difficulty we trace paths, first remembering that we must always trace into, but not out from
singularities. Such delicate tracing is best done by our pathFinder2D using the closestPoint2D
algorithm. But with a curve of degree 8 it is way too slow. Our 2D differential equation path
finder interpolates the curve quickly with a piecewise linear curve but the points given are too
approximate for fFiber. So we use pathFinderT2D using normal planes which is a compromise.
We are able to lift to R® with fFiber and get the following picture incorporating the curve in the
union of the two regions above.

The blue and green curves are two different projective topological components. This
is about as close as we can come to visualizing non-planar curves in R*. The points A,
B, C, D represent the infinite points, consistent with the projection above, where each
branch of the curve is heading. Do note that each of the singularities of the plane
projections lift to two distinct points in R* so the curve in R* is non-singular. The
plane curve is algebraically irreducible so the space curve also must be.

2.9 Fundamental Theorem

In my plane curve book I introduce the Fundamental Theorem. This does
carry over to space curves in the general case. Again projection to the plane
and fiber lifting can be used to find a graph of the space curve. Singular
points in the plane projection may lift to several points so the corresponding
vertex will be the image of several different vertices, but the edges will
project to distinct edges in the base given a random enough projection.

2.9.1.1 Example

nesz- F={X+y-XzZ+Yyz, -X=-2Xx"2y-2xy"2-2yA3+xz+2x"3z

-1+6x"2+8xy+4y"2-4x"2z+2z"2+2x"2z"2, x "4+ xy+yh4};

SpaceCurveBook v2c.nb | 83

Projecting with the non - generic projection z — 0 gives the last equation x* + x y + y* = 0. Plotting
this with path tracing and lifting gives

0.0 B

-05r 5

-06 -04 -02 0.0 0.2 0.4 0.6

where the segments of the space curve project the same colored segments of the plane curve. In
the graphs vertices 1,2 in space go to 1,2 in the plane and vertices 3a,3b go to 3 in the plane.

3b

3a
\O

Singularities in space typically will project to singularities in the plane but
under a generic projection different singularities go to different singularities
in the plane so the whole singularity will just lift. Thus we have the Funda -
mental theorem

Each space curve can be described by a graph with even vertices.

We pictured the graphs as directed graphs. While we saw that there was a
natural direction, given a fixed equation, in the plane the directions in space
may be arbitrary. But since each component of a graph with even vertices is
a cycle, by Euler, the edge directions can be chosen so that following these
directions allows one to get back to the starting point.

2.8.2 continued.
The infinite points of F4 are given by

nzws- infF4 = infiniteRealPointsMD[F4, {x, y, z, w}, 1.x"-10]

{{—0.538213, 0.794671, 0.245387, 0.136415, 0},
{—0.750913, —0.416097, 0.208369 , 0.468589, 0},
{0.868006 , 0.134921, —0.380594 , 0.28898, 0},
{0.0882663 , 0.729859 , —0.548269 , —0.398641 , 0}}

labeled by il,...i4 which project to infinite plane points

84 | SpaceCurveBook v2c.nb

{{—1.25675, 1.55582 }, {1.07143 , 1.6888 },
{-1.63582, 1.1507 }, {—1.68853 , —1.07186 }}

Using the Fundamental Theorem in the plane we can infer the following graph
ner- Graph[{"c=2" - "i4", "i4" - "c-3", "c-3" > "c-4", "c-4" 5 "i3", "i3" 5 "c-1",
"c-1" 5 "c-2", "b-1" 5 "i2", "i2" » "b-4", "b-4" » "b-3", "b-3" - "i1",
"i1" » "b-2", "b-2" - "b-1"}, VertexLabels—» "Name", ImageSize -» Small]

c-1 c-2
o e
4
i8 i
Q o
\ /
\ c-4 3
ot o’_
Out[244]=
b-2 b-1
o »Q
4
i o 2
Q o
“ /
\ b-3 -4
ot o’

which compares to the plot above with endpoints labeled.

2.9.2 Ovals and pseudo lines

We can decompose the graph into loops, that is subgraphs where each
vertex has order 2. In particular these are closed. If the curve is non-singu -
lar then each loop represents a topological component, the converse may
not be true because of the existence of cusps etc. In the case of disjoint
loops the decomposition is unique, but if there exist vertices of higher even
order the decomposition is not unique.

The part of the curve represented by a loop is topologically a simple closed
sub-curve. We can distinguish two types. If the closed sub-curve contains
an even number of real infinite points, by multiplicity, we call it a oval.
Otherwise we call it a pseudo-line.

Since any hyperplane can be considered in some specialization to be the
infinite points then equivalently one can intersect the curve with any hyper -
plane and see if the number of intersection points is even or odd to deter -

SpaceCurveBook v2c.nb | 85

mine whether we have an oval or pseudo-line. This is especially useful if the
original graph has a vertex representing an infinite point of degree 4 or

more, since there will be more than one loop with this vertex but the intersec -
tion multiplicity of the original curve with the infinite line at this point will
count intersections with all loops through this vertex.

Of course, if the curve has bounded real part, then a far away hyperplane
will miss the curve completely so it is automatically an oval. One difference
between the space and plane situation is that while a non-singular plane
curve can have at most one pseudo-line, a non-singular space curve can
have more than one skew pseudo-line.

Pseudo-lines are not necessarily preserved under projections, in fact loops
are not preserved. But one may still be able to get information from the
projection.

The example we use is Case 8 from [Tu, Wang, Mourrain, Wang, Using
Signature sequences to classify intersection curves of two quadrics, Computer
Aided Geometric Design,26 (2009), 317-335]. Further details appear in
Section 3.2 below

case8 = {xy+z,1+2xy+y’ -7}
Checking infinite points
nessr- IP = infiniteRealPoints3D [case8, {X, Y, z}]
o {{0., =0.707107 , 0.707107, 0}, {1., 0., 0., 0}, {1., 0., 0., 0}, {0., 0.707107, 0.707107, 0}}
The second infinite point is singular which is why it repeats. We will label these distinct points C,
A, B respectively. It can be shown that a graph for this 3 dimensional curve is
nziz- - Graph[{"A" - "C","C" - "A","A" » "B", "B" » "A"}, VertexLabels - "Name"]

B o A . C
~ % o}

©

To get an idea of what this curve actually looks like we project it to the plane using our default

pseudo-random projection fprd3D obtaining

86 | SpaceCurveBook v2c.nb

2.6.1 Plot 1
10 -

-0t

where c, a, b represent the infinite projections of C, A, B respectively. The intersections in this
plot are artifactual, that is they are not in the original curve.

Since A is infinite it is impossible to attribute them to the individual loops ABA and ACA. There-
fore we take a pseudo-random plane intersecting both loops
we- plane = 0.4645861830018325" +0.1244823462922618 " x+
0.847266521772098 " y-0.22539579656588946 " z;

This plane intersects the space curve in

nza- SOLL = {X, Y, z} I.NSolve[Append[case8, plane]]

uizso- {{—4.38804, —0.575876, —2.52697 }, {—3.90255, —0.655679, —2.55882 },
{—3.73668, 0.112037, 0.418644 }, {0.941646, —0.549126, 0.517083 }}

These points project to the points

« fltMD[#, fprd3D] &/@ sol1

ouzso- {{0.790819, —1.84985}, {0.566653, —1.94661 }, {1.24712, 0.93915}, {—0.810315, 0.402654 }}

shown as black dots on Plot 1 above. We see that 3 lie in the orange curve aba while only the last
one lines in aca. Thus we conclude that ABA and ACA are both pseudo-lines as reported in the
paper quoted above.

The reader should note that although these points are not collinear any line in the plane will
intersect both the blue and orange part in an odd number of points, counted by multiplicity. On
the other hand the reader should note that in the projection there are 3 singularities and the non
unique decomposition of the graph could have 3 or 4 loops, some of which will be ovals so
projections do not directly answer the question for the space curve.

2.10 Bézout’s Theorem

In plane curve theory Bézout’s theorem counts the number of complex
projective intersection points counting multiplicity. More generally in
multiple variables Bezout’s theorem counts the number of complex projec -
tive zeros by multiplicity of a zero dimensional system, that is, a non-linear
system of equations with only isolated solutions, that is the solution set does

SpaceCurveBook_v2c.nb | 87

not contain a curve, surface etc. It is well known that the solution set in this
case must be finite. The case of a square zero dimensional system, eg. n
equations in n unknowns is a classical result, namely if the equations have
degree dj, ..., d, then there are d; = d, * --- * d,, solutions by multiplicity.
There are no simple proofs, one must use advanced algebraic geometry.

In our case we generally have more equations than variables. In this case it
is more complicated, typically adding more equations decreases the num -
ber of solutions. In this section we suggest a different solution, the nullity of
large Sylvester matrices. Specifically we mean by nullity the difference
between the number of columns and the matrix rank. While we do not
claim a proof we will show by examples that this nullity is at least the num -
ber of distinct projective solutions. The reader wanting a proof might look
at the paper [Telen, Mourrain, van Barel, Solving polynomial systems via
truncated normal forms, Siam J. Matrix Anal. Appl. Vol39 no3 (2018) pp.
1421-1447] for ideas on how to prove the existence part of the theorem.

First we need two new functions. These produce dualvectors to Sylvester
matrices for each affine or infinite point of the complex projective space
CP”. Temphasize that the dual vectors are independent of any system, they
depend only on the points and an order m. The variables are essentially
dummies here, any set of n variables will do but since we are working with
certain ones it is most convenient to use those.

aVecMD [p_, m_, X_] := mExpsMD [m, X] /. Thread [X - p]
iVecMD [p_, m_, X_] := Module [{IS, lh},
IS = Length [expsMD [Length [X], m]];
lh = Length [hExpsMD [Length [X], m]];
Join[Table[0, {IS - lh}], mhExpsMD [m, X] /. Thread [Append [X, £#t] - p]l]

I start with an example of a square integer system of 3 equations in 3 unknowns each of which has
degree 2. which has both affine and infinite solutions.

Clear[F]
F={5-11x"-3y-17xy-17y* +4z+2xz+17yz-22",1+5x+41x* -2y +59xy+53y* +
4z—8xz—59yz+812, 1+3x+9x2+3y—5xy—31y2+52—4xz+5yz+4zz};

Note the sum of the degrees is 6 and the product is 8. We first find the complex affine and infinite
solutions.

nere- asolF = {X, Y, z} /. NSolve [F]

s {{~8.55422, 7.35644 , 6.84027}, {~0.0649037 , -0.112053 , -1.15724},
{-0.44003 - 0.234104 i, -0.0206914 - 0.232533 i, -0.990669 - 0.122708 7},
{-0.44003 +0.234104 i, -0.0206914 +0.232533 i, —0.990669 +0.122708 i}}

88 | SpaceCurveBook v2c.nb

ez~ iSOIF = infinitePointsMD [F, {x, y, z}, dTol]

ourzzij- - {{-0.298531 - 0.614054 i, 0.114688 -0.027502 i, -1.1404 +0.15798 §, 0},
{-0.298531 +0.614054 i, 0.114688 +0.027502 i, -1.1404 - 0.15798 i, 0},
{0.241102, 0.363299, 0.899935, 0}, {-0.645934, 0.552577, 0.526715, 0}}

So we have 2 real and 2 complex affine solutions and also 2 real and 2 complex infinite solutions.
We calculate the dual vectors of order 6 to these points.

nesi- adualsF = aVecMD [#, 6, {X, Y, z}] &/@ asolF;
idualsF = iVecMD[#, 6, {X, Y, z}] &/@ isolF;
dualsF = Transpose [Join[adualsF, idualsF1];
Dimensions [dualsF]
MatrixRank [dualsF]

ourzsa- {84, 8}

Note the columns are independent. Now we compare with the Sylvester matrix.

nezei- S6F = sylvesterMD [F, 6, {X, y, z}];
Dimensions [S6F]
MatrixRank [S6F]

{105, 84}

Thus the nullity is 84-76=8 as expected. Now to check our dual vectors

SingularValueList [S6F.dualsF]

{7.36336 x 10™°, 8.95816 x 107", 2.97477 x 107, 1.36979 x 1077,
5.884 x 107, 3.95082 x 107", 7.41627 x 107, 3.05139 x 107*°}

we see that this is numerically the zero matrix. Since dualsF has 8 independent columns we
conclude that these columns form a basis for the nullspace of S6F. The reader should be aware
that although there are many linear algebra methods to calculate a nullspace they will not give this
basis, essentially one must use non-linear methods, such as system solving, to obtain this particu -
lar basis.

We have illustrated our theorem:

Suppose F is an zero dimensional system of r non-linear real or complex
polynomial equations in n < r variables X = {x;, ..., x,} . Suppose the equa -
tions have degrees d;, ..., d,and m =d;+d,+ --- +d, . Let c, be the number
of distinct complex affine solutions and c;,; be the number of distinct com -
plex infinite solutions, ¢ = c,+ Ciyr. Further let k > m and for each affine

solution y; let v; = aVecMD y;, k, X] and for each infinite solution z;let w;=

SpaceCurveBook v2c.nb | 89

iVecMD [zj, k, X]. Then vy, ..., ve, wy, ..., we,, as column vectors, are con -

tained the nullspace of the Sylvester matrix of F of order k.

Remarks: I conjecture that these vectors v;, w; are independent and that if there
are multiple solutions there are additional vectors as in the 2D version to fully span
the nullspace. So the dimension of the nullspace will count the number of complex

projective solutions according to multiplicity.

The zero-dimensional hypothesis is non-trivial. In the r = n = 2 case this is equiva -
lent to the usual hypothesis of no common divisor. In the general case the best way
to test this hypothesis is to solve the system using NSolve. If the hypothesis is not
true an information notice starting with

: Infinite solution set has dimensionat least1....

will appear.

The classical version r = n says that for the zero-dimensional hypothesis the total
number of complex projective solutions is d, #-:-*d,, called the Bézout number.
This is a deep result of algebraic geometry with no easily accessible proof. Note
that if r > n the the count will generally be smaller.

The formula m =d; +d, + :-- + d, is somewhat conjectural at this point. It is
advised that one calculate the nullity of both the Sylvester matrix of order m and
order m + 1. If these are not the same then either the zero-dimensional hypothesis
or the conjecture on m does not hold. In the latter case this nullity will still stabi-

lize at some point and that is the number to use.

Here is an application to curve theory with a non-square system. Consider
the Shen-Yuan example in H-basis form

SY={3.+6.x+3.x"2-4.y-3.xy+1l.y"2-1.z-1.x2,
-1.x-1.x"2-1.z+1.yz,3. x+3.x"2-1.xy-3.xz+ 1.z 2};

This is a square system of 3 equations of degree 2 in 3 unknowns. But it is non zero-dimensional
so Bezout does not hold.

NSolve[SY]

*= NSolve : Infinite solution set has dimension at least 1. Returning intersection of solutions with
40299 x 69046 y 142003 z
- - == 1.
38602 57903 115806

{{x > -1.01508, y -» 0.994216, z » -2.64656},
{x-> -2.78473+0.7673264,y » -2.16878-0.716577i,z » -1.0773+ 1.350127},
{x-> -2.78473-0.7673264,y -» -2.16878+0.716577i,z » -1.0773-1.350127}}

90 | SpaceCurveBook v2c.nb

mi- S6sy = sylvesterMD [SY, 6, {X, Y, z}];
Dimensions [S6sy]
MatrixRank [S6sy]

ourrrz- {105, 84}

So the nullity is 19 rather than the expected Bezout number 8. Try again

ri7- STsy = sylvesterMD [SY, 7, {X, Y, z}];
Dimensions [S7sy]
MatrixRank [S7sy]

{168, 120}

9~ 98
Now the nullity is 22 and will continue to increase by 3 as the order is increased. Essentially this
tells us we have a curve of effective degree 3.

Now we can use Bezout's theorem to calculate how many complex projective intersection points
this curve will have with a hypersurface, that is, surface defined by one equation, in CP?. We start
with a plane

23~ planel = =3=-3X+y+2z;
SYp = Append [SY, planel]

oup- {3.+6.x+3. X -4 y-3.xy+ Ly -1.z-1.xz,

—l‘x—l.xz—l.z+1.yz, 3.x+3.x2—l.xy—3.xz+l.zz,—3—3x+y+z}

The sum of degrees is now 7.

S7syp = sylvesterMD [SYp, 7, {X, Y, Z}];
Dimensions [S7syp]
MatrixRank [S7syp]

ourrse- {252, 120}
oupraz- 117

It should not be a surprise that the nullity is 3. So we expect 3 complex projective points

miser- asolsya = {Xx, y, z} I. NSolve [SYp]
solsya = infinitePointsMD [SYp, {X, y, z}, 1.#"-5]

ourse- {{=3., 0., -6.}, {0., 3., 0.}, {-1., 0., 0.}}

So we have 3 affine points and no infinite points.

mi4n- nTsya = Transpose [Table[aVecMD [p, 7, {X, ¥, z}], {p, asolsya }1];

SpaceCurveBook_v2c.nb | 91

nisz- Dimensions [n7sya]

{120, 3}

m+4- SingularValueList [STsyp.n7sya, Tolerance - 0]
ouras- {9.70843 x 107, 0., 0.}
So n7sya is the approximate 3 dimensional nullspace of the Sylvester matrix S7syp illustrating

Bezout’s theorem for a 4x3 system. Now lets try a surface of degree 3. Now the sum of the degrees
is 9.

5= 83 =x2y+xyz+yzz;

SYs = Append [SY, s3]

{3.+6.x+3.x*-4.y-3.xy+ 1.y - 1.z-1.xz,

-Lx-1.x-1z+1.yz,3.x+3. X - L.xy-3.xz+1.22, X’ y+xy z+y 2%}

nss- S9sys = sylvesterMD [SYs, 9, {X, Y, z}];
Dimensions [S9sys]
MatrixRank [S9sys]

{444, 220}

211

The nullity is 9. Solving

s~ solsys = {X, y, z} /. NSolve [SYs]

{-3.,0.,-6.3,{0., 3., 0.3, {0., 3., 0.}, {~0.333333 - 0.3849 7, 0.333333 - 0.3849 7, 0.5 - 0.096225 i},
{-0.333333 +0.3849 7, 0.333333 +0.3849 7, 0.5 + 0.096225 i},
{0.,1.,0.},{0., 1., 0.}, {~1., 0., 0.}, {~1., 0., 0.}}

infinitePointsMD [SYs, {X, y, z}, 1.»"-101]

{

This returns 9 points as expected, all affine, but we note that 3 of them are listed as being multiplic -
ity 2 points. For example

niser- multiplicityOMD [SYs, 3, {0, 3, 0}, {X, Y, z}, 1.*"-10]
{1,1,0,0}

So we have only 6 distinct affine points.

nies- N9SYs = Transpose [
aVecMD [#, 9, {x, Y, z}] &/@ {{-3, 0, -6}, {0, 3, 0}, solsys[4], solsys[5], {0, 1, 0}, {-1, 0, 0}}];

92 | SpaceCurveBook v2c.nb

rie7- MatrixRank [n9sys]

6

nes- SingularValueList [S9sys.n9sys, Tolerance - 0]

{2.2641 x 107, 1.70962 x 107", 2.15257 x 107>, 9.41709 x 107, 0., 0.}

In this case it only says that n9sys is contained in the 9 dimensional nullspace of S9sys. The
difference is that the nullspace of S9sys is counting by multiplicity. With more work we could find
the missing 3 nullspace vectors similar to the work in the 2 dimensional Bezout theorem at
https://www.barryhdayton.space/curvebook/BezoutsTheorem.pdf

A slightly different example is the twisted cubic of section 2.0. Consider all
three equations

iz~ tweubic = {=y* +X 2z, =X’ +y, =Xy +2}

| = RandomReal [{-1, 1}, 4].{x, ¥, Z, 1}

[-y?+xz, - +y, -xy+2}

ourizz- —0.58838 - 0.122878 x-0.854448 y-0.523189 z

mizs- StwT = sylvesterMD [Append [twCubic, 1], 7, {x, y, z}];
Dimensions [Stw7]
MatrixRank [Stw7]

{252, 120}

ouftzs- 117
So Bezout says that the twisted cubic meets this random hyperplane in 3 complex projective
points. If we take only the last 2 equations and 1 the sum of the degrees is only 5

nizer- Stws = sylvesterMD [{-x*+ Y, -xy+2z, 1}, 5,{x,y, z}];
Dimensions [Stw5]
MatrixRank [Stw5]

{75, 56}

52

Now Bezout reports 4 complex projective solutions. But note as in section 2.0

7~ NSolve[{-x*+y, -xy+z, [}]

wira- {{X > 0.102527 +0.775424 i,y —» —0.59077 +0.159003 i, z » -0.183865 - 0.441795 i},
{x > 0.102527 - 0.775424 i,y » -0.59077 - 0.159003 i, z - -0.183865 +0.441795 i},
{x > -1.83821,y > 3.379, z » -6.2113}}

we get only 3 affine solutions. So Bezout is telling us that, assuming these
three solutions are simple which is true, there must be an infinite solution.
In 2.0 we had to find this solution, with Bezout we can simply imply the

SpaceCurveBook v2c.nb | 93

existence of that solution.

