
9/2020

In spite of their unsolvability, inconsistent equations arise in practice and must be solved.

[Gilbert Strang]

A Numerical Approach to Real Algebraic Curves

with the Wolfram Language, Part II Space Curves.

https: // barryhdayton.space

Space curves present two challenges that were not present with plane curves. First, rather than

just one equation, space curves require several equations; a space curve in ℝn , n ≥ 3, requires at

least n - 1 equations, possibly more. Unlike the equation of a plane curve which is unique up to

scalar multiplication, these equations are not at all unique. Second the complement of the curve

in ℝn , unlike in the plane case, is connected, possibly complicated, and of limited use in under -

standing the curve.

I will distinguish between two cases, first the naive case of curves given by 2 equations in ℝ3, the

case seen in multivariable calculus textbooks. We will see that some of plane curve techniques

can still be used thanks to the existence of the cross product in ℝ3. The general case, which

consists of perhaps more than n - 1 equations in n ≥ 3 variables will require new techniques and,

in particular, heavy use of numerical linear algebra.

It is assumed that the reader have some familiarity with my plane curve book and Appendix I on

numerical linear algebra or the Mathematica Journal article and prior familiarity with numerical

linear algebra. All the code is in the Mathematica notebook GlobalFunctionsMD.nb available at

my website listed above.

Table of Contents

1. Naive Case: Curves in ℝ3 with two equations

1.1. Emulating Plane Curves 3

1.2. Projection 8

1.3. Ovals and Pseudo Lines 15

1.4. Fractional linear Transformations on 3-space 16

2. General Case --Theory

2.1. The Twisted cubic 19

2.2. Tangent Vectors and Definition of Curve 20

2.3. Macaulay and Sylvester Matrices 24

2.4. H-Bases 38

2.5. Duality, Intersections,Unions and Decomposition 47

2.6. Fractional Linear Transformations 58

2.7. Geometry and Projections 62

2.8. Fibers and plotting space curves 69

2.9. Fundamental Theorem 82

2.10. Bézout’s Theorem 86

SpaceCurveBook_v2c.nb 1

3. Applications

3.1. Implicitization 94

3.2. Quadratic Surface Intersection Curves (QSIC) 104

3.3. Birational Equivalence and Genus of plane curves. 133

4. References 165

We recommend that the reader be familiar with our book A Numerical Approach to

Real Algebraic Curves with the Wolfram Language, henceforth known as “my Plane

Curve book”, or at least with the Mathematica Journal summary of this book (2018).

And the reader should have some familiarity with the Wolfram Language.

Note the naming conventions: All global functions defined in this Space Curve Book

begin with a lowercase letter, compound names will capitalize first letters of subse -

quent words, (camel casing). This avoids confusion with built in Mathematica func -

tions. Also functions with polynomial and/or point arguments will end in 2D, 3D, or

MD depending on whether they work in 2,3 or all dimensions. This makes clear what

the arguments are and distinguishes these functions from my Plane Curve functions

so both sets can be initialized together without conflict, however most plane curve

functions that you may need are contained here with 2D designation. Note that

functions with suffix 3D or MD take variables as a list, but members of the list should

be atomic variables, e.g. not X[[2]] but possibly x[2].

Disclaimer

The author makes no representations, express or implied, with respect to this documentation or so�ware it

describes, including, without limitation, any implied warranties of merchantability, interoperability or fitness for

a particular purpose, all of which are expressly disclaimed. Use of Mathematica and other related so�ware is

subject to the terms and conditions as described at www.wolfram.com/legal .

In addition to the forgoing, users should recognize that all complex so�ware systems and their documentation

contain errors and omissions. Barry H. Dayton and Wolfram Research a) shall not be responsible under any

circumstances for providing information or corrections to errors and omissions discovered at any time in this

book or so�ware; b) shall not be liable for damages of any kind arising out of the use of (or inability to use) this

book or so�ware; c) do not recommend the use of the so�ware for applications in which errors or omissions

could threaten life, or cause injury or significant loss.

Mathematica and Wolfram Language are trademarks of Wolfram Research Inc.

2 SpaceCurveBook_v2c.nb

1| Naive Case: curves in ℝ3

1.1 Emulating Plane Curves

As a seemingly simple example consider the curve produced by intersecting a hyper -

boloid and an ellipsoid.

1.1.1 Example

In[239]:= F1 = {f11, f12} = {x ^ 2-y ^ 2- z, x ^ 2+y ^ 2+ z ^ 2-4};

ContourPlot3D[{f11 ⩵ 0, f12 ⩵ 0}, {x, -3, 3}, {y, -3, 3}, {z, -3, 3}, Mesh → None]

Out[239]=

The two equations {f11 = 0, f12 = 0} give an under determined system but

Mathematica will still give a pseudo random points

In[148]:= p1 = {x, y, z} / . NSolve[{f11, f12}, {x, y, z}, Reals]〚1〛
NSolve : Infinite solution set has dimension at least 1. Returning intersection of solutions with

-
142003 x

115806

+
40299 y

38602

-
69046 z

57903

== 1.

Out[148]= {1.15413, 1.44616, -0.75935}

The first thing to notice is that at each point we have a tangent vector.

 First we can find the normal vector to each of the surfaces at p1. Recall the gradient, Grad,

gives the vector {D[f,x],D[f,y],D[f,z]}.

In[244]:= nv1 = Grad[f11, {x, y, z}] / . Thread[{x, y, z} → p1]

nv2 = Grad[f12, {x, y, z}] / . Thread[{x, y, z} → p1]

Out[244]= {2.30826, -2.89231, -1}

Out[245]= {2.30826, 2.89231, -1.5187}

The tangent vector is simply the cross product

In[246]:= tv1 = Cross[nv1, nv2]

Out[246]= {7.28487, 1.19729, 13.3524}

SpaceCurveBook_v2c.nb 3

More generally we can use the function below to get a unit tangent vector.

In[6]:= tangentVector3D[{f_, g_}, p_, {x_, y_, z_}] := Module[{n1, n2, bi},

If[Norm[{f, g} / . Thread[{x, y, z} → p]] > 1.*^-8, Echo[p, "not a point "];

Return[Fail]];

n1 = {D[f, x], D[f, y], D[f, z]} / . Thread[{x, y, z} → p];

n2 = {D[g, x], D[g, y], D[g, z]} / . Thread[{x, y, z} → p];

bi = N[Cross[n1, n2]];

If[Norm[bi] < .0001, Echo[p, "No tangent vector at "]; bi, Normalize[bi]]]

In[152]:= tangentVector3D[{f11, f12}, p1, {x, y, z}]

Out[152]= {0.477462, 0.0784727, 0.875141}

A point with a tangent vector is called regular while one without a tangent vector is

called singular. As noticed in the plane curve book singular points may be unstable,

further there are some new technical problems with this definition that will be dis-

cussed later.

In this naive case we can get critical points just as for plane curves.

In[8]:= criticalPoints3D[{f_, g_}, {x_, y_, z_}] := Module[{J, ob},

ob = RandomReal[{.7, 1.3}, 3].{x ^ 2, y ^ 2, z ^ 2};

J = D[{f, g, ob}, {{x, y, z}}];

{x, y, z} / . NSolve[{f, g, N[Det[J]]}, {x, y, z}, Reals]]

In[9]:= critpts = criticalPoints3D[{f11, f12}, {x, y, z}]

Out[9]= {{1.45718, -1.25159, 0.556915}, {1.24962, 0., 1.56155}, {0., 1.24962, -1.56155},

{-1.45718, 1.25159, 0.556915}, {1.45718, 1.25159, 0.556915},

{0., -1.24962, -1.56155}, {-1.24962, 0., 1.56155}, {-1.45718, -1.25159, 0.556915}}

As in the plane curve case we can also find points on the curve by picking an

arbitrary point and finding the point on the curve closest to it.

closestPoint3D[{f_, g_}, p_, {x_, y_, z_}] := Module[{J, sol},

J = D[{f, g, (x-p〚1〛)^ 2+ (y-p〚2〛)^ 2+ (z-p〚3〛)^ 2}, {{x, y, z}}];

sol = {x, y, z} / . NSolve[{f, g, N[Det[J]]}, {x, y, z}, Reals];

MinimalBy[sol, Norm[#-p] &]〚1〛
]

There may be infinitely many closest points.

In[128]:= p2 = closestPoint3D[{f11, f12}, {1, 1, 1}, {x, y, z}]

Out[128]= {1.40516, 0.962189, 1.04867}

One of the main things we can do in the naive case is to trace curves. Typically we

first attempt a plot with critical points labeled so we can trace from one critical point

4 SpaceCurveBook_v2c.nb

 attempt plot points point

to the next. We use an analog of pathFinderT from my Plane Curve book.

 In our code p, q will be the start and end points of the path and s will be the desired

step size. One may choose this by trial.

In[20]:= Options[pathFinder3D] = {maxit → 30};

pathFinder3D[{f_, g_}, p_, q_, s_, {x_, y_, z_}, OptionsPattern[]] :=

Module[{k, p0, p1, tv1, tv, L},

p0 = p;

L = Reap[Sow[p];

k = 0;

While[Norm[q-p0] > 2 s && k < OptionValue[maxit],

tv1 = tangentVector3D[{f, g}, p0, {x, y, z}];

If[tv1.(q-p0) > 0, tv = tv1, tv = -tv1];

p0 = closestPoint3D[{f, g}, p0+ s* tv, {x, y, z}];

Sow[p0];

k++];

If[k ≥ OptionValue[maxit], Print["Warning, iteration limit reached"]];

Sow[q]];

L〚2, 1〛];

The reader is cautioned that in ℝ3 we don’t have a canonical direction of

travel on curves, unlike ℝ2. Therefore tracing in ℝ3 is somewhat different.

This tracing function takes what appears to be the shortest Euclidean dis -

tance to the end point. If the intended path does not go directly to the

desired end the trace may fail, so one should trace short or relatively

straight paths only. Also replacing the order of {f , g } or their signs makes no

difference. In particular tracing around a closed bounded component

requires at least 3 paths. Finally, in the unlikely event of a singular point

then you can trace into this point, but not out. By default the procedure will

stop after 30 steps, this can be changed to a different number n by the

option maxit→n. If the maximum number of iterations is reached, the path

will jump to the indicated end point as in the plane case.

SpaceCurveBook_v2c.nb 5

In Example 1.1.1 we plot

In[144]:= Show [ContourPlot3D [{f11 ⩵ 0, f12 ⩵ 0}, {x, -3, 3},

{y, -3, 3}, {z, -3, 3}, Mesh → None , ContourStyle → Opacity [0.4]],

Graphics3D [Table [{Text [Style [i, FontSize → 14], critpts 〚i〛]}, {i, 8}]]]

Out[144]=

This shows that our curve will be closed and bounded, in principle we can have a path from any

critical point to any other. But applying pathFinder3D to get from critical point 4 to critical point

6 we get

In[192]:= pth = pathFinder3D [{f11, f12}, critpts 〚4〛 , critpts 〚6〛, .6, {x, y, z}, maxit → 15]

Warning , iteration limit reached

Out[192]= {{-1.45718 , 1.25159 , 0.556915 }, {-1.41441 , 1.41401 , 0.00113412 },

{-1.25246 , 1.45722 , -0.554849 }, {-0.960051 , 1.40464 , -1.05132 }, {-0.535693 , 1.30548 , -1.41731 },

{-0.0167815 , 1.24968 , -1.56142 }, {0.502491 , 1.29911 , -1.4352 }, {-0.0196231 , 1.2497 , -1.56137 },

{0.499898 , 1.29863 , -1.43654 }, {-0.0224445 , 1.24972 , -1.56131 }, {0.49732 , 1.29815 , -1.43787 },

{-0.0252454 , 1.24975 , -1.56124 }, {0.494759 , 1.29768 , -1.43918 }, {-0.0280255 , 1.24978 , -1.56117 },

{0.492214 , 1.29721 , -1.44048 }, {-0.0307847 , 1.24982 , -1.56109 }, {0., -1.24962 , -1.56155 }}

In[193]:= Show[ContourPlot3D[{f12 ⩵ 0}, {x, -3, 3},

{y, -3, 3}, {z, -3, 3}, Mesh → None, ContourStyle→ Opacity[0.4]],

Graphics3D[{Table[{Text[Style[i, FontSize → 14], critpts〚i〛]}, {i, 8}], {Blue, Thick, Line[pth]}}],

ImageSize → Small]

Out[193]=

6 SpaceCurveBook_v2c.nb

In this attempt we find that the tracing gets hung up at critical point 3 and doesn’t know how to

get to point 6 from there.

We could however find intermediate points and do

In[249]:= pth1 = pathFinder3D [{f11, f12}, critpts 〚4〛 , critpts 〚3〛, .3, {x, y, z}];

pth2 = pathFinder3D [{f11, f12}, critpts 〚3〛 , critpts 〚5〛, .3, {x, y, z}];

pth3 = pathFinder3D [{f11, f12}, critpts 〚5〛 , critpts 〚1〛, .3, {x, y, z}];

pth4 = pathFinder3D [{f11, f12}, critpts 〚1〛 , critpts 〚6〛, .3, {x, y, z}];

Or, if we are only interested in getting from 4 to 6 we could simply do

In[257]:= pth5 = pathFinder3D [{f11, f12}, critpts 〚6〛 , critpts 〚4〛, .4, {x, y, z}];

But by now we have gone all around the curve so we can plot the curve only

In[190]:= Graphics3D [{{Blue, Thick , Line [{pth1 , pth2 , pth3 , pth4}]}, {Orange , Thick , Line [pth5]},

Table [{Text [Style [i, FontSize → 14], critpts 〚i〛 + {.1, .1, .1}]}, {i, 8}]}]

Out[190]=

As with plane curves we can find infinite points of space curves. We need

forms which can just as easily be defined in any number of variables.

formMD[f_, k_, X_] :=

FromCoefficientRules[Select[CoefficientRules[f, X], Total[#〚1〛] ⩵ k &], X];

maxFormMD[f_, X_] := formMD[f, tDegMD[f, X], X];

infiniteRealPoints3D[{f_, g_}, {x_, y_, z_}] := Module[{sol},

sol = {x, y, z} / . NSolve[{maxFormMD[f, {x, y, z}],

maxFormMD[g, {x, y, z}], x ^ 2+y ^ 2+ z ^ 2-1}, {x, y, z}, Reals];

Append[#, 0] & /@ Tally[sol, Norm[#1+#2] < .0001 &]〚All, 1〛]

1.1.2 Our simple example is

In[233]:= F2 = {x ^ 2- y ^ 2- 1, x+ y+ z- 1};

infiniteRealPoints3D [F2, {x, y, z}]

Out[234]= {{-0.707107 , 0.707107 , 0., 0}, {-0.408248 , -0.408248 , 0.816497 , 0}}

SpaceCurveBook_v2c.nb 7

1.2 Projection

1.2.1 Linear Projection

Later in this book a major tool will be projection. Here a projection is a linear transfor -

mation ℝ3⟶ℝ2 expressed in matrix form with two orthogonal rows. While random

or pseudo-random projections are better, discussed in the next section, for our

Example 1 the simple projection by eliminating the z-coordinate will be good enough.

Example 1.2.1.1: Projection Pxy

In[269]:= Pxy = {{1, 0, 0}, {0, 1, 0}};

Given a point, say p = {1, 2, 3}, in ℝ3 we can project it onto ℝ2 by

In[271]:= p = {1, 2, 3};

Pxy.p

Out[272]= {1, 2}

Here Mathematica treats, by context, p as a column vector, that is, takes its

transpose. But typically we have a list of points, for instance

In[274]:= pts = {{1, 2, 3}, {0, 1, 4}, {0, 0, 3}}

Out[274]= {{1, 2, 3}, {0, 1, 4}, {0, 0, 3}}

it is easiest to implement the projection function given by Pxy as

In[275]:= pts.Transpose[Pxy]

Out[275]= {{1, 2}, {0, 1}, {0, 0}}

A better example using Example 1.1.1

In[276]:= Pth = Join[pth1, pth2, pth3, pth4, pth5];

pth = Pth.Transpose[Pxy];

In[279]:= Graphics[{Blue, Thick, Line[pth]}, ImageSize → Tiny]

Out[279]=

So if we path trace a curve in ℝ3 we can plot its projection in ℝ2. However

the main technique in this book is to find the equation of a space curve after

projection to the plane. In Chapter 2 we will learn how to do this alge -

braically from the equations but for now we can simply project a sufficient

number of sufficiently random points and reconstruct an equation interpo -

lating by my plane interpolation function acurve. Here it is as a 2D function

in our Space Curve global functions:

8 SpaceCurveBook_v2c.nb

 Space global

aCurve2D [pts_, x_, y_] := Module [{d, P, M, B, n, c, pow},

pow [a_, n_] := If[n ⩵ 0, 1, a ^ n];

d = Switch [Length [pts], 2, 1, 5, 2, 9, 3, 14, 4, 20,

5, 27, 6, _, Return ["number of points must be 2,5,9,14,20,27"]];

P = exps [2, d];

n = Length [P];

M = Table [If[Length [p] ⩵ 2, pow [p〚1〛, e〚1〛] * pow [p〚2〛, e〚2〛],
pow [p〚1〛, e〚1〛] * pow [p〚2〛, e〚2〛] * pow [p〚3〛, d- e〚1〛 - e〚2〛]], {p, pts}, {e, P}];

AppendTo [M, RandomReal [{-1, 1}, n]];

B = Append [Table [0, {n- 1}], 1];

c = LinearSolve [M, B];

FromCoefficientRules [Table [P〚i〛 → c〚i〛, {i, n}], {x, y}]

];

Note from my plane curve book that the number of points to use to get a

polynomial of degree d is
d + 2

2
- 1 =

(d+2) (d+1)

2
- 1.

One difficult issue with space curves is calculating the degree of a projec -

tion. This depends on both the equations and the projection matrix. But

generically in the case of a naive curve given by equations of degrees

d1, d2 the degree of a reasonably random plane projection is d1 * d2.

For Example 1.1.1 both equations are quadratics so the degree of the curve is 4. By

interpolation we need 6 * 5 / 2 - 1 = 14 points. It turns out, relative to these specific

equations that Pxy is sufficiently random. We can get 14 points easily from our

projected path tracing.

In[295]:= pts2 = RandomSample[pth, 14];

g = aCurve2D[pts2, x, y]

Out[296]= 3.35997- 6.01438× 10-13 x- 0.839992 x2
+ 3.99152× 10-13 x3

- 0.839992 x4
- 4.91802× 10-13 y-

5.67127× 10-13 x y+ 4.48573× 10-13 x2 y+ 1.99789× 10-13 x3 y- 0.839992 y2
+

3.16171× 10-13 x y2
+ 1.67998 x2 y2

+ 1.96307× 10-13 y3
+ 3.63534× 10-13 x y3

- 0.839992 y4

By symmetry we don’t expect terms with odd degrees in either variable so we can

chop small coefficients.

In[297]:= pf1 = Chop[g, 1.*^-9]

Out[297]= 3.35997- 0.839992 x2
- 0.839992 x4

- 0.839992 y2
+ 1.67998 x2 y2

- 0.839992 y4

In fact, this looks like an exact polynomial, so divide by the smallest coefficient

In[298]:= pf1 = Expand[pf1 /Coefficient[pf1, y ^ 4]]

Out[298]= -4.+ 1. x2
+ 1. x4

+ 1. y2
- 2. x2 y2

+ 1. y4

SpaceCurveBook_v2c.nb 9

The plot is the same as above.

In[300]:= ContourPlot[pf1 ⩵ 0, {x, -2, 2}, {y, -2, 2}, ImageSize → Tiny]

Out[300]=

-2 -1 0 1 2

-2

-1

0

1

2

But notice instead if we use a different projection we get a badly contitioned

matrix

In[318]:= Pyz = {{0, 1, 0}, {0, 0, 1}};

pts3 = RandomSample[Pth.Transpose[Pyz], 14];

pf2 = aCurve2D[pts3, x, y]

LinearSolve : Result for LinearSolve of badly conditioned matrix

{{1., 1.25159 , 0.556915 , 1.56647 , 7, 1.09187 , 0.485846 , 0.216185 , 0.0961955 }, 13, {-20
, 14}} may contain significant numerical errors .

Instead we can suspect the possibility of a degree 2 projection and use 5

points

In[326]:= pts3 = RandomSample[Pth.Transpose[Pyz], 5];

pth2dyz = Pth.Transpose[Pyz];

pf2 = Chop[aCurve2D[pts3, x, y], 1.*^-9]

Out[328]= -0.9141+ 0.45705 x2
+ 0.228525 y+ 0.228525 y2

This is just a circle, due partly because our curve lies on a sphere in ℝ3.

In[335]:= Show[ContourPlot[pf2 ⩵ 0, {x, -2, 2}, {y, -3, 2}, ImageSize → Small],

Graphics[{Red, Thick, Line[pth2dyz]}]]

Out[335]=

-2 -1 0 1 2

-3

-2

-1

0

1

2

In fact, the actual point projection is only part of a circle! This is an impor -

tant lesson, the point projection of an algebraic space curve will lie in an

algebraic curve but may not be the entire curve. The smallest algebraic curve

containing the point projection is known to algebraic geometers as the

Zariski Closure of the projection.

10 SpaceCurveBook_v2c.nb

So this is why it is important to use generic, that is, random projections.

Sometimes it is useful, for replication, to have only a pseudo-random projec -

tion that we will use over and over. The one I have chosen is known as prd3D

and given by

In[336]:= prd3D

Out[336]= {{-0.305198, 0.952289, 0.}, {-0.141911, -0.0454808, 0.988834}}

In[341]:= pth2dr = Pth.Transpose[prd3D];

Graphics[{Blue, Thick, Line[pth2dr]}, ImageSize → Small]

Out[342]=

This brings up another issue. When curves are projected the projection may

have singular points even though the original curve did not have a singular

point or at least not one that projects to this singularity. I will call such

points, non-standardly, artifactual. In fact, for many curves, including this

one, generic projections must include artifactual points, although very

possibly complex or infinite. We will discuss this at the end of this book

when considering genus. In addition to ordinary crossings these artifactual

singularities may be cusps or isolated points.

For an example of an artifactual cusp we introduce the famous twisted cubic

to be discussed at the beginning of Chapter 2. This is a curve generally given

parametrically as t ↦ {t , t 2, t 3}. As we will explain in Chapter 3 such curves

are algebraic, although even in ℝ3not necessarily naive. In fact this curve is

the poster child for non-naive curves but is contained in the naive curve

In[120]:= F2 = {y-x ^ 2, z-x y};

where the extra component lies in the infinite plane so won’t influence this

discussion. If we project to the plane with Pyz which sends the first compo -

nent to 0 then from the parametric expression we get the parametric plane

curve t ↦ {t 2, t 3} which we recognize as a cusp. Or we can easily describe a

set of points plotting the curve

In[181]:= twcpts = Table[{t, t ^ 2, t ^ 3}, {t, -1, 1, .2}];

ptwcpts = twcpts.Transpose[Pyz];

SpaceCurveBook_v2c.nb 11

In[183]:= {ContourPlot[y ^ 2 ⩵ x ^ 3, {x, 0, 1}, {y, -1, 1}, ImageSize → Small,

Axes → True, Frame → False, AspectRatio → 1.75], Invisible["xxx"],

ParametricPlot[{t ^ 2, t ^ 3}, {t, -1, 1}, ImageSize → Small], Invisible["xxx"] ,

Graphics[{Blue, Line[ptwcpts]}, Axes → True, ImageSize → Small]}

Out[183]= 
0.2 0.4 0.6 0.8 1.0

-1.0

-0.5

0.5

1.0

, ,
0.2 0.4 0.6 0.8 1.0

-1.0

-0.5

0.5

1.0

, ,
0.2 0.4 0.6 0.8 1.0

-1.0

-0.5

0.5

1.0



As for the possibility of the projection having isolated artifactual singular

points the easiest example is projecting the z-axis, that is the naive space

curve {x = 0, y = 0} with Pxy.

One can certainly find non-singular curves and projections giving more

complicated artifactual singularities. For example see the section on blow-

ing-up in Chapter 3 to see how to make any plane singularity artifactual.

But for this to happen with a truly generic projection generated indepen -

dently from the curve is very unlikely.

1.2.1 Nice Example: Viviani Curve

The Viviani Curve [see https://www.wolframalpha.com/input/?i=Vivian -

i+Curve] gives a nice example of a singular space curve which looks very

different depending on the projection. The curve, often seen as a paramet -

ric curve, is given implicitly by

In[284]:= v1 = x ^ 2+y ^ 2+ z ^ 2-4;

v2 = (x-1)^ 2+y ^ 2-1;

V = {v1, v2}

Out[286]= -4+ x2
+ y2

+ z2, -1+ (-1+ x)2
+ y2

One can use either method of 1.1 or 1.2, or a parameterization, to draw the

curve:

12 SpaceCurveBook_v2c.nb

Note that the point where the branches seem to cross is actually the singular

point {2, 0, 0} where they do cross

In[287]:= tangentVector3D[V, {2, 0, 0}, {x, y, z}]

» No tangent vector at {2, 0, 0}

Out[287]= {0., 0., 0.}

Using projections the best is, as usual our pseudo-random prd3D or FLT

version fprd3d which gives a 4th degree plane curve.

In[288]:= vd2 = FLTMD[V, fprd3D, 4, {x, y, z}, {x, y}, dTol]〚1〛
Out[288]= 1. + 4.30229 x+ 3.68817 x2

+ 0.024428 x3
+ 0.000444366x4

- 2.00048 y+ 0.312204 x y+

1.0116 x2 y- 3.77986 y2
- 1.05115 x y2

+ 0.0400199 x2 y2
+ 0.511479 y3

+ 0.901056 y4

This curve can be drawn in color giving 4 segments where the center red

point is the image of the singularity, the other 2 are 2D critical points.

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

Projecting on the x,y plane using the projection fCompProj[3,3] gives the

SpaceCurveBook_v2c.nb 13

Projecting x,y plane using projection gives

circle

In[303]:= vxy = FLTMD[V, fCompProj[3, 3], 4, {x, y, z}, {x, y}, dTol]〚1〛
Out[303]= -2. x+ 1. x2

+ 1. y2

In[305]:= ContourPlot[vxy ⩵ 0, {x, -.5, 2.5}, {y, -1.5, 1.5},

Epilog → {Red, PointSize[Large], Point[s2d1]}]

Out[305]=

-0.5 0.0 0.5 1.0 1.5 2.0 2.5

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

where again the red point is the image of the singular point. Each other

point of the circle has a 2 point fiber. This is an example of how a non-

generic projection can take a singular point to a non-singular point.

It is weirder to project onto the x,z plane

In[304]:= vxz = FLTMD[V, fCompProj[2, 3], 4, {x, y, z}, {x, z}, dTol]〚1〛
Out[304]= 1. - 0.5 x- 0.25 z2

Here we get a parabola. But the bounded Viviani curve can’t linearly project

on the unbounded parabola. In fact the image

-2 -1 0 1 2 3

-4

-2

0

2

4

lies in the range 0 ≤ x ≤ 2 where each point image other than the end points

has a two point fiber. As one starts at the singularity of the Viviani curve and

goes around a loop the projection starts at {2, 0} goes out one colored

branch of the parabola and back on the same branch to {2, 0}. This is a good

14 SpaceCurveBook_v2c.nb

 parabola { } good

example of where a space curve may not map onto the FLT projection curve,

particularly in the case of a non-random projection.