94 | SpaceCurveBook v2c.nb

3 | Applications

The last few sections of this Space Curve volume cover some of my other recent work.
These will get somewhat technical and are aimed at mathematically sophisticated
readers.

One section will cover Quadratic Surface Intersection Curves. Another application
looks at classical resolution of plane curve singularities. I avoided this topic in my
plane curve book because plane curve singularities are not numerically stable, by
blowing up to a space curve we can often get a numerically stable model of the
singularity.

Here is the first section.

3.1 Implicitization of Parametric curves

3.1.1 General theory of parametric curves

It is well known that curves parameterized by polynomial, or more generally, rational
functions are algebraic curves, that is can be described by a system of algebraic
equations. In the past I have treated these separately, however Irecently discovered
that the theories are the same up to FLT. A short version of this section is given in
Volume 22 of The Mathematica Journal.

So suppose we start with a rational curve in R".

pilt] polt] palt]
} (1)

A= S

where the common denominator A[#] # 0 and the p; and A are univariate polynomi -

als in . With this approach Ido not need to make assumptions on the degrees of the
numerators relative to each other or the denominator. In particular if
Pns1lt] = Alf] = 1is the constant polynomial then we say Q[¢] is a polynomial curve.

The degree of a polynomial or rational curve is the largest degree d of py, ..., pu+1-

A polynomial will be called stripped if the constant term is 0, that is p[¢] is stripped if
pl0] = 0. We strip a polynomial by dropping the constant term, we write p[t] for the
stripped polynomial p[¢]. Here we treat rational functions a bit differently from
polynomial functions since we can only strip Q[?] in equation (1) if Q[t] is not con-

stant as stripping the constant polynomial A[t] =1 gives A[f] = 0. For this reason we
will only talk of stripping polynomials, not rational functions.

Given a rational curve as in (1), including polynomials, assuming
piltl=Gio+ai t+ - +a;gtifori=1,...,n+1

we get a projective stripped coefficient matrix

SpaceCurveBook v2c.nb | 95

an a2 adq
a1 dzo A2d
:)
An+1-1 Apt12 .-+ Antid
For example for the polynomial curve {2+31+4 % 5+6 ¢+ 7 t*} the projective
stripped coefficient matrix, including the stripped denominator is
3 4
6 7
00
While for the rational function { EasRas i' R 346 147 i } we get
1+8 t+9 t 1+8 t+9 ¢
3 4
6 7
8 9
From this we get the projective augmented coefficient matrix by adjoining a last
column containing the constant terms. For the two examples above
3 4 2 3 4 2
Al=|(6 7 5| A2=|6 7 5
001 8 91
The key observation is
wo- - fIEMD [{tr tAZ}, {{3) 4, Z}r {6y 7, 5}! {0; 0, 1}}]
o {2+3t+4¢,5+61+7¢)
Inf121] fitMD [{tv t/\z}r {{3v 47 2}; {6) 7! 5}! {8y 9»]-}}]
{2+3t+4t2 5+6t+7t2}
 Ul48t+98 148t+9¢
More generally we have the following FLT Parametric Curve Theorem:
If Q[t] is a rational curve of degree d with projective augmented coefficient matrix A
then
t
t2
QIt=fvMDI | |, A] 3)
td

In particular, every rational curve of degree d is the FLT image of the stripped polyno -
mial curve {t, 2 .., td}in R<.

Note that this theorem implies that T,; = {t, 2, ..., td} is a universal curve for rational

and polynomial curves. Icall this curve a parabola after Kepler because it has a single

96 | SpaceCurveBook v2c.nb

o

outf

infinite point {0, ..., 0, 1, 0}. When d is even the curve is tangent to the infinite
hyperplane like the plane parabola T,. Thus every rational curve is a specialization
and/or projection of this family of curves. Further, it is not necessary to study rational
curves separately from polynomial curves.

3.1.2 Shen-Yuan Example
This example from 2010 shows the problem of finding a good implicitization.

We use the example of L.Shen and C. Yuan in R®. [L.Shen, C.Yuan, Implicitization
using Univariate Resultants, J Sys Sci Complex (2010) 23, pp.804 - 814.]

e Sy = {—2tA24+1tA3, 1 —t—tA2+ (A3, 2t—3tA2+tA3);

Their method gives the system of 3 equations, not actually stated in their paper:

pee SY = {=3-7Xx—-5X X +7y+9xy+3x°y-5y* —3xy* +y°,
—X2—X3+2XZ+3XZZ—3XZ2+Z3,

—3y+4y* -y -2yz+3y*z+62°-3yz° +2°);

They point out that the point {-1, 1, 0} satisfies these equations but is not on the
curve. In fact there are actually 5 isolated points, all real, satisfying this system which
are not on the curve. Itis somewhat difficult to find these isolated points but with n
equations in n unknowns we can use the fact that a small perturbation of the system
will have only isolated solutions, using FindRoot we can locate nearby solutions on
the non-perturbation system. We can check to see if they are actually on the paramet -
ric curve using the parametric curve theorem above.

We use the random perturbation below which finds all the isolated points, this was
found by trial and error

rr = {0.01306586198991111" , —0.09887929561077524" , —0.05150297032114362" };

mies- solrr = {X, y, z} /. NSolve [SY + 1T, {X, V, z}, Reals]

uss- - {{—1.32717 , 0.848784 , —0.413263 }, {—0.180712, 0.588029 , —0.388907 },

{—0.435589, 0.308678 , —0.329942 }, {—1.03345, —0.0117412, 0.0489152 }}

These 4 real solutions are close to actual solutions of SY

mee- 180l = {X, y, z} /. FindRoot [SY, Transpose [{{x, vy, z}, H}]] & /@ solir

v~ {{—1.08567, 0.966531 , —0.383168 }, {—0.0514731, 0.809015, —0.384493 },
{—0.585515, 0.190521 , —0.264511 }, {—0.988233, 0.000269103 , 0.0116319 }}

SpaceCurveBook_v2c.nb | 97

meg- Toot6 = {X, y, z} /.

Chop [FindRoot [SY, Transpose [
{x v z}
{—0.28172479907074977 —
0.10554902609695169 =1,
1.2050352897534784 —
0.004529970239375305 =1,
—0.29474952022205597 +
0.0027247859065144867 = 1}}]]]

ourss- {—0.684747, 1.10801, —0.301161 }
In addition to these 4 real solutions of SY there is the multiplicity 2 solution {-1, 1, 0}

given by Shen-Yuan. Further we find one additional real solution starting from a
complex solution of the perturbed system. Checking multiplicity

e~ 1sol = Join([rsol, {{—1, 1, 0}, root6}];
Table [multiplicityMD [SY, s, {x, y, z}, dTol], {s, rsol}]

oo {1, 1, 1, 10, 2, 1}

The multiplicity of the fourth real solution is 10 because that is the default maximum
multiplicity returned by multiplicityMD, this suggests that that point is non-isolated
and thus on the parametric curve, while the others are not on the parametric curve.
We can check this 4th point using our parametric curve theorem. The stripped curve
is

Sy = {-2tA2+41tA3, —t—tA2+tA3,2t—-3tA2+tA3};
the augmented projective stripped coefficient matrix is

SYmat = {{Or _2y]-r 0}» {_17 _]-y]-»]-}v {2r _3y]-v 0}» {0» 0) 0;]-}})
giving the parametric equation as

sy = fltMD [{t, tA2, tA 3}, symat]

(248, 1-t-¢+8,2t-3¢+¢%}

We see that symat is an invertible matrix so the FLT given by this is also invertible.
Thus the point rsol[[4]] comes from

q = fitMD [rsol [4], Inverse [symat]]
o= {0.988366, 0.976868 , 0.965504 }
But note that this is on the curve {t, 2, t3}

{q[1], q[1172, q[1]~3}
{0.988366 , 0.976868 , 0.965504 }

98 | SpaceCurveBook v2c.nb

So

- 1s0l1[4]
AMD [{q[[1], qI1]42, q[1]A3}, symat]
{—0.988233, 0.000269103 , 0.0116319 }

ouzs- {—0.988233, 0.000269103 , 0.0116319 }

is on the curve sy. Thus the 5 isolated points of SY not on the curve sy are
g~ Drop [rsol, {4}]

ouzs- {{—1.08567, 0.966531 , —0.383168 },
{—0.0514731, 0.809015, —0.384493 }, {—0.585515, 0.190521 , —0.264511 },
{—1, 1, 0}, {—0.684747, 1.10801, —0.301161 }}

An important observation from this example is that, unlike for plane curves, none of
these isolated points are singular because isolated points are the default case for 3x3
systems. This is what makes them hard to find.

In the next subsections we will show how to find a system for this last curve that does
not have isolated points not on the curve.

3.1.3 Direct approach

The direct approach to implicitization for polynomial parameters has two
parts, first we find all polynomials vanishing on the parametric curve up to a
specified degree, then we find a H - basis of this ideal. We should check this
as above to make sure that there are no points in this ideal that are not on
the curve, but remember complex values of ¢ are valid in this setting.

Use the indirect approach for rational parameters.

The user will need to decide the maximum degrees of the polynomials to be
found. Often the correct degree is less than the maximum degree of a com -
ponent of F, but apparently never larger. Using the maximum degree of a
component the second step will give the lower correct degree so this is a
safe, but maybe not the quickest choice. In the next subsection we will give
a family of curves of arbitrarily large degree and dimension with impliciza -

SpaceCurveBook_v2c.nb

tion consisting of quadratic polynomials.

The following function takes as arguments a polynomial parametric curve
F, aspecified degree d the parameter ¢ and the variables you wish to use on
the target space. The number of variables should match the number of
components of F. This routine is similar to the routine in section A.5 of the
plane curve book but better even for 2 variables. This routine expects exact
or at least very accurate numerical coefficients of F otherwise you may need
to replace the built in NullSpace finder with an numerical one based on the
SVD.

p2aRawMD[F_, d_, t_, X_] := Module[{n, TB, cr, ar, SA, NSA, FA},

n = Length[X];

If[Length[F] # n, Echo["Dimension mismatch F,X"]; Abort[]];

TB = Expand[Table[m /. Thread[X - F], {m, mExpsMD[d, X]}11;

cr = <| CoefficientRules[H, {t}]|> &/@ TB;

ar = Append[
Flatten[Table[Table[{i, First[k] + 1} - cr[il[k], {k, Keys[cril1}], {i, Length[cr]}], 1],
{L,_}~0]

SA = SparseArray[ar];

NSA = NullSpace[Transpose[SA]l;
If[Length[NSA] < n-1, Echo["Fail, Try higher d"]; Abort[]];
FA = NSA.mExpsMD[d, X];
Echo[Table[Expand[FA[jI /. Thread[X - F]], {j, Length[FA]}], "Residues"];
FA]
We will illustrate with the Shen-Yuan example above
oo Sy ={~2tA2+tA3, 1-t-tA2+tA3,2t-3tA2+t 3
mes- G = p2aRawMD [sy, 3, t, {X, Yy, z}]
{0,0,0,0,0,0,0,0,0, 0}
ul[99) {8x2+8x3-3x2y+2xz—6xzz+z3,3x+3x2—xy—4xz—xzz+yzz,
X=X =Xy -XPy-z+y?7,12+32x+28x*+8x° —13y-18xy-6x"y+y*-5z-8xz-3x*z2,
343X =X y-3x2z+xZ%, - X =X =XZ+XYZ, 3x+6X +3X° —4xy-3xy+xy’-xz-x"2,

3x+3x2—xy—3xz+zz,—x—xz—z+yz,3+6x+3x2—4y—3xy+y2—z—xz}

Note that 6 polynomials are returned. Now we find a H-basis

H = hBasisMD [G, 3, {x, Y, z}, dTol]

{1,3,3,3}

{3.+6.x+3.x -4.y-3.xy+ L.y’ -1.z2-1.x7,-1.x-1.x* - 1.2+ 1.y 7, 3.x+3.X* - L.xy - 3.xz+ 1. 2%}

Note that 3 equations are returned. One needs to check that unlike the Shen-Yuan system, this
has no isolated or other solutions not on the curve. We only check their point here

100 | SpaceCurveBook v2c.nb

H /. Thread [{x, y, z} » {-1, 1, 0}]

{4.44089 x 107*°, -1.77636 x 107%°, 1.}
It does satisfy the first two equations but not the third.

3.1.4 The indirect approach.

The FLT Parametric Curve Theorem says every polynomial or rational
parametric curve F is the image of the famous rational normal curve

T, = {t, 2 ... td} where d is the maximum degree of a polynomial in ¢ in
the numerator or denominator of F. So we use FLTMD on the FLT from the
theorem using a known implicitation of T,;. We have the

Theorem:[see Joe Harris’ book] The implicitization of T, is given by
quadratic binomials in {x1,...,xd}, in particular the (j) monomials given by

p2rawMD [{t, tN2, ..., td}, 2,t,{x1, ..., xd}]

We will not prove this here but it is easy to check any case by the direct method in the last section,
for example n=4
nizor- raw4d = p2aRawMD [{t, t"2, tA3,t 4}, 4, t, {x1, x2, x3, x4}]

{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0, 0, 0, 0}

{x3%x4% - x2x4°, x3® x4 - x1 x4%, x3" - x4%, x2 x3 x4% - x1 x4*, x2 x3% x4 - x4°, x2 x3* - x3 x4?, x2* x4> - x4°,

X2% X3 x4 - x3 x4%, x2% x3% - X2 x4%, x2° x4 - x2 x4, x2° x3 - x1 x4%, x2* - x4%, x1 X3 x4* - x4°,

X1 X3% x4 - x3 x4%, x1 x3° = x2 x4, x1 X2 x4” - x3 x4%, x1 x2 X3 x4 - x2 x4°, x1 x2 x3* - x1 x4°,

X1 x22 x4 - X1 x4%, x1 x22 x3 - x42, x1 x2° = x3 x4, x1% x4? - x2 x4?, x1? x3 x4 - x1 x4?, x1% x3% - x42,

x12 X2 x4 - x42, x12 X2 X3 - X3 x4, x12x2% -x2 x4, x1° x4 - x3 x4, x13x3-x2 x4, x1* x2 - x1 x4, x1* - x4,
X3% x4 — x2 x4%, x3% - x1 x47, X2 X3 x4 — x1 x4%, x2 x3% - x4, x2% x4 - x4%, x2* X3 - x3 x4, x2° - x2 x4,

X1 X3 x4 - x4, x1 X3% = X3 X4, X1 X2 x4 - X3 X4, X1 X2 X3 = x2 x4, X1 2% = x1 x4, x1% x4 - x2 x4,

x12 x3 - x1 X4, x12x2 - x4, x1° - X3, x32-x2 X4, X2 X3 - x1 x4, x22 - X4, X1 X3 - x4, x1 X2 -x3, x1% - x2}

tBasis4 = hBasisMD [raw4, 4, {x1, x2, x3, x4}, dTol]

{1,444, 4

{1.x1%-1.x2, 1.x1x2-1.x3, L.x1 X3 - 1. x4, 1.x2* - 1. x4, 1. x2 x3 - 1. X1 x4, 1. x3% - 1. x2 x4}

raw2 = p2aRawMD [{t, t"2,t"3,t"4}, 2, t, {x1, x2, x3, x4}]

{0,0,0,0,0, 0}

{x3% - x2 x4, x2 x3 - x1 x4, x2* - x4, X1 x3 - x4, x1 x2 - x3, x1* - x2}

One might think from the theorem that one could build tBasis up recur -
sively by merely adding d — 1 binomials to the previous tBasis. This is not
true however, but the new terms do imply the old terms are also in the ideal

SpaceCurveBook_v2c.nb | 101

generated by the larger basis. For example
tBasis3 = p2aRawMD [{t, tA2, t3}, 2, t, {x, X2, X3}]
{0, 0,0}

{x2% - x1x3, x1 x2 - x3, x1* - x2}
Here x2 /2 —x1 x3 has been replaced by x2/2 — x4 and x1 x3 — x4 which imply the former.

For further use we will collect the first few cases of tBasis, they should be
initialized in GlobalFunctionsMD

tBasis2 = {x1"2-x2};
tBasis3 = {x2"2-x1x3, x1x2-x3,x172-x2};
tBasis4 = {x3"2-x2 x4, x2 x3-x1x4, x2"2-x4, x1 x3-x4, X1 x2-x3, x12-x2};
tBasis5 = {x4% - X3 x5, X3 x4 - X2 X5, x3* = x1 x5, X2 x4 - X1 X5,
X2 X3-x5, X2 - x4, X1 X4 - X5, X1 X3 - x4, X1 X2 - x3, x1% = x2};

We can redo the Shaun-Yuan example by using the FLT from section 3.1.2
Symat = {(0: _2’ 1) 0}’ {_1: _1’ 1) 1}’ {2) _3’ 1’ 0}: {0: 0) 0: 1}};
sy = fltMD[{t, t A 2, t 3}, symat]

o =284, 1-t-t4 1, 2t-3824 %)

H2 = FLTMD[tBasis3, symat, 3, {x1, x2, x3}, {x, Y, z}, dTol]

{1, 3,3, 3}

cur {3.x+3. % -1.xy-3.xz+1.2%, L.x+1.x*+ L.z-L.yz,
1.+2.33333x+ 1.33333x% - 133333y - 1.xy+ 0.333333y? - 0.333333x2- 0.333333y 7}

Note that this is different from the implicitization we got using the direct approach above because
FLTMD works projectively and applies hBasisMD on a homogeneous system where our direct
method works completely in the affine situation. But we can see these are the same by applying
hBasisMD to the result. The fact that the Hilbert function is unchanged implies these systems are
equivalent.

es- hBasisMD [H2, 3, {x, y, z}, dTol]

{1, 3,3, 3}

{3-+6.x+3.x°-4.y-3.xy+ 1Ly’ -1.z-1.xz,-1.x-1.x* - 1.2+ 1.yz,3.x+3.x’ - 1.xy-3.xz+ 1. 2’}

As a second example we look at a rational parameterization of the piriform.