The non-random projection on the y-z plane does act somewhat like the

random prd3d projection giving a 4th degree curve.

Another random projection with FLT matrix

Out[326]= RA = {{0.5611043190123369 ,̀ 0.6690386434437178 ,̀ -0.4873902304772753 ,̀ 0},

{0.6953402146462944 ,̀ -0.7004233312648177 ,̀

-0.1609631725443459 ,̀ 0}, {0, 0, 0, 1}};

gives the following degree 4 projection

-1.0 -0.5 0.0 0.5 1.0 1.5 2.0

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

The red point is the image of the singular point of the Viviani curve and the

other 2 singularities are artifactual singularities from the projection. This is

expected since the Viviani curve having a rational parameterization means it

has genus 0 so we expect, generically 3 singular points in the projection.

Actually the fprd3D[2,3] and non-random projection on the y-z plane have

isolated singularities, the former a double singularity at the infinite point

{1,0,0} and the later two real plane isolated singularities. So all the projec -

tions remain rational curves.

1.3 Ovals and Pseudo Lines

In ℝn , n ≥ 3, we can still distinguish between ovals and pseudo-lines by counting,

according to multiplicity, infinite points, but things work differently than in the plane

case. Because higher dimensional projective spaces allow skew lines, pseudo-lines

may not intersect, thus non-singular space curves, even in even degree, can have

multiple pseudo-lines. Ovals no longer separate projective space into two compo -

nents and do not have well-defined interiors. A curve can intersect an oval in an odd

number of points. The basic difference between an oval and pseudo-line is that an

oval can be deformed continuously in projective space to a point, whereas a pseudo-

line cannot. For this reason some authors call an oval a null-homotopic component

and a pseudo-line a non-null-homotopic component.

SpaceCurveBook_v2c.nb 15

1.4 Fractional Linear Transformations on 3-Space.

In the plane curve book I defined Fractional Linear Transformations in

Chapter 6 and use them heavily there. On the point level these are given in

the Wolfram Language under the name TransformationFunction. My abbrevia -

tion for TransformationFunction was flt. Since TransformationFunction works in all

dimensions this appears here as fltMD[p,A]. Note neither the curve we are

working with nor the variables matter so we need to know only the point p

and the transformation matrix A which needs to be neither square nor

invertible. However, in the affine case the number of columns needs to be 1

more than the length of p and the length of the output will be one less than

the number of rows. That is, a (n + 1) × (m + 1) transformation matrix takes a

point in ℝm to a point in ℝn. If p is an infinite point then

TransformationFunction should be replaced by either matrix multiplication A .p

or fltiMD[p,A]. Then a (n + 1) × (m+1) transformation matrix takes projective

ℙn to projective ℙm . Actually fltiMD[p,A] will accept either an affine point of

length m or an infinite point of length m + 1 and if the result is not an infi -

nite point it will be represented as an affine point of length n.

 However an important observation was that invertible Transformation

Matrices actually take curves to curves on the equation level. In the plane

case this was simple as each curve is given by a single bivariate polynomial.

This plane case is represented here by FLT2D[f,A,x,y]. This is easily extended to

the naive case and given by FLT3D[F,A,X].

FLT3D[F_, A_, X_] := Module[{B, d, g, h, t, n},

n = Length[X];

If[Dimensions[A] ≠ {n+1, n+1}, Echo[{n+1, n+1}, "need A to be of size"];

Abort[]];

If[MatrixRank[A] ≠ n+1, Echo["A must be invertible"]; Abort[]];

B = Inverse[A].Append[X, t];

Reap[Do[

d = tDegMD[f, X];

g = Expand[t ^ d (f / . Thread[X → X / t])];

h = Expand[g / . Thread[Append[X, t] → B]];

Sow[Chop[h / . {t → 1}, dTol]], {f, F}]]〚2, 1〛]

Although we will keep the name FLT3D to distinguish this version from the

much more complicated general FLTMD, the main workhorse and contribu -

tion of this book, we note that FLT3D actually works in all dimensions and for

systems of any number of equations as long as the transformation matrix is

square and invertible. Unlike the more general FLTMD this works separately

on each equation so the number of equations returned is the same as the

16 SpaceCurveBook_v2c.nb

 equation equations

number entered.

The Wolfram Language has many transformation matrices, see, for example

the examples under Transformation Matrices in nD in the help page Geomet-

ric Transforms . In addition see the symbolic transformation functions,

example

In[109]:= TranslationTransform[{3, -3, 2}]

Out[109]= TransformationFunction
1 0 0 3

0 1 0 -3

0 0 1 2

0 0 0 1



so to translate the curve given by

In[111]:= F = {z-x2 -y2, x+y+ z};

use

In[114]:= FLT3D[F, (

1 0 0 3

0 1 0 -3

0 0 1 2

0 0 0 1

), {x, y, z}]

Out[114]= -20+ 6 x- x2
- 6 y- y2

+ z, -2+ x+ y+ z

Wolfram also has rotations, reflections and scaling (homothety) transforms

in n dimensions.

In addition we import klRotation2D and ip2z2D from our plane curve book (code

in GlobalFunctions.nb) but note that the latter does not need the dummy

variables x , y entered, the syntax is simply ip2z2D[ip] where ip is the infinite

point.

For 3 dimensions we have a generalization of klRotation2D , uvRotationMD[u,v]

which takes the vector u and rotates it about the origin until it is in the

direction of v and a transformation matrix ip2z3D[ip] which takes the infinite

point ip and places it at the origin.

In[125]:= ip2z3D[ip_] := Module[{p, A}, p = Take[ip, 3];

A = {{1, 0, 0, 0}, {0, 1, 0, 0}, {0, 0, 0, 1}, {1, 1, 1, 0}};

If[Norm[Take[p, 2]] < 1.*^-6, A, A.uvRotationMD[p, {0, 0, 1}]]]

Example 1.4.1:

In[197]:= F = {z (x ^ 2+ y ^ 2) - 1, x + y};

ips = infiniteRealPoints3D [F, {x, y, z}]

Out[198]= {{0., 0., -1., 0}, {0., 0., -1., 0}, {-0.707107 , 0.707107 , 0., 0}}

SpaceCurveBook_v2c.nb 17

In[199]:= Aip1 = ip2z3D [{0, 0, 1}]

Out[199]= {{1, 0, 0, 0}, {0, 1, 0, 0}, {0, 0, 0, 1}, {1, 1, 1, 0}}

In[201]:= F1 = FLT3D [F, Aip1, {x, y, z}]

Out[201]= x2
- x3

- x2 y+ y2
- x y2

- y3
- z3 , x+ y

In[217]:= tangentVector3D[F1, {0, 0, 0}, {x, y, z}]

» No tangent vector at {0, 0, 0}

Out[217]= {0., 0., 0.}

In[202]:= showProjection3D [F1, fprd3D , 4, {x, y, z}, {x, y}, 1]

» projection Function -1.22291 x2
- 0.00045095 x3

+ 0.0176417 x2 y- 0.230054 x y2
+ 1. y3

Out[202]=

x= 1x= 1

So this infinite point has a cusp-like singularity at {0, 0, 1, 0}.

In[213]:= Aip2 = ip2z3D [ips〚3〛]
F2 = FLT3D [F, Aip2, {x, y, z}]

Out[213]= {{0.5, 0.5, 0.707107 , 0.}, {0.5, 0.5, -0.707107 , 0.}, {0., 0., 0., 1.}, {0.292893 , 1.70711 , 0., 0.}}

Out[214]= 0.707107 x- 1.41421 x2
+ 1.06066 x3

- 0.707107 y+

1.06066 x2 y+ 1.41421 y2
- 1.06066 x y2

- 1.06066 y3
- 1. z3 , 1. x+ 1. y

In[215]:= tangentVector3D [F2, {0, 0, 0}, {x, y, z}]

Out[215]= {0., 0., 1.}

So this other infinite point is non-singular.

18 SpaceCurveBook_v2c.nb

2| General Case

We now treat the general case of a curve in ℝn , n ≥ 3 with k ≥ n - 1 polynomial

equations F = {f1, f2,⋯, fk }in the n variables. But first, some more numerical linear

algebra.

2.1 The Twisted Cubic

The standard example of a curve requiring more than n - 1 equations is the

twisted cubic .

In[116]:= twCubic = {x z-y ^ 2, y-x ^ 2, z-x y};

The claim is that no two of these equations describe this curve, all 3 are

needed. In fact the naive curve defined by any two contains a line in addi -

tion to the curve. Later, in section 3.2 we will learn how to analyze these

curves defined by two quadratics known as QSIC. For now we use a trick. In

ℝ3 given a line and a plane they need not intersect but usually will, the

exception is when the line is parallel to the plane. But if the line is given

then a random choice of plane will intersect that line with probability very

near 1. Now if we intersect the twisted cubic defined by all three equations

with a random plane we get 3 points, possibly 2 are complex.

In[127]:= l = RandomReal[{-1, 1}, 4].{x, y, z, 1}

Out[127]= 0.539366- 0.665691 x- 0.249707 y- 0.449716 z

In[161]:= sol = {x, y, z} / . NSolve[Append[twCubic, l]]

Out[161]= {{-0.561007+ 1.34217 ⅈ, -1.4867- 1.50594 ⅈ, 2.85528- 1.15057 ⅈ},
{-0.561007- 1.34217 ⅈ, -1.4867+ 1.50594 ⅈ, 2.85528+ 1.15057 ⅈ},
{0.566758, 0.321214, 0.182051}}

Thus it is enough to show that intersecting the QSIC defined by two of the

three equations actually gives 4 intersection points, meaning the QSIC must

have an extra component. This works fine in the first two cases

SpaceCurveBook_v2c.nb 19

In[129]:= NSolve[{x z-y ^ 2, y-x ^ 2, l}]

Out[129]= {{x → -0.561007+ 1.34217 ⅈ, y → -1.4867- 1.50594 ⅈ, z → 2.85528- 1.15057 ⅈ},
{x → -0.561007- 1.34217 ⅈ, y → -1.4867+ 1.50594 ⅈ, z → 2.85528+ 1.15057 ⅈ},
{x → 0., y → 0., z → 1.19935}, {x → 0.566758, y → 0.321214, z → 0.182051}}

In[131]:= NSolve[{x z-y ^ 2, z-x y, l}]

Out[131]= {{x → -0.561007- 1.34217 ⅈ, y → -1.4867+ 1.50594 ⅈ, z → 2.85528+ 1.15057 ⅈ},
{x → -0.561007+ 1.34217 ⅈ, y → -1.4867- 1.50594 ⅈ, z → 2.85528- 1.15057 ⅈ},
{x → 0.810235, y → 0., z → 0.}, {x → 0.566758, y → 0.321214, z → 0.182051}}

But this fails for the last two equations!

In[158]:= NSolve[{y-x ^ 2, z- x y, l}]

Out[158]= {{x → -0.561007+ 1.34217 ⅈ, y → -1.4867- 1.50594 ⅈ, z → 2.85528- 1.15057 ⅈ},
{x → -0.561007- 1.34217 ⅈ, y → -1.4867+ 1.50594 ⅈ, z → 2.85528+ 1.15057 ⅈ},
{x → 0.566758, y → 0.321214, z → 0.182051}}

The reason is that the extra line is contained in the infinite plane! So we use

the trick from Chapter 6 of my plane curve book, we bring most of the line

back into the affine plane by ip2z3D[{0,0,1,0}]

In[243]:= A = ip2z3D[{0, 0, 1, 0}];

eq = FLT3D[{y-x ^ 2, z-x y}, A, {x, y, z}]

Out[244]= -x2
+ y z, -x y+ z- x z- y z

In[245]:= {x, y, z} / . NSolve[Append[eq, l]]

Out[245]= {{1.80204+ 1.60657 ⅈ, -2.37285+ 0.126197 ⅈ, -0.150579- 2.4482 ⅈ},
{1.80204- 1.60657 ⅈ, -2.37285- 0.126197 ⅈ, -0.150579+ 2.4482 ⅈ},
{0., 2.16, 0.}, {0.384404, 0.330846, 0.446632}}

Again we get 4, not 3 solutions. We conclude it takes all 3 equations to

define the twisted cubic! We will see this curve several more times.

2.2 Tangent Vectors and Definition of curve.

So suppose we have a system of k ≥ n - 1 polynomial equations in n unknowns. Our

first task is to say what we mean by a curve. For example, if k = n the typical situation

is that the solution set is a set of isolated points. The key feature of curves, rather than

other point sets is that there are infinitely many solutions with tangent vectors and at

most finitely many points without. Here is a simple function using the Jacobian of the

system, D[F,{X}] , to find the tangent vector at a point or to indicate that one does

not exist, F is a list of polynomials in the n variables X .

20 SpaceCurveBook_v2c.nb

In[178]:= tangentVectorJMD[F_, p_, X_] := Module[{J, ns},

If[Norm[F / . Thread[X → p]] > 1.*^-7, Echo["Large Residue, use tangentVectorMD"];

Return[Fail]];

J = D[F, {X}] / . Thread[X → p];

ns = NullSpace[J];

If[Length[ns] ⩵ 1, Return[ns〚1〛], Echo[p, "No unique tangent vector"]];

Table[0, {Length[X]}]]

If a non-zero list of length n is returned then it is a tangent vector and p is

called a regular point. Otherwise p is called a non-regular point point.

Example 2.2.1:

It is easy to see that the twisted cubic

In[171]:= twCubic = {x z- y ^ 2, y- x ^ 2, z- x y};

is parameterized by t ↦ {t , t 2, t 3}

In[172]:= twCubic /. Thread [{x, y, z} → {t, t ^ 2, t ^ 3}]

Out[172]= {0, 0, 0}

Picking a random point on this curve

In[173]:= p = {t, t ^ 2, t ^ 3} /. {t → RandomReal [{-3, 3}]}

Out[173]= {-1.05995 , 1.12349 , -1.19085 }

In[183]:= tv1 = tangentVectorJ3D [twCubic , p, {x, y, z}]

Out[183]= {0.243583 , -0.516372 , 0.820992 }

Note that in calculus or differential geometry the tangent vector of the curve at t = p〚1〛 would be

defined by

In[182]:= tv2 = D[{t, t ^ 2, t ^ 3}, t] /. {t → p〚1〛}
Out[182]= {1, -2.1199 , 3.37048 }

But tangent vectors are defined only up to a non - zero constant

In[184]:= Evaluate [tv1〚1〛 * tv2]

Out[184]= {0.243583 , -0.516372 , 0.820992 }

which is tv1 so the classical definition of a tangent vector to a curve agrees with ours!

Example 2.2.2: We consider the apparent naive curve

In[185]:= G = {x z, y z};

If p = {0, 0, r} where r is random

SpaceCurveBook_v2c.nb 21

In[190]:= p1 = {0, 0, RandomReal [{-5, 5}]};

tangentVectorJMD [G, p1, {x, y, z}]

Out[191]= {0., 0., 1.}

so this is a regular point. But if p = {a, b, 0} then it is a point on algebraic set G but is not regular

In[192]:= p2 = Append [RandomReal [{-5, 5}, 2], 0];

tangentVectorJMD [G, p2, {x, y, z}]

» no unique tangent vector at {4.52064 , -4.0333 , 0}

Out[193]= {0, 0, 0}

Finally, any other point is not on the set.

In[194]:= p3 = RandomReal [{-5, 5}, 3];

tangentVector3D [{-5, 5}, p3, {x, y, z}]

» not a point {-4.90776 , -2.23185 , 4.7079 }

Out[195]= Fail

So this set has infinitely many regular points but also infinitely many non-

regular points, so it is not a curve so even though it is given by 2 equations in

3 unknowns it is not a curve.

Example 2.2.3 Cyclic 4

Here is well studied curve in ℝ4, the Cyclic 4. We will examine this further later on in this Chapter.

In[168]:= C4 = {w + x+ y+ z, w x+ x y+ y z+ z w, w x y+ x y z+ y z w + z w x, w x y z- 1};

We note that for any random number r , possibly complex, the points {r , 1 / r , -r , -1 / r} and

�{r , -1 / r , -r , 1 / r} are solutions.

In[178]:= Clear [r]

C4 /. Thread [{w, x, y, z} → {r, 1 / r, -r, -1 / r}]

C4 /. Thread [{w, x, y, z} → {r, -1 / r, -r, 1 / r}]

Out[179]= {0, 0, 0, 0}

Out[180]= {0, 0, 0, 0}

But not all these points are regular

In[174]:= r = RandomReal [{-4, 4}]

Out[174]= -0.30827

22 SpaceCurveBook_v2c.nb

In[176]:= tangentVectorJMD [C4, {r, 1 / r, -r, -1 / r}, {w, x, y, z}]

tangentVectorJMD [C4, {r, -1 / r, -r, 1 / r}, {w, x, y, z}]

Out[176]= {0.0668952 , -0.703935 , -0.0668952 , 0.703935 }

Out[177]= {-0.0668952 , -0.703935 , 0.0668952 , 0.703935 }

But if r = ±1 or r = ± ⅈ then

In[181]:= r = 1;

In[182]:= tangentVectorJMD [C4, {r, 1 / r, -r, -1 / r}, {w, x, y, z}]

tangentVectorJMD [C4, {r, -1 / r, -r, 1 / r}, {w, x, y, z}]

» no unique tangent vector at {1, 1, -1, -1}

Out[182]= {0, 0, 0, 0}

» no unique tangent vector at {1, -1, -1, 1}

Out[183]= {0, 0, 0, 0}

In[184]:= r = -1;

In[185]:= tangentVectorJMD [C4, {r, 1 / r, -r, -1 / r}, {w, x, y, z}]

tangentVectorJMD [C4, {r, -1 / r, -r, 1 / r}, {w, x, y, z}]

» no unique tangent vector at {-1, -1, 1, 1}

Out[185]= {0, 0, 0, 0}

» no unique tangent vector at {-1, 1, 1, -1}

Out[186]= {0, 0, 0, 0}

In[187]:= r = ⅈ;

In[188]:= tangentVectorJMD [C4, {r, 1 / r, -r, -1 / r}, {w, x, y, z}]

tangentVectorJMD [C4, {r, -1 / r, -r, 1 / r}, {w, x, y, z}]

» no unique tangent vector at {ⅈ, -ⅈ, -ⅈ, ⅈ}
Out[188]= {0, 0, 0, 0}

» no unique tangent vector at {ⅈ, ⅈ, -ⅈ, -ⅈ}
Out[189]= {0, 0, 0, 0}

And similarly for -ⅈ. Thus this curve has 8 complex singular points. It can be shown that all

solutions are of this form and only these 8 are singular so the cyclic 4 is a curve.

 A strange fact, discussed later in this chapter, is that the parametric curves

{r , 1 / r , -r , -1 / r}, {r , -1 / r , -r , 1 / r} comprising the solution set of C4 are non-singular as

parametric curves. So singularity is based on the equation system rather than the geometry of the

point set. We have actually seen this before with plane curves x + y = 0 is non-singular but the

same solution set is given by (x + y)2 = 0 where every point is singular.

One other general algorithm we can give at this point is a general critical

point finder. It does not work as well as criticalPoint3D for naive curves but

SpaceCurveBook_v2c.nb 23

point

it will return some critical points using standard optimization techniques. It

does not give isolated points but it may identify possibly singular points by

repeated solutions. This method was suggested by the paper by [Wang,

Bican] but since the methods are not specifically related to this paper we

just give the code. The objective function is random so you might run this

several times.

In[8]:= Options [criticalPointsMD] = {solutions → Reals };

criticalPointsMD [F_, X_, OptionsPattern []] := Module [{uv, n, k, wbg, b},

n = Length [X];

k = Length [F];

uv = Table [u[i], {i, k}];

b = RandomReal [{-1, 1}, {n, 1}];

Echo [X.b - RandomReal [{-1, 1}], "Objective Function "];

wbg = Flatten [Expand [uv.Grad [F, X] - b]];

X /. NSolve [Join [F, wbg], Join [X, uv], OptionValue [solutions]]]

2.2.4 Example 2.2.3 continued.

In[144]:= criticalPointsMD [C4, {w, x, y, z}]

» Objective Function {-0.00220762 + 0.730347 w - 0.564975 x- 0.446484 y+ 0.993358 z}

Out[144]= {w, x, y, z}

In[148]:= ccp4 = criticalPointsMD [C4, {w, x, y, z}, solutions → Complexes]

» Objective Function {-0.57865 + 0.596792 w - 0.160889 x + 0.100207 y - 0.981373 z}

Out[148]= 9.93591 × 10-8
- 1. ⅈ, -6.69459 × 10-8

+ 1. ⅈ, 6.69474 × 10-8
+ 1. ⅈ, -9.93606 × 10-8

- 1. ⅈ,

1. - 1.01799 × 10-7 ⅈ, 1. + 1.01799 × 10-7 ⅈ, -1. - 5.92361 × 10-7 ⅈ, -0.999999 + 5.92361 × 10-7 ⅈ,

-1. - 6.95247 × 10-7 ⅈ, -1. + 6.95247 × 10-7 ⅈ, 1. - 2.01104 × 10-7 ⅈ, 0.999999 + 2.01104 × 10-7 ⅈ,

1. + 4.11075 × 10-7 ⅈ, 1. - 4.11076 × 10-7 ⅈ, -1. + 6.44503 × 10-7 ⅈ, -0.999999 - 6.44503 × 10-7 ⅈ

In[149]:= Chop[ccp4, 1.*^-6]

Out[149]= {{0. - 1. ⅈ, 0. + 1. ⅈ, 0. + 1. ⅈ, 0. - 1. ⅈ}, {1., 1., -1., -0.999999},

{-1., -1., 1., 0.999999}, {1., 1., -1., -0.999999}}

2.3 Macaulay and Sylvester Matrices

We first generalize the Macaulay and Sylvester matrices of my Plane Curve book to an

arbitrary number of variables. A problem often mentioned to me is that these matri -

ces can get quite large, for example even in only 4 variables a Sylvester matrix of order

10 of a system of 4 degree 5 polynomials has 505K entries and takes 13.5 seconds to

generate (64 bit,12 core 3.4GHZ Linux) while the Macaulay matrix of the same order

and degree has as many as 2860K entries and can take 76 seconds to generate. Analyz -

ing these matrices using singular value decompositions will take much longer. Fortu -

nately there are enough interesting examples already in 3-space that we will only

24 SpaceCurveBook_v2c.nb

nately enough interesting examples already 3-space only

occasionally venture into higher dimensions.

The difference between the Macaulay and Sylvester matrices is that Macaulay matri -

ces are defined at a point and measure local properties. Essentially the rows are

germs of functions and can be truncated so monomial multiples of the defining

polynomials will appear even if the resulting degree is larger than the order. The

Sylvester matrix is independent of point and measures global properties. So if a

monomial multiple of a defining polynomial has degree greater than the order this

row is left out. This is why there are many more rows in the Macaulay matrix. For

either the number of rows is dependent on the defining polynomials so there is no

general count. The number of columns in both cases is always Length[expsMD[n,d]

where n is the number of variables and d is the order, that is Binomial [n+d,d].

Already in 1916 Macaulay defined the dual vectors to his arrays. I implement these by

the (right) null space of the Macaulay matrix as a column matrix, see for example

section 2.2 of our paper [DLZ: Dayton, Li, Zeng, Math Comp 80 (276), free from

ams.org/mcom]. Likewise we can also define the dual of a Sylvester matrix. Note that

dual vectors of a Macaulay matrix should not be truncated but the dual vectors of a

Sylvester matrix can be. So in a sense, the dual of a Macaulay matrix is a Sylvester

matrix and conversely.

One can, essentially, recover the Macaulay and Sylvester matrix from their duals by

taking the left nullspace. In a few cases later on constructions such as the important

transformation FLTMD or taking unions of curves require working with duals and

then taking the dual of the dual. Unfortunately the result can often be a system of

more equations than necessary and possibly higher degrees than necessary.

2.3.1 Construction of Macaulay and Sylvester Matrices.

As mentioned above these matrices can be large, therefore it is important to

have efficient methods for constructing these. Fortunately Mathematica has

adequate data manipulation methods which allow us to do that.

I generally use m to represent the order of a Macaulay or Sylvester Matrix,

this is the largest total degree of a monomial to be considered. The

columns of both types represent the monomials in given variables up to

total degree m . One can get a list of the monomials in the ordering used by

the routine mE xpsMD. For example the columns of order 3 with 3 variables

{x , y , z} correspond to the following list.

In[120]:= mExpsMD[3, {x, y, z}]

Out[120]= 1, x, y, z, x2, x y, x z, y2, y z, z2, x3, x2 y, x2 z, x y2, x y z, x z2, y3, y2 z, y z2, z3

For Sylvester matrices the rows represent the coefficients of monomials in

this list of the multivariate polynomials defining a curve, or other algebraic

set, together with multiples of these polynomials by monomials of degree

small enough that the product is of degree less than or equal to m . For

SpaceCurveBook_v2c.nb 25

 enough product degree equal

Macaulay matrices we apply a change of variables sending the given point to

the origin and then allow multiplication by all monomials of order less than

m but then truncating the result by dropping all terms of total degree

greater than m . If this truncating results in the zero row we do not add this

row to the Macaulay matrix.

Note that if m is smaller than the largest total degree of the equations the

Sylvester Matrix would be empty or will ignore some equations, so our

routine sylvesterMD will refuse a result returning only an error message. On

the other hand, macaulayMD will return a result for any m ≥ 1. As you will

notice in the applications we generally use small orders for the Macaulay

matrix but need larger orders for the Sylvester matrix. Although for the

same m the Macaulay matrix will have far more rows than the Sylvester

matrix it is misleading to say Macaulay matrices are larger since we use

smaller orders for the Macaulay matrices than the degrees of the equations.

In the rest this subsection I will explain the details of the construction, the

reader uninterested in these will skip to the next subsection.

Rather than using the actual variables, since only coefficients appear in these matrices we use

integer lists corresponding to the exponents of the monomials, so, for example, if our variables are

given as �{x, y , z, w} then instead of the monomial x2 z w 3 we will use {2,0,1,3}. Note that our

variables are used in the order indicated in the last argument X . Here n is the number of variables.