1-t* 4t

nire- piriformpar = { , }
L+2tA2+t"4 1+42th2+t14

{)

We can construct a 3x5 FLT matrix by labeling the columns by ¢, #*, ¢*, t*, 1 and rows by
coefficients of 1 — #*, 41, 1 +2 ¢* + ¢* respectively.

1-t* 4t

14287+t 14282+t

102 | SpaceCurveBook v2c.nb

wz0s- piriformA = {{0, 0, 0, -1, 1}, {4, 0, 0, 0, 0}, {0, 2, 0, 1, 1}};

piriformA /I MatrixForm

00 -11
[00 O 0]
20 1 1

Checking

o » O

7= fEMDI[{t, tA2, tA 3, t A4}, piriformA]

Thus an implicitization of the piriform is

1-t* 4t

14287+t 1+2t2+t"}

- piriformEqQ = FLTMD [{x3% - X2 x4, X2 X3 - x1 x4, xX2° - x4, X1 x3 - x4, x1 X2 - x3, x1% - x2},
piriformA, 4, {x1, x2, x3, x4}, {X, y}, dTol][1]
{1,2,3,4,4)

ourg- Lo+2.x=2.x3-L.x* = 1.y?

nzzo- Show [ContourPlot [piriformEq == 0, {x, -2, 2}, {y, -2, 2}, ContourStyle - Orange], ParametricPlot [
piriformpar , {t, -6, 6}, PlotStyle - Directive [Dashed, Black], ImageSize - Small]]

2f 3
—
Ve N
L / \ 4
1 / \
/
/ \
/ \
4]
/ 1
/]
o < |
N, 1]
N,
\]
\]
N, I
N [}
\\ 1
1k \. / i
N, 4
g
25 . . . I
-2 -1 0 1 2

A more complicated example is

t+2 th2-1 th2-t+1 4th2
In[258]:= fpar={

b b b };
tA2+1 th2+1 th2+1 th2+1
Again this can be actualized by an FLT with matrix

Ini259):= fParA = {{1’ 0’ 2}’ {0’ 1; -1}’ {-1: 1’ 1}, {0’ 49 0}, {0, 1’ 1}};
fltMD[{t, t A2}, fparA]

{2+t “1+t? 1-t+t? 4t2}
l+t2’ l+t2’ 1+t2 ,l+t2

So the implicit curve in R%is

SpaceCurveBook_v2c.nb | 103

esn- fparEq = FLTMD[tBasis2, fparA, 2, {x1, x2}, {x, y, z, w}, dTol]

{1, 2,2

{l.w-1.x-3.y-1.2,1.-0.5x-0.5y-0.5z,
1.x%+2.xy+2.33333y - 3.33333x2- 3.33333y 2+ 1. 2}

At first we might be surprised that of the 3 equations two are linear which
means this curve lies in a 2 dimensional subset of R*. But on further consid -
eration we see that this curve is contained in the image of a FLT defined on
R? which itself cannot have image greater than 2. Applying a somewhat
random orthogonal FLT projection with matrix

- projA={{0.7071067811865475",0.",0.",0.7071067811865475",0."},
{0.4082482904638631", 0.816496580927726", 0., -0.4082482904638631", 0."},

. .

{0.°,0.5,0.,0.°,1."}}

{{0.707107,0.,0.,0.707107, 0.}, {0.408248, 0.816497, 0., -0.408248, 0.}, {0., 0., 0., 0., L.}}

we find that the parametric curve projects to
nzesi- fparproj = N[fltMD[fpar, projA]]
2.82843t7 0.707107 (2.+t) 1.63299t2 0.408248 (2.+t) 0.816497(-1.+t?)
+

+ - +

{ L+t L+t R L+t L+t }

while the curve in R*projects to

nzer- fprojEq = FLTMD[fparEq, projA, 2, {x, Y, z, w}, {X, y}, dTol][1]

{1,2,2}
1.-1.21218x+0.357143x* - 0.699854y+0.742307xy + 1.07143y2
nzes- - Show[ContourPlot[fprojEq == 0, {x, 1, 3}, {y, -1.5, .5}, ContourStyle -» Orange],

ParametricPlot{fparproj, {t, -8, 8}, PlotStyle -» Directive[Black, Dashed]],

ImageSize -» Small]