Our first task is to create the list of possible exponents. We do this one degree at a time with a

recursive routine, essentially getting homogeneous monomials hence the “h”.

hExpsMD [n_ , d_] := Module [{hps},

hps[0] = {Table [0, {n}]};

hps[m_] := hps[m] = DeleteDuplicates [

Flatten [Table [ReplacePart [p, i → (p〚i〛 + 1)], {p, hps[m - 1]}, {i, n}], 1]];

hps[

d]];

For instance

In[131]:= hExpsMD [4, 3]

Out[131]= {{3, 0, 0, 0}, {2, 1, 0, 0}, {2, 0, 1, 0}, {2, 0, 0, 1}, {1, 2, 0, 0}, {1, 1, 1, 0},

{1, 1, 0, 1}, {1, 0, 2, 0}, {1, 0, 1, 1}, {1, 0, 0, 2}, {0, 3, 0, 0}, {0, 2, 1, 0}, {0, 2, 0, 1},

{0, 1, 2, 0}, {0, 1, 1, 1}, {0, 1, 0, 2}, {0, 0, 3, 0}, {0, 0, 2, 1}, {0, 0, 1, 2}, {0, 0, 0, 3}}

To get the list for all degrees up to d we use the trick

expsMD [n_ , d_] := Drop [hExpsMD [n+ 1, d], None , 1];

26 SpaceCurveBook_v2c.nb

In[133]:= Timing[expsMD[4, 3]]

Out[133]= {0.001096, {{0, 0, 0, 0}, {1, 0, 0, 0}, {0, 1, 0, 0}, {0, 0, 1, 0}, {0, 0, 0, 1}, {2, 0, 0, 0}, {1, 1, 0, 0},

{1, 0, 1, 0}, {1, 0, 0, 1}, {0, 2, 0, 0}, {0, 1, 1, 0}, {0, 1, 0, 1}, {0, 0, 2, 0}, {0, 0, 1, 1},

{0, 0, 0, 2}, {3, 0, 0, 0}, {2, 1, 0, 0}, {2, 0, 1, 0}, {2, 0, 0, 1}, {1, 2, 0, 0}, {1, 1, 1, 0},

{1, 1, 0, 1}, {1, 0, 2, 0}, {1, 0, 1, 1}, {1, 0, 0, 2}, {0, 3, 0, 0}, {0, 2, 1, 0}, {0, 2, 0, 1},

{0, 1, 2, 0}, {0, 1, 1, 1}, {0, 1, 0, 2}, {0, 0, 3, 0}, {0, 0, 2, 1}, {0, 0, 1, 2}, {0, 0, 0, 3}}}

constructing this list in about .001 seconds. Note, as an aside, that we can use this to get all the

monomials of degree less than or equal to d in an arbitrary set of variables.

In[119]:= mExpsMD [d_ , X_] := Module [{n},

n = Length [X];

Table [FromCoefficientRules [{p → 1}, X], {p, expsMD [n, d]}]];

In[120]:= mExpsMD [3, {x[1], x[2], x[3]}]

Out[120]= 1, x[1], x[2], x[3], x[1]2 , x[1] × x[2], x[1] × x[3], x[2]2 , x[2] × x[3], x[3]2 , x[1]3 , x[1]2 x[2],

x[1]2 x[3], x[1] x[2]2 , x[1] × x[2] × x[3], x[1] x[3]2 , x[2]3 , x[2]2 x[3], x[2] x[3]2 , x[3]3

Next we convert the built in CoefficientRules to an association adding missing monomials. As an

extra we calculate the total degree.

fAssocMD [f_, X_] := Module [{A, d, n, FA},

n = Length [X];

A = Association [CoefficientRules [f, X]];

d = Max[Table [Total [p], {p, Keys [A]}]];

FA = Association [Table [If[MissingQ [A[p]], p → 0, p → A[p]], {p, exps [n, d]}]];

{FA, d}]

In[145]:= FA = fAssocMD [1+ 3 x- 2 x y, {x, y}]

Out[145]= { {0, 0} → 1, {1, 0} → 3, {0, 1} → 0, {2, 0} → 0, {1, 1} → -2, {0, 2} → 0 , 2}

We perform multiplication by a monomial by shifting and adding in missing terms.

In[24]:= shi�FAMD [FA_, q_ , d_] := Module [{S, K, n},

K = Keys [FA];

n = Length [K〚1〛];
S = Association [Table [p+ q → FA[p], {p, K}]];

Association [Table [If[MissingQ [S[p]], p → 0, p → S[p]], {p, exps [n, d]}]]];

In the above example we multiply by monomial x 2 for use with order 4.

In[149]:= sFA = shi�FAMD [FA〚1〛, {2, 0}, 4]

Out[149]=  {0, 0} → 0, {1, 0} → 0, {0, 1} → 0, {2, 0} → 1, {1, 1} → 0, {0, 2} → 0, {3, 0} → 3,

{2, 1} → 0, {1, 2} → 0, {0, 3} → 0, {4, 0} → 0, {3, 1} → -2, {2, 2} → 0, {1, 3} → 0, {0, 4} → 0

Note we can recover our product x2 (1 + 3 x - 2 x y)

SpaceCurveBook_v2c.nb 27

In[150]:= FromCoefficientRules [Normal [sFA], {x, y}]

Out[150]= x2
+ 3 x3

- 2 x3 y

Now we treat the special case of one equation

In[25]:= sylMD [f_, m_ , X_] := Module [{FA, d},

n = Length [X];

{FA, d} = fAssocMD [f, X];

If[d > m, Print ["Degree error in syl"]; Abort []];

Table [Values [shi�FAMD [FA, q, m]], {q, exps [n, m - d]}]];

In[152]:= sylMD [1+ 3 x - 2 x y, 4, {x, y}] // MatrixForm

Out[152]//MatrixForm=

1 3 0 0 -2 0 0 0 0 0 0 0 0 0 0

0 1 0 3 0 0 0 -2 0 0 0 0 0 0 0

0 0 1 0 3 0 0 0 -2 0 0 0 0 0 0

0 0 0 1 0 0 3 0 0 0 0 -2 0 0 0

0 0 0 0 1 0 0 3 0 0 0 0 -2 0 0

0 0 0 0 0 1 0 0 3 0 0 0 0 -2 0

For the general Sylvester matrix case we apply the above equation by equation.

In[26]:= sylvesterMD [F_,m_ ,X_]:=Flatten [Table [sylMD [F〚i〛,m,X],{i,Length [F]}],1];

The Macaulay matrix is similar with exception of using the following instead of sylMD in the one

equation case:

macaMD [f_, m_ , p_ , X_] := Module [{M, fp, FA, d, n},

fp = Expand [f /. Thread [X → X+ p]];

n = Length [X];

{FA, d} = fAssocMD [fp, X];

M = Table [Values [shi�FAMD [FA, q, m]], {q, expsMD [n, m - 1]}];

Select [M, AnyTrue [#, Abs[##] > 0 &] &]]

In[154]:= macaMD [1+ 3 x- 2 x y, 3, {-1 /3, 0}, {x, y}] // MatrixForm

Out[154]//MatrixForm=

0 3
2

3
0 -2 0 0 0 0 0

0 0 0 3
2

3
0 0 -2 0 0

0 0 0 0 3
2

3
0 0 -2 0

0 0 0 0 0 0 3
2

3
0 0

0 0 0 0 0 0 0 3
2

3
0

0 0 0 0 0 0 0 0 3
2

3

To finish

In[28]:= macaulayMD [F_, m_ , p_ , X_] := Flatten [Table [macaMD [F〚i〛, m, p, X], {i, Length [F]}], 1];

2.3.2 Application of Sylvester Matrices.

28 SpaceCurveBook_v2c.nb

Sylvester matrices will play a large role below. For those readers familiar

with contemporary algebraic geometry they essentially replace the concept

of ideal. So we give only two simple applications here which are multivari -

ate extensions procedures in Appendix 1 of our plane curve book.

2.3.2.1 Numerical Division of multivariate polynomials.

 Given polynomials f , g of degrees d1, d2 in variables X we note that we can

use sylMD to do matrix multiplication with the formulas

sylMD[f *g, d1 +d2, X] = syl[f, d1, X].syl[g, d1 +d2, X]

h = f *g = sylMD[h, d1 +d2, X].mExpsMD[d1 +d2, X]

Of course this will be about 100 times slower than the built - in Expand[f*g]

but it gives us a suggestion for undoing this multiplication : recover f by

multiplying sylMD[h, d1 +d2, X] on the right by syl[g , d1 + d2, X]-1 . Of course this

rarely would be an invertible matrix but we can use the pseudo-inverse

instead. This gives us the procedure, using the faster FromCoefficientRules

instead of multiplying by mExps:

nDivideMD [h_, g_, X_, tol_] := Module [{n, l, m, d1, d2, P, S, f, ex},

n = Length [X];

d1 = tDegMD [g, X];

d2 = tDegMD [h, X];

If [d1 > d2, Print ["Does Not Divide "]; Return [Fail]];

P = PseudoInverse [N[sylMD [g, d2, X]], Tolerance → tol];

S = Chop [sylMD [h, d2, X].P];

ex = expsMD [n, d2 - d1];

l = Length [ex];

f = FromCoefficientRules [Table [ex〚i〛 → S〚1, i〛, {i, l}], X];

If[Norm [Flatten [sylMD [f * g- h, d2, X]]] > d2 * tol,

Print ["Does not divide at this tolerance "];

Return [Fail]];

f];

Of course you cannot use this on arbitrary h, g but, especially with numeri -

cal polynomials, even if h does factor we probably need to use a looser

tolerance than dTol.

Example 2.3.2.1.1 We divide three variable polynomials h by g

In[149]:= h = 10 + 36 x+ 38 x2
+ 4 x3

- 28 x4
- 28 y- 70 x y- 16 x2 y+ 92 x3 y- 19 y2

- 64 x y2
- 57 x2 y2

+ 40 y3
-

5 x y3
+ 25 y4

- 34 z- 76 x z- 2 x2 z- 6 x3 z- 21 y z- 98 x y z+ 69 x2 y z+ 92 y2 z- 14 x y2 z+

65 y3 z+ 47 z2
+ 94 x z2

- 5 x2 z2
+ 2 y z2

+ 58 x y z2
- 14 y2 z2

- 40 z3
- 35 x z3

- 65 y z3
+ 25 z4 ;

In[150]:= g = 5+ 8 x- 7 x2
- 4 y+ 9 x y- 5 y2

- 2 z- 5 x z- 4 y z+ 5 z2 ;

SpaceCurveBook_v2c.nb 29

In[152]:= nDivideMD [h, g, {x, y, z}, dTol]

Out[152]= 2. + 4. x+ 4. x2
- 4. y- 8. x y- 5. y2

- 6. z- 2. x z- 9. y z+ 5. z2

This idea can be extended to finding the greatest common divisor of 2 n-

variable polynomials. In my plane curve book I give the code in the case of 2

variables but it is easily extended to the general n-variable case. The code is

in my GlobalFunctionsMD notebook. For more information on this algo -

rithm see our paper [Zeng,Dayton 2004].

2.3.2.2 The Membership Problem

When using more than 2 variables a more common and important question

than GCD finding is the ideal membership problem given polynomial g in n-

variables X is it a polynomial combination of n-variable polynomials

{f1, …, fk}?

The easiest way to handle this in general is as follows. Set a tolerance τ

which could be dTol for or weaker for numerical systems. Suppose tDeg[g,X] =

dg . Then we calculate the ranks by

S = sylvesterMD[{f1, …, fk}, mi, X];

r1 = Length[SingularValueList[S, Tolerance → τ]]
r2 = Length[SingularValueList[Append[S, sylMD[g, mi, X]〚1〛], Tolerance → τ]]

starting with m1 = Max f1, …, fk , dg . If these are equal then g is a mem -

ber. If not then let m2 ≥ m1 + 1 and try again. We continue this way for a

few more tries but give up after about 3 or 4 tries concluding that g is proba -

bly not a polynomial combination of {f1, …, fk}.

2.3.2.2.1 Example:

In[172]:= f1 = x+ y- 2 z+ y z2
- z4 ;

f2 = -x2
+ y- x y+ 2 x z- z2

- x y z2
+ x z4 ;

g = x+ y- 2 z;

We can take m1 = 5

In[175]:= S = sylvesterMD [{f1, f2}, 5, {x, y, z}];

r1 = Length [SingularValueList [S, Tolerance → dTol]]

r2 = Length [SingularValueList [Append [S, sylMD [g, 5, {x, y, z}]〚1〛], Tolerance → dTol]]

Out[176]= 5

Out[177]= 6

These are not equal . Trying m2 = 6 they still are not equal , but

30 SpaceCurveBook_v2c.nb

In[178]:= S = sylvesterMD [{f1, f2}, 7, {x, y, z}];

r1 = Length [SingularValueList [S, Tolerance → dTol]]

r2 = Length [SingularValueList [Append [S, sylMD [g, 7, {x, y, z}]〚1〛], Tolerance → dTol]]

Out[179]= 30

Out[180]= 30

So g is a polynomial combination of {f1, f2}.

Things can be much worse, that is the final mi could be much bigger than

m1 and as formulated there is no stopping criterion in this method to con -

clude that g is not a polynomial combination of the fi. In the next section

2.4 we will see that there is a defect in the curve system { f1, f2}, we should

have g and one more polynomial in our system and then the first try will be

definitive.

2.3.3 Applications of Macaulay Matrices

2.3.3.1 Intersection Multiplicity

The main application of Macaulay matrices is Macaulay’s original applica -

tion, the computation of intersection multiplicity. For this application we

will have a system of n or more equations in n variables, n ≥ 2, and an

isolated solution. In our case isolated means a solution point p such that

there is no other solution point q such that Norm[p-q]<ϵ for some ϵ > 0. In

particular p will not be a regular point of a curve.

 A full description of this algorithm is given in [Dayton-Li- Zeng] where we

emphasize that multiplicity is not just a number. This was known but not

well known previously. We describe this concept with a sequence called,

historically, the Hilbert Function although the reader is forewarned that

there are other different sequences with this name in the literature and even

in this book where in addition to this local Hilbert Function there is a global

Hilbert Function. Essentially this measures the change in dimension of the

null space of the Macaulay matrix of order m as m increases. The first term

(m = 0) of the Hilbert Function should be 1 indicating that point p is a zero

of our system. The second term (m = 1) we call the breadth which is also

known as the embedding dimension by algebraic geometers, it is always less

than n. The fact that p is isolated implies that the numbers in this Hilbert

Function become zero at some point, once this happens it will continue to

happen if we calculated further. The order of the last non-zero number in

the Hilbert function we call the depth which should not be confused with

Macaulay’s notion of depth. Finally the sum of all non-zero numbers in the

Hilbert Function is simply called the intersection multiplicity, or just

SpaceCurveBook_v2c.nb 31

 simply multiplicity, just

multiplicity.

As mentioned above in section 2.3.1 the Macaulay matrix for large m , n can

be very large already when m or n is greater than 3. Thus calculating null

spaces can be time consuming. Therefore I give several algorithms for

multiplicity.

The first is our original which requires the user to guess an upper bound for

the depth. It is the only version that gives the Hilbert Function. Usually this

is a small number so the calculation will be quick. If the depth turns out to

be large this version stops before termination so as not to force the user to

wait. On the other hand this version does not halt at the first occurrence of

0 in the Hilbert function. In order to make this as fast as possible we calcu -

late only the final Macaulay Matrix and deduce the Hilbert function from

that.

We need two subroutines. The first, nrref is simply a numerical version of

the reduced row echelon form, the code, in GlobalFunctions.nb will be

discussed in the next subsection. This nrref does return a sequence which

allows computation of the Hilbert function. Here is that algorithm.

Options [hilbertFunctionMD] = {diff → False };

hilbertFunctionMD [p_ , m_ , n_ , OptionsPattern []] :=

Module [{h}, h = Table [Binomial [d+ n- 1, n - 1] -

Length [Select [p, Binomial [d+ n- 1, n] < # ≤ Binomial [d+ n, n] &]], {d, 0, m}];

If[OptionValue [diff], Differences [Prepend [h, 0]], h]]

Then the multiplicity algorithm is

In[128]:= multiplicity0MD [F_, m_ , p_ , X_, tol_] := Module [{M, n, l, A, h},

n = Length [X];

M = macaulayMD [F, m, p, X];

{l, A} = nrref [M, tol];

h = hilbertFunctionMD [l, m, n];

Echo [h, "hilbert Function "];

Echo [Length [Select [h, # > 0 &]] - 1, "Depth "];

If[h〚m + 1〛 > 0, Echo [h〚n+ 1〛, "Warning : use higher m"]];

Total [h]]

Here F is the equation system, m is the maximum order to compute, p is the

isolated solution point, X is the set of variables and tol is a desired tolerance.

For numerical systems, in particular, this can make a difference, for example

a very loose tolerance can pick up nearby isolated points. But the reader

should be aware that, for high depth, computation of intersection points

accurately is a problem, see our paper [Dayton-Li-Zeng]. A loose tolerance

32 SpaceCurveBook_v2c.nb

accurately problem, paper [Dayton-Li-Zeng].

can make up for an inaccurately calculated intersection point. Note the

built-in function Timing returns the time of execution and the value. If the last

entry of the Hilbert function is not 0 a warning message is given.

 Example 2.3.3.1.1: Consider the two variable system at {0,0}

In[125]:= F = {x ^ 2-y ^ 2+x ^ 3, x ^ 2-y ^ 2+y ^ 3};

In[131]:= Timing[multiplicity0MD[F, 6, {0, 0}, {x, y}, dTol]]

» hilbert Function {1, 2, 2, 1, 1, 0, 0}

» Depth 4

Out[131]= {0.038308, 7}

Our second version recalculates the Macaulay matrix at each step, but it

stops at the first 0 in the Hilbert function so, since low multiplicities are the

most common, is usually the fastest although this could run a long time if

the depth is large. The user does not need to give an upper depth. The

subroutines are not necessary.

multiplicityMD [F_, p_ , X_, tol_] := Module [{ttd, svdl, cols, rnk, k, M, h, dh, hk},

ttd = Total [tDegMD [#, X] & /@ F];

k = tDegMD [F〚1〛, X];

dh = 1;

h = 0;

While [k ≤ ttd && dh > 0,

M = macaulayMD [F, k, p, X];

cols = Last [Dimensions [M]];

rnk = Length [SingularValueList [N[M], Tolerance → tol]];

hk = cols - rnk;

dh = hk - h;

h = hk;

k++];

h]

In[132]:= Timing[multiplicityMD[{x ^ 2-y ^ 2+x ^ 3, x ^ 2-y ^ 2+y ^ 3}, {0, 0}, {x, y}, dTol]]

Out[132]= {0.033905, 7}

The final version assumes the maximal depth will be less than the sum of

the total degrees of the equations. This seems to be valid, although the

author has no proof. The advantage is the code is short but the answer is

not guaranteed unless the multiplicity is less than the sum of total degrees.

SpaceCurveBook_v2c.nb 33

multiplicity2MD [F_, p_ , X_, tol_] := Module [{ ttd, M, svdl, cols, rnk, h},

ttd = Total [tDegMD [#, X] & /@ F];

M = macaulayMD [F, ttd, p, X];

cols = Last [Dimensions [M]];

rnk = Length [SingularValueList [N[M], Tolerance → tol]];

cols - rnk]

In[133]:= Timing[multiplicity2MD[{x ^ 2-y ^ 2+x ^ 3, x ^ 2-y ^ 2+y ^ 3}, {0, 0}, {x, y}, dTol]]

Out[133]= {0.040724, 7}

Example 2.3.3.1.2 Here is a numerical example:

In[244]:= {a, b, c} = N[{Sqrt [7], Sqrt [11], CubeRoot [29]}]

Out[244]= {2.64575 , 3.31662 , 3.07232 }

In[245]:= F0 = Expand [

{(x- a)^ 3+ (y- b)^ 2+ (z- c)^ 2, (x- a)^ 2+ (y- b)^ 3+ (z- c)^ 2, (x- a)^ 2+ (y- b)^ 2+ (z- c)^ 3}]

Out[245]= 1.91887 + 21. x- 7.93725 x2
+ x3

- 6.63325 y+ y2
- 6.14463 z+ z2 ,

-20.0437 - 5.2915 x+ x2
+ 33. y- 9.94987 y2

+ y3
- 6.14463 z+ z2 ,

-11. - 5.2915 x+ x2
- 6.63325 y+ y2

+ 28.3174 z- 9.21695 z2
+ z3

In[257]:= sol = {x, y, z} /. NSolve [F0];

p = sol〚16〛
Out[258]= 2.64575 + 8.33743 × 10-8 ⅈ, 3.31662 + 4.84024 × 10-8 ⅈ, 3.07232 - 2.09602 × 10-15 ⅈ

We first try multiplicity0MD to actually see what is happening

In[264]:= Timing [multiplicity0MD [F0, 4, p, {x, y, z}, dTol]]

» hilbert Function {1, 0, 3, 3, 1}

» Depth 3

» Warning : use higher m 3

Out[264]= {0.494936 , 8}

In[265]:= Timing [multiplicity0MD [F0, 4, p, {x, y, z}, 1.*^-6]]

» hilbert Function {1, 3, 3, 1, 0}

» Depth 3

Out[265]= {0.263942 , 8}

In both cases we get the same multiplicity but with tighter tolerance the

wrong Hilbert function.

Now using the other methods

34 SpaceCurveBook_v2c.nb

In[268]:= Timing[multiplicityMD[F0, p, {x, y, z}, 1.*^-6]]

Timing[multiplicity2MD[F0, p, {x, y, z}, 1.*^-6]]

Out[268]= {0.057562, 8}

Out[269]= {3.0274, 8}

In this case we see multiplicityMD is the fastest but if we tried it with dTol per -

haps getting the correct answer was luck.

2.3.3.2 Tangent Vectors

Our function tangentVectorJMD works in simple cases but may not work in near

singular cases. An alternate uses the local property of the Macaulay matrix

and gives some information about singular points encountered. Unlike the

multiplicity finders above we do not expect to apply this to an isolated point

so we will use a global Hilbert function rather than the local one used above.

These Hilbert functions are related in some sense as integrals or derivatives

of each other. The discrete built-in functions Accumulate and Differences will

connect these two Hilbert functions.

Our function nrref mentioned above is very important here so we give the

code.

nrref [M_ , eps_] := Module [{p, P, j, R, mn, n, r, s, U, S, V},

{U, S, V} = SingularValueDecomposition [N[M], Tolerance → eps];

r = Length [Select [Diagonal [S], # > 0 &]]; (* rank *)

R = Take [Transpose [V], r]; (* row space of M *)

mn = Dimensions [R];

n = 1;

While [Norm [Take [R, All, {n}]] < eps, n++];

p = {n};

For[j = n, j > 0, j++ ,

If[mn〚1〛 ≤ Length [p], Break [],

p = Append [p, j];

P = Check [R〚All, p〛, Abort []];

s = Length [Select [SingularValueList [N[P], Tolerance → eps], # > 0 &]];

If[s < Length [p],

p = Drop [p, -1];, Null];

];

];

P = R〚All, p〛;

{p, Chop [Inverse [P].R]}]

Example 2.3.3.2.1 We consider example 2.2.1 the twisted cubic at {2,4,8}.

SpaceCurveBook_v2c.nb 35

In[307]:= twCubic = {x z- y ^ 2, y- x ^ 2, z- x y};

p = {2, 4, 8};

We calculate the Macaulay matrix at p for m = 2 since we are basically only interested in the linear

part.

In[316]:= M = macaulayMD [twCubic , 2, {2, 4, 8}, {x, y, z}];

M // MatrixForm

Out[317]//MatrixForm=

0 8 -8 2 0 0 1 -1 0 0

0 0 0 0 8 -8 2 0 0 0

0 0 0 0 0 8 0 -8 2 0

0 0 0 0 0 0 8 0 -8 2

0 -4 1 0 -1 0 0 0 0 0

0 0 0 0 -4 1 0 0 0 0

0 0 0 0 0 -4 0 1 0 0

0 0 0 0 0 0 -4 0 1 0

0 -4 -2 1 0 -1 0 0 0 0

0 0 0 0 -4 -2 1 0 0 0

0 0 0 0 0 -4 0 -2 1 0

0 0 0 0 0 0 -4 0 -2 1

Next we apply nrref

In[318]:= {pv, M2} = nrref [M, dTol];

pv

M2 // MatrixForm

Out[319]= {2, 3, 5, 6, 7, 8, 9}

Out[320]//MatrixForm=

0 1. 0 -0.0833333 0 0 0 0 0 0.00347222

0 0 1. -0.333333 0 0 0 0 0 0.00694444

0 0 0 0 1. 0 0 0 0 -0.00694444

0 0 0 0 0 1. 0 0 0 -0.0277778

0 0 0 0 0 0 1. 0 0 -0.0833333

0 0 0 0 0 0 0 1. 0 -0.111111

0 0 0 0 0 0 0 0 1. -0.333333

Columns 2, 3, 4 give the linear span of these equations which, since we have a curve should be of

dimension n - 1 = 2.

In[337]:= nv1 = {1, 0, -0.08333333333333334` };

nv2 = {0, 1, -0.3333333333333334` };

Note that

In[339]:= Normalize [N[tangentVectorJMD [twCubic , p, {x, y, z}]]]

Normalize [Cross [nv1, nv2]]

Out[339]= {0.078811 , 0.315244 , 0.945732 }

Out[340]= {0.078811 , 0.315244 , 0.945732 }

36 SpaceCurveBook_v2c.nb

give the same result. In the case of general n the analog of the cross product of n - 1 rows is the

last row orthogonal completion of these rows

In[342]:= Orthogonalize [{nv1, nv2, RandomReal [{-1, 1}, 3]}] // MatrixForm

Out[342]//MatrixForm=

0.996546 0. -0.0830455

-0.0261796 0.949011 -0.314155

-0.078811 -0.315244 -0.945732

This is the idea behind our algorithm

Options [tangentVectorMD] = {tol → 1.*^-7 , ord → 4, hilbertFunction → True};

tangentVectorMD [F_, p_ , X_, OptionsPattern []] := Module [{M2, n, pv, orth, J, hf},

If[OptionValue [ord] < 2, Echo ["ord must be at least 2"]; Abort []];

n = Length [X];

{pv, M2} = nrref [macaulayMD [F, OptionValue [ord], p, X], OptionValue [tol]];

If[AnyTrue [Flatten [Take [M2, All, 1]], Abs[#] > OptionValue [tol] &],

Echo [p, "Not a solution , p = "];

Return []];

hf = hilbertFunctionMD [pv, OptionValue [ord], n];

If[OptionValue [hilbertFunction], Echo [hf, "Hilbert Function "]];

If[hf〚OptionValue [ord] + 1〛 ⩵ 0, Echo ["point may be isolated ", "Warning "]];

If[hf〚2〛 ⩵ 1, Return [Take [Orthogonalize [

Append [M2〚1 ;; n- 1, 2 ;; n + 1〛, RandomReal [{-1, 1}, n]]], -1]〚1〛],
Echo [p, "No unique tangent vector at "]];

Null];

Example 2.3.3.2.1 continued

In[343]:= tangentVectorMD [twCubic , p, {x, y, z}, ord → 2]

» Hilbert Function {1, 1, 1}

Out[343]= {-0.078811 , -0.315244 , -0.945732 }

Increasing the order of the Macaulay matrix gives more of the Hilbert

function. Since this is the accumulation of the local Hilbert function this

stabilizes at the multiplicity. In this example we had a regular point so the

multiplicity is 1. We could use this to calculate 2-dimensional singularities,

note the first argument of tangentVectorMD is a set so even with one equa -

tion we need set braces.