05 ki
00 1
ll ~"*~
\ .
\ ~
N\,
5 -05F N \
i - \
S~ ’
~~~~~~
10} ]
-15h0 L L L o
1.0 15 2.0 25 3.0

So we merely have a plane ellipse lying in R*.

3.2 Quadratic Surface Intersection Curves (QSIC)



104 | SpaceCurveBook v2c.nb

This is a classical area that only recently has seen a full solution. C.Tu,
W.Wang, B. Mourrain and J. Wang, [TWMW], have given in the journal
Computer aided Geometric Design 2009 a complete classification of QSIC
identifying 35 types including singular QSIC. L. Dupont, D. Lazard, S.
Lazard and S. Petitjean [DLLP] presented a 65 page discussion and working
black box algorithm in 2008 available on http://vegas.loria.fr/qi/index.html,
a typical run looks like this

vegas.loria.fr/qi/server/qi.php - Chromium

Quadric Intersection O Pl @ vegas.loria.fr/qi/server/c X

C  ® Notsecure | vegas.loria.fr/qi/server/qi.php h*g ‘

CPU Time: 4 ms
Input quadrics

Quadric 1: hyperboloid of two sheets in RA3
25Xy +ZA2+WA2

Quadric 2: hyperboloid of two sheets in R3
“XA2+YA24Z/2+42*WA2

Type of the intersection

Type in real projective space P’(ﬁ): smooth quartic, one finite component
Type in complex projective space P’(C): smooth quartic

Parametrization of the intersection

Parametrization of each 1t of the ir 1in R3in o [x(u); y(u); z(u); w(u)], where (u) is the parameter in the closure of R (R U {«})
e c affine [} ] 3

[smooth quartic branch 1]
Parametrization is NEAR-OPTIMAL: there might be one extra square root in the coefficients of the u¥
x(u) = 26*un2 + 507 + (6*u~2 - 169)*sqrt(13) + (3*u + u*sqrt(13))*sqrt(Delta)
y(u) = - 338 + 4*un2*sqri(13) - 2*u*sqrt(Delta)
2{u) = - 12°uA3 + 416*u - 4*un3*sqri(13) + 13*sqrt(Delta)
w(u) = - 12*u3 + 260*u - 4*'un3*sqri(13) - 13*sqrt(Delta)
Delta = 24*un4 - 624*un2 + 1014 + (8'un4 - 338)sqrt(13)
[smooth quartic branch 2]
Parametrization is NEAR-OPTIMAL.: there might be one extra square root in the coefficients of the uk
X(u) = 26*un2 + 507 + (6*un2 - 169)*sqrt(13) + (- 3*u - u*sqrt(13))*sqrt(Delta)
y(u) = - 338 + 4*un2*sqrt(13) + 2*u*sqrt(Delta)
2(u) = - 12°uA3 + 416*u - 4*un3*sqri(13) - 13*sqrt(Delta)
w(u) = - 12*un3 + 260*u - 4*ur3*sqrt(13) + 13*sqrt(Delta)

Delta = 24*uAd - 624*un2 + 1014 + (8*'un4 - 338)*sqrt(13)

Here I give my take on this subject.

3.2.1 The Theory

A quadratic surface intersection curve (QSIC) is a naive curve where the 2
equations are quadratic (degree 2) in three variables. It helps, however, to
have the full general theory in understanding these curves.

In principle these curves have degree 4, that is, a generic plane projection
will be a curve of degree 4. Alternatively a generic plane intersects a generic
plane in 4 complex projective points. Using our Bezout theorem



SpaceCurveBook_v2c.nb | 105

nzg- X=mEXpsMD[2, {x, y, z}];
F1 = Randomlintegeri{-9, 9}, {2, 10}].X
planel = Randomlinteger{{-9, 9}, 41.{x, y, z, 1}
S7 = sylvesterMD[Append[F1, plane], 7, {x, y, Z}];
dim = Dimensions[ST];
rnk = MatrixRank[S7];
diml2] - rnk

(-2+7x+2X*-6y-4xXy+272+8Xx2-6yz+27%,-2+4x-TxX*+8y-4xy-3y*+9z-Txz+3yz-2°}

4+2x-3y-62

For a non-singular QSIC classical mathematicians have determined this is a
curve of genus 1. Plane curves of genus 1 include the elliptic curves
y? — x* —a x — b and hyper-elliptic curves y* — x* — a x* — b x — ¢ where in
both cases the cubic in x has no multiple zeros. As the screen image above
shows DLLP can parameterize these curves in the form of rational functions
of the form

plul = {(U,[ul+V,[ul Sqrt[S[ull) /A, (U,[u]+V,[u] Sqrt[8])/A, (Us[ul+Vs[u] Sqrt[6[ul])/A}

A[u] = U,[u]+V,[u] Sqrt[&[u]]
where U;, V; 6 are polynomials of degree 4 in u, and A, ¢ are the same for all
three coordinates.

In my 2011 paper on QSIC Ishow that one can do better in that the U; V;, ¢
can be polynomials of degree 3. Here is an exposition in terms of the Wol -
fram Language.

Here Q is the equation of our QSIC and p is a point on Q. We obtain an FLT
projection () and right inverse U which is not an FLT. In addition we obtain
a cubic plane curve h which is the domain of U. The algorithm takes p to an
infinite point so is not in the domain of (.

Suppose we take a random example, say the one above

g Qr= {=24TXx+2X*=6y-4Xy+22+8xz-6yz+27%,
-2+44x-7x*+8y-4xy-3y*+9z-Txz+3yz-2%};

We first obtain a point on the curve, in general this might not be random.

cp = criticalPoints3D[Q, {X, y, z}][2]
{0.199762, 0.0222691, 0.176374)

Next we use the following function with codifies the method in my 2011
paper. This returns a plane polynomial h of degree 3, an FLT () which takes



106 | SpaceCurveBook v2c.nb

the curve Q to h and a function U which maps h back up to Q as a right
inverse, that is U[{}[g]] = g for almost all g in Q. One needs to be careful
with the usage since the routine does use randomization and will give a
different result each run. This randomization turns out to be essential since
most integer coefficient examples one might use, eg. from [TWMW], are not
full, that is the input polynomials must have non-zero coefficients for each
monomial, for the classical trick we use to work. Also to avoid messy output
Irecommend running quietly with “” .

nsQSIC3D[Q_, p_, {X_, y_, z_}] := Module[{p0, A, F, h,L, M, R, S, Q, U},
p0 = Normalize[Append[p, 1]];
A = Reverse[Orthogonalize[Prepend[RandomReal[{-1, 1}, {3, 4}], pO]ll;
F = FLT3D[Q, A, {X, Y, Z}];
L = formMD[F[ 1], 1, {x, y, z}];
M = formMDI[F[2], 1, {x, y, Z}];
R = formMD[FI11, 2, {x, y, }1;
S = formMD[FI2], 2, {x, y, Z}];
h = Expand[L*S-R+M]/.{z > 1};
Q = Take[fltMD[#, A], 2]/ (fltMD[, AJ[3]) &;
U = Take[lnverse[A].Join[#, {1, (-R/L) /. Thread[{x, y, z} -» Append[#, 1]]}], 31/
Last[Inverse[A].Join[H, {1, (-R/L) /. Thread[{x, y, zZ} -» Append[#, 1]]}]] &;
{h,
Q,
O}

{hr’ Qr, Or} = nsQSIC3D[Q, cp, {x, Y, Z}];

Now we carefully look at the output. First we note that we do get a cubic
polynomial for h. Note this will be numerical and full for the integer sparse
input.

hr

e 47.2734-126.297 x+137.892x% - 2.33154x° + 38.6005y -
7.96867xy-4.20928 x> y+33.8287y*+5.10199x y* - 5.79393y*

Rather than look at the complicated definition of (), U we evaluate the
output functions using variables for values. We see that we do get an FLT.

Qrn{x,y, z}]
-0.192492+0.511139x+0.724164y + 0.421034z

{ 0.167346-0.654154x+0.676769y-0.293362z ’
0.0409707+0.523046x+0.130794y-0.841212z

0.167346-0.654154x+0.676769y-0.2933622 }



SpaceCurveBook_v2c.nb | 107

U takes points on the plane to points in R3, it is easier to work with each
coordinate separately.

e Orx= Simplify[OA{x, y}[11]
U ry = Simplify[O r{{x, y}][2]]
Urz= Simplify[Ori{x, y}[3]]

6.77097 + 0.677412 X% + X (-5.94613+ 0.730631y) - 6.95909y + 0.262376 y?

-5.37988+5.23728x+0.505216 x* - 5.00917y + 0.619406 X y + 1. y?

7.79955+7.48938x - 0.775353x%+ 1.51171y-0.238621xy- 0.0380644 y>

5.37988-5.23728x-0.505216x*+5.00917y - 0.619406 x y - 1. y?

2.73532+0.56636 X + X (-4.60656- 0.725381Y) + 8.75834y+ 0.0731931y?

-5.37988+5.23728x+0.505216x* - 5.00917 y+ 0.619406 x y + 1. y?



108 | SpaceCurveBook v2c.nb

Qr={-2+7x+2X*-6y-4Xxy+2z+8Xxz-6yz+227,
—2+4Xx-Tx*+8y-4xy-3y*+9z-Txz+3yz-2};
hr=47.27339766682051" - 126.29676742395714 " x + 137.8924583577859 " x> -
2.3315379753889216" x* + 38.600477189804465" y-
7.968669330520427 " x y-4.209276523596027" X y+
33.82865025275894 " y2 + 5.101992253822809° x y? - 5.793933359433088 " y*;
QHx_,y_,z] :={(~0.19249242259065155" +0.511138659376466 " X +
0.7241643930306724" y+ 0.4210342860178124" z)/
(0.1673459529911122" - 0.6541543196115073" x+
0.6767688687679541" y-0.29336215914402825" z),
(0.04097065367206614 " +0.5230464061760043 " x +0.13079378255133922" y -
0.8412115363985226" z)/(0.1673459529911122" -0.6541543196115073 " x +
0.6767688687679541" y-0.29336215914402825" z)};

Orx[{x_,y_}] :=(6.770973793600855" - 5.946132153292747 " X+
0.6774118751211937" x* +(-6.959092852928387 " +0.7306313695805137 " x) y+
0.2623764415412226" y?)/

(-5.379876935689428" +5.2372843516982615 " x+0.5052157400292752" x* -
5.009169689826631 " y+0.6194057061472128" xy+1." y?);

Ory[{x_,y_}] :=(7.799549554433994 " +7.489375420102824 " x -
0.7753526722058538" x* +1.511709673478418" y-

0.23862093428751913" x y-0.038064407750122875" yZ)/
(5.379876935689428" - 5.2372843516982615 " x-0.5052157400292752" x* +
5.009169689826631 " y-0.6194057061472128" xy-1." y?);

Ord{x_,y_}] := (2.7353213149626185" - 4.606560493457439" x +
0.5663595351370571" x* +(8.758337796121568 " - 0.725381245932385 " x) y+
0.07319306835158754" yz)/

(-5.379876935689428 " +5.2372843516982615 " x+0.5052157400292752" x* -
5.009169689826631" y+0.6194057061472128" xy+1." y?)

Or{x_ y_3] := {Orq{x, y}I, Ory[{x, y}I, OrA{x, y}I};

We observe that each U is a fraction of two quadratics in x,y with a common
denominator we will call A.In practice we will parameterize the cubic h by
putting it in Weierstrass normal form as in Chapter 7 of my plane curve
book yA2 = xA3 + ax + b.There is a 2 dimensional FLT taking We write
0 =x73 + ax + bso we can parameterize this latter curve by

{t, £Sqrt[o[¢]]}. There is a 2-dimensional flt taking h to this Weierstrass
curve so h is parameterized by t—flt2D[{t, £Sqrt[¢ [t]]},Inverse[Ah]] for a
3x3 invertible matrix Ah obtained as part of the reduction of h to Weier -
strass form.



SpaceCurveBook_v2c.nb | 109

ma-  allinflectionPoints2Dfhr, x,y]
{{39.5436, 14.2075}, {2.82384, 9.43578}, {-3.64555, 8.59508}}

inflecPt = {2.8238358825981082 ", 9.43577590447643 "}

(2.82384, 9.43578)

nzz- - {w, Aw} = weierstrassNormalForm2D[hr, inflecPt, x, y]

{-4.07613-4.68308x+ 1. - 1.y, {{0.60151, -0.00139735, -1.68538},
{0.516591, 0.875264, 0.182328}, {0.17991, -0.15676, 0.971112})}

w=w/.{x>t,y- 0}
ourzs-  -4.07613-4.68308t+ 1. t3
Clearfs, t]

Our transformation from the curve s* = w[t]is given by

{X, y} = TransformationFunction[Inverse[Aw]][{t, s}]

1.58421+0.2852395+0.943677t -1.05298+0.953119s5-0.503615t

{ 0.566277+0.1010115-0.256123t 0.566277+0.101011s- 0.256123t}

In pictures

s~ {ContourPlot[s’ == w, {t, 0, 10}, {s, -20, 20}, ImageSize - Tiny],
"—", ContourPlot[hr == 0, {x, =20, 20}, {y, 5, 25}, ImageSize » Tiny]}

20—y 25
10 bl 20F
0 El 15¢
{ y }
-10 1 10
-20 [ T
0 2 4 6 8 10 -20 -10 0 10 20

Now we note that composing the transformation function with Urx gives

2= UX = Simplify[O r{TransformationFunction[Inverse[Aw]][{t, s}]1]
2.40371-4.351445-0.3828525%-2.22272t+3.05474s t+1.78529t2

9.98189-2.601745+1.5%+5.15708t+2.25881st-2.53622

which is again a quadratic rational expression, likewise for y,z. Now the
upper and lower half of s*° = w[f] can be parameterized by s = +Sqrt[w].
We have the following special function to replace s by the right hand side
and simplify:



110 | SpaceCurveBook v2c.nb

specialExpand[w_, u_, s_, sgn_] := Module[{w1},
w1l = Expand[w /.{s"2 - u}];
Collectfwl, s]/.{s = sgn=* Sqrt[u]}]

- MXi= specialExpand[Numerator{ux], w, s, 1] /. {t » &} &
Likewise

- Uy = Simplify[O ry[TransformationFunction[Inverse[Aw]][{t, s}11];
uz = Simplify[O r TransformationFunction[Inverse[Aw]][{t, s}]1];
upy = specialExpand[Numerator{uy], w, s, 1] /.{t » H} &;
pz=specialExpand[Numerator{uz], w, s, 1] /.{t » H} &;

A = specialExpand[Denominatorfuy], w, s, 1] /.{t » 1} &;

So we have our local parameterization of Q as described above

pIt_ ] := {ux(t]/Aft], pyit]l/Aft], pZt]/A[t]}
where

e Xt
uylt]
ut]
A[t]

ous- 3.96427-0.429792t+1.78529t% - 0.382852t% +
(-4.35144+3.05474 1) y-4.07613-4.68308t+ 1.3

-7.64494+6.22854t+2.31009t> - 0.380456 t> +
(-4.1584+1.70014t) y-4.07613-4.68308t+ 1.t

ouss-  -11.5215-2.06748t+4.49677t%+0.893507 > +
(2.89031-4.293251) y-4.07613-4.68308t+ 1. t3

ous- 5.90575+0.474002t-2.53622t%+ 1. t2 + (-2.60174+2.258811) «/ -4.07613-4.68308t+1.t°

Before we use these we need to find the domains, we need w = 0 and A[t]#0.



SpaceCurveBook_v2c.nb | 111

Inf237]:= Reduce[w > 0]
a=t/.NSolve[w]l3]
NSolve[A[t]]

= Reduce : Reduce was unable to solve the system with inexact coefficients . The answer was obtained by

solving a corresponding exact system and numericizing the result.

t>2.51122

ouppss- 2.51122
ouzsgl-  {}

The latter result says that A[t]#0 on the domain of w =0, that is (a, o). We
see, for instance, this curve lies on the second surface of Q.

nzer- - Show[ContourPlot3D[Qrl[2] == 0, {x, 0, 2}, {y, 0, 2}, {z, 0, 2}, Mesh - False],
ParametricPlot3D[u[t], {t, a, 10}], ImageSize » Small]

0.0
934,

Out[261]

We are not done, we still need to consider the negatives of the square root
of w. But this is the basic method which should be fairly general as we
started with a random Q.

We use the above as a template to do the example shown in the screen
image of [DLLP]
- Q2= {142xy+2%,2=x2+y*+7%}

oz {l+2xy+2°,2-X+y*+ 2%}

mizg-  CPF2 = criticalPoints3D[Q2, {Xx, Y, zZ}]
ounzs- {{1.45535, -0.343561, 0.}, {-1.45535, 0.343561, 0.}

wea- {h2, 02, 02} = nsQSIC3D[Q2, cpF201l, {x, y, z}];
In[125]:= h2

oupzs- 2.01482+0.478216x+0.00696313 x> +2.20142x° + 1.8164y -
0.761615xy-1.1613x* y+2.41745y*+2.26213x y* - 0.620397y*



112 | SpaceCurveBook_v2c.nb

e Q2Ax, Y, 2]
-0.475535+0.465969x+0.589738y-0.457109z

S 0.464506 - 0.134245 + 0.783365y + 0.3905797
0.499082 - 0.332179x + 0.0455429 - 0.799062 2

0.464506-0.134245x+0.783365y+0.390579z }

U24{x_, y 3} = T 2{x, yl1l;
U2yl{x_, y_} = U2[{x, y}Il2[;
U24{x_, y_}] = U2[{x, y}[3[;

inflect2 = allinflectionPoints2D[h2, x, y][1]

{-0.868301, -0.10578}

{w2, Aw2} = weierstrassNormalForm2D[h2, inflect2, x, y]

s {-0.544673-0.529355x+ 1.X* - 1.y?, {{-0.451752, 0.568297, -0.332142},
{-0.697489, 0.290734, 0.753708}, {0.728672, 0.202775, 0.654156})}

sz~ w2 =W2/[.{X->t,y-> 0}

oo -0.544673-0.529355t+ 1. 3

mia- U2X = Simplify[O 2x TransformationFunction[inverse[Aw2]][{t, s}11];
u2y = Simplify[U 2y[TransformationFunction[Inverse[Aw2]][{t, s}]1];
u2z = Simplify[O 27 TransformationFunction[Inverse[Aw2]][{t, s}I11;
u2x=specialExpand[Numerator[u2x], w2, s, 1]/.{t » H} &;
u2y=specialExpand[Numeratorfu2y], w2, s, 1] /.{t » 1} &;
u2z=specialExpand[Numerator{u2z], w2, s, 1] /.{t » H} &;

A2 = specialExpand[Denominator{u2x], w2, s, 1] /. {t » &} &;

Here is our parameterization for Q2, compare with [DLLP] above.



SpaceCurveBook_v2c.nb | 113

7= H2X[t]
K2yt
p24t]
A2[t]

-1.33227x 107~ 1.80591 t- 1.44353t* - 1.45535t> +
(2.13788x 107 + 1.23957x 107 t) y-1.09443-0.84291 t+1.1°

ourrs- 5.55112x 1077 -2.16386t+2.33569t +0.343561> +
(-9.34093x 107 + 1.8324x 107 t) +-1.09443-0.84291 t+ 1. t*

ourse —6.53T7Tx107°-1.59014x 107 t-6.0631x 1071 t*+
5.91741x 107 £+ (2.31988x 107 + 3.60332t) +-1.09443-0.84291 t+ 1.3

4.44089x 107~ 2.52873t-2.59678 "+ 1. > +
(-2.09392x 107 +3.03155x 1072 t) y/~1.09443-0.84291t+ 1. t*

e p2[t_] = {u2X[t]/ A2[t], p2y[t]/ A2[t], p2t]/ A2[t]};
This will change if one re - runs the above

In[169):= Reduce[wZ > 0]
a2 =t/.NSolve[w2][3]
b2 =t/.NSolve[A2[t]][1, 1]

*/ Reduce : Reduce was unable to solve the system with inexact coefficients . The answer was obtained by

solving a corresponding exact system and numericizing the result.

ouriss-  t> 1.29839
ourizo-  1.29839
3.35133

Note here, unlike our random example, there is a zero in the domain of w so
we need to avoid b2 also.



114 | SpaceCurveBook v2c.nb

miso-  Show[ParametricPlot3D[u 2[t], {t, a2, b2-.0001}, PlotStyle - Blue],
ParametricPlot3D[u 2[t], {t, b2+.0001, 26}, PlotStyle » Green]]

Now we need to consider negatives of square roots of w

o~ g2Xn= specialExpand[Numerator{u2x], w2, s, -1] /. {t » H} &;
p2yn=specialExpand[Numerator[u2y], w2, s, -1] /.{t » H} &;
u2zn = specialExpand[Numeratorfu2z], w2, s, -1] /.{t » 8} &;
A2n = specialExpand[Denominator{u2x], w2, s, -1]/.{t -» &} &;
p2n[t_] := {u2xn[t]/ A2n[t], u2yn[t]/ A2n[t], p2znt]/ A2n[t]}
mssi- € = NSolve[A2n[t]]
oupres- {{t » 3.35133}, {t » 3.35133}, {t » -0.754546}, {t » -0.754546},
{t—> 1.75617x 107'°-8.66265x 107" i}, {t » 1.75617x 107" + 8.66265x 107° 1}}

In[197]: c2= t/.C[[l, 1]]

3.35133




SpaceCurveBook_v2c.nb | 115

miss-  Show[ParametricPlot3D[u 2[t], {t, a2, b2-.0001}, PlotStyle - Blue],
ParametricPlot3D[u 2[t], {t, b2 +.00001, 26}, PlotStyle -» Green],
ParametricPlot3D[u2n[t], {t, a2, c2-.0001}, PlotStyle - Black],
ParametricPlot3D[u2n[t], {t, c2+.0001, 1000}, PlotStyle » Orange]]

-10-5 9 5

As described by [DLLP] we get an oval in projective 3 space. Note that

mies- rpts = RandomReal[{1.3, 3.3}, 4]
Ipts = Table[u2[rptslil], {i, 4}]
Q2 /.Thread[{x, y, z} » H] &/@ lpts
linearSetMD][lpts, {x, y, z}]

oune- {2.98973, 2.17819, 2.98768, 2.17466}

{{14.1295, -5.8276, ~12.7938}, {3.44573, -1.32356, -2.84978},
{14.0421, -5.79123, -12.7139), {3.4316, -1.31727, -2.83561})

{{-2.84217x 107", 3.41061x 107}, {-1.77636x 107", 1.98952x 107},
{-5.68434x 107, 3.2685x 107%}, {-3.55271x 107%, 1.95399x 10"}

{

These random points are on our curve Q2 but are not planar.

3.2.2 Direct use of nsQSIC3D.

The function nsQSIC3D can be used directly as the image of (), h, returned is a
cubic curve which can be path traced and then lifted to R*by U, there is no



116 | SpaceCurveBook v2c.nb

need to transform to Weierstrass form and re-format the resulting parameter -
ization to look like that in [DLLP]. Although the method in nsQSIC3D follows

a classical method to be applied to non-singular QSIC it still works for some
singular examples.

In section 2.0 we introduced the famous twisted cubic which is parameter -
ized by p[t] = {t, t?, t*}. We noticed that the naive curve curve given by
the last two equations {y — x?, z— x y} contained the twisted cubic but also
something else contained in the infinite plane of R®. But nsQSIC3D starts by
doing a random projective transformation so is a good thing to try when a
QSIC has something interesting going on at infinity.

So let

Q3 ={y-x"2,z-xy};

From the parameterization we see {2, 4, 8} is a point on the curve. We apply
nsQSIC3D to get a curve h3.

{h3, 23,03} = nsQSIC3D[Q3, {2, 4, 8}, {x, Y, Z}];
In[266]. h3
ouzes- 0.0138615-0.0383705x - 0.344181 %% + 0.449508 x° - 0.230084 y -
1.45555xy-0.0402686 x* y- 0.477413y* + 0.406024 x y* + 0.281218y*
We plot

ContourPlot[{h3 == 0, y+1, y-3}, {x, -2, 3}, {y, -2, 4}, MaxRecursion - 3,
ContourStyle -» {Blue, Dashed, Dashed}, Epilog - {Red, PointSize[Medium], Point[cp2D]}]

4 ]

By inspection this looks like the union of a line and an ellipse. We see h3
intersects the horizontal lines y = 3, y = —1 one point each on the line.



SpaceCurveBook_v2c.nb | 117

e~ SOl = {X, y} /. NSolve[{h3, y-3}]
sol2 = {x, y} /. NSolve[{h3, y+1}]

((-1.76987, 3.}, {1.40215- 1.151924, 3.}, {1.40215+ 1.151924, 3.))
cuees. {{0.192893 - 1.976564, - 1.}, {0.192893 + 1.976564, -1}, {0.290313, -1.)}

We notice that

ez~ O 3[sol1[1T]
U 3[sol2[31]

{14., 8.86404x 10", 3.66954x 10'%}
{2.,-2.59898x 10", -4.53894x 10°}

the two points on the line appear to lift to infinite points so the line in h3
comes from an infinite line. It is not hard to guess from the above what this
infinite line is in homogeneous variables {x, y, z, w}.Itis {x = 0, w = 0}.

We can find the affine line though these points

L = linearSetMD[{sol1[ 1], sol2[ 3T}, {x, y}1[1]
0.195918+0.871784 x+0.449008y

Dividing h3 by this polynomial
71~ g3 = nDivideMD[h3, L, {x, y}, dTol]
0.0707515-0.510676x+0.515618 x* - 1.33654y - 0.311758 x y + 0.626308 y*

we get the equation of the ellipse. Critical points are shown on the plot
above

nere- €p2D = criticalPoints2D[h3, x, y]

ouere- {{2.03139, 2.35944, {-0.177616, -0.09148},
{-0.471063, 0.478272},{-0.471386, 0.478898}, {0.018471, 0.0468364}}

The third critical point is the intersection of the line and ellipse, but recall
from the Plane Curve Book that singular points are not calculated
accurately.

L/.Thread[{x, y} » cp2D[3]]
q3/.Thread[{x, y} - cp2DI[31]

3.44465x 107

ouer. 4.52791x 1078



118 | SpaceCurveBook v2c.nb

We can plot the ellipse using path finding and lift using U3

nesz-  pthl = pathFinder2D[q3, cp2D[11, cp2D[3], .3, X, y]

{{2.03139, 2.359443, {1.7855, 2.51268}, {1.50431, 2.59389}, {1.2097, 2.60916},
{0.91616, 2.56786}, {0.632671, 2.47853}, {0.365284, 2.34778},{0.118914, 2.18051},
{-0.101494, 1.98037}, {-0.290071, 1.75037}, {-0.439164, 1.49376},

{-0.538478, 1.21532}, {-0.574809, 0.923918}, {-0.471063, 0.478272}}

ness- - pth2 = pathFinder2D[-q3, cp2D[ 1], cp2DI3], .3, X, y]

({2.03139, 2.35944}, {2.21613, 2.13865}, {2.32044, 1.86968}, {2.3412, 1.57919}, {2.28835, 1.29001;,
{2.17598, 1.01637}, {2.01659, 0.765887}, {1.81977, 0.542839), {1.59264, 0.35032},
{1.34077, 0.191458}, {1.06901, 0.0701613}, {0.782406, ~0.00830201}, {0.487498, ~0.0368244),
{0.194318, -0.00643236}, {-0.0808912, 0.0920785}, {-0.471063, 0.478272)}

nee-  Pathl = U3/@ pthl
Path2 = U3/@ pth2

ouzso {{-0.632381, 0.399905, -0.252893}, {-0.706213, 0.498737, -0.352214},
{-0.780865, 0.609751, -0.476133}, {~0.857674, 0.735604, —0.630908},
{-0.938997, 0.881715, -0.827928}, {~1.02819, 1.05717, ~1.08697},
(-1.12999, 1.27687, -1.44284}, {-1.2516, 1.56651, -1.96065}, {~1.40504, 1.97415, -2.77377},
{-1.61257, 2.60039, -4.19331}, {-1.92136, 3.69163, -7.09296}, {~2.45237, 6.01413, -14.7489},
{-3.63434, 13.2084, -48.0038}, {7869.23, 6.24219x 107, 2.47594x 101}}

ouzer- {{-0.632381, 0.399905, -0.252893}, {-0.559109, 0.312603, -0.174779},
{-0.486932, 0.237103, -0.115453}, {~-0.416013, 0.173067, -0.0719979},
{-0.34561, 0.119447, -0.041282}, {-0.274075, 0.075117, -0.0205877},
{-0.199084, 0.0396346, -0.00789063}, {-0.117642, 0.0138397, -0.00162813},
{~0.025692, 0.000660079, -0.0000169587}, {0.0827633, 0.00684977, 0.00056691},
{0.217483,0.047299, 0.0102867}, {0.396062, 0.156865, 0.0621282},
{0.654299, 0.428107, 0.28011}, {1.07795, 1.16198, 1.25256},
{1.93303, 3.7366, 7.22294}, {7869.23, 6.24219x 107, 2.47594 x 10"'}}

getting some points with large coordinates. That is expected since the third
critical point lifts to the infinite plane. So we discard these points while
plotting.



SpaceCurveBook_v2c.nb | 119

In[295]:= ShOW[
Graphics3D[{{Green, Thick, Line[Take[Pathl, 8]]}, {Green, Thick, Line[Take[Path2, 14]]}}],
ParametricPlot3D[{t, t*2, t A 3}, {t, -1.25, 1.15}, PlotStyle » Dashed]]

—

N

Here are other examples, for display we will not re-run nsQSIC3D.
Q0=({1-y"2+z7r2-4xy, -3+y"2+2z72});
By inspection {0,Sqrt[2],1} is a point on this curve.
Q0 /.Thread[{x, y, z} = {0, Sqrt[2], 1}]
oz {0, 0}

ez~ {h0, Q0, U0} = nsQSIC3D[QO, {0, Sqrt[2], 1}, {X, Y, Z}]; (*non-evaluatablex)

e hO =2.945656140191897" —5.217838216917842" X~
1.9646988724373289" x*-0.07585852051106767 " x° - 4.806985694928316 " y -
0.20976724723500872" x y +8.782381871328202" X’ y+
1.478912121204738" y* +7.944951077631805 " Xy - 0.6576260858236058" y*

2.94566 - 5.21784x - 1.9647 x> - 0.0758585 x> - 4.80699y -
0.209767xy+8.78238x% y+ 1.47891y” + 7.94495x y* - 0.657626 y*

Plotting

nzzop- - ContourPlot[{h0 == 0, xA2+y/A2-.7 x~-y == 0}, {X, -3, 3}, {y, -3, 3}, MaxRecursion - 4]

= =
2 L \ [ 4
1k 1
[ ]
b ]

_2 w \

30 . . . . . .

3 -2 -1 0 1 2 3

we see h0 is a singular cubic, therefore a rational curve. It follows from the
discussion in 3.2.1 that QO is a rational curve, further the singular point of

QO is {1, 0, 0, 0} which is an infinite singularity of Q0. We will leave it as an
exercise to plot this curve as above.



120 | SpaceCurveBook v2c.nb

We can find 4 real points on the curve as follows

pts = {x, y} /.NSolve[{h0, x*2+y~"2-.7 x-y}, {X, Y}, Reals]

{{0.960084, 0.517238}, {0.238219, 1.1}, {0.514636, -0.087703}, {-0.186962, 0.790124)}

Pts = U 0/@ pts

{{-3.25431, -0.294004, 1.70692}, {-6.89478, -0.143543, -1.72609},
{2.62763, 0.356401, -1.69499}, {2.85034, 0.331553, 1.70002}}

linearSetMD[Pts, {x, y, z}]

{

Thus this is again a non-planar QSIC.

The next example requires luck to get a nice picture, so the following is only
for show

out[147)=

Q4={x"2+z"2-2y,-3x"2+yN2-2"2}

{x2—2y+zz, —3x2+y2-zz}

{h4, Q4, U4} = nsQSIC3D[Q5, {0, 0, 0}, {X, Y, z}]; (* Non evaluatable )
h5 (* non evaluatible )

1.02149+1.37722x - 1.48595 x* - 0.382509 X - 3.52956 y +
6.36564xy-0.769861x% y-0.224828Yy> - 1.39048 x y* + 1.73501 y*

Q4[{x,y,z}] (* nonevaluatiblex)

{

Simplify[O4[{x, y}I[1]]
Simplify[O4[{x, y}][2]] (xnon-evaluatablex)
Simplify[O4[{x, y}I[3]]
0.0703392 - (14.4124+1.x-20.2621y) - (-1.1662+ 1. x- 0.780161y)

0.0401846x-0.580388y-0.813348z -0.814226x+0.452797y-0.363334z

0.579156x+0.676849y-0.4543722 " 0.579156x+ 0.676849y-0.454372z }

0.817124+1.18476x+1.x*-0.924301y+0.792575x y+ 1.19879y?

1.01591(1.1662 - 1. x+0.780161y)>

0.817124+1.18476x+ 1.x* - 0.924301y+0.792575xy + 1.19879 y?

1.42368 - (-1.1662+ 1. X~ 0.780161Y) - (0.558644 + 1. X+ 0.446715Y)

0.817124+1.18476x+1.x2-0.924301y+0.792575x y+ 1.19879 y?

We notice the following linear factor appears in each numerator, so U is
identically {0,0,0} on this line!



SpaceCurveBook_v2c.nb | 121

zor- lined = -1.1661999857316967 +1.° x-0.7801613607079093 "y (« evaluatablex)

-1.1662+1.x-0.780161y

In fact, this line is a factor of h4

qf = nDivideMD[h4, line, {x, y}, dTol]

(* non—evaluatable )

qf = -0.875916120629441" - 1,9320362297177929 " x-0.38250867953478784 " x* +

(= this is evaluatable compare with the above x)

h4 = Expand[ gf * line4]

ouzes —0.875916- 1.93204x - 0.382509%° +3.61252y - 1.06828 x y - 2.22391 y*

1.02149+1.37722x - 1.48595 x* - 0.382509x° - 3.52956 y +

6.36564 xy-0.769861x% y- 0.224828Yy> - 1.39048 x y* + 1.73501 y*

cpqf = criticalPoints2D[qf, x, y]

{{-11.1898, 3.69873}, {-0.131493, 0.188522}}

The contour plot of h4 is then

nzri- - ContourPlot[{gf == 0, line4 == 0}, {x, -14, 4}, {y, -2, 5},

Axes - True, Epilog -» {Red, PointSize[Medium], Point[cpqf]}]

5r

We can path trace qf

- pthl = pathFinder2D[qf, cpqfl1l, cpqfl2], .25, x, y, maxit -» 70];
pth2 = pathFinder2D[-qf, cpqf[1], cpqfl2], .25, x, y, maxit -» 50];
pth4 = Join[pth1, Reverse[pth2]];

Now we lift to Q4

I
-10

-5

zsi-  PTH4 = U4I@ pth4; (*+ non-evaluatable )

3.6125172138379646" y- 1.068279503647881" xy-2.223905683299877 " y*



122 | SpaceCurveBook v2c.nb

ez~ Graphics3D[{{Blue, Thick, Line[PTH4]}, {Red, PointSize[Large], Point[{0, 0, 0}1}}]
(* non evaluatable )

Thus we get an oval with an isolated point for this QSIC.

3.2.3 Plotting by projection

Often the easiest way to identify and plot QSIC is simply to project to a plane
quartic, path trace the plane curve and use fFiberMD to lift back to R3. The
latter only works with affine projections so the previous method is prefer -
able, assuming it works, if you want to capture some feature on the infinite
plane. Here is one of my favorite QSIC

zes- Q5 ={XN24yN2+2"2-16, 57-12x+4x"2+y"2-642+162"2};
We first project.
o0~ h5= FLTMD[Q5, fprd3D, 4, {x, y, z}, {, y}, dTolJ[1]
{1, 3, 6, 10, 14}
{1, 3, 6, 10, 14}
ouzos- 1.-0.0344652x - 0.033403 %% +0.00677934x° + 0.00134825 " -

1.62713y-0.0245903xy+0.0241702x* y- 0.00181159x° y + 0.893879y” +
0.0164066 x y* - 0.00620129x* y* - 0.208146 y* - 0.000832304x y* + 0.0196645 y*

We first find and label critical points.

cp5 = criticalPoints2D[h5, x, y;
ap5 = Association[Table[i » cp5[il, {i, 10}1]

ouess- <] 1 {=539.117, -251.121}, 2 - {-539.117, -251.1213,
3 - {3.04937, 1.90971}, 4 - {~3.63348, 1.67267}, 5 - {~3.39309, 2.09769},
6 - {-3.14407, 2.47282}, 7 - {-3.89168, 3.90354}, 8 - {~3.89168, 3.90354},
9 - {-0.213013, 2.24798}, 10 - {0.250554, 1.21911}|>



SpaceCurveBook_v2c.nb | 123

re7-  Show[ContourPlot[h5 == 0, {x, -4, 4},
{y, -0, 4}, Epilog - {Red, PointSize[Medium], Point[cp5]}],
Graphics[Table[{PointSize[Medium], Text[i, ap5[i] +{-.2, .1}1}, {i, 10}111

L S e e B e B S S
°

N
T
L

Note that there are two isolated singularities, points 1-2 and 7-8.

fFiberMD[Q5, prd3D, cp5[1], {x, y, z}, 1.x"-6]
fFiberMD[Q5, prd3D, cp5L71, {x, y, z}, 1.x"-6]

{-539.117, -251.121}

{

{-3.89168, 3.90354}

{

These are artifactual isolated points, it should be noted that they must be
here, since this is a quartic of genus 1, see section 3.3 or Plane Curve Book.

We now plot paths in the plane, output omitted, some trial and error was
used.

pthl = pathFinder2D[-h5, cp5[6], cp5l9], .2, x, y];

pth2 = pathFinder2D[-h5, cp5[9], cp5[31, .2, x, y];

pth3 = pathFinder2D[-h5, cp5[3], cp5[10], .2, X, yI;

pth4 = pathFinder2D[-h5, cp5[10], cp5[4I, .14, X, y, maxit - 40];
pth5 = pathFinder2D[-h5, cp5[4], cp5l6], .05, X, yI;

Then we lift

Pth1l = Flatten[fFiberMD[Q5, prd3D, &, {Xx, y, z}, 1.+"-6], 1] &/@ pth1l;
Pth2 = Flatten[fFiberMD[Q5, prd3D, &, {Xx, Yy, z}, 1.+"-8], 1] &/@ pth2;
Pth3 = Flatten[fFiberMD[Q5, prd3D, &, {x, y, z}, 1.+"-8], 1] &/@ pth3;
Pth4 = Flatten[fFiberMD[Q5, prd3D, &, {Xx, y, z}, 1.+"-8], 1] &/@ pth4;
Pth5 = Flatten[fFiberMD[Q5, prd3D, &, {Xx, y, z}, 1.+"-8], 1] &/@ pth5;



124 | SpaceCurveBook v2c.nb

» multiple fiber points {-3.14407, 2.47282}
» (3)no point in fiber at {-3.63348, 1.67267}
» (3)no point in fiber at {-3.63348, 1.67267}

» (3)no point in fiber at {-3.14407, 2.47282}

And now we can show our single oval with the first surface, a sphere, as the
background.

reso- - Show[ContourPlot3D[xA2+yA2+2z/2 == 16, {x, -4, 4},
{y, -4, 4}, {z, -4, 4}, Mesh - False, ContourStyle » Opacity[.5]],
Graphics3D[{Thick, Blue, Line[Pth1], Line[Pth2], Line[Pth3], Line[Pth4], , Line[Pth5]}],
Boxed - False, Axes - False]

3.2.4 Some more examples from [TWMW].

We give some more examples from the classification of QSIC in [TWMW]. In
Example 2.5.3.1 we already saw that the union of the twisted cubic and a line
through two points was a QSIC.



SpaceCurveBook_v2c.nb | 125

In other cases it will be enough just to project to the plane.
Example 6
neez- Q6 ={XM2+yN242Z7N2-1,x"2+2y"N2};
We project with our pseudo-random projection.

nzes-  h6 = FLTMD[Q®, fprd3D, 4, {x, y, z}, {X, y}, dTol][1]
{1, 3, 6, 10, 14}

{1, 3, 6, 10, 14}

ouzer- 1.+1.27881x%+0.903815%* +0.162081xy -
0.451232x%y-2.04542y* - 1.14578 x> y* - 0.165762 X y° + 1.04594 y*

A contour plot with any scale gives nothing. But looking for critical points
we get 4 distinct points of multiplicity 2.

nzei- €6 = criticalPoints2D[h6, x, y]

ourss- {{-0.636105, -1.13489}, {-0.636105, -1.13489}, {0.636105, 1.13489},

{0.636105, 1.13489}, {0., 0.988834}, {0., 0.9888343, {0., -0.988834}, {0., -0.988834}}

To show non-existence we use fFiberMD with a loose tolerance



126 | SpaceCurveBook v2c.nb

- fFiberMD[Q6, prd3D, cp6l1], {X,y, z}, 1.+"-6]
fFiberMD[Q6, prd3D, cp6[3l, {x, y, z}, 1.+"-6]

{-0.636105, -1.13489}

{0.636105, 1.13489}

{

The first two points are artifacts. For the second two we use fFiberMD with a
tight tolerance to show existence.

fFiberMD[Q6, prd3D, cp6[5I, {x, y, z}, 1.x+A-12]
fFiberMD[Q6, prd3D, cp6l 71, {x, y, z}, 1.%+A-12]

{{5.80425x 107", 1.86406x 107**, 1.}}
ouzeer {{-4.9493Tx 107, ~1.58706x 107", - 1.}}

So {0, 0, 1}, {0, O, -1} are points on Q6.Since no other real critical points show
up we conclude that there are no other real points. There are many complex
points, remove the condition "Reals" from the critical point code

Ini289]= criticalPoints3DCI{f_, g_}, {X_, y_, z_}] := Module[{J, ob},
ob = RandomReal[{.7, 1.3}, 3].{x"2,y "2,z 2};
J= D[{f’ g Ob}’ {{x, Y, 35
DeleteDuplicates[{x, y, z} /. NSolve[{f, g, N[Det[J]]}]]]
criticalPoints3DC[Q6, {X, Y, z}]

{{-1.41421,0.+1.5,0}, {-1.41421,0.- 1.5, 0},
{1.41421,0.+1.5,0}, {1.41421, 0.~ 1.4, 0.}, {0., 0., 1.}, {0., 0., -1.}}

Thus this real QSIC is a two point set but the complex solution has non-
isolated components. A similar example {y*> —z® + 2 z, x*> + z°} has only one

real point.
Example 7:

Here is a case where nsQSIC3D does not tell the whole story. We have a
reducible curve consisting of a plane quadric and 2 lines, thus very definitely
of degree 4 and not capable of being modelled by a plane cubic.

Q7={2xy-y"2,yr2+z"2-1};
We see that {x = 0, y*+ z? = 0} is a plane circle contained in Q7.

We project to the plane with our standard pseudo-random projection.



SpaceCurveBook_v2c.nb | 127

weo- T = FLTMDI[Q7, fprd3D, 4, {X, y, z}, {X, y}, dTolJ[1]

{1, 3, 6, 10, 14}
{1, 3, 6, 10, 14}

ouzoz- 1.-1.80651x%+0.350558x* + 0.653265x y -
1.44199x3 y- 2.04542y* + 1.56429x* y* - 0.668101 x y* + 1.04594 y*

The result is a circle and two lines in the plane.

nzes- €T = criticalPoints2D[h7, x, y1;
acp7 = <| Table[i » Chop[cp7[ill, {i, 10}]1|>

i <) 1o {-0.761959, ~0.189212}, 2 - {0.761959, 0.189212}, 3 - {0, 0.988834},
45 {0,0.988834}, 5 - {0, -0.988834}, 6 - {0, -0.988834}, 7 - {0.242741, -0.977522},
8 5 (-0.242741,0.977522}, 9 - {0.378051, ~0.813048}, 10 » {~0.378051, 0.813048} |>

We see points 3, 5 are singular critical points but surprisingly the other two
apparent intersection points were not picked up as critical points.

nzos- - Show[ContourPlot{h7 == 0, {x, -2, 2},
{y, -2, 2}, MaxRecursion - 4, Epilog - {Red, Point[cp7]}],
Graphics[{Table[Text[i, acp7[i]+{.1, -.1}], {i, {1, 2, 3, 5, 7, 8, 9, 10}}1}1]

2 gl

We lift points on the lines to R.



128 | SpaceCurveBook v2c.nb

Inf296] p1=fFiberMD[Q7,prd3D,acp7[3],{X,y,z},1.x"-12][1]
p2=fFiberMD [Q7,prd3D, acp7[10],{x,y,z},dTol][1]
p3=fFiberMD [Q7,prd3D, acp7[5],{X,y,z},dTol][1]
p4=fFiberMD[Q7,prd3D, acp7[9],{X,y,z},dTol][1]

{6.66134x 107, 2.22045x 107, 1.}

iz {1.23871,-5.55112x 107, 1}

{-6.66134x 107°, -3.33067x 107, -1.}

ouees- {~1.23871,-6.66134x 107"°, -1}

We can now plot in R®?

o0~  ParametricPlot3D[{{0, Cos[t], Sin[t]}, p1+t*p2, p3+t+p4}, {t, -Pi, Pi}]

-4

4

85:400"%°

Comment : In this example there is a circle and two lines through a common
infinite point, each line intersecting the circle. Suppose instead the two lines do not
touch the circle, for example the curve in R? looks like

ParametricPlot3D [{{0, Cos[t], Sin[t]}, {t,t, 0}, {t, —t, 0}}, {t, —Pi, Pi}]

oo

Loo
oo

This is no longer a QSIC. By Example 2.5.3.3 we see this configuration requires 4
equations, one of degree 2 but 2 of degree 3 and one of degree 4.



SpaceCurveBook_v2c.nb | 129

ouer- {1.xZ, -1 +1.xy?, -1.z+1.y?z+ 1.2%, L - Lx* - Ly’ + Ly* + 1.y* 2%}

There are, according to[TWMW] 8 cases with the QSIC a union of 2, 3 or 4
lines.In Chapter 4 I plan to cover unions of lines in R* more thoroughly, in
particular where situations as in the comment are more common.

3.2.5 Anumerical Example of a degenerate QSIC.

In this example we show that our direct method works well for numerical
QSIC even in the singular case.