Examples 2.3.3.2.2

In[345]:= tangentVectorMD [{x y (x- y)}, {0, 0}, {x, y}]

» Hilbert Function {1, 2, 3, 3, 3}

» No unique tangent vector at {0, 0}

Compare with

SpaceCurveBook_v2c.nb 37

In[346]:= singPointMult2D [x y (x- y), {0, 0}, x, y, dTol]

Out[346]= 3

Applying to a system with only isolated solutions

In[348]:= tangentVectorMD [{x z- y, y z- x ^ 2- x, z ^ 2- x ^ 2- 1}, {0, 0, 1}, {x, y, z}]

» Hilbert Function {1, 1, 0, 0, 0}

» Warning point may be isolated

Out[348]= {-0.707107 , -0.707107 , 0.}

we get a tangent vector but it has multiplicity 0.

Going back to example 2.3.3 the cyclic-4 curve

In[350]:= C4 = {w + x+ y+ z, w x+ x y+ y z+ z w, w x y+ x y z+ y z w + z w x, w x y z- 1};

In[351]:= tangentVectorMD [C4, {1, -1, -1, 1}, {w, x, y, z}]

» Hilbert Function {1, 2, 1, 1, 1}

» No unique tangent vector at {1, -1, -1, 1}

we have a singular point of multiplicity 1. We will explain later.

2.4 H-bases

We saw in Example 2.3.2.2.1 that there is a lack of a stopping point in the

membership problem but is was suggested that an equation system could

be modified so that only one step is needed. This is the main thrust of this

section is to describe a type of equation system where this is true.

However there are infinitely many equations that any given curve, or more

generally algebraic set, will satisfy. Several algorithms we will see generate a

large number of these and we want to pick a good, but relatively small,

equation set. The equation sets that satisfy the previous paragraph are good

candidates for this.

Fortunately Macaulay in the same 1916 book where he described his

Macaulay matrix did come up with an answer. He was using homogeneous

equations for projective space and so called this an H-basis. Some authors

use the name Macaulay basis for this. In this book , even though we recog -

nize that algebraic curves live in projective space, prefer working in affine

space as it is more algorithm friendly. It turns out that H-bases work fine in

affine space too.

A system of polynomial equations in n variables is a H-basis if the member -

ship problem can always be solved in one step. Specifically a system

F = {f1, f2, …, fk} of polynomials in n-variables is an H-basis if given any n-

38 SpaceCurveBook_v2c.nb

variable polynomial g of degree d it is a polynomial combination of the

polynomials of F if and only if there exist polynomials {g1, …, gk} so that

g1 f1 + g2 f2 + ⋯ + gk fk = h with each gi fi of total degree ≤ d

In particular suppose k = 3, f1 is linear, f2 is quadratic and f3 is cubic. If h is

linear then to be a polynomial combination of H-basis F = {f1, f2, f3} then h

must be a constant times f1. If h is quadratic it can be a linear times f1 plus

a constant times f2. If h is cubic it can be a quadratic times f1 plus a linear

times f2 plus a constant times f3. And so on.

H-bases do exist and every polynomial system is a subset of an H-basis. We

will see that Mathematica has a built-in algorithm GroebnerBasis to find one.

This algorithm uses abstract algebra so we will not try to explain here how it

works. A simple introduction to Gröbner bases is given at the beginning of

the book by [Cox,Little and O’Shea] but unfortunately I do not know of an

elementary exposition of H-bases that does not require lots of algebra. My

position in this book has always been that any algorithm of Mathematica

does not require my explanation. The big problem using GroebnerBasis is that

this algorithm is intended for integer systems only. Mathematica will try to

handle numerical systems but we can’t rely on this working.

If F is a H-basis any larger system is also an H-basis. The trick is to find a

small H-basis and in the rest of this section I will concentrate on this.

2.4.1 The algorithm hBasisMD

This algorithm (revised 5/2020) which takes a large polynomial system and

attempt to find a small H-basis. It will not give an H-basis if the argument

m is not large enough, unfortunately one cannot know what m is large

enough in advance. One can check with hBasisMDQ below. The big advantage

of this version of hBasisMD is that it works fine with numerical systems

which will occur in applications.

There are essentially three steps in this algorithm. The first step is to calcu -

late the Sylvester Matrix for the user given m and use the singular value

decomposition to find a full rank row space. For numerical systems this

essentially replaces the possibly numerically inconsistent input system with

a least squares approximation of a consistent system. We then apply a

reverse row reduction to find polynomials of small degree among polynomi -

als combinations of the now consistent input system. This is the essential

reason for H-bases. These first two steps are contained in the more general

matrix reduction procedure arref below. The final, third, step is to return the

resulting Sylvester matrix back into a polynomial system and use the mem -

bership problem solution to reject polynomials which are already polyno -

SpaceCurveBook_v2c.nb 39

bership problem reject polynomials already polyno

mial combinations inside the vector space of polynomials of degree m or

less of preceding accepted polynomials. The output is what is left after the

rejections.

arref [M_ , eps_] := Module [{p, P, j, r, s, R, mn, n, U, S, V},

{U, S, V} = SingularValueDecomposition [N[M], Tolerance → eps];

r = Length [Select [Diagonal [S], # > 0 &]]; (* rank *)

R = Take [Transpose [V], r]; (* row space of M *)

mn = Dimensions [R];

n = mn〚2〛;

While [Norm [Take [R, All, {n}]] < eps, n--];

p = {n};

For[j = n- 1, j > 0, j-- ,

If[mn〚1〛 ≤ Length [p], Break [],

p = Prepend [p, j];

P = Check [R〚All, p〛, Abort []];

s = Length [Select [SingularValueList [N[P], Tolerance → eps], # > 0 &]];

If[s < Length [p],

p = Drop [p, 1];, Null];

];

];

P = R〚All, p〛;

{p, Chop [Check [Inverse [P], Abort []].R]}]

The idea is that arref will allow us to pick out polynomial combinations of

our input of lowest degrees. We look at a previous example:

Example 2.4.1.1. We consider example 2.3.2.2.1 where we found a linear

polynomial that was a polynomial combination of a fourth and fifth degree

polynomial.

In[116]:= f1 = x+ y- 2 z+ y z2
- z4 ;

f2 = -x2
+ y- x y+ 2 x z- z2

- x y z2
+ x z4 ;

We start by picking m = 6 and calculating the Sylvester matrix and its arref decomposition.

In[120]:= S6 = sylvesterMD [{f1, f2}, 6, {x, y, z}];

{p6, A6} = arref [S6, dTol];

Length [p6]

Out[122]= 14

This last number says we have created 14 polynomial combinations of {f1,f2}. Lets look at the first 5

In[123]:= Take [A6, 5].mExpsMD [6, {x, y, z}]

Out[123]= -1. y+ 1. z2 , -1. x y+ 1. x z2 , -1. y2
+ 1. y z2 , -1. y z+ 1. z3 , -1. x- 1. y- 1. y2

+ 2. z+ 1. z4

40 SpaceCurveBook_v2c.nb

In[130]:= S7 = sylvesterMD [{f1, f2}, 7, {x, y, z}];

{p7, A7} = arref [S7, dTol];

Length [p7]

Take [A7, 5].mExpsMD [7, {x, y, z}]

Out[132]= 30

Out[133]= -0.5 x- 0.5 y+ 1. z, -1. y+ 1. z2 , -1. x y+ 1. x z2 , -1. y2
+ 1. y z2 , -1. y z+ 1. z3

So we have produced our linear polynomial and can hope that m = 7 is large enough, that is that

from these 30 polynomial combinations we can get all polynomial combinations of {f1,f2} without

relying on cancellation of terms to do our work.

So the algorithm hBasisMD creates a list of polynomial combinations  using

arref that we hope is a building block for all polynomial combinations of our

input system. The first entry of  is becomes an element of our proposed H-

Basis H and we proceed to go down the list  using our membership prob -

lem method to test if it is a polynomial combination of the previous choices.

If not we add it to our list H . So we hypothesize that every polynomial

combination of our input system is an appropriate combination of polynomi -

als in the list  which in turn are appropriate combinations of our list

H . The code follows:

SpaceCurveBook_v2c.nb 41

In[135]:= hBasisMD [F_, m_ , X_, tol_] := Module [{n, p, S, A, a, Sa, H, H1, r, s, s1, k, temp },

n = Length [X];

H = {};

H1 = {};

S = sylvesterMD [F, m, X];

{p, A} = arref [S, tol];

Echo [hilbertFunctionMD [p, m, n], "Initial Hilbert Function "];

r = Length [p];

H1 = {A〚1〛.mExpsMD [m, X]};

H = H1;

S = sylvesterMD [H, m, X];

s = Length [SingularValueList [S, Tolerance → tol]];

k = 2;

While [k ≤ r,

H1 = Append [H, A〚k〛.mExpsMD [m, X]];

Sa = sylvesterMD [H1, m, X];

s1 = Length [SingularValueList [Sa, Tolerance → tol]];

If[s1 > s, s = s1; H = H1];

If[r > 30 && Mod [k, 10] ⩵ 0,

temp = PrintTemporary ["hBasis :: At equation ", k, " of ", r];

Pause [3];

NotebookDelete [temp]];

k++];

S = sylvesterMD [H, m + 1, X];

{p, A} = arref [S, tol];

Echo [hilbertFunctionMD [p, m, n], "Final Hilbert Function "];

H];

Although this code is fairly simple we are finding the rank of increasingly

large matrices. This can take a long time. A new feature (5/2020) is if A has

many rows then the procedure gives temporary output of progress. This

could give the user a chance to abort the procedure if the user does not wish

to wait. Unlike previous versions there are no options available. A global

Hilbert function of the original system and the H-basis are given, ideally the

second Hilbert function will stabilize. If not you may wish to try a larger m

or to use the algorithm hBasisMDQ below to test the output of this

algorithm.

Example 2.4.1.1 Continued. We use the algorithm to calculate a H-basis for

{f1,f2}.

In[136]:= Timing [hBasisMD [{f1, f2}, 7, {x, y, z}, dTol]]

42 SpaceCurveBook_v2c.nb

» Initial Hilbert Function {1, 2, 5, 7, 9, 18, 22, 26}

» Final Hilbert Function {1, 2, 2, 2, 2, 2, 2, 2}

Out[136]= 44.5493 , -0.5 x- 0.5 y+ 1. z, -1. y+ 1. z2

2.4.2 hBasisMDQ

Typically hBasisMD is used as a subroutine for other algorithms which return a

large set of polynomials to get a smaller set, not necessarily an actual H-

Basis. This will terminate with a warning message if some of the input

polynomials have degree greater than m . Then the one thing that should

always happen is that the set H returned will at least generate the input set,

so even if one does not get an H-basis something useful is returned.

But one will not get an H-basis if two small an m is used. There is no easy a-

priori method to guess a large enough m but the algorithm in this subsec -

tion should be able to check to see if you do have an H-basis.

 So you can use the output from hBasisMD in hBasisMDQ. If using hBasisMD as a

stand-alone procedure you may wish to run hBasisMDQ first to see if you

already have an H-Basis and to get a value of m that should work.

hBasisMDQ works by comparing the input system with a known H-Basis. By

default this the output of the built-in Mathematica function GroebnerBasis

with option MonomialOrder→DegreeLexicographic. As mentioned before this is not

cheating the reader as I have never promised to explain built-in functions,

only my own. Normally Gröbner Bases only work for systems with integer

coefficients, Mathematica’s will attempt numerical systems but I offer no

guarantees. In particular GroebnerBasis will flag inconsistent systems and

abort. An over-determined numerical system that may be fine in other

places in this book may look inconsistent to GroebnerBasis.

The syntax is hBasisMDQ[F,H, X, tol] where F is your known system, H is the

system you wish to check to see if it is an H-basis. As usual X is the variable

set, and tol is desired tolerance. Note that m is not used as input so one

does not need to know m beforehand. Here, especially, the order of the

variables matter, Lexicographic is respect to the order in X for instance the

built in MonomialList used in GroebnerBasis returns a different list depending on

the way the variables are listed:

In[123]:= MonomialList[(x+y+ z)^ 3, {x, y, z}, "DegreeLexicographic"]

MonomialList[(x+y+ z)^ 3, {z, y, x}, "DegreeLexicographic"]

Out[123]= x3, 3 x2 y, 3 x2 z, 3 x y2, 6 x y z, 3 x z2, y3, 3 y2 z, 3 y z2, z3

Out[124]= z3, 3 y z2, 3 x z2, 3 y2 z, 6 x y z, 3 x2 z, y3, 3 x y2, 3 x2 y, x3

SpaceCurveBook_v2c.nb 43

As an option hBasisMDQ will treat the first argument F as a known H-basis and

check the argument H against that. This could be useful, for example, if one

has an H-basis but is concerned that it is not minimal. This may be, for

instance, the case for the H-basis returned by GroebnerBasis.

Our function hBasisMDQ gives an information notice with the size of the

Gröbner Basis and a list of total degrees of polynomials present. In the case

above where the option useF→True this information refers to F rather than the

Gröbner Basis which is not calculated. If it is determined that H is a Gröb -

ner basis the the procedure returns only the value True. Otherwise it stops at

the first instance an element of F is not expressible in terms of the polynomi -

als in H. If the Gröbner Basis (or optionally F) has polynomials of degree 1

but H does not then hBasisMDQ flags that fact and stops, doing no calculations.

Otherwise it gives the degree of the missing polynomial and which polyno -

mial of the Gröbner Basis in that degree it is and halts. For the user’s conve -

nience this routine creates a global variable lastHBGroebner so this polyno -

mial can be retrieved.

Using the last sentence above the user could use hBasisMDQ perhaps several

times to find a minimal H-basis from the Gröbner basis, but if the Gröbner

basis is large probably it is better to use hBasisMD with the m given by the

largest degree in the Gröbner basis.

The procedure hBasisMDQ works by running the membership test above on

each member of the Gröbner basis, or optionally the H-basis F. Here is the

code

44 SpaceCurveBook_v2c.nb

Options [hBasisMDQ] = {useF → False };

hBasisMDQ [F_, H_ , X_, tol_ , OptionsPattern []] :=

Module [{G, m , j, degG , degH , selG, SH, SG, r1, r2},

G = If[OptionValue [useF], G = F,

G = GroebnerBasis [F, X, MonomialOrder → DegreeLexicographic]];

m = Max[tDegMD [#, X] & /@ G];

degG = Sort [DeleteDuplicates [tDegMD [#, X] & /@ G]];

G = SortBy [G, tDegMD [#, X] &];

lastHBGroebner = G;

If[MemberQ [degG , 0], Echo ["F not proper ideal "]; Return [False]];

Echo [{Length [G], degG }, "{size of Groebner Basis , degrees }"];

degH = Sort [DeleteDuplicates [tDegMD [#, X] & /@ H]];

If[degG〚1〛 < degH〚1〛, Echo [degG〚1〛, "No poly in H of degree "];

Return [False]];

Catch [Do[SH = sylvesterMD [Select [H, tDegMD [#, X] ≤ k &], k, X];

r1 = Length [SingularValueList [N[SH], Tolerance → tol]];

r2 = r1;

selG = Select [G, tDegMD [#, X] ⩵ k &];

j = Length [selG];

i = 0;

While [r1 ⩵ r2 && i < j,

i++ ;

SG = sylMD [selG〚i〛, k, X];

r2 = Length [SingularValueList [N[Join [SH, SG]], Tolerance → tol]]];

If[r1 ⩵ r2, Continue [], Echo [{k, i}, "Problem at poly i degree k "];

Throw [Return [False]]],

{k, degG }]];

True]

Gröbner bases may be large so this routine could take a long time to run,

especially if H is an h-Basis. But since it stops at the first omission this

version does not give running information. Again, this could give a false

negative in the numerical case, but a return of True should be reliable.

Example 2.4.2.1 , see 2.4.1.1

In[140]:= f1 = x+ y- 2 z+ y z2
- z4 ;

f2 = -x2
+ y- x y+ 2 x z- z2

- x y z2
+ x z4 ;

In[142]:= hBasisMDQ [{f1, f2}, {f1, f2}, {x, y, z}, dTol]

» {size of Groebner Basis , degrees } {2, {1, 2}}

» No poly in F of degree 1

Out[142]= False

Adding the previously known linear polynomial

SpaceCurveBook_v2c.nb 45

In[150]:= hBasisMDQ [{f1, f2}, {f1, f2, x+ y- 2 z}, {x, y, z}, dTol]

» {size of Groebner Basis , degrees } {2, {1, 2}}

» Problem at {degree , poly} {2, 1}

Out[150]= False

We see what we need from

In[145]:= lastHBGroebner

Out[145]= x+ y- 2 z, y- z2

Example 2.4.2.2 Twisted Cubic (Section 2.1)

Consider the twisted Cubic first as a naive curve

In[151]:= tw2 = {y- x ^ 2, z- x ^ 3};

hBasisMDQ [tw2, tw2, {x, y, z}, dTol]

» {size of Groebner Basis , degrees } {4, {2, 3}}

» Problem at {degree , poly} {2, 2}

Out[152]= False

This is not an H-basis. So even without the geometric input of section 2.1 we need additional/dif -

ferent equations. The suggestion is

In[153]:= lastHBGroebner

Out[153]= x2
- y, x y- z, -y2

+ x z, y3
- z2

But even this is bigger than necessary

In[154]:= hBasisMDQ [{x ^ 2- y, x y- z, x z- y ^ 2}, {x ^ 2- y, x y- z, x z- y ^ 2}, {x, y, z}, dTol]

» {size of Groebner Basis , degrees } {4, {2, 3}}

Out[154]= True

So the basis we found in 2.1 of thee quadratics is sufficient as an H - basis.

2.4.3 Application: Making slightly inconsistent numerical systems consistent.

The following example of 4 linear equations in 4 unknowns is motivated by

an example at the end of section 3.2.

46 SpaceCurveBook_v2c.nb

In[330]:= lsys = {0.277262174208273` + 0.5144436627966619` x+

0.10598605713201434` y+ 0.8045124985078014` z,

0.7202433507070195` - 0.626115747655119` x+ 0.27531975154910765` y+

0.1158776108984591` z, -0.258819002786987` - 0.3361601677996709` x-

0.0989359825030034` y+ 0.9001226231727609` z, 0.4685805085964169` -

0.849601020102557` x+ 0.17911927833946` y- 0.16287018674812506` z}

Out[330]= {0.277262 + 0.514444 x+ 0.105986 y+ 0.804512 z, 0.720243 - 0.626116 x+ 0.27532 y+ 0.115878 z,

-0.258819 - 0.33616 x- 0.098936 y+ 0.900123 z, 0.468581 - 0.849601 x+ 0.179119 y- 0.16287 z}

In[331]:= NSolve [lsys]

Out[331]= {}

So this system in inconsistent. But

In[332]:= hsys = hBasisMD [lsys, 1, {x, y, z}, 1.*^-8]

» Initial Hilbert Function {1, 0}

» Final Hilbert Function {1, 0}

Out[332]= {1. x, 2.61602 + 1. y, 1. z}

In[333]:= {x, y, z} /. NSolve [hsys]

Out[333]= {{0., -2.61602 , 0.}}

is consistent.

2.5 Duality, Union , Intersection and decomposition of Curves.

Already in 1916 Macaulay talked about the dual to his Macaulay matrix.

Duality will play a small but important technical role in our considerations.

2.5.1 Duality

Given a matrix, generally a Macaulay or Sylvester matrix, M the dual matrix

is a matrix ⅅ with independent columns with the property that M .ⅅ = 0

where here 0 represents the zero matrix of the appropriate size. Essentially

a dual matrix of M is just a matrix whose columns give a basis for the null

space of M . We will assume our matrix has numerical entries so instead of

using the built in NullSpace procedure we choose a tolerance and use the

following, see for example Appendix 1 of my curve theory book.

SpaceCurveBook_v2c.nb 47

In[31]:= dualMatrix[A_, tol_] := Module[{ns, r, c, U, S, V},

c = Dimensions[A]〚2〛;

{U, S, V} = SingularValueDecomposition[N[A], Tolerance → tol];

r = Length[Select[Diagonal[S], # > 0 &]];

Take[V, All, r-c]]

Example 2.5.1.1 Consider the matrix

In[142]:= M = RandomReal[{-1, 1}, {3, 5}];

M // MatrixForm

Out[143]//MatrixForm=

-0.739775 -0.276164 0.648798 0.524576 -0.542521

0.578205 -0.88494 0.0673685 -0.636653 0.309926

-0.900584 0.355809 0.975681 -0.0357853 -0.0451929

In[146]:= ⅅ1 = NullSpace[M];

ⅅ1 // MatrixForm

ⅅ2 = dualMatrix[M, dTol];

ⅅ2 // MatrixForm

Out[147]//MatrixForm=

0.540947 0.106097 0.497849 0.568587 0.353518

-0.468768 -0.28463 -0.284309 0.294731 0.729072

Out[149]//MatrixForm=

0.540947 -0.468768

0.106097 -0.28463

0.497849 -0.284309

0.568587 0.294731

0.353518 0.729072

In this case the difference is that dualMatrix gives a column vector rather than

giving the nullspace basis as rows. If we had used an integer matrix then we

would have

48 SpaceCurveBook_v2c.nb

In[159]:= A = RandomInteger[{-9, 9}, {3, 5}];

A // MatrixForm

ⅅ1 = NullSpace[A]; ⅅ1 // MatrixForm

ⅅ2 = dualMatrix[A, dTol]; ⅅ2 // MatrixForm

ⅅ3 = Transpose[NullSpace[N[A]]]; ⅅ3 // MatrixForm

Out[160]//MatrixForm=

8 -4 -1 2 3

-5 -5 2 3 -5

4 9 3 1 8

Out[161]//MatrixForm=

-218 -159 -115 0 331

-70 119 -374 331 0

Out[162]//MatrixForm=

-0.0879398 -0.487715

0.26806 -0.380637

-0.704857 -0.20789

0.646603 -0.0485011

-0.0741015 0.756095

Out[163]//MatrixForm=

-0.0879398 -0.487715

0.26806 -0.380637

-0.704857 -0.20789

0.646603 -0.0485011

-0.0741015 0.756095

So we see that for small well conditioned matrices we could use the formula

Transpose[Nullspace[N[M]]]

instead of dualMatrix.

On the other hand, the left dual space ℒ of M is the matrix with indepen -

dent rows with ℒ.M = 0. I have been calling it the localDualMatrix given by

localDualMatrix[A_, tol_] := Transpose[dualMatrix[Transpose[A], tol]];

Note that this is properly a row matrix, that is the rows form a basis for the

left null space.

Traditionally the dual of the Macaulay matrix was considered to be a space

of differentials describing the local structure. The left (or local) dual of this

should recover our original. We will typically be interested here in the dual

of the Sylvester Matrix with the left dual of that recovering our curve.

Example 2.5.1.2 Consider the twisted cubic.

In[164]:= twCubic = {x ^ 2-y, x y- z, x z-y ^ 2}

Out[164]= x2
- y, x y- z, -y2

+ x z

SpaceCurveBook_v2c.nb 49

In[180]:= S2 = sylvesterMD[twCubic, 2, {x, y, z}]

D2 = dualMatrix[S2, dTol]

Out[180]= {{0, 0, -1, 0, 1, 0, 0, 0, 0, 0}, {0, 0, 0, -1, 0, 1, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0, 1, -1, 0, 0}}

Out[181]= {{0., -0.707107, 0., -0.5, 0.5, 0., 0.}, {0.707107, 0., -0.707107, 0., 0., 0., 0.},

{0., 0.5, 0., -0.353553, 0.353553, 0., 0.}, {0.5, 0., 0.5, 0., 0., 0., 0.},

{0., 0.5, 0., -0.353553, 0.353553, 0., 0.}, {0.5, 0., 0.5, 0., 0., 0., 0.}, {0., 0., 0., 0.5, 0.5, 0., 0.},

{0., 0., 0., 0.5, 0.5, 0., 0.}, {0., 0., 0., 0., 0., 1., 0.}, {0., 0., 0., 0., 0., 0., 1.}}

This doesn't mean much to us. Now take the local dual of this

In[182]:= LD2 = localDualMatrix[D2, dTol]

Out[182]= -1.38778× 10-16, 1.51669× 10-16, 0.43613, -0.244521, -0.43613, 0.244521, -0.5, 0.5, 0., 0.,
-1.11022× 10-16, -3.07488× 10-16, 0.345805, 0.616781,

-0.345805, -0.616781, -1.73672× 10-17, -9.28866× 10-17, 0., 0.,
6.93889× 10-17, -1.59101× 10-16, -0.43613, 0.244521, 0.43613, -0.244521, -0.5, 0.5, 0., 0.

But

In[183]:= F = Chop[LD2].mExpsMD[2, {x, y, z}]

Out[183]= -0.43613 x2
+ 0.43613 y+ 0.244521 x y+ 0.5 y2

- 0.244521 z- 0.5 x z,

-0.345805 x2
+ 0.345805 y- 0.616781 x y+ 0.616781 z,

0.43613 x2
- 0.43613 y- 0.244521 x y+ 0.5 y2

+ 0.244521 z- 0.5 x z

is actually another system for the twisted cubic. But note

In[184]:= hBasisMD[F, 2, {x, y, z}, dTol]

» Initial Hilbert Function {1, 3, 3}

» Final Hilbert Function {1, 3, 3}

Out[184]= 1. x2
- 1. y, 1. x y- 1. z, 1. y2

- 1. x z

is our original system! This is why H-bases and our hBasisMD are so useful.

2.5.3 Intersection and Union of curves.

The intersection of two curves is typically a point set. But to find the equa -

tion set one simply combines the two equations. For the twisted cubic

system above we noticed in Section 2.1 that the naive curves {x2 - y , x y - z}

and {x y - z , y 2 - x z} each have an extra line but these extra lines are differ -

ent so the intersection {x2 - y , x y - z , y 2 - x z} gives just the twisted cubic

without the extra lines.

The union of two space curves is more difficult. For plane curves we simply

multiplied the equations. But in space we have several equations for each.

50 SpaceCurveBook_v2c.nb

multiplied equations. space equations

The trick is to go to duals, duality takes unions to intersections and vice

versa. So we take the dual matrices of appropriate Sylvester matrices and

then join these, note same m . Then we take the local dual of the combined

dual matrix. The question is how big do we make the matrices. Here the

idea of H-bases helps. We make sure each Sylvester matrix is large enough

to contain an H-basis. And at the end we give the result as an H-Basis.

Example 2.5.3.1: We will take the union of a line and the twisted cubic for a

relatively easy but non-trivial example starting from H-bases

(recommended).

In[133]:= twc = {x ^ 2- y, x y- z, y ^ 2- x z};

ln = lineMD [{-1, 1, -1}, {2, 4, 8}, {x, y, z}]

Out[134]= {0.12738 - 0.764319 x- 0.477694 y+ 0.414004 z, 0.818223 + 0.398339 x- 0.414498 y+ 0.00538627 z}

We don’t show the intermediate matrices but we do give their dimensions. First we calculate

duals of the Sylvester matrices

In[135]:= Dtwc = dualMatrix [sylvesterMD [twc, 3, {x, y, z}], dTol];

Dimensions [Dtwc]

Dln = dualMatrix [sylvesterMD [ln, 3, {x, y, z}], dTol];

Dimensions [Dln]

Out[136]= {20, 10}

Out[138]= {20, 4}

Join these column wise to get the dual of the union.

In[139]:= dualF = Join [Dtwc , Dln, 2];

Dimensions [dualF]

Out[140]= {20, 14}

Finally take the localDual and reduce by hBasisMD.

In[144]:= Fraw = localDualMatrix [dualF , dTol].mExpsMD [3, {x, y, z}];

Length [Fraw]

F = hBasisMD [Fraw , 3, {x, y, z}, dTol]

Out[145]= 8

» Initial Hilbert Function {1, 3, 4, 4}

» Final Hilbert Function {1, 3, 4, 4}

Out[146]= -1. x2
+ 1. y+ 1. x y- 1. z, 2. x2

- 2. y+ 1. y2
- 1. x z

Even though the twisted cubic is not a naive curve, the union is, in fact this is a quadratic surface

intersection curve (QSIC), see section 3.2. An unintended feature of my hBasisMD function is that

even though the line was given by numeric equations the end result is integer! One could have

SpaceCurveBook_v2c.nb 51

 though given by equations integer!

exploited that immediately at the input level

In[150]:= hBasisMD [ln, 2, {x, y, z}, dTol]

» Initial Hilbert Function {1, 1, 1}

» Final Hilbert Function {1, 1, 1}

Out[150]= {-2. - 1. x+ 1. y, -2. - 3. x+ 1. z}

We will look at this example again. For now note that we could also calculate the intersection.

In[148]:= NSolve [Join [twc, ln]]

Out[148]= {}

But this is actually wrong, Mathematica does not like numerical systems of 5 equations in 3

unknowns! Using exact representations

In[192]:= {x, y, z} / . NSolve[Join[twc, {-2-x+y, -2-3 x+ z}]]

Out[192]= {{2., 4., 8.}, {-1., 1., -1.}}

 We might expect a third point since we are intersecting a cubic and a line, but it is a well known

fact that no 3 points on the twisted cubic are co-linear [see Harris].

Note it is easy to plot this curve since both components are parametic

In[182]:= ParametricPlot3D[{{-1+3 t, 1+3 t, -1+9 t}, {t, t ^ 2, t ^ 3}},

{t, -2, 3}, ImageSize → Small, Boxed → False, Axes → False]

Out[182]=

Example 2.5.3.2: Another simple example: three lines.

One can go on for a long time constructing equations systems for unions of

lines in space, see for example my paper on [Numeric Lines].

In[195]:= l1 = {x, y};

l2 = {x, z};

l3 = {z, y- 1};

In[198]:= Dl1 = dualMatrix [sylvesterMD [l1, 3, {x, y, z}], dTol];

Dl2 = dualMatrix [sylvesterMD [l2, 3, {x, y, z}], dTol];

Dl3 = dualMatrix [sylvesterMD [l3, 3, {x, y, z}], dTol];

DG = Join [Dl1, Dl2, Dl3, 2];

Dimensions [DG]

Out[202]= {20, 12}

52 SpaceCurveBook_v2c.nb

In[203]:= Graw = localDualMatrix [DG, dTol].mExpsMD [3, {x, y, z}];

Dimensions [Graw]

Out[204]= {10}

In[205]:= hBasisMD [Graw , 4, {x, y, z}, dTol]

» Initial Hilbert Function {1, 3, 3, 3, 3}

» Final Hilbert Function {1, 3, 3, 3, 3}

Out[205]= {-1. x+ 1. x y, 1. x z, 1. y z}

So this is the intersection of 3 quadric surfaces. In Section 3.2 below we

study the classification of curves given as the intersection of 2 quadric

surfaces, QSIC, and although there are examples with three lines, this shows

that not all unions of 3 lines in ℝ3 are QSIC.

2.5.3.3 Here is one more example relevant to Section 3.2

In[117]:= q1 = {x, y ^ 2+ z ^ 2- 1};

q2 = {z, x- y};

q3 = {z, x+ y};

In[123]:= Dq1 = dualMatrix [sylvesterMD [q1, 4, {x, y, z}], dTol];

Dq2 = dualMatrix [sylvesterMD [q2, 4, {x, y, z}], dTol];

Dq3 = dualMatrix [sylvesterMD [q3, 4, {x, y, z}], dTol];

DQ = Join [Dq1, Dq2, Dq3, 2];

Dimensions [DQ]

Out[127]= {35, 19}

In[128]:= Qraw = localDualMatrix [DQ, dTol].mExpsMD [4, {x, y, z}];

Length [Qraw]

Out[129]= 17

In[130]:= Q = hBasisMD [Qraw , 4, {x, y, z}, dTol]

» Initial Hilbert Function {1, 3, 5, 5, 4}

» Final Hilbert Function {1, 3, 5, 5, 4}

Out[130]= 1. x z, -1. x3
+ 1. x y2 , -1. z+ 1. y2 z+ 1. z3 , 1. x2

- 1. x4
- 1. y2

+ 1. y4
+ 1. y2 z2

Since all the pieces can be parameterized it is easy to plot. Again this looks

similar to a QSIC but is not a QSIC. [See C. Tu, W. Wang, B. Mourrain, J.

Wang case numbers 23-26]

SpaceCurveBook_v2c.nb 53

2.5.4 Decomposition of reducible curves.

Unlike the plane case where the single equation of a reducible curve factors,

possibly with irrational complex coefficients, the equation system for a

reducible space curve, see our examples in the previous section, do not

factor. For Example 2.5.3.1 the two equations are give smooth quadric

surfaces and thus not factorable.

In[186]:= {ContourPlot3D[-x ^ 2+y+x y- z ⩵ 0, {x, -5, 5}, {y, -5, 5}, {z, -5, 5}, ImageSize → Small],

ContourPlot3D[{2 x2 -2 y+ y2 - x z ⩵ 0},

{x, -5, 5}, {y, -5, 5}, {z, -5, 5}, ImageSize → Small]}

Out[186]=  , 

It is important not to confuse topological components with algebraic compo -

nents. For plane curves the simple example

In[117]:= ContourPlot[y ^ 2 ⩵ x ^ 3-x, {x, -2, 2}, {y, -2, 2}, ImageSize → Tiny]

Out[117]=

-2 -1 0 1 2

-2

-1

0

1

2

show two topological components but this curve is irreducible. We will

54 SpaceCurveBook_v2c.nb

 topological components

have plenty of examples like this for space curves later.

Another big difference between plane curves and space curves is the the

plane Bézout theorem says that a reducible curve with components of

degree d1, d2 will have d1 d2 singular intersection points, possibly one of

d1, d2 could be 1. We saw in the plane curve books that if this number is

large enough we can even use these points to factor. But reducible space

curves could have no singular points at all, for example a curve consisting of

two skew lines.

Without fully describing a space curve the only sure way to test for irre -

ducibility is to use one of the higher powered solvers such as [PHCpack] or

Bertini [Bates, Hauenstein, Sommese]. I give my solution to this problem

below but it may require plotting the curve first using methods later in the

book.

2.5.4.1 Dual Interpolation

We saw in Section 2.5.3 that duality takes unions to intersections, that is the

duals of components can have separate rows in the dual matrix. We exploit

this by considering the dual matrix of the curve and attempting to find

equations describing a given component. But first we need a technical

subroutine.

To try to explain, in principle the Sylvester Matrix of high enough order

contains all the information necessary to determine the curve. One prop -

erty of a curve is the Macaulay information at a point. Of could recover the

equation, perhaps using duality and hBasisMD and take the Taylor series at

that point which can be used to do a hand calculation of the Macaulay

matrix. Or figure out how this works within the dual matrix. At one point

your author did this in general but don’t ever ask him to show his work but

the answer is encoded in this Mathematica procedure.

SpaceCurveBook_v2c.nb 55

c2zMD [q_ , n_] := Module [{m, Tn, ss, bi, bj, r1, C, s, pow},

pow [a_, m_] := If[m ≤ 0, 1, a ^ m];

s = Length [q];

Tn = expsMD [s, n];

ss = Length [Tn];

ss = Length [Tn];

C = {};

Do[bj = Tn〚 j〛;

C = Append [C,

Table [Product [Binomial [Tn〚i〛〚k〛, bj〚k〛] * pow [q〚k〛, (Tn〚i〛〚k〛 - bj〚k〛)], {k, s}],

{i, ss}]],

{ j, ss}];

Transpose [C]]

The following example gives some idea how this might work.

Example 2.5.4.1.1 See Example 2.5.3.1 the union of a line and twisted cubic.

In[217]:= F = {-x ^ 2+ y+ x y- z, 2 x ^ 2- 2 y+ y ^ 2- x z};

p = {1, 1, 1};

I start with the answer, the Macaulay matrix at this point. Since this is a regular point the interest -

ing part of this is the first two rows. Since the two equations become separated we look at the

equivalent nrref form.

In[253]:= Take [nrref [macaulayMD [F, 2, p, {x, y, z}], dTol]〚2〛, 2, 4] // MatrixForm

Out[253]//MatrixForm=

0 1. 0 -0.333333

0 0 1. -0.666667

Now I show how to recover this from the Sylvester Matrix using my procedure c2zMD above.

In[255]:= S2 = sylvesterMD [F, 2, {x, y, z}];

DS2 = dualMatrix [S2, dTol];

ICDS2 = Inverse [c2zMD [p, 2]].DS2;

Take [nrref [localDualMatrix [ICDS2 , dTol], dTol]〚2〛, 2, 4] // MatrixForm

Out[258]//MatrixForm=

0 1. 0 -0.333333

0 0 1. -0.666667

Incidentally this example somewhat explains why I called the left dual the

local dual, it gives local information.

For our problem the point is that this is sort of reversible. We go back to the

original Macaulay matrix and up the order to 4.

56 SpaceCurveBook_v2c.nb

In[298]:= DM = dualMatrix[macaulayMD[F, 4, p, {x, y, z}], dTol];

CDM = c2zMD[p, 4].DM;

LCDM = localDualMatrix[CDM, dTol].mExpsMD[4, {x, y, z}];

hBasisMD[LCDM, 4, {x, y, z}, dTol]

» Initial Hilbert Function {1, 3, 1, 0, 0}

» Final Hilbert Function {1, 3, 1, 0, 0}

Out[301]= 1. x2
- 1. y, 1. x y- 1. z, 1. y2

- 1. x z,

-1.+ 5. x- 10. y+ 10. z- 5. x z+ 1. y z, -5.+ 24. x- 45. y+ 40. z- 15. x z+ 1. z2

We don' t quite get the original system but the surprise is the first 3 equa -

tions define the twisted cubic, not the union F which was the only input

data. This is because we started with a Macaulay matrix which gives only

local information at the point p = {1, 1, 1}and doesn’t see the line. We

would get better results if we used additional points on the twisted cubic

and/or higher order. So this will give us our algorithm for finding equations

of irreducible components of reducible curves.

In[87]:= Options [dualInterpolationMD] := {hBasis → True}

dualInterpolationMD [F_, P_ , m_ , X_, tol_ , OptionsPattern []] :=

Module [{M, DM, DSi, DS, S, G, i, np},

np = Length [P];

DS = {{}};

For[i = 1, i ≤ np, i++ ,

M = macaulayMD [F, m, P〚i〛, X];

DM = dualMatrix [M, tol];

DSi = c2zMD [P〚i〛, m].DM;

DS = Join [DS, DSi, 2]];

S = localDualMatrix [DS, tol];

If[Dimensions [S]〚1〛 ⩵ 0, Print ["no curve , try larger m"]; Abort []];

G = S.mExpsMD [m, X];

If[OptionValue [hBasis], Return [Chop [hBasisMD [G, m, X, tol], tol]], Return [G]];

]

Example 2.5.4.1.1 Continued

In[117]:= F = {-x ^ 2+ y+ x y- z, 2 x ^ 2- 2 y+ y ^ 2- x z};

P = {{0, 0, 0}, {.5, .25, .125}, {1, 1, 1}}

dualInterpolationMD [F, P, 4, {x, y, z}, 1.*^-10]

Out[118]= {{0, 0, 0}, {0.5, 0.25, 0.125 }, {1, 1, 1}}

SpaceCurveBook_v2c.nb 57

» Initial Hilbert Function {1, 3, 3, 3, 3}

» Final Hilbert Function {1, 3, 3, 3, 3}

Out[119]= 1. x2
- 1. y, 1. x y- 1. z, 1. y2

- 1. x z

This is our standard H - basis for the twisted cubic.

Here are two points on the line

In[131]:= q1 = N[{
1

2
,

5

2
,

7

2
}];

q2 = N[{-
1

4
,

7

4
,

5

4
}];

In[133]:= Q = {q1, q2}

Out[133]= {{0.5, 2.5, 3.5}, {-0.25, 1.75, 1.25 }}

In[134]:= dualInterpolationMD [F, Q, 2, {x, y, z}, 1.*^-10]

» Initial Hilbert Function {1, 1, 1}

» Final Hilbert Function {1, 1, 1}

Out[134]= {-2. - 1. x+ 1. y, -2. - 3. x+ 1. z}

Which is an H-basis for our line.

Example 2.5.4.1.2 A slightly more difficult example is Example 2.5.3.3. One

component is the circle in the plane x = 0.

In[140]:= G = {1. x z, -1. x ^ 3+ 1. x y ^ 2,

-1. z+ 1. y ^ 2 z+ 1. z ^ 3, 1. x ^ 2- 1. x ^ 4- 1. y ^ 2+ 1. y ^ 4+ 1. y ^ 2 z ^ 2};

P2 = N[{{0, 1, 0}, {0, 0, 1}, {0, Sqrt [2] /2, Sqrt [2] /2}}]

Out[141]= {{0., 1., 0.}, {0., 0., 1.}, {0., 0.707107 , 0.707107 }}

In[142]:= dualInterpolationMD [G, P2, 4, {x, y, z}, 1.*^-10]

» Initial Hilbert Function {1, 2, 2, 2, 2}

» Final Hilbert Function {1, 2, 2, 2, 2}

Out[142]= 1. x, -1. + 1. y2
+ 1. z2

2.6 Fractional Linear Transformations

We come to our most important procedure in this book. We have already

introduced Mathematica’s TransformationFunction which is otherwise known as

a projective linear transformation or linear fractional transformation. As

the reader is well aware your author prefers the name fractional linear

transformation, FLT. These transformations can have any dimensional

domain and range and are given by transformation matrices which are

(n + 1)⨯ (k + 1) matrices where the transformation goes from ℝk⟶ℝn.

58 SpaceCurveBook_v2c.nb

() () goes

Possibly they could be complex as well. Thus an example ℝ4⟶ℝ2 could be

Example 2.6.0.1

In[151]:= A = RandomInteger [{-9, 9}, {3, 5}];

In[151]:= A = {{7, 8, -4, 6, -8}, {9, -2, -6, 0, -2}, {9, 6, -3, 7, 2}};

In[155]:= A // MatrixForm

Out[155]//MatrixForm=

7 8 -4 6 -8

9 -2 -6 0 -2

9 6 -3 7 2

In[153]:= TransformationFunction [A][{w, x, y, z}]

Out[153]=  -8+ 7 w + 8 x- 4 y+ 6 z

2+ 9 w + 6 x- 3 y+ 7 z
,

-2+ 9 w - 2 x- 6 y

2+ 9 w + 6 x- 3 y+ 7 z


I also have alternate notation

In[154]:= fltMD[{w, x, y, z}, A]

Out[154]=  -8+ 7 w+ 8 x- 4 y+ 6 z

2+ 9 w+ 6 x- 3 y+ 7 z
,

-2+ 9 w- 2 x- 6 y

2+ 9 w+ 6 x- 3 y+ 7 z


In my Plane Curve Book and Chapter 1 of this book I restrict to invertible

square transformation functions and give also corresponding functions

FLT2D, FLT3D which take equations to equations. This makes these much more

useful. Actually FLT3D will work for any dimension n as long as the transfor -

mation matrix is invertible. These work equation by equation by simply

composing each equation with the inverse transformation.

In the general case, however, we don't have an inverse transformation and

the number of equations in the range may be more or fewer than equations

in the domain. In the example above a curve in ℝ4 would have 3 or more

equations but a curve in ℝ2 has only one. Thus many of the techniques we

have introduced in this chapter, in particular Sylvester matrices, duality and

H-bases, will be used.

The key is, as in FLT2D, FLT3D, is that the transformation of equations works

naturally in the opposite direction as the transformation of points. But

duality turns this around: the transform of dual spaces works in the same

direction as the transformation of points. The other thing is we will have to

deal with is the fact that these transformations are actually transformations

of projective space so we will need to work with homogeneous polynomials.

Then these FLT will be simply linear transformations rather than rational

functions. We will need the following simple subroutines

SpaceCurveBook_v2c.nb 59

In[48]:= fVecMD [f_, m_ , X_] := Module [{n, FA, d},

n = Length [X];

{FA, d} = fAssocMD [f, X];

Values [shi�FAMD [FA, 0, m]]]

fMatMD [F_, m_ , X_] := Table [fVecMD [F〚i〛, m, X], {i, Length [F]}];

gMapMD [T_, m_ , X_, Y_] :=

fMatMD [Expand [mExpsMD [m, Y] /. Thread [Y → T]], m, X]

So we take the Sylvester matrix of our domain system, dualize, map the

duals with a linear version gmapMD of our transformation, return with the

localDualMatrix getting a large system which we reduce using hBasisMD.

Because this may be time consuming we do add some options to help the

user keep track of what is going on. There are also some warning messages

included all making the code somewhat longer than usual in this book.

In[54]:= Options [FLTMD] = {timing → False , hilbertReport → False , hBasis → True};

FLTMD [F_, A_, m_ , X_, Y_, tol_ , OptionsPattern []] :=

Module [{H, XH, YH, T, S, DS, G, TDS, ST, B0, B1, B, n, s, time},

time = TimeUsed [];

n = Length [X];

s = Length [Y];

If[Dimensions [A] ≠ {s+ 1, n + 1}, Print [Style ["Dimension Error A", Orange]];

Abort []];

XH = Append [X, #x];

YH = Append [Y, #y];

H = Table [homogMD [f, X, #x], {f, F}];

T = A.XH;

G = gMapMD [T, m, XH, YH];

S = sylvesterMD [H, m, XH];

If[OptionValue [timing], Echo [TimeUsed [] - time, "Start Dual "]];

DS = dualMatrix [N[S], tol];

TDS = G.DS;

If[OptionValue [timing],

Echo [{Dimensions [TDS], MatrixRank [TDS]}, "Dim TDS,rank TDS"]];

ST = localDualMatrix [TDS, tol];

If[Length [ST] ⩵ 0, Print [Style ["Fail, try larger m", Orange]]; Abort []];

B0 = ST.mExpsMD [m, YH];

If[!OptionValue [hBasis], Return [B0 /. {#y → 1}]];

If[OptionValue [timing], Echo [TimeUsed [] - time, "Start HBasis "]];

B1 = hBasisMD [B0, m, YH, tol];

B = B1 /. {#y → 1};

If[OptionValue [timing], Echo [TimeUsed [] - time, "Total Time "]];

B];

F is the equation system in the domain, A is the transformation matrix, X,Y

are the variables for the domain, range respectively. m will be the order of

60 SpaceCurveBook_v2c.nb

 range respectively.

the Sylvester matrix used so it must be at least the largest total degree of a

polynomial in F but it often needs to be larger. Especially when dealing

with numerical data the tolerance may need to be loosened. Since most

interesting FLT are numerical this is one good reason why I have been

working numerically. It does help if F is an H-basis.

Because of the choices this some what of a trial and error type of algorithm,

it probably works in good cases but is not guaranteed. It is therefore a good

idea to check the results. The important property that the output G must

satisfy is

If F /. Thread [X → p] = 0 then G / . Thread[Y → fltMD[p, A]] = 0.

where, of course, "=0" is interpreted in the numerical sense.

Example 2.6.1 continued.

Consider the cyclic 4 curve of Example 2.2.3 and A above in 2.6.1.

In[162]:= C4 = {w+x+y+ z, w x+x y+y z+ z w, w x y+x y z+y z w+ z w x, w x y z-1};

g = FLTMD[C4, A, 6, {w, x, y, z}, {x, y}, 1.*^-9]〚1〛
» Initial Hilbert Function {1, 3, 6, 10, 15, 21, 27}

» Final Hilbert Function {1, 3, 6, 10, 15, 21, 27}

Out[163]= 1. - 2.21919 x- 4.23331 x2
- 2.28808 x3

- 0.674452 x4
- 0.143014 x5

-

0.00887454x6
- 5.05948 y+ 10.7164 x y+ 14.1276 x2 y+ 5.2559 x3 y+ 1.06694 x4 y+

0.102317 x5 y+ 10.9212 y2
- 18.5895 x y2

- 16.1773 x2 y2
- 3.67542 x3 y2

-

0.372327 x4 y2
- 13.2113 y3

+ 14.2582 x y3
+ 7.34919 x2 y3

+ 0.747335 x3 y3
+

9.46424 y4
- 4.70723 x y4

- 1.09081 x2 y4
- 3.67116 y5

+ 0.544018 x y5
+ 0.556459 y6

Consider point p of the cyclic 4:

In[164]:= p = {2, -1 /2, -2, 1 /2};

C4 / . Thread[{w, x, y, z} → p]

g / . Thread[{x, y} → fltMD[p, A]]

Out[165]= {0, 0, 0, 0}

Out[166]= 5.50501× 10-9

Since our tolerance was 10-9 this is good enough for zero. One might want

to try a few more points.

We could give more examples now, but we will have many examples in the

rest of this book so we will stop here.

SpaceCurveBook_v2c.nb 61

2.7 Geometry and Projections

In this section we discuss the the geometry of FLT and the main application, projections.

2.7.1 Some Geometry

As mentioned above a transformation matrix for a transformation ℝn⟶ℝk

is a (k + 1) × (n + 1) matrix A .

I will mention here that since transformation functions are essentially

projective transformations that that the matrix is homogeneous in that if

one multiplies all entries by the same non-zero real (or complex) number

the transformation remains the same.

If A is square, that is k = n, and A-1exists then the transformation is invert-

ible. Geometrically this means that if FLTMD takes curve F to curve G then

these curves are isomorphic, that is geometrically the same. G may be

rotated, reflected, translated or the infinite hyperplane may have been

moved or possibly all of the above. Some positional attributes may have

changed such as critical points, infinite points or number of affine topologi -

cal components. But geometrical attributes such as number of ovals or

pseudo-lines, algebraic irreducibility and number and characteristics of

singular points remain unchanged. For invertible transformation functions

one may use FLT3D instead of FLTMD even if n is not 3. This will be much

quicker and the number of equations will not change.

If the last r0w is {0, 0, , …, 0, 1}, or by homogeneity the last entry is some

other non-zero number, then we call this transformation function and it’s

matrix affine. This means the infinite hyperplane remains in place and we

are just messing with the affine geometry. While critical points may change

have the same infinite points and same number of topological components.

This latter fact is the original meaning of the word affine. The formula flt [X,A]

will be a list of polynomials rather than rational functions. For example

In[121]:= A = {{1, 2, 3, 4}, {5, 6, 7, 8}, {0, 0, 0, 1}};

fltMD[{x, y, z}, A]

Out[122]= {4+ x+ 2 y+ 3 z, 8+ 5 x+ 6 y+ 7 z}

If, for an affine transformation A , the last column is {{0}, {0}, … {0}, {1}} then

the transformation function is a linear transformation. In this case we may

strip A by removing the last row and column to get a k × n matrix, that is

A

= Drop[A,-1,-1]

62 SpaceCurveBook_v2c.nb

In[125]:= A = {{1, 2, 3, 0}, {5, 6, 7, 0}, {0, 0, 0, 1}};

A
˜
= Drop[A, -1, -1]

Out[126]= {{1, 2, 3}, {5, 6, 7}}

Then we can actually perform the transformation just by matrix

multiplication

In[127]:= fltMD[{x, y, z}, A]

A
˜

.{x, y, z}

Out[127]= {x+ 2 y+ 3 z, 5 x+ 6 y+ 7 z}

Out[128]= {x+ 2 y+ 3 z, 5 x+ 6 y+ 7 z}

The process of stripping is reversible, that is a linear transformation

ℝn⟶ℝk given by an n × k matrix A


 will give a transformation matrix in the

sense of this section by, for example

In[134]:= B = {{1, 2, 3}, {5, 6, 7}};

B = Append[Join[B, {{0}, {0}}, 2], {0, 0, 0, 1}]

Out[135]= {{1, 2, 3, 0}, {5, 6, 7, 0}, {0, 0, 0, 1}}

In[136]:= B.{x, y, z}

fltMD[{x, y, z}, B]
Out[136]= {x+ 2 y+ 3 z, 5 x+ 6 y+ 7 z}

Out[137]= {x+ 2 y+ 3 z, 5 x+ 6 y+ 7 z}

Finally, a linear transformation B is an orthogonal transformation if the

rows, equivalently columns, form an orthonormal set. In the real case only,

for a k × n matrix, k ≤ n this means B.Transpose[B] is the k × k identity matrix

or if k ≥ n then Transpose[B].B is the n × n identity. For complex matrices one

uses the ConjugateTranspose. Orthogonal transformations preserve Euclidean

geometry, that is that lengths and angles are preserved which does not

necessarily happen with affine transformations in general. More impor -

tantly operations with orthogonal transformations are more numerically

stable, so since we often work with numerical transformation matrices this

is good. On the other hand orthogonal matrices almost always have irra -

tional entries and so numerical methods are preferred with them.

 Two utility functions that may be useful are given below, they allow us to go

between linear transformations and FLT transformations.

SpaceCurveBook_v2c.nb 63

m2TM[M_] := With[{dim = Dimensions[M]},

Join[Append[M, Table[0, {dim〚2〛}]], Append[Table[{0}, {dim〚1〛}], {1}], 2]]

tM2M[T_] := With[{dim = Dimensions[T]}, Take[T, dim〚1〛-1, dim〚2〛-1]]

2.7.2 Projections

In general a projection will be a linear transformation from ℝn⟶ℝk , k < n,

given by a k × n matrix P . Such a matrix can be embedded into a

(k + 1) × (n + 1) matrix A by the utility functions above. This is so we can

treat the projection, as above, as an FLT and have it transform curves as well

as points. It is nice if projections are orthogonal, but we will not assume this.

Later we may start with a FLT projection, that is an FLT with fewer rows

than columns. These are more general in that infinite points may become

affine. These are not really more general as it can be shown that projecting

a curve with an arbitrary FLT projection is the same as transforming the

curve with an invertible FLT and then doing a linear projection on the

image. It is a bit hard to show this so rather than give a proof we just give an

algorithm to accomplish this although in practice we will rarely use this.

In[296]:= factorFLT [A_] := Module [{n, k, m, tab1, tab2, A1, A2, A3, B, B1, B2, B3, P, M},

{n, k} = Dimensions [A] - {1, 1};

m = k+ 1;

tab1 = Table [{i, m} → #1 [i], {i, n}];

B1 = ReplacePart [IdentityMatrix [m], tab1];

A1 = A.B1;

B1 = ReplacePart [IdentityMatrix [m], (tab1 /. Solve [Take [A1, n, -1] ⩵ 0])〚1〛];
A1 = A.B1;

B2 = ReplacePart [IdentityMatrix [m], {{m, m} → A1〚n+ 1, m〛 ^-1}];

A2 = A1.B2;

B3 = ReplacePart [IdentityMatrix [m], Table [{m, i} → -A2〚n+ 1, i〛, {i, k}]];

A3 = A2.B3;

B = N[B1.B2.B3];

{Chop [A3], Chop [Inverse [B]]}];

Later, for example at the end of section 3.2, we will give some examples of

how to use this.