K=

{-3.0343373677870256 " +4.760714817579225" x-0.8673102054064943 " x* -
2.3198076300045427 " y+1.8198277283436077" xy-0.4433840726939407 " y* +
3.4471924447384925" z-2.7042312969112072 " x z+1.317721526336166 yz+
0.02094474750770381" 2, 0.00005226006460796005 " - 0.014540466884057102" x +
1.0114088969866952 " x*+0.000039953796143140416" y -
0.005558229348449886" x y + 7.636355973833214 " » -6y -
0.00005937062298695252 " z+0.00825942891482889 " x z-
0.000022694975460771253" y z-0.9999831378371788" 2°}

{-3.0343444.76071x-0.86731x*- 2.31981y+ 1.81983x y -
0.443384y%+3.447197-2.70423x 2+ 1.31772y 7+ 0.0209447 2*,
0.0000522601-0.0145405x + 1.01141 x* + 0.0000399538y - 0.00555823 X y +
7.63636x 10° y* - 0.0000593706 2+ 0.00825943x z - 0.000022695Yy z - 0.999983 7}

We check for infinite points
ipK = infiniteRealPoints3D[K, {x, y, z}]

{{-0.329006, -0.885872, 0.327087, 0}, {0.171804, 0.970211, 0.170802, 0},
{0.498804, 0.706713, 0.501749, 0}, {~0.472181, 0.742597, 0.474969, O}

Our standard method from Chapter 2 is to project on the plane and lift back
up to plot.

We choose a random projective FLT for projection, but for replication we
give it here

wosi- A=
{{-0.6934276433346329", 0.07381779176491898", -0.7573184238468178",
-0.12486357381645385 '}, {-0.41481421719883427", -0.24723634736560696 ",
0.5906825357052634 ", 0.21818634914942425°}, {-0.6431194318709657 ",
-0.3715495908236628", 0.3379270707587114", -0.9578085718413809 }}

{{-0.693428, 0.0738178, ~0.757318, -0.124864),
(-0.414814, -0.247236, 0.590683, 0.218186}, {-0.643119, -0.37155, 0.337927, -0.957809)}




130 | SpaceCurveBook v2c.nb

- K2 = FLTMDIK, A, 4, {X, Y, Z}, {X, y}, 1.x=9][1]
{1, 3, 6, 10, 14}

{1, 3, 6, 10, 14}

ousos- 1.-9.1079x+23.8809x* - 23.5535 %+ 7.31227 x* - 3.41374y + 18.0057x y - 26.7585x° y +
11.1384x% y+3.39349y? - 10.1319x y* + 6.36118x* y* - 1.27861y° + 1.61432 x y* + 0.1536 y*

We map our infinite points of K to K2. We also intersect K2 with the line
y=-2

ipK2 = fltiMD[#, A] &/@ ipK
sol2 = {x, y} /. NSolve[{K2, y + 2}][{1, 2, 4, 3}]

oo {{-0.130453, 0.842512), {0.427985, 0.508764}, {1.62802, 0.206039}, {0.119715, 1.55542)}
oues. {{0.922963, ~2.), {1.37574, 2.}, {2.5008, ~2.}, {1.46808, -2.3}

We now plot

nsos-  ContourPlot[{K2 == 0}, {x, -1, 3}, {y, -3, 3}, ContourStyle » Green,
Epilog - {{Black, PointSize[Medium], Table[Text[i, ipK2[iIl, {i, 4}1},
{Purple, PointSize[Medium], Table[Text[i, sol2[iI], {i, 4}1}}, ImageSize » Medium]

We see we have four apparently parallel lines, since FLT preserve lines we
can expect 4 lines in K. Importantly, note that we permuted our set sol2 so

that the indices of the two point sets match up on each line, this gives us two

points on each line so we can lift back to K. Our first set of points come from

the infinite points of K which can be viewed as slopes [Section 1.1 of my
plane curve book]. There are two problems, first fiber my lifting function
fFiberMD only works for linear projections. Secondly when we plot we need



SpaceCurveBook_v2c.nb | 131

nice endpoints which will must be chosen when we plot. The first problem
is handled nicely with my factorFLT function [see 2.7.2] and for the second we
will find equations for each line.

msio-  {P, B} = factorFLT[A];
pl = tM2M[P];
pl// MatrixForm
B // MatrixForm

-0.693428 0.0738178 -0.757318
-0.414814 -0.247236 0.590683

1. 0 0 0.0730708
0 1. 0 -1.0051
0 0 1. 0

-0.643119 -0.37155 0.337927 -0.957809

We then have the intermediate curve K3 below which we do not need to fully
describe.

K3 = FLT3D[K, B, {x, y, z}]

{-3.81978-10.1431x-5.81064x* - 0.234581y - 0.27421xy -
0.00322577y*-1.28772z- 1.76506 x z- 0.0406579y 7+ 0.8923 7%,
0.00422664 +0.136201 x+ 1.09725x* + 0.0027815Yy + 0.0448162 X y +
0.000457618y” - 0.00232266z - 0.0374233 x z- 0.000764258y z- 0.999681 2%}

We can now lift the points of sol2 above to K.

kpts = fltMD[fFiberMD[K3, pl, #1, {x, y, z}, 1.+"-8][ 1], Inverse[B]] &/@ sol2
{{0.158762, -2.18855, -0.157835}, {0.148034, -1.78005, 0.14717},
{0.488106, -1.92447, 0.490987}, {0.630171, -3.60709, -0.633891}}

Next we can describe the lines on K by one Mathematica function
we- L= lineMD[kpts[&1, ipKI[HI, {x, y, z}] &
We don't actually need to see the equations but as an example
o= |[1]

{0.277262+0.514444 x+0.105986y + 0.804512 7, 0.720243 - 0.626116x+ 0.27532y + 0.115878 7}
The following utility functions find points on these lines by specifying only
the x-coordinate.

wie- U= {X, Y, z} . NSolve[Append[l[#1], x+ &2]][1] &
v :={X, Y, z} /.NSolve[Append[l[+1], x+ H2]][1] &

By trial we can find nice endpoints for plotting



132 | SpaceCurveBook v2c.nb

ul u2 u3 u4

vl v2 v3 v4)_
u[1,0.7'] u[2,0.3'] u[3,0.6] u[4,0.8']

(v[1,-0.4‘] v[2,-0.3'] v[3,-0.6"] v[4,-0.8"]

)

{{{-0.7, -4.50082, 0.695916}, {-0.3, -4.31018, -0.29825},
{-0.6,-3.46611, -0.603542}, {-0.8, -1.35787, 0.804723}}, {{0.4, -1.539, -0.397666},
{0.3,-0.921867, 0.29825}, {0.6, -1.76594, 0.603542}, {0.8, -3.87418, -0.804723}}}

mio7-  Graphics3D[{{Blue, Thick, Line[{ul, v1}]}, {Green, Thick, Line[{u2, v2}]},
{Orange, Thick, Line[{u3, v3}]}, {Magenta, Thick, Line[{u4, v4}]}}, Boxed - False]

So we see K consists of 4 lines through a point. What is most interesting is
that we never actually used that point in our construction. Note in particu -
lar that these lines were given numerically so, for example,

NSolve[Join[l[1], [2]1]
{

finding the intersection of any two of these lines is an inconsistent problem
to NSolve. But it is not to our methods. One possibility is to consider the
linear equation set



SpaceCurveBook_v2c.nb | 133

e F= (UL, U[21, (31, 14T}
o {{0.277262+0.514444 X+ 0.105986 + 0.8045127, 0.720243 - 0.626116 X+ 0.27532y + 0.115878 2},
{-0.258819-0.33616 X~ 0.098936y + 0.900123 Z,
0.468581 - 0.849601x+0.179119y-0.16287z},
{-0.214984- 0.629812 - 0.0821798y + 0.741866 2,
0.853126-0.402957x+0.326115Yy - 0.0587414 2},
{-0.0354267+0.698008 x - 0.0135422y + 0.715085Z,
0.867771+0.288235x+0.331713y - 0.232079 23}

and find an H-Basis.
sys = hBasisMD[F, 1, {X, y, z}, 1.+"=6]
{1, 0}

{1, 0}

{1.x,2.61602+1.y,1.7}

Solving this last system for the singular point

ez~ Spt={X, Y, z} /. Solve[sys == 0][1]
{0.,-2.61602, 0.}

Note

tangentVectorMDIK, spt, {x, y, z}]

{1,3,4,4, 4

{0., -2.61602, 0.}

Note the multiplicity of the singular point is correctly given as 4. Thus all
this numerical work does give a consistent story.

3.3 Birational Equivalence and Genus

In the plane curve book we gave little emphasis to the idea of genus. For
most of the results there the important number was the degree of a curve.
But more importantly we viewed the genus from the standpoint of the
Clebsch-Noether formula which, in fact, is not numerically stable. A pertur -
bation could drastically change this, in fact every numerical curve is only a
small perturbation away from being non-singular.

However, for space curves things are different. The degree is not the best
parameter, especially when we have curves defined by an over-determined
system. Even in section 3.2 where we had naive curves the degree was 4 but
we saw these curves tended to be related to plane cubics. We will see the



134 | SpaceCurveBook v2c.nb

explanation is the genus. We will find, instead of Clebsch-Noether a more
numerically stable way to calculate genus. But, as we also saw in this last
section the role which we had previously given to FLT is now taken up with
birational equivalence.

3.3.1 Elliptic Curves and functions.

Historically the formalization of the notion of genus began with Riemann
and the Riemann-Roch Theorem (1857-1865). But some of the ideas sur-
faced as early as the early 1800. At that point a main interest was working
out closed form integration formulas. In particular the integral

du
% 41-kSin?u
attracted special attention as it required new functions to give a closed form.
These functions became known as elliptic functions. (For an elementary
account see Chapter 6 of my Theory of Equations book https://barryhdayton.s-
pace/theoryEquations/theg6.pdf). Using these and then standard methods of
integration indefinite integrals of the form

dx dx

1/x“+ax2+bx+c '\lx3+ax+b
could be expressed in terms of these elliptic functions. This suggested that
the equations defining the denominators
v -(x*+ax?+bx+c),y*-(+ax+b)
could be called elliptic curves. From our study of QSIC we can show how
these are related. So we can use our numerical methods let us take an
explicit example:
- f=yAr2-(xM4+3x72-2x+2);
We form a QSIC by adding a new variable z = x* getting
ql=y"2-(z"2+3z-2x+2);
q2=2z-x"2;
Q={ql,q2}

(-2+2x+y*-32-2°,-X*+2}
We note the following simple algebraic maps between the curve f and the
QSIC Q.

@ = {110, 120, HI11A 2} &;
O = Take[#, 2] &



SpaceCurveBook_v2c.nb | 135

where @ is actually the projection on the first 2 coordinates.
miao-  cpf = criticalPoints2D[f, x, y]

{{0.24284, 1.30181}, {0.24284, -1.30181}}

Then note that as claimed ¢ is a point on Q.

nazi= Q= Q[Cpf[[].]]]
Q/.Thread[{x, y, z} - q]

e~ {0.24284,1.30181, 0.0589711
oures- {5.05151x 107, 0.}

So we can now use
mis- {h, Q, U} = nsQSIC3D[Q, q, {X, ¥, Z}];
We get a cubic
mizsi-
ourzs- -1.01523+3.51199 x - 0.395834 x* - 0.451825 x> + 0.960383 y -

1.54767xy+0.825717x% y- 0.639259y* + 1.8056 x y* - 0.154608y*
Let p2 be the point on h given by

q2 = O[cpfl21]
p2 = Q[q2]
h /. Thread[{x, y} - p2]

{0.24284, -1.30181, 0.0589711}
- {2.70196, 0.619418)
1.77636x 107%°

Putting this cubic in Weierstrass form

mie7-  afl = allinflectionPoints2Dfh, x, y]

{{0.327046, 1.79307}, {0.235602, -2.95013}, {0.293491, 0.052556}}

{wh, Awh} = weierstrassNormalForm2D[h, afl[1], x, y]

{-0.776489-2.00209x+ 1. x> - 1.y?, {{-0.899271, -0.305709, 0.842261},
{0.0938218, 0.814567, 0.587697}, {0.986819, -0.156009, -0.0430005}}

Note a we get point of wh which is in the image of our combined map
fltM D [Q[P[{x,y}]]



136 | SpaceCurveBook v2c.nb

59~ wp2 = fltMD[p2, Awh]
wh /. Thread[{x, y} » wp2]
fltMD[Q[®[cpfl2]]], Awh]

ouprsy- {~0.703244, 0.532612}
-3.59712x 107
ouprss- {~0.703244, 0.532612}

This combined map can be simplified to

a = Simplify[fltMD[Q[®P[{x, y}]], Awh]]
-1.27575+1.68777x-0.851591 %% + 0.703722y 0.723771+0.276694x-1.6471 X2 - 0.532974y

}

{ 1.23811+0.0231189x+ 1.x*- 1.00068y " 1.23811+0.0231189x+ 1.x*-1.00068y

which is a rational algebraic function.
Going the other way we get a rational algebraic function

wies- B = Simplify[@[O[fltMDI{x, y}, Inverse[Awh]I1]]
421.658 +250.845x - 326.455x% + 37.0921y-22.2616x y + 2.99488 y*

! 181.37-74.9655x+ 1.3 + 426.963y - 5.93584 X y + 0.266356
-359.535-45.8446 x>+ 206.315y + 34.05y? + X (357.182 + 241.8Y)

J

181.37-74.9655x+ 1. x? + 426.963y - 5.93584 x y + 0.266356 y*

p3 =pB/.Thread[{x, y} » wp2]
f/.Thread[{x, y} -» p3]

nes- {0.24284, -1.30181}

Thus we have a birational equivalence between the quartic curve f and the

cubic curve wh.

In the plane curve book we noted the non-singular cubic curve was of genus
1, because of this we claim the quartic curve is also of genus 1.

We end this discussion with a little geometry.



SpaceCurveBook_v2c.nb | 137

nes-  ContourPlot{{f == 0, wh == 0}, {x, -5, 5}, {y, -5, 5}, ImageSize -» Small]

N
o
N
IS

—4 -

In the affine plane both f and wh have two components. In fact further
experimentation with these birational maps the reader can check that the
smaller component of wh maps by § to the negative component of f while

the large component of wh maps to the positive component of f.

However in the projective plane there is a difference, f is connected as
these two affine components share the same infinite point {0,1,0}. Using
ip2z in the plane curve book we get a plot near this infinite point which is a
non-ordinary singularity of f.

10F

0.5+

0.0 -

-0.5

-10t
-1.0 -0.5 0.0 0.5 1.0

In fact from the Clebsh-Noether formula f must have Clebsh number 2 in
order to arrive at genus 1. So the birational map « actually breaks this singu -
larity into two pieces. Birational maps have denominators so are not
defined everywhere and « cannot be defined at this singularity because wh
is non-singular.

For the convenience of the reader who wants to experiment with these maps
here are the full precision expressions for wh, @ and g.



138 | SpaceCurveBook v2c.nb

wh = -0.7764892315302467 " - 2.0020871428383487 " x + 1.0000000000000004" x* - 1." y%;
a = {(-1.2757508990903774 " + 1.6877669409285232" x -
0.8515908479957427" x* +0.7037222750771311" y)/(1.2381110937061424 " +
0.023118907708649807 " x+1." x*-1.0006802451169017" y),
(0.7237711271825419" +0.27669402085278955 " x - 1.6471028507460224 " x* -
0.5329744284257336" y)/(1.2381110937061424 " +
0.023118907708649807 " x+1." x*-1.0006802451169017" y)};
B ={(421.65792029050067" +250.8446741231946 " x-326.45452844178726" x* +
37.0921077782662" y-22.26157450698797 " xy+2.994881185534921" y?)/
(181.37021636228292" - 74.96553026772098 " x+1." x*+426.9632597935131" y-
5.935844588204833" x y+0.26635570919983936 " y?),
(-359.53452326731184 " - 45.84457497214858" x> +206.31534505924515" y +
34.05004604309161" y* +x (357.1822933061392" +241.80005157723164 " y))/
(181.37021636228292" - 74.96553026772098 " x+1." x*+426.9632597935131" y-
5.935844588204833" x y+0.26635570919983936 " y*)};

3.3.2 Blowing Up plane curves without exceptional curves

This is an important classical idea used to remove singularities by going up
a dimension. Because of the limiting classical techniques, eg.no numerics,
this becomes quite hard and the blown up curve has an extra component
called the exceptional curve. Classical algebraic geometers leave this in and
are able to make good use of it. However we can remove this exceptional
curve which makes things cleaner and more understandable.

Given a plane curve f(x,y) with singularities at various points py, ..., pr we
construct a rational function g(x,y) in x, y with denominator vanishing at
the singular points and set z; = g;(x, y), a different variable for each singular
point. We get acurve F = {f, z1— g1, ..., 2x — 8}. In general the inverse
image, fiber, of a particular singular point is itself a curve. We get a rational
map @ : f— F with projection on the x,y plane a left inverse. We use dual
interpolation to remove these exceptional curves and make ¢ a birational
isomorphism. Note below that dual interpolation works best with only a
few random points and the lowest m possible. Randomness of the points is
important and we can get a good random set by using randomRealRegular -
Points2D from the plane curve book (see Global Functions 71).

Before starting we mention that one measure of a plane singularity that we
can easily deal with is the multiplicity. This concept has been recently
clarified by Araceli Bonifant and John Milnor in a long article on plane
curve theory (mostly complex) in the AMS Bulletin, Volume 57, Number 2,
April 2020 page 235. They define the multiplicity of a plane singularity at p
to be the intersection multiplicity at p of the curve and a generic line



SpaceCurveBook_v2c.nb | 139

through p. For us a generic line is a random line. Here is some code to do
this calculation in the plane case. Here f = 0is a plane curve and pis a
point, possibly complex but not infinite, on f.

singPointMult2D[f_, p_, x_, y_, tol_] := Module[{l},
| = line2D[p, p+ RandomReal[{-.2, .2}, 2], x, y];
multiplicityMD[{f, 1}, p, {x, y}, tol]]

Here is our first example.

3.3.2.1 The node

Consider the basic plane nodal cubic. It has a double point at the origin.
mrs)-  fl=yA2=-xA3-xA2;

. . Y . . . .
We add a new variable z and set it equal to z = = getting the new equation y — x z. We now consider the curve in
X
R3
mie-  Fl={fl, y-xz};

We note that the entire z - axis is contained in F, in fact it is a double line which is invisible in a contour plot. This
is our exceptional curve.

showProjection3D [F1, fprd3D, 6, {x, Y, z}, {X, ¥}, 2]

{1. X% - 2.37355 x° + 0.0574214 x* + 0.000243617 X° -

2.18663 X%y +0.955595 x° y + 0.0153028 x* y - 1.02271 x* y* + 0.320413 x> y* + 2.2363 x> y3}

z=1

y=1

x="1

We see the equation of our pseudo - random projection is divisible by x> which is what makes it double and
invisible.

An important thing for us is the rational maps between fand F.

- ®:=Append[#, #[2]/H#[1]] &
O :=Take[H, 2] &

At this point we have © as a left inverse of . We need to remove the exceptional curve to get the birational
equivalence.

nrzop- - O[OI{X, yHI

- xw

We now, somewhat by trial and error choose a small number of points on f and lift those to the curve F by ®.



140 | SpaceCurveBook v2c.nb

L =randomRealRegularPoints2D [f1, {{-2, 5}, {-5, 5}}, X, ¥, 5]
P=0/@L
F1/. Thread[{x, y, z} » #]&/@ P

{{1.10454, -1.60237}, {1.72728, 2.85251}, {~0.477635, -0.34521}, {1.36756, -2.10425}, {1.71515, -2.82616}}

{{1.10454, -1.60237, -1.4507}, {1.72728, 2.85251, 1.65145},
{(-0.477635, -0.34521, 0.722748}, {1.36756, -2.10425, ~1.53869}, {1.71515, -2.82616, -1.64777}}

{{1.59872 x 1074, o‘}, {3.55271 x107%, o‘}, {-8.32667 x 1077, 5.55112 x 10’”},