One type of projection is projecting onto several coordinates. For conve -

nience we have a FLT projection from ℝn⟶ℝn-1 which removes the

i th component.

64 SpaceCurveBook_v2c.nb

fCompProj [i_, n_] := Module [{F},

If[i > n, Abort []];

F = IdentityMatrix [n+ 1];

Delete [F, {i}]];

We will distinguish ordinary projections like this one from generic projec -

tions. These are essentially random or pseudo-random projections

although for some purposes they are expected to be stable on a given curve

under small perturbations of the projection. This is not quite guaranteed by

randomness.

Generally different random projections will be defined as above for each

application. However we could also define a random projections, with

some constraints on the random numbers used and use this projection

many times. Such a projection is called pseudo-random. An example is our

default pseudorandom projection

prd3D = {{-0.30519764945947847` , 0.9522890290055899` , 0.`},

{-0.14191095867181538` , -0.045480825358668514` , 0.9888340479238873` }};

The associated fractional linear transformation is

fprd3D =

{{-0.30519764945947847` , 0.9522890290055899` , 0.`, 0.`}, {-0.14191095867181538` ,

-0.045480825358668514` , 0.9888340479238873` , 0.`}, {0.`, 0.`, 0.`, 1.`}};

Both of these are assigned global variables.

I like this particular projection because the axes come out like the old fash -

ioned 3-space axes for pictures we drew on the blackboard in Calculus 3. It

is convenient to have a function to quickly plot the projection of a general

curve F in ℝ3.

In[203]:= showProjection3D [F_, pr_ , m_ , X_, {u_, v_}, rng_] := Module [{PRT, AXS, marks },

PRT = FLTMD [F, pr, m, X, {u, v}, dTol];

Echo [PRT, "projection Function "];

AXS := ListLinePlot [{{{0, 0}, fltMD [{1, 0, 0}, pr]}, {{0, 0}, fltMD [{0, 1, 0}, pr]},

{{0, 0}, fltMD [{0, 0, 1}, pr]}}, PlotStyle → Orange , PlotRange → All];

marks := ListPlot [{{fltMD [{1.2, 0, 0}, pr]}, {fltMD [{0, 1.2, 0}, pr]}, {fltMD [{0, 0, 1.2}, pr]}},

PlotMarkers → {"x= 1", "y=1", "z=1"}, PlotStyle → Black];

Show [ContourPlot [PRT ⩵ 0, {u, -rng, rng}, {v, -rng, rng}], AXS, marks , Frame → False]]

Here F is a general curve, pr is an FLT projection, m the order of Sylvester

matrices to use, generally larger then the degrees of equations in F, X are the

variables in ℝ3, {u,v} the variables in ℝ2 and rng the size of the image, eg. if rng

is 2 then the projection is given in the square {{x , y }, -2 ≤ x , y ≤ 2}.

SpaceCurveBook_v2c.nb 65

2.7.2.1 Example: The Viviani curve

In[204]:= V = {-4+ x2
+ y2

+ z2 , -1+ (-1+ x)2
+ y2

}

showProjection3D [V, fprd3D , 4, {x, y, z}, {x, y}, 3]

Out[204]= -4 + x2 + y2 + z2, -1 + (-1 + x)2 + y2

» projection Function 1. + 4.30229 x + 3.68817 x2
+ 0.024428 x3

+ 0.000444366 x4
- 2.00048 y +

0.312204 x y + 1.0116 x2 y - 3.77986 y2
- 1.05115 x y2

+ 0.0400199 x2 y2
+ 0.511479 y3

+ 0.901056 y4

Out[205]=
x= 1x= 1

y=1y=1

z=1z=1

A problem with ordinary projections is that the projection may change the

geometry of curves. This may be an accident or, as we will see in Section

3.3, this may happen because of the geometry of the curve.

2.7.2.2 Example: If we take a curve such as {x2 + z2 - 1, y } under the

projection fCompProj[3,3] we get the curve projection as a line y = 0.

In[149]:= FLTMD [{x ^ 2+ z ^ 2- 1, y}, fCompProj [3, 3], 3, {x, y, z}, {x, y}, dTol]

» Initial Hilbert Function {1, 2, 3, 4}

» Final Hilbert Function {1, 2, 3, 4}

Out[149]= {1. y}

But the point projection is just the interval -1 ≤ x ≤ 1 of that line. Using our default

pseudo-random projection the result

In[152]:= showProjection3D[{x ^ 2+ z ^ 2-1, y}, fprd3D, 3, {x, y, z}, {x, y}, 2]

66 SpaceCurveBook_v2c.nb

» Initial Hilbert Function {1, 3, 5, 7}

» Final Hilbert Function {1, 3, 5, 7}

» projection Function 1. - 10.957 x2
+ 0.951082 x y - 1.02271 y2

Out[152]=

x= 1x= 1
y=1y=1

z=1z=1

is correctly given as a circle.

2.7.2.3 Example: Even our pseudorandom projection prd3D may not be

generic for some curves. For example we consider our twisted cubic:

In[250]:= twCubic = {-y2
+ x z, -x2

+ y, -x y+ z};

showProjection3D [twCubic , fprd3D , 3, {x, y, z}, {x, y}, 2]

» projection Function -0.464981 x + 16.8091 x2
- 64.3264 x3

+ 1. y - 51.2934 x y + 56.8131 y2

Out[251]=

x= 1x= 1
y=1y=1

z=1z=1

This appears to give a cusp.

In[182]:= P = prd3D + RandomReal [{-.2, .2}, {2, 3}];

FP = m2TM [P]

Out[183]= {{-0.134773 , 0.808097 , 0.128253 , 0}, {-0.223291 , 0.0745526 , 0.884676 , 0}, {0, 0, 0, 1}}

In[252]:= tw2 = FLTMD [twCubic , FP, 3, {x, y, z}, {x, y}, 1.*^-9]〚1〛
ContourPlot [tw2 ⩵ 0, {x, -2, 2}, {y, -2, 2}, MaxRecursion → 4, ImageSize → Small]

SpaceCurveBook_v2c.nb 67

» Initial Hilbert Function {1, 3, 6, 9}

» Final Hilbert Function {1, 3, 6, 9}

Out[252]= -1.65679 x+ 19.1206 x2
- 45.8792 x3

+ 1. y-

23.8022 x y+ 19.9535 x2 y+ 32.7582 y2
- 2.89269 x y2

+ 0.139785 y3

Out[253]=

-2 -1 0 1 2

-2

-1

0

1

2

is clearly a node. In his quoted article Barry Mazur [B.Mazur] says that cusps do not occur under

generic projections of non-singular curves.

This example gives one reason why generic projections are preferred over

ordinary projections, the probability that the point projection of a curve is

not the curve projection is much less with pseudo-random projections and

even smaller with random projections. In classical algebraic geometry this

fact is often known as Noether’s Normalization Theorem”, one of the rare

algebraic geometry theorems attached to the name Noether due to the

daughter Emmy, rather than father Max, of this famous mathematical

family. Emmy Noether was known for her algebra while her father for

geometry and, in fact, this theorem was originally stated as a theorem in

algebra. In this book we take this not as a theorem but a requirement for a

random or pseudo random projection to be generic for the curve. Note that

for us this is a property of the curve, not the projection, for a randomly

generated numerical curve the projections fCompProj may be generic but

possibly not for an integer coefficient curve.

As mentioned in Chapter 1 a singularity in a projection of a non-singular

curve will be called artifacts or artifactual singularities to distinguish from

singularities of the plane projection coming from singularities of the space

curve. The curve projection may also contain additional components that

are not part of the point projection, in the case of a generic projection I call

these ghost components although algebraists may call them embedded

components. The important result is

Under any projection of a space curve to the plane a non-singular point may

go to a singular point. For generic projections the only artifactual singulari -

ties will be normal crossings (nodes), cusps or isolated points.

68 SpaceCurveBook_v2c.nb

2.8 Fibers and Plotting Space Curves

Our general strategy for plotting space curves is to project onto ℝ2, path

trace and lift the trace to ℝ3 with the function fFiberMD in the next subsection

and plot there.

2.8.1 Fiber lifting

A projection is not 1-1, in fact, in this section where we will restrict to linear projec -

tions ℝn⟶ℝn-1, the set of points mapping to a given point p in ℝn-1 is a line. We call

this line the fiber over p. It is quite easy to calculate this from our original, not FLT,

projection.

Suppose P is the original projection i.e. a n × (n - 1) matrix of rank n - 1 and p is a

point in ℝn-1. The fiber is returned as a parameterized line with parameter t . Note

that this function requires neither the curve or the list of variables.

pFiberMD [P_ , p_ , t_] := Module [{n, k, P1, ns, q},

{n, k} = Dimensions [P];

If[n ≠ k- 1 || MatrixRank [P] ≠ k- 1 , Echo ["not valid Projection "];

Abort []];

P1 = Append [P, RandomReal [{-3, 3}, k]];

ns = NullSpace [P]〚1〛;

q = Inverse [P1].Append [p, RandomReal [{-3, 3}]];

q+ t * ns]

For example

In[159]:= p = RandomReal[{-4, 4}, 2]

pFiberMD[prd3D, p, t]

Out[159]= {-0.257823, -0.846821}

Out[160]= {7.60814+ 0.941656 t, 2.16758+ 0.30179 t, 0.335184+ 0.149021 t}

Our most important function in this subsection gives the set of points in a curve

contained in the fiber over a point p, that is, the set of points on the curve projecting

to p. This function is much easier than it looks however we want it to tell us if the

number of points of the curve over p is different from 1. So this is both a diagnostic

function as well as a function to find the actual points. Further, two important

characteristics of this function are that it is very fast and it works even when the curve

is defined by an overdetermined set of numerical polynomials. As we will see is these

properties that allow us to analyze general space curves.

SpaceCurveBook_v2c.nb 69

F is the list of equations for the curve, possibly numerical and overdetermined, P is

the original projection i.e. a n × (n - 1) matrix of rank n - 1, p is a point in ℝn-1, X is

the list of variables of F and tol is the tolerance which will often be weaker than our

default tolerance.

In[73]:= Options [fFiberMD] = {complex → False }

fFiberMD [F_, P_ , p_ , X_, tol_ , OptionsPattern []] :=

Module [{Pf, FF, FFs, sol, sol0, sol1, k, n, l, q, u, j, t0},

n = Dimensions [P]〚2〛;

k = Length [F];

Pf = pFiberMD [P, p, t734];

FF = Chop [Expand [F /. Thread [X → Pf]], tol];

t0 = RandomReal [{-1, 1}];

FF = SortBy [FF, (# /. {t734 → t0}) ⩵ 0 &];

If[AllTrue [FF, # ⩵ 0 &], Print ["inf many sols at", p]; Return [Fail]];

FF = Chop [FF, tol];

If[OptionValue [complex], sol = NSolve [FF〚1〛], sol = NSolve [FF〚1〛, t734, Reals]];

If[Length [sol] ⩵ 0, Echo [p, "(1) no point in fiber at"]; Return [{}]];

sol0 = t734 /. sol;

j = 2;

While [j ≤ k && Length [sol0] > 0 && (FF〚 j〛 /. {t734 → t0}) ≠ 0,

If[OptionValue [complex], sol = NSolve [FF〚 j〛], sol = NSolve [FF〚 j〛, t734, Reals]];

If[Length [sol] ⩵ 0, Echo [p, "(2) no point in fiber at"];

sol0 = {}; Break []];

sol1 = t734 /. sol;

sol0 =

Flatten [Reap [Do[If[Norm [q- u] < tol, Sow [q]], {q, sol0}, {u, sol1}]]〚2〛];
j++];

sol0 = DeleteDuplicates [sol0, Norm [#1 -#2] < tol &];

If[Length [sol0] ⩵ 0, Echo [p, "(3) no point in fiber at "]];

If[Length [sol0] > 1, Echo [p, "multiple fiber points "]];

Pf /. {t734 → #} & /@ sol0

]

This function returns the set of points in the fiber over p, possibly { }, in the curve as

well as possible information. If no information is given there is a unique point given

as a singleton set. When constructing a list of points in ℝn over a List L in ℝn-1 in the

curve use the form Flatten[Ffiber [F, P, #, X, tol]&/@L, 1]. If any no point in fiber warning
occurs then you can try loosening the tolerance. If this happens in list form you
may need to delete empty sets {} In the output. The numbers in parenthesis in
this warning may help in trouble shooting.

2.8.1.1 Example:

In[142]:= F = {-9 x-45 y-9 x z+9 y z, 18 x-0.25 x ^ 2+36 y+0.5 x y-0.25 y ^ 2-9 x z+9 x z ^ 2,

-54+1.5 x-1.5 y+99 z-54 z ^ 2+9 z ^ 3};

70 SpaceCurveBook_v2c.nb

We first try the projection onto the xy plane.

In[124]:= Pxy = {{1, 0, 0}, {0, 1, 0}};

 We look at some examples of fFiberMD.

In[144]:= fFiberMD [F, Pxy, RandomReal [{-5, 5}, 2], {x, y, z}, 1.*^-9]

» (3) no point in fiber at {-3.62597 , 4.11431 }

Out[144]= {}

In[145]:= fFiberMD [F, Pxy, {-6, 30}, {x, y, z}, 1.*^-9]

Out[145]= {{-6., 30., 4.}}

In[147]:= fFiberMD [F, Pxy, {0, 0}, {x, y, z}, 1.*^-9]

» multiple fiber points {0, 0}

Out[147]= {{0., 0., 1.}, {0., 0., 2.}, {0., 0., 3.}}

In the first case the fiber is empty which happens for most points. In the second case the fiber

consists of one point which is typical of points in the projection of the curve. In the last case there

are 3 points in the fiber.

The projection of the curve on the xy plane is

In[150]:= f = FLTMD [F, fCompProj [3, 3], 5, {x, y, z}, {x, y}, 1.*^-9]〚1〛
» Initial Hilbert Function {1, 3, 6, 10, 15, 20}

» Final Hilbert Function {1, 3, 6, 10, 15, 20}

Out[150]= 1. x3
- 0.00694444 x4

+ 3.5 x2 y+ 0.0277778 x3 y+

3.5 x y2
- 0.0416667 x2 y2

+ 1. y3
+ 0.0277778 x y3

- 0.00694444 y4

In[153]:= ContourPlot [f ⩵ 0, {x, -2, 2}, {y, -2, 2}, MaxRecursion → 6]

Out[153]=

-2 -1 0 1 2

-2

-1

0

1

2

This shows the point {0, 0,} with 3 points in its fiber is a singular point of multiplicity 3 as verified

by

In[154]:= tangentVectorMD [{f}, {0, 0}, {x, y}]

SpaceCurveBook_v2c.nb 71

» Hilbert Function {1, 2, 3, 3, 3}

» No unique tangent vector at {0, 0}

Our general plotting strategy calls for us to trace the plane curve f . Unfortunately it has a singular -

ity which will require us to break this into at least 6 paths always tracing into the singularity at

{0,0}. We will show one.

In[158]:= ps = {x, y} /. NSolve [{f, x ^ 2+ y ^ 2- 3}, {x, y}, Reals]

Out[158]= {{1.58268 , -0.70365 }, {-0.70365 , 1.58268 }}

In[159]:= p1 = ps〚1〛;

pth1 = pathFinder2D [f, p1, {0, 0}, .1, x, y]

Out[160]= {{1.58268 , -0.70365 }, {1.48995 , -0.66622 }, {1.39735 , -0.628458 }, {1.3049 , -0.590356 },

{1.21259 , -0.551904 }, {1.12043 , -0.513092 }, {1.02842 , -0.47391 }, {0.936584 , -0.434346 },

{0.844914 , -0.394389 }, {0.753423 , -0.354025 }, {0.662119 , -0.313241 },

{0.571011 , -0.272021 }, {0.480108 , -0.230349 }, {0.389423 , -0.188206 },

{0.298967 , -0.145575 }, {0.208753 , -0.102433 }, {0.118797 , -0.0587558 }, {0, 0}}

We can now li� this to ℝ3 with the following

In[162]:= Pth = Flatten [fFiberMD [F, Pxy, #, {x, y, z}, 1.*^-9] & /@ pth1 , 1]

» multiple fiber points {0, 0}

Out[162]= {{1.58268 , -0.70365 , 0.846583 }, {1.48995 , -0.66622 , 0.853897 }, {1.39735 , -0.628458 , 0.861351 },

{1.3049 , -0.590356 , 0.868949 }, {1.21259 , -0.551904 , 0.8767 }, {1.12043 , -0.513092 , 0.884613 },

{1.02842 , -0.47391 , 0.892695 }, {0.936584 , -0.434346 , 0.900956 }, {0.844914 , -0.394389 , 0.909407 },

{0.753423 , -0.354025 , 0.918059 }, {0.662119 , -0.313241 , 0.926925 },

{0.571011 , -0.272021 , 0.936019 }, {0.480108 , -0.230349 , 0.945356 },

{0.389423 , -0.188206 , 0.954954 }, {0.298967 , -0.145575 , 0.964832 },

{0.208753 , -0.102433 , 0.975012 }, {0.118797 , -0.0587558 , 0.98552 }, {0., 0., 1.}, {0., 0., 2.}, {0., 0., 3.}}

This is good except for the last 3 points which are all liftings of {0, 0}. We have to pick just one of

these, the one that most closely matches the previous point. We see that is {0,0,1}. The plot is the

not exciting green curve which is what we want. Had we not dropped the other points we would

have the blue dashed curve that goes though all three fiber lifts.

72 SpaceCurveBook_v2c.nb

In[174]:= Pth1 = Drop [Pth, -2];

Graphics3D [{{Green , Thick , Line [Pth1]}, {Blue, Dashed , Line [Pth]}}, ImageSize → Small]

Out[175]=

2.8.1.2 Example 2.8.1.1 Continued

Rather than continue on the other 5 tracings we project again using our pseudo-random projec -

tion prd3D which has no singular points.

In[178]:= g = FLTMD [F, fprd3D , 5, {x, y, z}, {x, y}, 1.*^-9 , quiet → True]〚1〛
Out[178]= 1. + 0.271206 x- 0.00614083 x2

+ 0.000532178 x3
- 4.49813 × 10-6 x4

-

1.85033 y- 0.216147 x y+ 0.000588023 x2 y- 0.0000621309 x3 y+ 1.01583 y2
+

0.0494672 x y2
- 0.000321821 x2 y2

- 0.168582 y3
- 0.000740863 x y3

- 0.000639577 y4

In[180]:= ContourPlot [g ⩵ 0, {x, -4, 4}, {y, -1, 4}]

Out[180]=

-4 -2 0 2 4

-1

0

1

2

3

4

A single trace and lift suffices

In[183]:= sol = {x, y} /. NSolve [{g, x ^ 2+ y ^ 2- 13}, {x, y}, Reals]

Out[183]= {{1.75625 , 3.1489 }, {-3.60479 , -0.0740102 }}

SpaceCurveBook_v2c.nb 73

In[185]:= pth2 = pathFinder2D [g, sol〚2〛, sol〚1〛, .3, x, y, maxit → 60]

Out[185]= {{-3.60479, -0.0740102 }, {-3.31723, 0.0114823 }, {-3.02954 , 0.096539 }, {-2.74174, 0.181205 },

{-2.45383, 0.265537 }, {-2.16585, 0.349601 }, {-1.87782 , 0.433483 }, {-1.58976, 0.517291 },

{-1.30173 , 0.601166 }, {-1.01376 , 0.68529 }, {-0.725946 , 0.769914 }, {-0.438382 , 0.855388 },

{-0.151228 , 0.942226 }, {0.135258 , 1.03122 }, {0.420622 , 1.1237}, {0.703909 , 1.22217 }, {0.982472 , 1.33246 },

{1.24036 , 1.47417 }, {1.30691, 1.60214 }, {1.14235 , 1.72082 }, {0.857493 , 1.80651 }, {0.564651 , 1.87072 },

{0.270109 , 1.92755 }, {-0.0248564 , 1.98228 }, {-0.31963, 2.038}, {-0.613649 , 2.09744 }, {-0.906041 , 2.16407 },

{-1.19469, 2.24418 }, {-1.46944, 2.35513 }, {-1.59794, 2.49846 }, {-1.49041, 2.62449 }, {-1.2187, 2.73378 },

{-0.928884 , 2.80859 }, {-0.634948 , 2.86767 }, {-0.339176 , 2.91739 }, {-0.0423628 , 2.96074 }, {0.25512, 2.99935 },

{0.553067 , 3.03426 }, {0.851357 , 3.06616 }, {1.14991, 3.09555 }, {1.44866, 3.1228}, {1.75625 , 3.1489}}

In[187]:= Pth2 = Flatten [fFiberMD [F, prd3D , #, {x, y, z}, 1.*^-9] & /@ pth2 , 1]

Out[187]= {{5.48543 , -2.02738, 0.619139 }, {4.99583, -1.88232 , 0.642004 }, {4.51393, -1.73466 , 0.665653 },

{4.03997, -1.58434, 0.69017 }, {3.57421, -1.43128, 0.715652 }, {3.11697, -1.27541, 0.742214 },

{2.6686, -1.11665, 0.769998 }, {2.22951, -0.95488 , 0.799178 }, {1.8002, -0.79, 0.829972 },

{1.38129, -0.621866 , 0.862659 }, {0.973522 , -0.450314 , 0.897609 }, {0.577872 , -0.275144 , 0.935325 },

{0.195637 , -0.0961059 , 0.976521 }, {-0.171355 , 0.0871173 , 1.02228 }, {-0.520314 , 0.274941 , 1.07436 },

{-0.846425 , 0.467907 , 1.13602 }, {-1.1393, 0.666562 , 1.21466 }, {-1.35985, 0.866691 , 1.33552 },

{-1.34487, 0.941369 , 1.47053 }, {-1.09363, 0.849083 , 1.62236 }, {-0.773361 , 0.652601 , 1.74594 },

{-0.485792 , 0.43725, 1.84223 }, {-0.222806 , 0.212235 , 1.92711 }, {0.0197011 , -0.0197877 , 2.00658 },

{0.243541 , -0.257592 , 2.08412 }, {0.449036 , -0.500483 , 2.16255 }, {0.634915 , -0.747952 , 2.24522 },

{0.796855 , -0.999161 , 2.33792 }, {0.918955 , -1.24855 , 2.45619 }, {0.92399, -1.38187, 2.59572 },

{0.806603 , -1.30657, 2.70979 }, {0.623279 , -1.08, 2.80443 }, {0.456993 , -0.828961 , 2.86776 },

{0.302882 , -0.569689 , 2.91731 }, {0.157592 , -0.305663 , 2.9589}, {0.0192306 , -0.0383221 , 2.99517 },

{-0.113399 , 0.231558 , 3.02759 }, {-0.241125 , 0.503499 , 3.05707 }, {-0.364552 , 0.777176 , 3.08421 },

{-0.484145 , 1.05236, 3.10943 }, {-0.60027, 1.32886, 3.13304 }, {-0.716456 , 1.61462, 3.1559}}

In[190]:= Graphics3D[{{Blue, Thick, Line[Pth2]}, {Orange, Thick, Line[{{0, 0, -1}, {0, 0, 4}}]}}]

Out[190]=

The orange line is the z-axis which intersects the curve in 3 places. Again, don’t expect to find a

generic projection with no singularities, that will usually not happen as remarked above. But at

least generic projections do eliminate singularities of multiplicity greater than 2.

74 SpaceCurveBook_v2c.nb

2.8.2 Example: Application to Cyclic 4

Recall the cyclic-4 curve, Example 2.2.3, is given by

In[122]:= C4 = {w + x+ y+ z, w x+ x y+ y z+ z w, w x y+ x y z+ y z w + z w x, w x y z- 1};

Here we sketch an analysis of the cyclic-4 curve using our method. For curves in ℝn for n > 3 we

project first to ℝ3, hopefully this will not introduce new singularities, then to ℝ2 preferably with a

random or pseudo-random projection. We then lift back to ℝ3 for plotting.

For definiteness here is our random affine projection ℝ4⟶ℝ3

In[129]:= P43 = {{0.9749194263273511` , 0.13015457882712486` , -0.1507314794304482` ,

-0.09935753060835883` }, {-0.1242169492514664` , 0.9851538622704206` ,

0.09443037927788776` , -0.07158855105228731` }, {0.17159792012482059` ,

-0.06309683839808246` , 0.9756771282924249` , 0.12094248269342328` }};

FP43 =

m2TM [

P43];

We could project directly to ℝ2 but will need to know the image of C4 in ℝ3, it takes some time but

the answer is

In[171]:= C43 = FLTMD [C4, FP43 , 6, {w, x, y, z}, {x, y, z}, 1.*^-9]

» Initial Hilbert Function {1, 4, 9, 15, 21, 26, 30}

» Final Hilbert Function {1, 4, 9, 15, 21, 26, 30}

Out[171]= 0.515334 x2
+ 0.0261946 x y+ 0.000332871 y2

+ 1.43574 x z+ 0.0364895 y z+ 1. z2 ,

-0.63185 x3
+ 0.561652 x2 y+ 0.73255 x y2

+ 0.0182448 y3
- 0.880176 x2 z+ 0.80476 x y z+ 1. y2 z,

1. + 0.58731 x4
- 1.11729 x3 y- 0.522163 x2 y2

+

0.249241 x y3
- 0.0282582 y4

+ 0.849617 x3 z- 1.26749 x2 y z

Now we project to ℝ2.

In[208]:= C42 = FLTMD [C43, fprd3D , 6, {x, y, z}, {x, y}, 1.*^-9]〚1〛
» Initial Hilbert Function {1, 3, 6, 10, 15, 21, 27}

» Final Hilbert Function {1, 3, 6, 10, 15, 21, 27}

Out[208]= -1.43989 x2
+ 0.0789016 x6

+ 2.68184 x y+ 0.323495 x5 y+ 1. y2
-

0.558284 x4 y2
- 2.00039 x3 y3

+ 1.90728 x2 y4
+ 0.0432741 x y5

- 0.237496 y6

SpaceCurveBook_v2c.nb 75

We plot C42

In[179]:= ContourPlot [C42 ⩵ 0, {x, -4, 4}, {y, -4, 4}]

Out[179]=

-4 -2 0 2 4

-4

-2

0

2

4

In[180]:= cp2 = criticalPoints2D [C42, x, y]

Out[180]= {-1.48804 , -0.682283 }, {-1.48804 , -0.682283 }, {1.48804 , 0.682283 },

{1.48804 , 0.682283 }, {1.51333 , 0.612185 }, {-1.51333 , -0.612185 }, {0.384516 , -1.20751 },

{0.384516 , -1.20751 }, {-0.384516 , 1.20751 }, {-0.384516 , 1.20751 }, {-0.473031 , 1.16934 },

{0.473031 , -1.16934 }, -1.41781 × 10-38 , -2.33748 × 10-38 , {0., 0.}, {0., 0.}, {0., 0.}

It appears that we have two lines through {0,0} which will be components of the point curve V(h).

From the critical points the other singularities are clear so the two lines are

In[203]:= l1 = line2D [{0, 0}, cp2〚2〛, x, y]

l2 = line2D [{0, 0}, cp2〚8〛, x, y]

Out[203]= 0. - 1.5907 x+ 3.46926 y

Out[204]= 0. - 1.58524 x- 0.504796 y

Note by symmetry we expect these to be perpendicular, but they are not. By nDivideMD we get

In[207]:= c42 = nDivideMD [C42, l1 * l2, {x, y}, 1.*^-9]

Out[207]= -0.571014 + 0.0312899 x4
+ 0.186567 x3 y+ 0.14782 x2 y2

- 0.388404 x y3
+ 0.135614 y4

In[125]:= cp42 = criticalPoints2D [c42, x, y]

Out[125]= {{-7162.89 , 2009.12 }, {7162.89 , -2009.12 }, {1.51333 , 0.612185 },

{-1.51333 , -0.612185 }, {-0.473031 , 1.16934 }, {0.473031 , -1.16934 }}

76 SpaceCurveBook_v2c.nb

In[126]:= ContourPlot [c42 ⩵ 0, {x, -4, 4}, {y, -4, 4}, Epilog → {Red, PointSize [Medium], Point [cp42]},]

Out[126]=

-4 -2 0 2 4

-4

-2

0

2

4

In[127]:= infc42 = infiniteRealPoints2D [c42, x, y]

Out[127]= {{-54.2416 , -92.8895 , 0}, {-1.59294 , 0.446802 , 0}}

From the fact that there are two infinite points and apparently 4 arcs connecting with each that

these both have multiplicity 2. One could check these by inspecting the infinite points as in my

plane curve book. But this total multiplicity is too large for a reducible curve so it must be

irreducible. One could use singularFactor from the plane curve book but we can use instead

dualInterpolationMD discussed earlier in this book.

In[140]:= c42a = dualInterpolationMD [{c42}, cp42〚{3, 4}〛, 2, {x, y}, 1.*^-9]〚1〛
c42b = dualInterpolationMD [{c42}, cp42〚{5, 6}〛, 2, {x, y}, 1.*^-9]〚1〛

» Initial Hilbert Function {1, 2, 2}

» Final Hilbert Function {1, 2, 2}

Out[140]= 2.05197 - 0.480342 x2
- 1.43202 x y+ 1. y2

» Initial Hilbert Function {1, 2, 2}

» Final Hilbert Function {1, 2, 2}

Out[141]= -2.05197 - 0.480342 x2
- 1.43202 x y+ 1. y2

Note that these are both factors of c42 but don’t multiply to c42 because the curves are defined

only up to a constant, but checking

In[161]:= Expand [c42a * c42b / c42a〚1〛 / c42b〚1〛 - c42 / c42〚1〛]
Out[161]= 0. + 5.07927 × 10-15 x2

- 6.8695 × 10-16 x4
+ 3.88578 × 10-15 x y- 6.32827 × 10-15 x3 y+

1.75415 × 10-14 y2
- 6.27276 × 10-15 x2 y2

+ 5.9952 × 10-15 x y3
- 9.40914 × 10-15 y4

In particular, c42 is reducible as the union of two quadratics and two linear curves.

Normally we would now lift to ℝ3 to get a plot of the curve, or at least its projection in ℝ3. We can

work with each component separately. For the lines it is possible that they lift to higher degree

curves, but not likely given our pseudo-random projection. So we could start with two points on,

say l1 but will stay away from the origin and infinite point. By very elementary algebra setting x = 3

we get

SpaceCurveBook_v2c.nb 77

In[167]:= b = -Expand [(l1 /. {x → 3}) /Coefficient [l1, y]]

Out[167]= 1.37553 - 1. y

In[169]:= p1 = {3, b /. {y → 0}}

Out[169]= {3, 1.37553 }

p1 is on our line. Lifting to C43 with a very loose tolerance

In[176]:= fFiberMD [C43, prd3D , p1, {x, y, z}, 1.*^-4]

» (3) no point in fiber at {3, 1.37553 }

Out[176]= {}

we find there is no point! Perhaps checking this very carefully and trying other points on the lines

l1,l2 we suspect that these are ghost lines. Finding that they still occur in the plane but not in

space also for other projections confirms this.

We can still try to lift the quadratic curves to ℝ3. We pick 8 points on the union c42 of the

quadratics

In[190]:= sol = {x, y} /. NSolve [{c42, x ^ 2+ y ^ 2- 9}]

Out[190]= {{-1.81015 , -2.39235 }, {1.81015 , 2.39235 }, {-1.21355 , -2.74359 }, {1.21355 , 2.74359 },

{2.96438 , -0.460916 }, {-2.96438 , 0.460916 }, {2.77979 , -1.12817 }, {-2.77979 , 1.12817 }}

In[195]:= sol3 = Flatten [fFiberMD [C43, prd3D , #, {x, y, z}, 1.*^-7] & /@ sol, 1]

Out[195]= {{2.88159 , -0.977326 , -2.05077 }, {-2.88159 , 0.977326 , 2.05077 },

{3.2387 , -0.236387 , -2.32065 }, {-3.2387 , 0.236387 , 2.32065 }, {0.301768 , 3.20961 , -0.275188 },

{-0.301768 , -3.20961 , 0.275188 }, {1.08098 , 3.2655 , -0.835578 }, {-1.08098 , -3.2655 , 0.835578 }}

and, surprise

In[197]:= planar3D [cp43]

» Residue = 2.48742 × 10-8

Out[197]= -1.05818 × 10-7
- 3.56651 x- 0.0906435 y- 4.9682 z

these points all lie on a plane!

We can further lift these on the affine projection P43 from ℝ4 to ℝ3.

In[201]:= sol4 = Flatten [fFiberMD [C4, P43, #, {w, x, y, z}, 1.*^-7] & /@ sol3, 1]

Out[201]= {{2.63725 , -0.379183 , -2.63725 , 0.379183 }, {-2.63725 , 0.379183 , 2.63725 , -0.379183 },

{2.80448 , 0.356572 , -2.80448 , -0.356572 }, {-2.80448 , -0.356572 , 2.80448 , 0.356572 },

{-0.336978 , 2.96755 , 0.336978 , -2.96755 }, {0.336978 , -2.96755 , -0.336978 , 2.96755 },

{0.316884 , 3.15573 , -0.316884 , -3.15573 }, {-0.316884 , -3.15573 , 0.316884 , 3.15573 }}

In[204]:= linearSetMD [Take [sol4, 5], {w, x, y, z}]

Out[204]= -8.88178 × 10-16
- 0.5 w - 0.5 x- 0.5 y- 0.5 z

78 SpaceCurveBook_v2c.nb

These all lie in the vector subspace w + x + y + z = 0 which is not a surprise since that is one of the

equations in the system C4.

But since these are numerical we can calculate the rank

In[205]:= SingularValueList [sol4]

Out[205]= 8.72602 , 7.75478 , 1.79033 × 10-8

which is numerically 2. So they actually lie in a plane in ℝ4. We numerically calculate the null

space of this set as

In[209]:= {U, S, V} = SingularValueDecomposition [sol4];

Take [V, All, -2] // MatrixForm

Out[210]//MatrixForm=

-0.5 0.5

0.5 0.5

-0.5 0.5

0.5 0.5

which says that set lies also in the hyperplane -w + x - y + z = 0

In[211]:= (-w + x- y+ z) /. Thread [{w, x, y, z} → #] & /@ sol4

Out[211]= 0., -1.68754 × 10-14 , 4.17632 × 10-8 , 1.77636 × 10-15 ,

1.06581 × 10-14 , -2.66454 × 10-15 , 3.9968 × 10-15 , -2.66454 × 10-15 

So the curve C4 lies in a 2-plane of ℝ4 and the plot is the same as c42. Actually this is quite well

known, see for example the reference [Androvic, Verschelde].

The two linear equations, w + x + y + z = 0, -w + x - y + z = 0 are equivalent to the two equa -

tions w = -y , x = -z. If we just look at the output of sol4 above we see that this is the case at least

for the display digits. It is easy to see from the membership problem that the second equation is

not a member of the C4 system. This is also quite obvious when we add the second equation to C4

and find the H-basis

In[135]:= C4e = Append [C4, -w + x- y+ z];

HC4e = hBasisMD [C4e, 4, {w, x, y, z}, dTol]

» Initial Hilbert Function {1, 2, 3, 4, 4}

» Final Hilbert Function {1, 2, 3, 4, 4}

Out[136]= 1. w + 1. y, 1. x+ 1. z, -1. + 1. w2 x2

The first two equations here are the ones we deduced above while the last says w = ±
1

x
. Again this

is easy to check in sol4.

Further this is the equation of the union of two disjoint hyperbolas in the {w - y , x - z} plane of

ℝ4, the fact we worked hard to get. This is also a well known fact but other derivations are at least

as hard as ours above.

We recall that in Section 2.2 that we noticed the strange fact

In[137]:= tangentVectorMD[C4, {1, -1, -1, 1}, {w, x, y, z}]

SpaceCurveBook_v2c.nb 79

» Hilbert Function {1, 2, 1, 1, 1}

» No unique tangent vector at {1, -1, -1, 1}

that this point was singular of multiplicity 1. But with our extended C4e we have

In[138]:= tangentVectorMD [C4e, {1, -1, -1, 1}, {w, x, y, z}]

» Hilbert Function {1, 1, 1, 1, 1}

Out[138]= {0.5, 0.5, -0.5, -0.5}

so this point is regular.

The takeaway from this discussion is that what makes the Cyclic 4 system

strange is that it is missing, by membership, an equation satisfied by the 1-

dimensional solution. This also explains the ghost lines in the projection of

the C4 on the plane, these are gone when projecting C4e.

2.8.3 Example 3, naive curve in ℝ4

The previous example shows how much we can learn from our method.

Unfortunately the resulting curve was planar. Here, briefly is another exam -

ple of a more interesting curve.

This curve was originally randomly generated as the intersection of 3

quadratic hypersurfaces of 4 space.

In[238]:= f1 = 3 w-3 w2 -x-x2 +3 y-2 w y+4 x y+2 y2 -2 z-4 w z+x z+5 y z+5 z2;

f2 = -4 w+3 w2 +2 w x+x2 -2 y-w y+2 y2 -5 z-4 w z+4 x z-2 y z-5 z2;

f3 = 2 w-4 w2 -2 x-w x+2 x2 +y+5 w y+2 x y+y2 +3 z+w z+5 x z-2 y z+2 z2;

F4 = {f31, f32, f33};

80 SpaceCurveBook_v2c.nb

We first project with Pxyz, the simple projection setting w = 0. This gives a system of 7 equations

of degree 5 in the three variables x, y , z. We will not reproduce this. We next project by our

default pseudo-random projection PRD. We get a numerical plane curve of degree 8 with

coefficients ranging in absolute value from 0.2 to 24 500. We call it g3 but do not give this here, it

will eventually appear in my Space Curves book. The interesting parts are given below. Note that

we have 7 singularities, all of which will turn out to be artifactual.

In[154]:= {ContourPlot [g3 ⩵ 0, {x, -.6, .6}, {y, -.2, .6}], ContourPlot [g3 ⩵ 0, {x, -1, 1}, {y, -3, -.5}]}

Out[154]= 

-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6

-0.2

0.0

0.2

0.4

0.6

,

-1.0 -0.5 0.0 0.5 1.0

-3.0

-2.5

-2.0

-1.5

-1.0

-0.5



Note the approximate position of the infinite points are

SpaceCurveBook_v2c.nb 81

With difficulty we trace paths, first remembering that we must always trace into, but not out from

singularities. Such delicate tracing is best done by our pathFinder2D using the closestPoint2D
algorithm. But with a curve of degree 8 it is way too slow. Our 2D differential equation path

finder interpolates the curve quickly with a piecewise linear curve but the points given are too

approximate for fFiber. So we use pathFinderT2D using normal planes which is a compromise.

We are able to lift to ℝ3 with fFiber and get the following picture incorporating the curve in the

union of the two regions above.

The blue and green curves are two different projective topological components. This

is about as close as we can come to visualizing non-planar curves in ℝ4. The points A,

B, C, D represent the infinite points, consistent with the projection above, where each

branch of the curve is heading. Do note that each of the singularities of the plane

projections lift to two distinct points in ℝ4 so the curve in ℝ4 is non-singular. The

plane curve is algebraically irreducible so the space curve also must be.

2.9 Fundamental Theorem

In my plane curve book I introduce the Fundamental Theorem. This does

carry over to space curves in the general case. Again projection to the plane

and fiber lifting can be used to find a graph of the space curve. Singular

points in the plane projection may lift to several points so the corresponding

vertex will be the image of several different vertices, but the edges will

project to distinct edges in the base given a random enough projection.

2.9.1.1 Example

In[232]:= F = {x + y - x z + y z, -x - 2 x ^ 2 y - 2 x y ^ 2 - 2 y ^ 3 + x z + 2 x ^ 3 z,

-1 + 6 x ^ 2 + 8 x y + 4 y ^ 2 - 4 x ^ 2 z + z ^ 2 + 2 x ^ 2 z ^ 2, x ^ 4 + x y + y ^ 4};

82 SpaceCurveBook_v2c.nb

Projecting with the non - generic projection z → 0 gives the last equation x4 + x y + y 4 = 0. Plotting

this with path tracing and lifting gives

-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6

-0.5

0.0

0.5

1

2

3

where the segments of the space curve project the same colored segments of the plane curve. In

the graphs vertices 1,2 in space go to 1,2 in the plane and vertices 3a,3b go to 3 in the plane.

Singularities in space typically will project to singularities in the plane but

under a generic projection different singularities go to different singularities

in the plane so the whole singularity will just lift. Thus we have the Funda -

mental theorem

Each space curve can be described by a graph with even vertices.

We pictured the graphs as directed graphs. While we saw that there was a

natural direction, given a fixed equation, in the plane the directions in space

may be arbitrary. But since each component of a graph with even vertices is

a cycle, by Euler, the edge directions can be chosen so that following these

directions allows one to get back to the starting point.

2.9.1.2 Example 2.8.2 continued.

The infinite points of F4 are given by

In[243]:= infF4 = infiniteRealPointsMD[F4, {x, y, z, w}, 1.*^-10]

Out[243]= {{-0.538213 , 0.794671 , 0.245387 , 0.136415 , 0},

{-0.750913 , -0.416097 , 0.208369 , 0.468589 , 0},

{0.868006 , 0.134921 , -0.380594 , 0.28898 , 0},

{0.0882663 , 0.729859 , -0.548269 , -0.398641 , 0}}

labeled by i1,…i4 which project to infinite plane points

SpaceCurveBook_v2c.nb 83

{{-1.25675 , 1.55582 }, {1.07143 , 1.6888 },

{-1.63582 , 1.1507 }, {-1.68853 , -1.07186 }}

Using the Fundamental Theorem in the plane we can infer the following graph

In[244]:= Graph[{"c-2" → "i4", "i4" → "c-3", "c-3" → "c-4", "c-4" → "i3", "i3" → "c-1",

"c-1" → "c-2", "b-1" → "i2", "i2" → "b-4", "b-4" → "b-3", "b-3" → "i1",

"i1" → "b-2", "b-2" → "b-1"}, VertexLabels→ "Name", ImageSize → Small]

Out[244]=

which compares to the plot above with endpoints labeled.

2.9.2 Ovals and pseudo lines

We can decompose the graph into loops, that is subgraphs where each

vertex has order 2. In particular these are closed. If the curve is non-singu -

lar then each loop represents a topological component, the converse may

not be true because of the existence of cusps etc. In the case of disjoint

loops the decomposition is unique, but if there exist vertices of higher even

order the decomposition is not unique.

The part of the curve represented by a loop is topologically a simple closed

sub-curve. We can distinguish two types. If the closed sub-curve contains

an even number of real infinite points, by multiplicity, we call it a oval.

Otherwise we call it a pseudo-line.

Since any hyperplane can be considered in some specialization to be the

infinite points then equivalently one can intersect the curve with any hyper -

plane and see if the number of intersection points is even or odd to deter -

84 SpaceCurveBook_v2c.nb

plane points

mine whether we have an oval or pseudo-line. This is especially useful if the

original graph has a vertex representing an infinite point of degree 4 or

more, since there will be more than one loop with this vertex but the intersec -

tion multiplicity of the original curve with the infinite line at this point will

count intersections with all loops through this vertex.

Of course, if the curve has bounded real part, then a far away hyperplane

will miss the curve completely so it is automatically an oval. One difference

between the space and plane situation is that while a non-singular plane

curve can have at most one pseudo-line, a non-singular space curve can

have more than one skew pseudo-line.

Pseudo-lines are not necessarily preserved under projections, in fact loops

are not preserved. But one may still be able to get information from the

projection.

The example we use is Case 8 from [Tu, Wang, Mourrain, Wang, Using

Signature sequences to classify intersection curves of two quadrics, Computer

Aided Geometric Design,26 (2009), 317-335]. Further details appear in

Section 3.2 below

2.9.2.1 Example

In[245]:= case8 = {x y+ z, 1+ 2 x y+ y2
- z2

};

Checking infinite points

In[246]:= IP = infiniteRealPoints3D [case8 , {x, y, z}]

Out[246]= {{0., -0.707107 , 0.707107 , 0}, {1., 0., 0., 0}, {1., 0., 0., 0}, {0., 0.707107 , 0.707107 , 0}}

The second infinite point is singular which is why it repeats. We will label these distinct points C,

A, B respectively. It can be shown that a graph for this 3 dimensional curve is

In[247]:= Graph [{"A" → "C", "C" → "A", "A" → "B", "B" → "A"}, VertexLabels → "Name "]

Out[247]=

To get an idea of what this curve actually looks like we project it to the plane using our default

pseudo-random projection fprd3D obtaining

SpaceCurveBook_v2c.nb 85

a

a

a

a

b

b
c

c

-10 -5 5 10

-10

-5

5

10

2.6 .1 Plot 1

where c, a, b represent the infinite projections of C, A, B respectively. The intersections in this

plot are artifactual, that is they are not in the original curve.

Since A is infinite it is impossible to attribute them to the individual loops ABA and ACA. There -

fore we take a pseudo-random plane intersecting both loops

In[248]:= plane = 0.4645861830018325`+0.1244823462922618`x+

0.847266521772098`y-0.22539579656588946`z;

This plane intersects the space curve in

In[249]:= sol1 = {x, y, z} / . NSolve[Append[case8, plane]]

Out[249]= {{-4.38804 , -0.575876 , -2.52697 }, {-3.90255 , -0.655679 , -2.55882 },

{-3.73668 , 0.112037 , 0.418644 }, {0.941646 , -0.549126 , 0.517083 }}

These points project to the points

In[250]:= fltMD[#, fprd3D] & /@ sol1

Out[250]= {{0.790819 , -1.84985 }, {0.566653 , -1.94661 }, {1.24712 , 0.93915 }, {-0.810315 , 0.402654 }}

shown as black dots on Plot 1 above. We see that 3 lie in the orange curve aba while only the last

one lines in aca. Thus we conclude that ABA and ACA are both pseudo-lines as reported in the

paper quoted above.

The reader should note that although these points are not collinear any line in the plane will

intersect both the blue and orange part in an odd number of points, counted by multiplicity. On

the other hand the reader should note that in the projection there are 3 singularities and the non

unique decomposition of the graph could have 3 or 4 loops, some of which will be ovals so

projections do not directly answer the question for the space curve.

2.10 Bézout’s Theorem

In plane curve theory Bézout’s theorem counts the number of complex

projective intersection points counting multiplicity. More generally in

multiple variables Bezout’s theorem counts the number of complex projec -

tive zeros by multiplicity of a zero dimensional system, that is, a non-linear

system of equations with only isolated solutions, that is the solution set does

86 SpaceCurveBook_v2c.nb

system equations only

not contain a curve, surface etc. It is well known that the solution set in this

case must be finite. The case of a square zero dimensional system, eg. n

equations in n unknowns is a classical result, namely if the equations have

degree d1, …, dn then there are d1 * d2 *⋯ * dn solutions by multiplicity.

There are no simple proofs, one must use advanced algebraic geometry.

In our case we generally have more equations than variables. In this case it

is more complicated, typically adding more equations decreases the num -

ber of solutions. In this section we suggest a different solution, the nullity of

large Sylvester matrices. Specifically we mean by nullity the difference

between the number of columns and the matrix rank. While we do not

claim a proof we will show by examples that this nullity is at least the num -

ber of distinct projective solutions. The reader wanting a proof might look

at the paper [Telen, Mourrain, van Barel, Solving polynomial systems via

truncated normal forms, Siam J. Matrix Anal. Appl. Vol39 no3 (2018) pp.

1421-1447] for ideas on how to prove the existence part of the theorem.

First we need two new functions. These produce dual vectors to Sylvester

matrices for each affine or infinite point of the complex projective space

ℂℙn. I emphasize that the dual vectors are independent of any system, they

depend only on the points and an order m . The variables are essentially

dummies here, any set of n variables will do but since we are working with

certain ones it is most convenient to use those.

In[105]:= aVecMD [p_ , m_ , X_] := mExpsMD [m, X] /. Thread [X → p]

iVecMD [p_ , m_ , X_] := Module [{lS, lh},

lS = Length [expsMD [Length [X], m]];

lh = Length [hExpsMD [Length [X], m]];

Join [Table [0, {lS - lh}], mhExpsMD [m, X] /. Thread [Append [X, #t] → p]]]

I start with an example of a square integer system of 3 equations in 3 unknowns each of which has

degree 2. which has both affine and infinite solutions.

Example 2.10.1

In[216]:= Clear [F]

F = {5- 11 x2
- 3 y- 17 x y- 17 y2

+ 4 z+ 2 x z+ 17 y z- 2 z2 , 1+ 5 x+ 41 x2
- 2 y+ 59 x y+ 53 y2

+

4 z- 8 x z- 59 y z+ 8 z2 , 1+ 3 x+ 9 x2
+ 3 y- 5 x y- 31 y2

+ 5 z- 4 x z+ 5 y z+ 4 z2
};

Note the sum of the degrees is 6 and the product is 8. We first find the complex affine and infinite

solutions.

In[218]:= asolF = {x, y, z} /. NSolve [F]

Out[218]= {{-8.55422 , 7.35644 , 6.84027 }, {-0.0649037 , -0.112053 , -1.15724 },

{-0.44003 - 0.234104 ⅈ, -0.0206914 - 0.232533 ⅈ, -0.990669 - 0.122708 ⅈ},
{-0.44003 + 0.234104 ⅈ, -0.0206914 + 0.232533 ⅈ, -0.990669 + 0.122708 ⅈ}}

SpaceCurveBook_v2c.nb 87

In[221]:= isolF = infinitePointsMD [F, {x, y, z}, dTol]

Out[221]= {{-0.298531 - 0.614054 ⅈ, 0.114688 - 0.027502 ⅈ, -1.1404 + 0.15798 ⅈ, 0},

{-0.298531 + 0.614054 ⅈ, 0.114688 + 0.027502 ⅈ, -1.1404 - 0.15798 ⅈ, 0},

{0.241102 , 0.363299 , 0.899935 , 0}, {-0.645934 , 0.552577 , 0.526715 , 0}}

So we have 2 real and 2 complex affine solutions and also 2 real and 2 complex infinite solutions.

We calculate the dual vectors of order 6 to these points.

In[231]:= adualsF = aVecMD [#, 6, {x, y, z}] & /@ asolF ;

idualsF = iVecMD [#, 6, {x, y, z}] & /@ isolF ;

dualsF = Transpose [Join [adualsF , idualsF]];

Dimensions [dualsF]

MatrixRank [dualsF]

Out[234]= {84, 8}

Out[235]= 8

Note the columns are independent. Now we compare with the Sylvester matrix.

In[226]:= S6F = sylvesterMD [F, 6, {x, y, z}];

Dimensions [S6F]

MatrixRank [S6F]

Out[227]= {105, 84}

Out[228]= 76

Thus the nullity is 84-76=8 as expected. Now to check our dual vectors

In[230]:= SingularValueList [S6F.dualsF]

Out[230]= 7.36336 × 10-8 , 8.95816 × 10-13 , 2.97477 × 10-13 , 1.36979 × 10-13 ,

5.884 × 10-14 , 3.95082 × 10-14 , 7.41627 × 10-15 , 3.05139 × 10-15 

we see that this is numerically the zero matrix. Since dualsF has 8 independent columns we

conclude that these columns form a basis for the nullspace of S6F. The reader should be aware

that although there are many linear algebra methods to calculate a nullspace they will not give this

basis, essentially one must use non-linear methods, such as system solving, to obtain this particu -

lar basis.

We have illustrated our theorem:

Suppose F is an zero dimensional system of r non-linear real or complex

polynomial equations in n ≤ r variables X = {x1, …, xn} . Suppose the equa -

tions have degrees d1, …, dn and m = d1 + d2 +⋯ + dn . Let ca be the number

of distinct complex affine solutions and cinf be the number of distinct com -

plex infinite solutions, c = ca + cinf . Further let k ≥ m and for each affine

solution yj let vi = aVecMD [yi, k , X] and for each infinite solution zj let w j =

88 SpaceCurveBook_v2c.nb

iVecMD zj, k , X . Then v1, …, vca
, w1, …, wcinf

 as column vectors, are con -

tained the nullspace of the Sylvester matrix of F of order k.

Remarks: I conjecture that these vectors vi , wi are independent and that if there

are multiple solutions there are additional vectors as in the 2D version to fully span

the nullspace. So the dimension of the nullspace will count the number of complex

projective solutions according to multiplicity.

The zero-dimensional hypothesis is non-trivial. In the r = n = 2 case this is equiva -

lent to the usual hypothesis of no common divisor. In the general case the best way

to test this hypothesis is to solve the system using NSolve. If the hypothesis is not

true an information notice starting with

NSolve: Infinite solution set has dimension at least 1

will appear.

The classical version r = n says that for the zero-dimensional hypothesis the total

number of complex projective solutions is d1 *⋯*dn, called the Bézout number.

This is a deep result of algebraic geometry with no easily accessible proof. Note

that if r > n the the count will generally be smaller.

The formula m = d1 + d2 +⋯ + dn is somewhat conjectural at this point. It is

advised that one calculate the nullity of both the Sylvester matrix of order m and

order m + 1. If these are not the same then either the zero-dimensional hypothesis

or the conjecture on m does not hold. In the latter case this nullity will still stabi -

lize at some point and that is the number to use.

Here is an application to curve theory with a non-square system. Consider

the Shen-Yuan example in H-basis form

In[107]:= SY = {3. + 6. x+ 3. x ^ 2- 4. y- 3. x y+ 1. y ^ 2- 1. z- 1. x z,

-1. x- 1. x ^ 2- 1. z+ 1. y z, 3. x+ 3. x ^ 2- 1. x y- 3. x z+ 1. z ^ 2};

This is a square system of 3 equations of degree 2 in 3 unknowns. But it is non zero-dimensional

so Bezout does not hold.

In[109]:= NSolve[SY]

NSolve : Infinite solution set has dimension at least 1. Returning intersection of solutions with

40299 x

38602

-
69046 y

57903

-
142003 z

115806

== 1.