{_1‘24345 x 10714 0.}, {-1.45661 x 10713, 4.44089 x 10’16}}

B1=dualinterpolationMD [F, P, 4, {X, y, z}, 1.x"-T]
{1,3,3,3,3}
{1,3,3,3,3}

{—l‘y+l.xz, —l‘x—l.x2+l‘yz,—l.—l.x+1.zz}

Note G contains the image of ® even though the original equation f is not present.

p =randomRealRegularPoints2D [f1, {{-2, 5}, {-5, 5}}, X, Y, 1][1]
B1/. Thread[{x, y, z} » ®[p]]

{-0.554447, 0.370092}

{-1‘22125 x 10715, ~4.00863 x 1072, 8.18939 x 10’12}

However a typical point on the exceptional curve is not in G so, with a little more effort we see that ®,0 are inverse
functions from f, away from {0,0} and G.

nrizer- Bl Thread[{x, y, z} - {0, 0, 3.13}]

{0., 0., 8.7969}

Finally we can plot B, the blowup of f using 2 dimensional path tracing and lifting by ®.

mis-  pthl =Drop[pathFinder2D [f1, {-1, 0}, {0, 0}, .1, x, Y], -1];
pth2 = Drop[Reverse[pathFinder2D [-f1, {-1, 0}, {0, 0}, .1, X, Y11, 1];
pth3 = Drop[pathFinder2D [f1, {2, N[Sqrt[2 A 2 +2 7 3]]}, {0, 0}, .25, X, Y], -1];
pth4 = Drop[pathFinder2D [-f1, {2, -N[Sqrt[2 * 2 + 2 A 3]]}, {0, 0}, .25, X, Y], -1];
ListLinePlot [{pth2, pth1, pth3, pth4}]

-1.0 =05 1.0 15 2.0




SpaceCurveBook_v2c.nb | 141

mizg-  Pthl=®/@ pthl;
Pth2 = ® /@ pth2;
Pth3 = Reverse[® /@ pth3];
Pth4 = © /@ pth4;

Before plotting we want to add in our exceptional line. We can find out
where it intersects Bl

«s-  excptl = fFiberMD[B1, {{1, 0, 0}, {0, 1, 0}}, {0, 0}, {x, y, z}, dTol]

{0, 0}

- {{0., 0., 1.}, {0., 0., -1.}}

mr441-  Graphics3D [{{Blue, Thick, Line[Join[Pth4, Pth2]]}, {Blue, Thick, Line[Join[Pth1, Pth31]},
{Blue, PointSize[Large], Point[excptl]}, {Red, Thick, Dashed, Line[excptl]}}, ImageSize -» Small]

Comment: We could handle the node y* — x* similarly but this curve only goes through the
singularity {0,0} once (eg: as the parametric curve {r?, *}) so there is only one point in the blow up
over the singularity. In this case the blow-up is tangent to the exceptional line. We leave it for the
reader to plot this.

3.3.2.2 Alemniscate
Consider the lemniscate
f2=x"4+4xy+yr4;

mi+-  ContourPlot[f2 == 0, {x, -2, 2}, {y, -2, 2}, ImageSize -» Small]

oF

This is similar to the node above but brings up several issues not present in
the node since this is a bounded curve and should have a bounded blow-up.
Our method calls for a rational function with the denominator vanishing at



142 | SpaceCurveBook_v2c.nb

the singular point {0,0}. In particular the denominator and curve intersect
in a multiple point of multiplicity greater than 1 because of the singularity of
f- We should choose this denominator so that the multiplicity of the inter -
section of the denominator is the multiplicity of the singularity In the case of
the node the multiplicity is calculated by

singPointMult2D[f2, {0, 0}, x, y, dTol]

1t[284] 2

But if we attempt to use the rational function z = i here

miag- multiplicityMDI{f2, x}, {0, 0}, {x, y}, dTol]
w4
This could introduce infinite points above the singularity. Therefore we use,
instead, the rational function z = % . Then we are back to
multiplicityMD[{f2, x-y}, {0, 0}, {x, y}, dTol]
2

Another consideration in this bounded case is that to avoid infinite points in
the blow-up then the curve of the denominator should not intersect our
curve f in areal point other than the singularity. This is not a problem:

NSolve[{f2, x-y}]

ouriza- {{X > 0.-1.41421i,y » 0.-1.414214},
{x- 0.+1.41421i,y » 0.+1.41421#},{x > 0.,y > 0.}, {x> 0.,y > 0.}

So we proceed

F2={f2, z(x-y)- (x+y)};
® = Append[#, (HI1]+&[20)/(&[1] - H12])] &
O = Take[H, 2] &

#1011+ 1021

v Append#l, ————] &
w1010 -+ 1021

ousy- Take[l, 2] &

We may need several attempts before finding a suitable system eliminating
the exceptional component.



SpaceCurveBook_v2c.nb | 143

meo- L =randomRealRegularPoints2D[f2, {{-2, 2}, {-2, 2}}, X, ¥, 5];
P=0/@L

F2/.Thread[{x, y, z} » t] &/@P

{{-0.81389, 0.134885, 0.715664},

{0.963838, -0.224506, 0.622153}, {0.784433, -0.12074, 0.733222},
{-1.43947,0.826858, 0.270311}, {-0.900132, 0.182639, 0.662645}}

{{9.01348x 107", 0.}, {-9.0847x 107", 0.}, {3.3185x 107*, 0.},
{-1.249x 107", 0.}, {-1.02562x 107*?, 1.11022x 10™*°}}

B2 = Chop[dualinterpolationMD[F, P, 4, {x, y, z}, 1.+"-T], 1.x"-8]
{1,3,5,7, 6}

{1,3,5,7,6}
ouresr {Lx+1y-1.xz+1.yz,-2.x-1.xXy-Lxy’ -1y’ +2.x2+1.X z,
243X + 4 xy+ 2.y -2.x 2+ 2.2+ 1.X 22, L.x* + 4. xy+ Ly
Testing at random points is sufficient as above

p = randomRealRegularPoints2D{f2, {{-2, 2}, {-2, 2}}, x, ¥, 1][1]
B2 /.Thread[{x, y, z} » ®[p]]
B2 /.Thread[{x, y, z} -» {0, 0, RandomReal[{-4, 4}]}]

{0.911205, -0.189496}

ourss {-2.6245Tx 107, 4.54738x 107", 4.12434x 10™°, 6.21173x 107}

ounss- {0.,0.,12.3511, 0}
Thus the blowup contains the image of ® but not other points on the excep -
tional line. We can plot our blow-up B.

nes-  cpf2 = criticalPoints2D[f2, x, y]

{{1.41421, -1.41421}, {-1.41421, 1.414213,
{1.90519x 107'7®, 1.24893x 107"}, {0., 0.}, {0., 0.}, {0., 0.}}



144 | SpaceCurveBook v2c.nb

ns5-  pthl = Drop[pathFinder2D[f2, cpf2[1l, {0, 0}, .15, x, y], -11;
pth2 = Reverse[Drop[pathFinder2D[-f2, cpf2[1], {0, 0}, .15, x, y], -111;
pth3 = Reverse[Drop[pathFinder2D[f2, cpf2[2], {0, 0}, .15, x, y], -11];
pth4 = Drop[pathFinder2D[-f2, cpf2[2], {0, 0}, .15, X, y], -11;
ListLinePlot[{Join[pth1, pth3, pth4, pth2]}, ImageSize -» Small]

15
0
0.5

-15 -1.0 -05 0.5 g 15
-0.5

-1.0
-1.5

Again we look at our exceptional line

iz~ excpt2 = fFiberMD[B2, {{1, 0, 0}, {0, 1, 0}}, {0, 0}, {x, y, z}, dTol]
{0, 0}

auriz- {{0., 0., -1}, {0., 0., 1L.}}
mis- Pth=®I@ Join[pthl, pth3, pth4, pth2];

Graphics3D[{{Blue, Thick, Line[Pth]},
{Blue, PointSize[Large], Point[excpt2]}, {Red, Thick, Dashed, Line[excpt2]}}]

3.3.2.3 The Bow Curve
mir- f3=XA4=XxA2y+yA3;

mier-  ¢pf3 = DeleteDuplicates[Chop[criticalPoints2D[f3, x, y]]]
pts3 = {x, y} /. NSolve[{f3, y + .4}, {X, y}, Reals]

s {{0.380892, 0.237985}, {~0.380892, 0.237985}, {0, O}

oure- {{-0.349986, -0.43, {0.349986, -0.4}}



SpaceCurveBook_v2c.nb | 145

miezi-  ContourPlot[{f3 == 0, x == 0}, {x, -.5, .5}, {y, -.5, .5}, MaxRecursion - 6,
Epilog - {Red, PointSize[Medium], Point[Join[cpf3, pts3]]}, ImageSize -» Small]

0.4

02F

0.0 -

-0.2 -

—04f

-04 -0.2 0.0 0.2 0.4

ren- multiplicityMD[{f3, x}, {0, 0}, {X, y}, dTol]
Out[191]= 3

So x is a good denominator.

F3={f3,zx-y};

#{2]
mes- - @ := Append[ft, —] &
H{1]

O := Take[H, 2] &
ez~ L =randomRealRegularPoints2D[f3, {{-.5, .5}, {-.5, .5}}, X, ¥, 6]
P3=0/@L

ourzzs- - {{-0.303216, -0.341592}, {0.226936, -0.249278}, {0.288911, 0.093154},
{-0.252178, -0.279407}, {-0.380898, 0.237976}, {0.312038, 0.111669}}

{-0.303216, -0.341592, 1.12657}, {0.226936, -0.249278, ~1.09845},
{0.288911, 0.093154, 0.322432}, {-0.252178, -0.279407, 1.10797},
{-0.380898, 0.237976, -0.624776}, {0.312038, 0.111669, 0.357871}}

B3 = dualinterpolationMD[F3, P3, 6, {X, y, z}, 1.»"-8]
{1,3,5,4,4,4, 4
{1,3,5,4,4,4,4)
{-ly+1lxz, 1.X*-1.xy+1.y*z, 1.x*-1.y+1.yz*, 1.x- 1.2+ 1.2%,
1xy-lyz+lyZ, 1Ly-1.22+1.2%, 1.3 -1.y+ L.y’ + L.y 7",
1.x-l.z+1lyz+1.2°, -1 +2.xy-1l.yz+1.yz’,-1. X’ +2.y- 1.2+ 1.2°)

p = randomRealRegularPoints2D{f3, {{-10, 20}, {-20, 10}}, X, y, 1][1]
B3/.Thread[{x, y, z} - ®[p]]
sz {6.99065, ~14.5823)

{1.06581x 107, -1.49726x 107", 5.4257x 107", -4.44835x 107", 1.28503x 1077,
3.63109x 107, -6.06094x 107, -1.29319x 10~ 1.39917x 10°°, 5.40972x 107}



146 | SpaceCurveBook v2c.nb

ne- excp3 = fFiberMD[B3, {{1, 0, 0}, {0, 1, 0}}, {0, 0}, {X, ¥, z}, 1.x"=9]
©,0

ouzzg- {{0., 0., 1.}, {0., 0., 0.}, {0., 0., -1.}}

So now we plot

wez- - pthl = pathFinder2D[f3, cpf3[2], {0, 0}, .05, X, yI;
pth2 = pathFinder2D[-f3, cpf3[2], {0, 0}, .05, X, y];
pth3 = pathFinder2D[f3, cpf3[1], {0, 0}, .05, X, y];
pth4 = pathFinder2D[-f3, cpf3[1], {0, 0}, .05, X, y];
pth5 = pathFinder2D[-f3, pts3[11], {0, 0}, .05, X, yI;
pth6 = pathFinder2D[f3, pts3[2], {0, 0}, .05, X, y];
ListLinePlot[Join[Drop[pth5, —-1], Drop[Reverse[pth3], 1], Drop[pth4, -1],
Drop[Reverse[pth1], 1], Drop[ pth2, -1], Drop[Reverse[pth6], 1]], ImageSize - Small]

nzsi- - Pth = @ /@ Join[Drop[pth5, 1], Drop[Reverse[pth3], 1], Drop[pth4, -1],
Drop[Reverse[pth1l], 1], Drop[ pth2, -1], Drop[Reverse[pth6], 1]];

Graphics3D[{{Blue, Thick, Line[Pth]}, {Red, Thick, Dashed, Line[excp3]},
{Blue, PointSize[Large], Point[excp3]}}, ImageSize -» Small]

3.3.2.4 The Bicuspid
The bicuspid will present new challenges.

fa=16x-4xC+x*-8y* +y*;



SpaceCurveBook_v2c.nb | 147

-  ContourPlot[f4 == 0, {x, -3, 3}, {y, -3.5, 3.5}, ImageSize » Tiny]

- oW

ok
-1F
—2F
—3F

-3-2-10 1 2 3

There are two cusps as singularities at {2, 2} and {2, —2}. Our strategy will be
to handle the two singularities simultaneously but separately in two new
dimensions. To have denominators meet the singularity in a low multiplic -
ity and miss the real part of the curve we construct the following lines

ez~ 11 = line2D[{2, 23, {3, 0}, X, V1;
11 = Expand[l1/Coefficient[l1, y]]

-6.+2.x+1.y
s~ 12 = line2D[{2, =2}, {3, 0}, X, y1;
12 = Expand[l2/ Coefficient[l2, y]]

6.-2.x+1.y

The critical points of the bicuspid are
mias-  CPF4 = DeleteDuplicates[criticalPoints2D[f4, x, y]]

{{-1.55139, -2.9125}, {2., 2.}, {1.12457, 2.33407},
{-1.55139, 2.9125), {1.12457, -2.33407}, {~1.67857, 0.}, {2., ~2.}, {0., 0.3}

nizo- ContourPlot[{f4 == 0, I1 == 0, 12 == 0}, {x, -3, 3.5}, {y, -3.5, 3.5},
Epilog -» {Red, PointSize[Medium], Point[cpf4]}, ImageSize -» Small]

We now define our blowup and rational functions

- F4={f4, zI1-(x=y), wl2=(x+Y)}

{16x-4x2+x* -8y +y*, -x+y+(-6.42.x+ 1.y) Z, -X-y + W (6. - 2. X+ L. y)}



148 | SpaceCurveBook v2c.nb

wnl1]-#l2] wl1l+#2]
- @ :=Join[H, { ) H&
2H[1]+802]-6 -2H[1]+102]+6

O := Take[H, 2] &

To check compatibility

p = randomRealRegularPoints2D{f4, {{-4, 4}, {4, 4}}, X, y, 1][1]
F4/.Thread[{x, y, z, w} » ®[p]]

s~ {-1.5978,2.88581}

{-8.52814x107°, 0., 2.22045x 107*}

We can calculate the exceptional curve by

Chop[F4 /.Thread[{x, y, z, w} = {2, 2, z, w}]]
F4/.Thread[{x, y, z, w} = {2, -2, z, w}]

{0,0, -4+4.w}
- {0,-4-4.2,0}

Since these evaluations should give 0 on the curve the exceptional curve is
the union of two lines in R* given by {2, 2, z, 1},and {2, —2, —1, w} for param -
eters z, w. Since we have cusps the actual blow-up without exceptional lines
will meet the exceptional lines tangentially at one double point. We need to
calculate these points but this will be hard as the equation of the exception
free blow-up B4 will be a system of degree 6 in 4 variables which is beyond
the capability of our duallnterpolation function.

But using our standard plotting method which involves path tracing f4 and
lifting by ® we can “plot” B4 in R* by giving a large list of points. We can
actually see the plot by projecting down on R3.



SpaceCurveBook_v2c.nb | 149

- pthl= pathFinder2D[f4, {0, 0}, {2, 2}, .1, X, Y, maxit - 40];
pth2 = pathFinder2D[-f4, {0, 0}, {2, -2}, .1, X, y, maxit - 40];
pth3 = pathFinder2D[-f4, cpf4[3], {2, 2}, .03, x, y, maxit - 40];
pth4 = pathFinder2D[f4, cpfa[31, cpfalé6l, .3, x, y1;
pth5 = pathFinder2D[f4, cpfa[6], cpfals], .4, x, yl;
pthé = pathFinder2D[f4, cpf4[5], {2, -2}, .07, X, y];
ListLinePlot[{Join[Drop[pth1, -1], Reverse[Drop[pth3, -1]], pth4,
pth5, Drop[pth6, -1], Reverse[Drop[pth2, -1]]]}, ImageSize » Small]

pth = Join[Drop[pth1, -1], Reverse[Drop[pth3, -1]],
pth4, pth5, Drop[pth6, —-1], Reverse[Drop[pth2, -1]]1;
Pth =
/@
pth;
mis-  Length[Pth]
Out[154}- 138
To get an idea of what this looks like we can project down to R®. We can
include the exceptional lines.

In[184]:= pI'Oj4 = {{1, 0, 0, 0}, {0: 1; 0’ 0}’ {0’ 0’ -1’ 1}};
Pth3 = Pth.Transpose[proj4];



150 | SpaceCurveBook_v2c.nb

wes-  Graphics3D[{{Blue, Thick, Line[Pth3]}, {Orange, Thick,
Line[{{2, 2, 1}, {2, 2, O}}1, Line[{{2, -2, 0}, {2, -2, 1}}1}}, ImageSize -» Medium]

Our problem with duallnterpolation is two fold. First it will take far to long
to run, the sizes of the matrices will be enormous. Second using only
machine numbers these calculations will have small numerical errors, but
using more precision will take even longer. We can somewhat fix the first
problem is that most of the time will be used in the last step of finding the H-
basis. Leaving out that step will give us a much quicker algorithm but the
output will consist of a very large number of equations. But these should all,
at least approximately, contain our B4. We use option hBasis—False

We choose 8 points
pts = RandomChoice[Pth, 8];
In[173]:= ptS

ourizg- {{1.12457, 2.33407, 0.853685, 0.568394}, {1.17864, 2.30806, 0.846226, 0.585924},
{-1.67853, 2.82846, 0.690347, 0.0943692}, {-0.547515, 2.98335, 0.858741, 0.241689},
{1.50526, -2.15674, -0.711592, -0.782327}, {1.50526, -2.15674, -0.711592, -0.78232T},
{0.719194, 1.26876, 0.166895, 0.340965}, {1.3413, 2.23097, 0.818889, 0.64384}}

B4 = dualinterpolationMD[F4, pts, 6, {x, Y, z, w}, 1.+"-8, hBasis - False]

{-0.0110519+ +0.103655y 7° +0.155079 2%,
| , . )
large output show less show more show all set size limit...

There are 178 equations, each of which have 210 terms! So we will merely



SpaceCurveBook_v2c.nb | 151

sample B4. Our goal is to find where B4 intersects the exceptional lines. We
are looking for multiple solutions. First we look at the line through {2, 2}.

RandomcChoice[Tablel[i, {i, 178}], 3]
cures. {55, 128, 61}
w55 = BA[55]/.{X » 2,y - 2, w - 1}
NSolve[g55]

-0.195394+0.957736 - 1.56741 7%+ 1.037472% - 0.351087 z* + 0.007087352° + 0.0265151 z°

o {{Z > ~5.0055}, {z - 0.500067 - 0.002126384}, {z » 0.500067 + 0.00212638},
{z - 0.888658 1487551}, {z » 0.888658 + 1487554}, {z » 1.96075}}

moz- g128 = B[128]/.{x » 2,y » 2, w - 1}
NSolve[g128]

ounsz- 0.0708331-0.303968z +0.340114 7% + 0.00558316 2° - 0.04240192* - 0.0567799 2° - 0.00900801 2°

cues {{Z > ~5.69544y, (z - ~1.32082- 1.89438}, {z - ~1.32082+ 1.89438},
{z > 0.500703 - 0.007002094}, {z -» 0.500703 + 0.007002094}, {z -» 1.03239%}}

mog- g61=BI61]/.{x=> 2,y = 2, w - 1}
NSolve[g61]

-0.0907389+0.331602z-0.202743 7% - 0.253104 2% + 0.0994685 z* + 0.0238999 7° + 0.0193771 °

o {{Z > ~1.31375}, {z - ~1.20845- 2.84028 },
(z > -1.20845+2.840281}, (z » 0.496376}, {z » 0.50328}, {z - 1.49758)}

In each of these case there are two solutions, possibly complex, very close to
z = .5 So we will suggest that z = .5 is at least a good approximation for the
intersection of the exceptional line through {2, 2} and B4. We do this again
for {2, —2}
RandomcChoice[Table[i, {i, 178}], 3]
s {130, 73, 50)
were- €130 = B[130]/.{x = 2,y =» =2,z » -1}
NSolve[g130]

oueie-  —0.589159-2.18272w-1.91965w?+0.112316w> - 0.190499 w* + 0.0251769w° - 0.0164628 w®

cuer {{W - ~1.01985- 3.0353847}, {w - ~1.01985+ 3.03538}, {W - -0.515133-0.04121044,
(W > -0.515133+0.04121044}, {W - 2.29965- 2.78939}, {W - 2.29965 + 2.78939}}



152 | SpaceCurveBook v2c.nb

e gT3=BIT3]/.{x > 2,y » -2,z > -1}
NSolve[g73]

ouzig- 0.507827+1.23116w-0.252052w? - 0.64533 w3+ 1.52396 w* - 0.166313 W + 0.0242305w°

cuzio {{W - -0.527983 - 0.04807294}, {W - -0.527983+0.0480729}, {w - 0.76187-0.8139694},
(W - 0.76187+0.8139697}, {w - 3.19801 - 7.05408}, {w - 3.19801 + 7.05408}}

nezz- €50 = BISOI /. {x » 2,y » -2,z -1}
NSolve[g50]
ouzzz- 0.0140237-0.256541w - 0.491441 w? +

0.0285561w* - 0.0145955w* + 0.0403071w° + 0.0151122 w®

cuzs {{W > -3.64706}, {W - -0.546267}, {w - -0.287786-2.11328},
(W - -0.287786+2.113284}, {w - 0.049907}, {w - 2.0518}}

This is not so clear but it seems that we are getting solutions near —.5 This
is somewhat consistent with the point

{1.90006,-2.01554,-0.928878,-0.626432}  which is seeming closest to the line
(2,-2, -1, w).

Unfortunately we are close to the limits of what we can do with our
methodology.

3.3.2.5 Acompound example
We consider the singularity at {0, 0} of
nees- 5 = Expand[(y*3=-x"2) (y+x"2)]

Dut[285} —X4 - X2 y+ X2 y3 + y4

msz- - ContourPlot[{f == 0, x-y == 0}, {x, -1, 1}, {y, -1, 1}, MaxRecursion » 4, ImageSize » Small]

1.0

0.5

0.0 -

out/834)-

-05r

This is technically a reducible curve and we only discuss genus for irre -
ducible curves, however we can still blow up. This will be essentially the
singularity of a higher degree irreducible curve such as

mesg- A= f5+XA8+yA8;



SpaceCurveBook_v2c.nb | 153

meso-  ContourPlotfh == 0, {x, -2, 2}, {y, -.5, 1}, MaxRecursion -» 4, ImageSize -» Small]

1.0F

08t

06

041

Out[850]= 0.2
0.0t

-0.2

—04f

24 o 1 2
so it is worth studying this sort of singularity.
The multiplicity of our singularity of {5 is

mssi- SingPointMult2D[f5, {0, 0}, x, y, dTol]
From the first contour plot above we see the line x — y is as good a choice as
any but we we restrict our blow up to the region —1 < x, y < 1 because there
will be infinite points above {—1, 1} and {1, 1}. This has the right multiplicity.
multiplicityMD[{f5, x-y}, {0, 0}, {x, y}, dTol]
out[853}- 3

We obtain the equation of the blow-up
F5={f5, z(x-y) - (x+y)}
o {=-XE Xy + X2y 4yt -X-y+ (X-Y) 7}
duallnterpolation will work in default mode and degree 5 but needs a large
set of random points not near the origin. But it returns a large system even

after reducing to something like a H-basis. We throw out most of the equa -
tions to get a reasonable basis for the blow-up.

wa- B5={=X*=x2y+ X2y 4yt -x-y+(x-Y)z,
1-8X-X*-8y+z+8xz+3X* 2-72-8XZ*-3X* > - +x* 2,

1-8X+4X*-8Yy+6Xy+Y’ +2+8XZ-5X*2-2*-8XZ+X* 2 -2 +y* I°};
We then calculate where the blow-up hits the exceptional line for F .

In[863] Bo=B5 /.{X g 0, y=-> 0}
NSolve[Bo]

ousss- {0,0,1+2-2°-2%,1+2-2>-7°)
oupssa- {2 > -1}, {z> -1}, {z-> 1.}

These intersections are at {0, 0, =1}. Note these points are regular.



154 | SpaceCurveBook v2c.nb

e tangentVectorMD[BS5, {0, 0, 1}, {X, Y, z}]

{1,1,1,1,1}

ouses-  {0.447214, 0., -0.894427}

This is otherwise known as {1,0,-2}.
nes- - tangentVectorMD[BS, {0, 0, -1}, {x, Y, z}]
{1,1,1,1,1}

oures- {0.,0,, 1)

We plot the blow up using our rational function and the fact that both
components are parametric curves:

nz- @ := Append[#, (BI1]+802])/ (H11]-=[2])] &

Note that

mig-  F5 1. Thread[{x, y, z} -» ®[{t"3, tA2}]]
F5/.Thread[{x, y, z} » ®[{t, -t 2}]]
ourra- {0, 0}

{0, 0

In[16]

ParametricPlot3D[{®[{t* 3, t A 2}], ®[{t, -t A 2}], {0, 0, t}}, {t, -.9, .9}]

-0.5

3.3.2.5 A harder compound example
Our final example is

In[125]. f6=yA2—XA6;



SpaceCurveBook_v2c.nb | 155

nzog-  ContourPlot[f6 == 0, {x, -1, 1}, {y, -1, 1}, MaxRecursion - 4, ImageSize -» Small]

1.0

0.5

0.0 -

-05F

-1.0 . . 0.5 1.0

We see the multiplicity is smaller
| = RandomReal[{-2, 2}, 2].{x, y}

multiplicityMD[{f6, 13, {0, 0}, {x, y}, dTol]

We will not actually try to find the blow-up but just look at the plots. First

mize-  F6G = {fG, Y4 X—y};
® := Append[#t, #[2]/1#[1]] &;

Note that

nzos- F6 1. Thread[{x, y, z} -» ®[{t, tA3}]]
F6 /.Thread[{x, y, z} » ®[{t, -t " 3}]]

Out[208] {0 y 0}
oo {0, 0

o ParametricPlot3D{®[{t, t A 3}], ®[{t, =t A 3}]}, {t, -1, 1}]

We see that we still have a singularity at {0, 0, 0} over {0, 0}. In fact we can
generalize the multiplicity of a singularity to higher dimension



156 | SpaceCurveBook_v2c.nb

=i~ pl=RandomReal[{-1, 1}, 3].{x, y, Z}
ougzr- - 0.385291x+0.571885y-0.097667 z

neiz- - multiplicityMD[Append[F, pl], {0, 0, 0}, {x, y, z}, 1.+"-10]

ouperz- 4

So our singularity is actually worse in some sense. So we blow this up.

mizs-  G6 = Append[F6, wx—(x-y+2)]
A := Append[#, (H[1] - #[2] + #[31)/ (H[1])] &

outiz- (=X 4y, -y +XZ, -X+WX+Y-2Z}
G6 /. Thread[{x, y, z, w} - A[®[{t, tA3}]]]
G6 /. Thread[{x, y, z, w} - A[®[{t, -t A 3}]]]

out[130)= {0, O, O}
w40, 0, 0)

To plot we project back to R3
mis- N3 = (N[O[H]]{{1, 0, 0}, {0, 1, 0}, {0, O, 0}, {0, 0, 1}}) &

w0 ParametricPlot3DI{A3[{t, tA3}1, A3[{t, -t A 3}1}, {t, -1, 1}]

Our singularity looks better but is still there over {0, 0}. In fact looking at the
vertical scale in this plot we can guess correctly that the singularity is actu-
ally at {0, 0, 0, 1} in R*.



SpaceCurveBook_v2c.nb | 157

hp4 = RandomReal[{-1, 1}, 4].{x, y, z, w-1}
multiplicityMD[Append[G, hp4], {0, 0, 0, 1}, {x, Y, z, w}, 1.»"-9]

-0.628167« (-1+w)-0.441975x+0.453086y - 0.545897z

So we blow up once more

miaz- H6 = Append[G, u (W— 1) —X]
I := Append[H, H[1]/(H[4]-1)] &

(-X®+¥%, -y +XZ, X+ WX+y-2Z,u(-1+W)-X}

miz- H6 [. Thread[{x, y, z, w, u} =» F[A[®[{t, t " 3}]1]]
H6 /. Thread[{x, y, z, w, u} » F[A[®[{t, -t 3}]1]]

ourisg- {0, 0, 0, 0}
o {0,0,0, 0}

So H6 is compatible with the composition T'[A[®[#]]]. Now project
o= T 3:= (MAI®[H]N4{1, 0, 0}, {0, 1, 0}, {0, 0, 0}, {0, 0, 0}, {0, 0, 1}}) &

neo- - ParametricPlot3D[{I 3[{t, t# 3}], [ 3[{t, -t " 3}], {0, O, t}}, {t, -1, 1}]

Where the green segment is again the exceptional line over {0, 0}.

So this takes 3 blow-ups to accomplish the job.

3.3.3 Conclusion on blowing-up

We have seen that given a square free algebraic plane curve f with only
affine singularities we can find, by a sequence of blowing up, a non-singular
algebraic curve F in R" for some n that projects to [ using the projection
taking a point {x;, x5, ..., X,} to {x;, X5}

We should compare this with Abhyankar’s Theorem of resolution of singulari -
ties of plane curves in Lecture 18 of his book. Our theorem is a little more
explicit than his as it actually produces such a curve with no exceptional

lines and projecting on the first two coordinates. We also explicitly give the



158 | SpaceCurveBook v2c.nb

equation of this plane curve, at least in theory, and the rational function
from fto F.

Of course we already saw in Chapter 6 of the Plane Curve Book that given
any plane curve we can move all the projective singularities to the affine
plane so the requirement that all singularities be affine is not really a
restriction.

An important point about blowing-up is that it is numerically stable. We

saw in the examples of this subsection that choice of the linear function in
the denominator has few restrictions, only that the multiplicity at the point
of the intersection of the denominator with the curve is the multiplicity of
the singularity. Since this multiplicity is numerically stable under small
perturbations even a slight error in identifying the singularity will not materi -
ally effect the blow-up.

3.3.4 Genus of curves

Barry Mazur, in his famous 1986 paper Arithmetic on Curves (Reprinted in
the AMS Bulletin, Vol 55, No.3, July 2018) states on page 219

[A non-singular space curve] under a generic projection to a 2-dimensional
projective space yields a plane curve with at worst nodal (or ordinary double
point) singularities.

This is not quite right when working numerically. I give the numerical
version in section 1.2.1 and 2.7.2:

For random numerical projections, with high probability, the only artifac -
tual singularities will be normal crossings (nodes), cusps or isolated points.

Recall that artifactual singularities are those that do not come from singulari -
ties of the original space curve, so for a non-singular space curve all singulari -
ties of the projection are artifactual. In the generic case artifactual singular
points are double points, they have multiplicity 2. Nodes are ordinary, in

the sense of Section 3.4 of my Plane Curve Book, cusps and isolated points
(which arise only in the real case) are not. But these do still have Clebsch
number 1, the same as ordinary double points, so Mazur’s formula below
still works. Note that Example 3.3.2.6 is a double point but not a node or
cusp.

Mazur’s Formula: [Mazur page 220] Let v be the number of singular points
of a generic (random) projection of a non-singular space curve. Then the
genus g of the space curve and its plane projection of degree d is given by

(d-1)(d-2)

g=—— -v
2



SpaceCurveBook_v2c.nb | 159

We can use this formula to calculate the genus. But note that this should

not be taken as a definition of genus but the consequence of the formal

study of genus by algebraic geometers.

Example 3.3.4.1: A nice example is the bow curve 3.3.2.3. We found the non-singular blow-up to

be curve

misg- B3 ={=l.y+1l.xz,1.x"3-1.xy+1l.y"r2z,1.x"2-1.y+1.yz"2,1.x-1.z+1.z"3,

l.xy-1.yz+1l.yz"3,1.y-1.z"2+1.2"4,1.x"2-1.y+1.y*"2+1.yz"4,
1.x-1.z+1.yz+1.z"5,-1.x"3+2.xy-1.yz+1.yz"5,-1.x"2+2.y-1.z"2+1. 2" 6};

bbc = FLTMD[B3, A, 6, {X, y, 2}, {X, ¥}, 1.x+A=9][1]

1.-7.64881 X - 14.4732 x* - 9.41023 x° - 2.81002 x* + 11.0999 y + 4.72927 xy-0.912787 x*y +
1.42335 x® y + 12.5987 y* + 10.9587 xy” +3.71029 x* y* + 0.216945 y* - 0.478956 xy> +0.0523491 y*

nrse-  €Sp = complexProjectiveSingularPoints2D [bbc, x, y, 1.x"-9]

{{-1.98573, -11.9106}, {-0.617785, -0.546592 }, {-0.860395, -0.497789 }}

Take a generic projection from P? to P!

mzi- A = Orthogonalize [RandomReal [{-1, 1}, {3, 4}]]

curzi- {{0.084272, 0.846137,0.364511 , 0.379582},
{-0.591153 , 0.464949 , -0.517101 , -0.408617 }, {-0.632973 , -0.163991, 0.730846 , -0.195745 }}

bbc = FLTMD[B3, A, 6, {x, Y, z}, {X, y}, 1.+"-9][1]

oupras- 1. - 7.64881 x - 14.4732 x* —9.41023 x* - 2.81002 x* + 11.0999 y + 4.72927 xy-0.912787 x>y +
1.42335 x® y + 12.5987 y* + 10.9587 xy* +3.71029 x* y* + 0.216945 y* - 0.478956 xy* +0.0523491 y*

m+-  €sp = complexProjectiveSingularPoints2D [bbc, x, y, 1.x"-8]

{{~0.860395 , -0.497789 }, {~0.617785 , -0.546592 }, {~1.98573, —11.9106 }}

ContourPlot [bbc == 0, {x, -2, 0}, {y, -1, 0}, MaxRecursion - 5,
Epilog -» {Red, PointSize [Medium], Point[Take[csp, 2]]}, ImageSize » Small]

0.0F

—02}

—04 1

-0.6

-0.8 1

-10& . . . h
-2.0 -1.5 -1.0 -0.5 0.0

The third singular point {-1.98573, -11.9106} is an isolated singularity. Since v =3 and d = 4 then
g = 0 which is what we expect given this is a parameterized curve.

Example 3.3.4.2: The lemniscate.



160 | SpaceCurveBook v2c.nb

We calculated the blow-up of the lemniscate as

meoz- B2 ={1.Xx+1.y-1.xz+1.yz,-2.x-1.x"2y-1.xy*2-1.y"3+2.xz+1.x"3z,
-2.43.X"2+4. Xy+2.y"2-2.x"22+2.2"2+1.x"2z"2,1.x"4+4.xy+1.y"4};

_—

/

>
—\

Since the lemniscate is a bounded we let the random projection be
nsrz- A2 = Append [Orthogonalize [RandomReal [{-1, 1}, {2, 4}]], {0, 0, 0, 1}]
h2 = FLTMD[B2, A2, 6, {X, Y, z}, {X, y}, L.+A-7 ][1]

{{0.0648747,-0.730778, 0.479363 , 0.481628 },
{-0.844846 , 0.0847465 , -0.232867, 0.474159}, {0, 0, 0, 1}}

ours- 1. +0.809265 x - 1.59889 x* -2.62573 x° +2.89494 x* - 0.69337 x° +
0.169007 x° - 0.662574 y-1.32448 xy+1.10846 x* y+1.91681 x> y-1.61182 x* y +
0.748308 x° y - 0.00606811 y* - 0.0856423 xy* - 1.72749 x> y* + 0.734084 x* y* +
0.945916 X" y* - 2.06329 y° - 1.4528 xy° +2.94894 x* y° + 0.322685 x* y° +
0.925493 y* +1.1306 x y* +0.334215 x* y* - 0.452467 y° + 0.576751 xy° + 0.400899 y°

oo~ ContourPloth2 == 0, {x, -1.5, 2}, {y, -1.5, 2}]

20 [ q

For finding all singular points we find a very large tolerance works best, although it is recom -
mended that this be checked carefully.



SpaceCurveBook_v2c.nb | 161

csp = complexProjectiveSingularPoints2D [h2, x, y, .01]

ousi7- {{~0.432648 +0.415856 §, -0.643362 +0.829752 i},
{~0.432648 - 0.415856 §, -0.643362 - 0.829752 i}, {~1.23861 - 0.922593 §, 1.04178 + 1.87947 i},
{~1.23861 +0.922593 j, 1.04178 - 1.87947 i}, {2.41939 + 1.30732 i, -0.394761 - 2.28109 7},
{2.41939 - 1.30732 7, -0.394761 +2.28109 7}, {0.954581 , 0.306315}, {1., -0.485784 , 0}}

Length [csp]

8

So we have 6 complex singular points, one real affine singular point and one affine infinite
singular points. Since the degree of the projection is 6 Mazur’s formula gives g = 10 — 8 = 2. Note
that it is impossible for a non-singular plane curve to have genus 2.

3.3.4.3 Example. This example is different in that we start with a non-singu -
lar space curve and don’t blow up. The example is a case of Exercise IV 5.2.2
from Hartshorne’s Algebraic Geometry book.

We take a naive intersection of a quadric and cubic surface in R*
e~ fl=xA24yA24272-25;
f2=-51+3x-3x*+x>-3y-3y*-y*+14z-7%;
We will use a random affine projection

mean- A= {{=0.163999, 0.250186, -0.294883, -0.138623},
{-0.609386, 0.427477, -0.396493, -0.530766}, {0, 0, 0, 1}};

e gh= FLTMDI{fL, f2}, A, 6, {X, ¥, z}, {X, y}, 1.#A-10][1]

1.+1.73533x+ 1.55993x* - 0.656023 x> - 2.60795 x* - 2.7081 x> + 2.706 78 x° -
0.00233382y-1.17272xy+0.266015x* y+4.17205x> y+ 7.69862 x* y -
8.26483x° y+0.365579y - 0.122065x y* - 2.71565 x> y* - 8.65234 x> y* +
10.9325x" y? +0.0466165Y° + 0.792389x y° + 4.87301x° y* - 7.91459° y* -
0.0857802y* - 1.37971xy* +3.2871x* y* + 0.156806 y° - 0.739525x y° + 0.0701592 y°

As usual we need to fiddle with complexProjectiveSingularPoints  to get a
reliable answer but we come up with one answer we can verify

{{1.289, 0.0206694}, {3.56225, 7.6008}, {~1.54168+0.346882 1, —2.16869+ 0.495606 1},
{-1.54168-0.3468821, -2.16869- 0.495606 I},
{-1.74148, -3.95367}, {~2.04685, —4.49551}}

Since g4 is of degree 6 Mazur’s formula shows the genus g = 10 — 6 = 4 agree-
ing with Hartshorne’s claim. Note that the first two real singular points are
actually isolated points from the projection.

3.3.5 Examples of non-singular Curves of genus 0 - 6

Now that we have developed our software and theory Iend by plotting an
example of a curve of each genus from 0 to 6. We don’t show work but we



162 | SpaceCurveBook v2c.nb

use the methods we have developed. Some of these examples have
appeared before in this book or my plane curve book. We give a plane
model on the left and, where the plane model is singular, a non-singular
model in R3 on the right.

Genus 0, Rational curve, parabola y = x?

mize- - ContourPlotfy == x A2, {x, -2, 2}, {y, -.2, 3.5}, ImageSize » Small]

35F

3.0

25¢

20F

ouf1zs)-  15F

Genus 1, Elliptic curve y? = xA3-5x+2

mize-  ContourPlotfy A2 == x A3-5x+2, {x, -4, 5}, {y, -9, 9}, ImageSize » Small]

Genus 2, Lemniscate x*+ xy +y?*
mizs-  ContourPlot{x* 4+ xy+y”*4==0, {x, -1, 1}, {y, -1, 1}, ImageSize » Small]

(Red dashed line is exceptional line over {0,0})

05F




SpaceCurveBook v2c.nb | 163

2
Genus 3, Klein Curve (xz + yj —1)("72 +y2) = .04

wizz-  ContourPlotf(x A2 +yA2/4-1) (xA2/4+y"2-1) == -.04,
{x, -3, 3}, {y, -3, 3}, ImageSize » Small]

A Y
~1d D
N

2f

-3b . . . . . d
-3 -2 -1 0 1 2 3

Genus 4 (See Example 3.3.4.3) g4 on the left, {f1, f2} plotted on f1 on the right. In addition
to the singular points shown in the plot of g4 there are two isolated real singular points and
2 complex singular points.




164 | SpaceCurveBook v2c.nb

Genus 5: Gauss’ curve g5==5x+9x3=5x*+x°+5y? =27 xy*+30 x> y*-10x3 y*-5y*+5x y*
(Dashed red line is blowing-up denominator, A,B,C,D,E,0 infinite points. )

Genus 6
wizg- g6=1-10X*+5x*-3y+18x°y-3x'y-5y*+15x°y*+15y° - 15Xy’ +4y* - 12y%;

iz~ ContourPlot[gé == 0, {x, -5, 5}, {y, -2, 3}, ImageSize » Small]

3F




1

10.

11.

12,
13.

14,
15.

16.

17.

18.

19.

20.

SpaceCurveBook_v2c.nb | 165

4 | References

B.H. Dayton, A Numerical Approach to Real Algebraic Curves, with the Wolfram Language, Wolfram-
Media, 2018.

. B.H.Dayton, A Wolfram Language Approach to Real Numerical Plane curves https://www.mathematica-

journal.com/2018/08/29/a-wolfram-language-approach-to-real-numerical-algebraic-plane-curves/,
2018.

. B.H.Dayton, T.Y. Li, Z. Zeng, Multiple Zeros of Non-linear Systems, Mathematics of Computation, 80, no.

276, pp. 2143-2168,2011. Free access at
https://www.ams.org/mcom/2011-80-276/S0025-5718-2011-02462-2/.

. Wolfram-alpha: https://www.wolframalpha.com/input/?i=Viviani+Curve.
. J.Harris, Algebraic Geometry, A first Course, Graduate Texts in Mathematics, Springer, 2010.

. D.Adrovic and J. Verschelde, Tropical Approach to the Cyclic n-Roots Problem, Presentation 2013

http://homepages.math.uic.edu/~adrovic/jmm13a.pdf (accessed May 9,2020).

. Y.Yangand X. Bican, A Hybrid Procedure for Finding Real Points on a Real

Algebraic Set, J Syst Sci Complex (2019) 32: 185-204.

. F.S.Macaulay, The Algebraic Theory of Modular Systems, Cambridge University Press, 1916.

. Z.Zeng, B.Dayton, The approximate GCD of inexact polynomials,

Proceedings of ISSAC 2004, ACM.

D.Cox, J.Little, D. O’Shea, Using Algebraic Geometry, Graduate Texts in Mathematics 185, Springer,
1998.

B.H. Dayton, Ideals of numeric representations of Unions of Lines, in Interactions of Classical and
Numerical Algebraic Geometry, D.Bates, G-M . Besana,S. Di Rocco and C.W.Wampler Eds,
Contemporary Mathematics 496, AMS, 2009. (see https://barryhdayton.space/NumericLines.pdf and
the appendix).

XiangchengYu., PHC pack, https://kepler.math.uic.edu

S. Telen, B. Mourrain, B. van Barel, Solving polynomial systems via truncated normal forms, Siam J.
Matrix Anal. Appl. Vol39 no3 (2018) pp. 1421-1447.

L. Shen, C. Yuan, Implicitization using Univariate Resultants, J Sys Sci Complex (2010) 23, pp. 804-814.

D.J. Bates, J. D. Hauenstein, A.J. Sommese, C.W.Wampler, Numerically solving Polynomial Systems
with Bertini, SIAM, 2013.

C. Tu, W. Wang, B. Mourrain, J. Wang, Using signature sequences to classify
intersection curves of two quadrics, Computer Aided Geometric Design 26 (2009), pp. 317-335.

L. Dupont, D. Lazard, S. Lazard and S. Petitjean,Near-optimal parameterization of the intersection of
quadrics, Parts 111,11, J. Symbolic Comput. 3(43), 2008, pp. 168-232. See also
http://vegas.loria.fr/qi/server.

B.H. Dayton, Algorithms for real numerical varieties with application to parameterizing quadratic
surface intersection curves, Albanian J. Math, Vol. 7 no. 2, 2013. (see
http://barryhdayton.space/RQSIC.pdf).

B. H. Dayton, Theory of Equations, https.//barryhdayton.space/theoryEquations See specifically
Chapteré.

S. Abhyankar, Algebraic Geometry for Scientists and Engineers, AMS, 1990.



166 | SpaceCurveBook v2c.nb

21.

22.

23,
24,

A. Bonifant, J.Milnor, Group Actions, Divisors, and Plane Curves, Bulletin of AMS, Volume 57, Number
2, April 2020, Pages 171-267

https://www.ams.org/journals/bull/2020-57-02/S0273-0979-2020-01681-2/50273-0979-2020-01681-2.pdf
B. Mazur, Arithmetic on Curves, Bulletin of AMS 14, 1986.
https://www.ams.org/journals/bull/1986-14-02/S0273-0979-1986-15430-3/50273-0979-1986-15430-3.pdf
R. Hartshorne, Algebraic Geometry, Springer-Verlag, 1977.

B.H. Dayton, Degree versus Dimension for Rational Parametric Curves, Mathematica Journal 22, Free

PDF at https://content.wolfram.com/uploads/sites/19/2020/09/Dayton.pdf , Mathematica Notebook
version also available.