Out[109]= {{x → -1.01508, y → 0.994216, z → -2.64656},

{x → -2.78473+ 0.767326 ⅈ, y → -2.16878- 0.716577 ⅈ, z → -1.0773+ 1.35012 ⅈ},
{x → -2.78473- 0.767326 ⅈ, y → -2.16878+ 0.716577 ⅈ, z → -1.0773- 1.35012 ⅈ}}

SpaceCurveBook_v2c.nb 89

In[111]:= S6sy = sylvesterMD [SY, 6, {x, y, z}];

Dimensions [S6sy]

MatrixRank [S6sy]

Out[112]= {105, 84}

Out[113]= 65

So the nullity is 19 rather than the expected Bezout number 8. Try again

In[117]:= S7sy = sylvesterMD [SY, 7, {x, y, z}];

Dimensions [S7sy]

MatrixRank [S7sy]

Out[118]= {168, 120}

Out[119]= 98

Now the nullity is 22 and will continue to increase by 3 as the order is increased. Essentially this

tells us we have a curve of effective degree 3.

Now we can use Bezout's theorem to calculate how many complex projective intersection points

this curve will have with a hypersurface, that is, surface defined by one equation, in ℂℙ3. We start

with a plane

In[133]:= plane1 = -3- 3 x+ y+ z;

SYp = Append [SY, plane1]

Out[134]= 3. + 6. x+ 3. x2
- 4. y- 3. x y+ 1. y2

- 1. z- 1. x z,

-1. x- 1. x2
- 1. z+ 1. y z, 3. x+ 3. x2

- 1. x y- 3. x z+ 1. z2 , -3- 3 x+ y+ z

The sum of degrees is now 7.

In[135]:= S7syp = sylvesterMD [SYp, 7, {x, y, z}];

Dimensions [S7syp]

MatrixRank [S7syp]

Out[136]= {252, 120}

Out[137]= 117

It should not be a surprise that the nullity is 3. So we expect 3 complex projective points

In[138]:= asolsya = {x, y, z} /. NSolve [SYp]

solsya = infinitePointsMD [SYp, {x, y, z}, 1.*^-5]

Out[138]= {{-3., 0., -6.}, {0., 3., 0.}, {-1., 0., 0.}}

Out[139]= {}

So we have 3 affine points and no infinite points.

In[141]:= n7sya = Transpose [Table [aVecMD [p, 7, {x, y, z}], {p, asolsya }]];

90 SpaceCurveBook_v2c.nb

In[143]:= Dimensions [n7sya]

Out[143]= {120, 3}

In[144]:= SingularValueList [S7syp .n7sya , Tolerance → 0]

Out[144]= 9.70843 × 10-11 , 0., 0.

So n7sya is the approximate 3 dimensional nullspace of the Sylvester matrix S7syp illustrating

Bezout’s theorem for a 4×3 system. Now lets try a surface of degree 3. Now the sum of the degrees

is 9.

In[151]:= s3 = x2 y+ x y z+ y z2 ;

SYs = Append [SY, s3]

Out[152]= 3. + 6. x+ 3. x2
- 4. y- 3. x y+ 1. y2

- 1. z- 1. x z,

-1. x- 1. x2
- 1. z+ 1. y z, 3. x+ 3. x2

- 1. x y- 3. x z+ 1. z2 , x2 y+ x y z+ y z2

In[153]:= S9sys = sylvesterMD [SYs, 9, {x, y, z}];

Dimensions [S9sys]

MatrixRank [S9sys]

Out[154]= {444, 220}

Out[155]= 211

The nullity is 9. Solving

In[156]:= solsys = {x, y, z} /. NSolve [SYs]

Out[156]= {{-3., 0., -6.}, {0., 3., 0.}, {0., 3., 0.}, {-0.333333 - 0.3849 ⅈ, 0.333333 - 0.3849 ⅈ, 0.5 - 0.096225 ⅈ},
{-0.333333 + 0.3849 ⅈ, 0.333333 + 0.3849 ⅈ, 0.5 + 0.096225 ⅈ},
{0., 1., 0.}, {0., 1., 0.}, {-1., 0., 0.}, {-1., 0., 0.}}

In[159]:= infinitePointsMD [SYs, {x, y, z}, 1.*^-10]

Out[159]= {}

This returns 9 points as expected, all affine, but we note that 3 of them are listed as being multiplic -

ity 2 points. For example

In[158]:= multiplicity0MD [SYs, 3, {0, 3, 0}, {x, y, z}, 1.*^-10]

» hilbert Function {1, 1, 0, 0}

» Depth 1

Out[158]= 2

So we have only 6 distinct affine points.

In[165]:= n9sys = Transpose [

aVecMD [#, 9, {x, y, z}] & /@ {{-3, 0, -6}, {0, 3, 0}, solsys 〚4〛, solsys 〚5〛, {0, 1, 0}, {-1, 0, 0}}];

SpaceCurveBook_v2c.nb 91

In[167]:= MatrixRank [n9sys]

Out[167]= 6

In[166]:= SingularValueList [S9sys .n9sys , Tolerance → 0]

Out[166]= 2.2641 × 10-14 , 1.70962 × 10-14 , 2.15257 × 10-30 , 9.41709 × 10-31 , 0., 0.

In this case it only says that n9sys is contained in the 9 dimensional nullspace of S9sys. The

difference is that the nullspace of S9sys is counting by multiplicity. With more work we could find

the missing 3 nullspace vectors similar to the work in the 2 dimensional Bezout theorem at

https://www.barryhdayton.space/curvebook/BezoutsTheorem.pdf

A slightly different example is the twisted cubic of section 2.0. Consider all

three equations

In[171]:= twcubic = {-y2
+ x z, -x2

+ y, -x y+ z}

l = RandomReal [{-1, 1}, 4].{x, y, z, 1}

Out[171]= -y2
+ x z, -x2

+ y, -x y+ z

Out[172]= -0.58838 - 0.122878 x- 0.854448 y- 0.523189 z

In[173]:= Stw7 = sylvesterMD [Append [twCubic , l], 7, {x, y, z}];

Dimensions [Stw7]

MatrixRank [Stw7]

Out[174]= {252, 120}

Out[175]= 117

So Bezout says that the twisted cubic meets this random hyperplane in 3 complex projective

points. If we take only the last 2 equations and l the sum of the degrees is only 5

In[176]:= Stw5 = sylvesterMD [{-x2
+ y, -x y+ z, l}, 5, {x, y, z}];

Dimensions [Stw5]

MatrixRank [Stw5]

Out[177]= {75, 56}

Out[178]= 52

Now Bezout reports 4 complex projective solutions. But note as in section 2.0

In[179]:= NSolve [{-x2
+ y, -x y+ z, l}]

Out[179]= {{x → 0.102527 + 0.775424 ⅈ, y → -0.59077 + 0.159003 ⅈ, z → -0.183865 - 0.441795 ⅈ},
{x → 0.102527 - 0.775424 ⅈ, y → -0.59077 - 0.159003 ⅈ, z → -0.183865 + 0.441795 ⅈ},
{x → -1.83821 , y → 3.379 , z → -6.2113 }}

we get only 3 affine solutions. So Bezout is telling us that, assuming these

three solutions are simple which is true, there must be an infinite solution.

In 2.0 we had to find this solution, with Bezout we can simply imply the

92 SpaceCurveBook_v2c.nb

 simply imply

existence of that solution.

SpaceCurveBook_v2c.nb 93

3| Applications

The last few sections of this Space Curve volume cover some of my other recent work.

These will get somewhat technical and are aimed at mathematically sophisticated

readers.

One section will cover Quadratic Surface Intersection Curves. Another application

looks at classical resolution of plane curve singularities. I avoided this topic in my

plane curve book because plane curve singularities are not numerically stable, by

blowing up to a space curve we can often get a numerically stable model of the

singularity.

Here is the first section.

3.1 Implicitization of Parametric curves

3.1.1 General theory of parametric curves

It is well known that curves parameterized by polynomial, or more generally, rational

functions are algebraic curves, that is can be described by a system of algebraic

equations. In the past I have treated these separately, however I recently discovered

that the theories are the same up to FLT. A short version of this section is given in

Volume 22 of The Mathematica Journal.

 So suppose we start with a rational curve in ℝn .

Q[t] = 
p1[t]

Δ[t]
,

p2[t]

Δ[t]
, …,

pn[t]

Δ[t]
 (1)

where the common denominator Δ[t] ≠ 0 and the pi and Δ are univariate polynomi -

als in t . With this approach I do not need to make assumptions on the degrees of the

numerators relative to each other or the denominator. In particular if

pn+1[t] = Δ[t] = 1 is the constant polynomial then we say Q[t] is a polynomial curve.

The degree of a polynomial or rational curve is the largest degree d of p1, …, pn+1.

A polynomial will be called stripped if the constant term is 0, that is p[t] is stripped if

p[0] = 0. We strip a polynomial by dropping the constant term, we write p

[t] for the

stripped polynomial p[t]. Here we treat rational functions a bit differently from

polynomial functions since we can only strip Q[t] in equation (1) if Q[t] is not con -

stant as stripping the constant polynomial Δ [t] =1 gives Δ [t] = 0. For this reason we

will only talk of stripping polynomials, not rational functions.

Given a rational curve as in (1), including polynomials, assuming

pi[t] = ai 0 + ai 1 t +⋯ + ai d td for i = 1, … , n+ 1

 we get a projective stripped coefficient matrix

94 SpaceCurveBook_v2c.nb

a11 a12 … ad

a21 a22 … a2 d

⋮ ⋮ ⋮ ⋮
an+1×1 an+1×2 … an+1 d

(2)

For example for the polynomial curve � 2 + 3 t + 4 t 2, 5 + 6 t + 7 t 2 the projective

stripped coefficient matrix, including the stripped denominator is

3 4

6 7

0 0

While for the rational function  2+3 t+4 t 2 ,

1+8 t+9 t 2
,

5+6 t+7 t 2

1+8 t+9 t 2
 we get

3 4

6 7

8 9

From this we get the projective augmented coefficient matrix by adjoining a last

column containing the constant terms. For the two examples above

A1 =

3 4 2

6 7 5

0 0 1

, A2 =

3 4 2

6 7 5

8 9 1

The key observation is

In[119]:= fltMD [{t, t ^ 2}, {{3, 4, 2}, {6, 7, 5}, {0, 0, 1}}]

Out[119]= 2 + 3 t + 4 t2, 5 + 6 t + 7 t2

In[121]:= fltMD [{t, t ^ 2}, {{3, 4, 2}, {6, 7, 5}, {8, 9, 1}}]

Out[121]= 
2 + 3 t + 4 t2

1 + 8 t + 9 t2
,

5 + 6 t + 7 t2

1 + 8 t + 9 t2


More generally we have the following FLT Parametric Curve Theorem:

 If Q[t] is a rational curve of degree d with projective augmented coefficient matrix A

then

Q[t]=fltMD[

t

t2

⋮
td

, A (3)

In particular, every rational curve of degree d is the FLT image of the stripped polyno -

mial curve t , t 2, …, t d  in ℝd .

Note that this theorem implies that Td = t , t 2, …, t d  is a universal curve for rational

and polynomial curves. I call this curve a parabola after Kepler because it has a single

SpaceCurveBook_v2c.nb 95

 polynomial parabola Kepler single

infinite point {0, …, 0, 1, 0}. When d is even the curve is tangent to the infinite

hyperplane like the plane parabola T2. Thus every rational curve is a specialization

and/or projection of this family of curves. Further, it is not necessary to study rational

curves separately from polynomial curves.

3.1.2 Shen-Yuan Example

This example from 2010 shows the problem of finding a good implicitization.

We use the example of L.Shen and C. Yuan in ℝ3. [L.Shen, C.Yuan, Implicitization

using Univariate Resultants, J Sys Sci Complex (2010) 23, pp.804 - 814.]

In[203]:= sy = {-2 t ^ 2 + t ^ 3, 1 - t - t ^ 2 + t ^ 3, 2 t - 3 t ^ 2 + t ^ 3};

Their method gives the system of 3 equations, not actually stated in their paper:

In[165]:= SY = {-3 - 7 x - 5 x2 - x3 + 7 y + 9 x y + 3 x2 y - 5 y2 - 3 x y2 + y3,

-x2 - x3 + 2 x z + 3 x2 z - 3 x z2 + z3,

-3 y + 4 y2 - y3 - 2 y z + 3 y2 z + 6 z2 - 3 y z2 + z3};

They point out that the point {-1, 1, 0} satisfies these equations but is not on the

curve. In fact there are actually 5 isolated points, all real, satisfying this system which

are not on the curve. It is somewhat difficult to find these isolated points but with n

equations in n unknowns we can use the fact that a small perturbation of the system

will have only isolated solutions, using FindRoot we can locate nearby solutions on

the non-perturbation system. We can check to see if they are actually on the paramet -

ric curve using the parametric curve theorem above.

We use the random perturbation below which finds all the isolated points, this was

found by trial and error

In[164]:= rr = {0.01306586198991111` , -0.09887929561077524` , -0.05150297032114362` };

In[169]:= solrr = {x, y, z} / . NSolve [SY + rr, {x, y, z}, Reals]

Out[169]= {{-1.32717 , 0.848784 , -0.413263 }, {-0.180712 , 0.588029 , -0.388907 },

{-0.435589 , 0.308678 , -0.329942 }, {-1.03345 , -0.0117412 , 0.0489152 }}

These 4 real solutions are close to actual solutions of SY

In[199]:= rsol = {x, y, z} / . FindRoot [SY , Transpose [{{x, y, z}, #}]] & /@ solrr

Out[199]= {{-1.08567 , 0.966531 , -0.383168 }, {-0.0514731 , 0.809015 , -0.384493 },

{-0.585515 , 0.190521 , -0.264511 }, {-0.988233 , 0.000269103 , 0.0116319 }}

96 SpaceCurveBook_v2c.nb

In[194]:= root6 = {x, y, z} / .

Chop [FindRoot [SY , Transpose [

{{x, y, z},

{-0.28172479907074977 -

0.10554902609695169 * I,

1.2050352897534784 -

0.004529970239375305 * I,

-0.29474952022205597 +

0.0027247859065144867 * I}}]]]

Out[194]= {-0.684747 , 1.10801 , -0.301161 }

In addition to these 4 real solutions of SY there is the multiplicity 2 solution {-1, 1, 0}

given by Shen-Yuan. Further we find one additional real solution starting from a

complex solution of the perturbed system. Checking multiplicity

In[200]:= rsol = Join [rsol , {{-1, 1, 0}, root6 }];

Table [multiplicityMD [SY , s, {x, y, z}, dTol], {s, rsol }]

Out[201]= {1, 1, 1, 10, 2, 1}

The multiplicity of the fourth real solution is 10 because that is the default maximum

multiplicity returned by multiplicityMD, this suggests that that point is non-isolated

and thus on the parametric curve, while the others are not on the parametric curve.

We can check this 4th point using our parametric curve theorem. The stripped curve

is

sy


= {-2 t ^ 2 + t ^ 3, - t - t ^ 2 + t ^ 3, 2 t - 3 t ^ 2 + t ^ 3};

the augmented projective stripped coefficient matrix is

In[209]:= symat = {{0, -2, 1, 0}, {-1, -1, 1, 1}, {2, -3, 1, 0}, {0, 0, 0, 1}};

giving the parametric equation as

In[210]:= sy = fltMD [{t, t ^ 2, t ^ 3}, symat]

Out[210]= -2 t2 + t3, 1 - t - t2 + t3, 2 t - 3 t2 + t3

We see that symat is an invertible matrix so the FLT given by this is also invertible.

Thus the point rsol[[4]] comes from

In[211]:= q = fltMD [rsol〚4〛, Inverse [symat]]

Out[211]= {0.988366 , 0.976868 , 0.965504 }

But note that this is on the curve t , t 2, t 3
In[212]:= {q〚1〛, q〚1〛^ 2, q〚1〛^ 3}

Out[212]= {0.988366 , 0.976868 , 0.965504 }

SpaceCurveBook_v2c.nb 97

So

In[215]:= rsol〚4〛
fltMD [{q〚1〛, q〚1〛^ 2, q〚1〛^ 3}, symat]

Out[215]= {-0.988233 , 0.000269103 , 0.0116319 }

Out[216]= {-0.988233 , 0.000269103 , 0.0116319 }

is on the curve sy. Thus the 5 isolated points of SY not on the curve sy are

In[213]:= Drop [rsol , {4}]

Out[213]= {{-1.08567 , 0.966531 , -0.383168 },

{-0.0514731 , 0.809015 , -0.384493 }, {-0.585515 , 0.190521 , -0.264511 },

{-1, 1, 0}, {-0.684747 , 1.10801 , -0.301161 }}

An important observation from this example is that, unlike for plane curves, none of

these isolated points are singular because isolated points are the default case for 3×3

systems. This is what makes them hard to find.

In the next subsections we will show how to find a system for this last curve that does

not have isolated points not on the curve.

3.1.3 Direct approach

The direct approach to implicitization for polynomial parameters has two

parts, first we find all polynomials vanishing on the parametric curve up to a

specified degree, then we find a H - basis of this ideal. We should check this

as above to make sure that there are no points in this ideal that are not on

the curve, but remember complex values of t are valid in this setting.

Use the indirect approach for rational parameters.

The user will need to decide the maximum degrees of the polynomials to be

found. Often the correct degree is less than the maximum degree of a com -

ponent of F , but apparently never larger. Using the maximum degree of a

component the second step will give the lower correct degree so this is a

safe, but maybe not the quickest choice. In the next subsection we will give

a family of curves of arbitrarily large degree and dimension with impliciza -

98 SpaceCurveBook_v2c.nb

 family arbitrarily large degree impliciza

tion consisting of quadratic polynomials.

The following function takes as arguments a polynomial parametric curve

F , a specified degree d the parameter t and the variables you wish to use on

the target space. The number of variables should match the number of

components of F . This routine is similar to the routine in section A.5 of the

plane curve book but better even for 2 variables. This routine expects exact

or at least very accurate numerical coefficients of F otherwise you may need

to replace the built in NullSpace finder with an numerical one based on the

SVD.

In[95]:= p2aRawMD[F_, d_, t_, X_] := Module[{n, TB, cr, ar, SA, NSA, FA},

n = Length[X];

If[Length[F] ≠ n, Echo["Dimension mismatch F,X"]; Abort[]];

TB = Expand[Table[m / . Thread[X → F], {m, mExpsMD[d, X]}]];

cr = CoefficientRules[#, {t}] & /@ TB;

ar = Append[

Flatten[Table[Table[{i, First[k] +1} → cr〚i〛[k], {k, Keys[cr〚i〛]}], {i, Length[cr]}], 1],

{_, _} → 0];

SA = SparseArray[ar];

NSA = NullSpace[Transpose[SA]];

If[Length[NSA] < n-1, Echo["Fail, Try higher d"]; Abort[]];

FA = NSA.mExpsMD[d, X];

Echo[Table[Expand[FA〚j〛 / . Thread[X → F]], {j, Length[FA]}], "Residues "];

FA]

We will illustrate with the Shen-Yuan example above

In[96]:= sy = {-2 t ^ 2+ t ^ 3, 1- t- t ^ 2+ t ^ 3, 2 t- 3 t ^ 2+ t ^ 3};

In[99]:= G = p2aRawMD [sy, 3, t, {x, y, z}]

» Residues {0, 0, 0, 0, 0, 0, 0, 0, 0, 0}

Out[99]= 8 x2
+ 8 x3

- 3 x2 y+ 2 x z- 6 x2 z+ z3 , 3 x+ 3 x2
- x y- 4 x z- x2 z+ y z2 ,

-x- x2
- x y- x2 y- z+ y2 z, 12 + 32 x+ 28 x2

+ 8 x3
- 13 y- 18 x y- 6 x2 y+ y3

- 5 z- 8 x z- 3 x2 z,

3 x2
+ 3 x3

- x2 y- 3 x2 z+ x z2 , -x2
- x3

- x z+ x y z, 3 x+ 6 x2
+ 3 x3

- 4 x y- 3 x2 y+ x y2
- x z- x2 z,

3 x+ 3 x2
- x y- 3 x z+ z2 , -x- x2

- z+ y z, 3+ 6 x+ 3 x2
- 4 y- 3 x y+ y2

- z- x z

Note that 6 polynomials are returned. Now we find a H-basis

In[100]:= H = hBasisMD [G, 3, {x, y, z}, dTol]

» Hilbert Function {1, 3, 3, 3}

Out[100]= 3. + 6. x+ 3. x2
- 4. y- 3. x y+ 1. y2

- 1. z- 1. x z, -1. x- 1. x2
- 1. z+ 1. y z, 3. x+ 3. x2

- 1. x y- 3. x z+ 1. z2

Note that 3 equations are returned. One needs to check that unlike the Shen-Yuan system, this

has no isolated or other solutions not on the curve. We only check their point here

SpaceCurveBook_v2c.nb 99

In[101]:= H /. Thread [{x, y, z} → {-1, 1, 0}]

Out[101]= 4.44089 × 10-16 , -1.77636 × 10-15 , 1.

It does satisfy the first two equations but not the third.

3.1.4 The indirect approach.

The FLT Parametric Curve Theorem says every polynomial or rational

parametric curve F is the image of the famous rational normal curve

�Td = t , t 2, …, t d where d is the maximum degree of a polynomial in t in

the numerator or denominator of F . So we use FLTMD on the FLT from the

theorem using a known implicitation of Td . We have the

Theorem:[see Joe Harris’ book] The implicitization of Td is given by

quadratic binomials in {x1,…,xd}, in particular the
d

2
 monomials given by

p2rawMD t , t ^ 2, …, t d, 2, t , {x1, …, xd }
We will not prove this here but it is easy to check any case by the direct method in the last section,

for example n=4

In[120]:= raw4 = p2aRawMD [{t, t ^ 2, t ^ 3, t ^ 4}, 4, t, {x1, x2, x3, x4}]

» Residues {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0}

Out[120]= x32 x42
- x2 x43 , x33 x4 - x1 x43 , x34

- x43 , x2 x3 x42
- x1 x43 , x2 x32 x4 - x43 , x2 x33

- x3 x42 , x22 x42
- x43 ,

x22 x3 x4 - x3 x42 , x22 x32
- x2 x42 , x23 x4 - x2 x42 , x23 x3 - x1 x42 , x24

- x42 , x1 x3 x42
- x43 ,

x1 x32 x4 - x3 x42 , x1 x33
- x2 x42 , x1 x2 x42

- x3 x42 , x1 x2 x3 x4 - x2 x42 , x1 x2 x32
- x1 x42 ,

x1 x22 x4 - x1 x42 , x1 x22 x3 - x42 , x1 x23
- x3 x4, x12 x42

- x2 x42 , x12 x3 x4 - x1 x42 , x12 x32
- x42 ,

x12 x2 x4 - x42 , x12 x2 x3 - x3 x4, x12 x22
- x2 x4, x13 x4 - x3 x4, x13 x3 - x2 x4, x13 x2 - x1 x4, x14

- x4,

x32 x4 - x2 x42 , x33
- x1 x42 , x2 x3 x4 - x1 x42 , x2 x32

- x42 , x22 x4 - x42 , x22 x3 - x3 x4, x23
- x2 x4,

x1 x3 x4 - x42 , x1 x32
- x3 x4, x1 x2 x4 - x3 x4, x1 x2 x3 - x2 x4, x1 x22

- x1 x4, x12 x4 - x2 x4,

x12 x3 - x1 x4, x12 x2 - x4, x13
- x3, x32

- x2 x4, x2 x3 - x1 x4, x22
- x4, x1 x3 - x4, x1 x2 - x3, x12

- x2

In[121]:= tBasis4 = hBasisMD [raw4 , 4, {x1, x2, x3, x4}, dTol]

» Hilbert Function {1, 4, 4, 4, 4}

Out[121]= 1. x12
- 1. x2, 1. x1 x2 - 1. x3, 1. x1 x3 - 1. x4, 1. x22

- 1. x4, 1. x2 x3 - 1. x1 x4, 1. x32
- 1. x2 x4

In[150]:= raw2 = p2aRawMD [{t, t ^ 2, t ^ 3, t ^ 4}, 2, t, {x1, x2, x3, x4}]

» Residues {0, 0, 0, 0, 0, 0}

Out[150]= x32
- x2 x4, x2 x3 - x1 x4, x22

- x4, x1 x3 - x4, x1 x2 - x3, x12
- x2

One might think from the theorem that one could build tBasis up recur -

sively by merely adding d - 1 binomials to the previous tBasis. This is not

true however, but the new terms do imply the old terms are also in the ideal

100 SpaceCurveBook_v2c.nb

 imply

generated by the larger basis. For example

In[114]:= tBasis3 = p2aRawMD [{t, t ^ 2, t ^ 3}, 2, t, {x1, x2, x3}]

» Residues {0, 0, 0}

Out[114]= x22
- x1 x3, x1 x2 - x3, x12

- x2

Here x2 ^ 2 - x1 x3 has been replaced by x2 ^ 2 - x4 and x1 x3 - x4 which imply the former.

For further use we will collect the first few cases of tBasis, they should be

initialized in GlobalFunctionsMD

In[210]:= tBasis2 = {x1^ 2-x2};

tBasis3 = {x2^ 2-x1 x3, x1 x2-x3, x1^ 2-x2};

tBasis4 = {x3^ 2-x2 x4, x2 x3-x1 x4, x2^ 2-x4, x1 x3-x4, x1 x2-x3, x1^ 2-x2};

tBasis5 = {x42 -x3 x5, x3 x4-x2 x5, x32 -x1 x5, x2 x4-x1 x5,

x2 x3-x5, x22 -x4, x1 x4-x5, x1 x3-x4, x1 x2-x3, x12 -x2};

We can redo the Shaun-Yuan example by using the FLT from section 3.1.2

In[174]:= symat = {{0, -2, 1, 0}, {-1, -1, 1, 1}, {2, -3, 1, 0}, {0, 0, 0, 1}};

sy = fltMD[{t, t ^ 2, t ^ 3}, symat]

Out[175]= -2 t2
+ t3, 1- t- t2

+ t3, 2 t- 3 t2
+ t3

In[176]:= H2 = FLTMD[tBasis3, symat, 3, {x1, x2, x3}, {x, y, z}, dTol]

» Hilbert Function {1, 3, 3, 3}

Out[176]= 3. x+ 3. x2
- 1. x y- 3. x z+ 1. z2, 1. x+ 1. x2

+ 1. z- 1. y z,

1. + 2.33333 x+ 1.33333 x2
- 1.33333 y- 1. x y+ 0.333333 y2

- 0.333333 x z- 0.333333 y z

Note that this is different from the implicitization we got using the direct approach above because

FLTMD works projectively and applies hBasisMD on a homogeneous system where our direct

method works completely in the affine situation. But we can see these are the same by applying

hBasisMD to the result. The fact that the Hilbert function is unchanged implies these systems are

equivalent.

In[165]:= hBasisMD [H2, 3, {x, y, z}, dTol]

» Hilbert Function {1, 3, 3, 3}

Out[165]= 3. + 6. x+ 3. x2
- 4. y- 3. x y+ 1. y2

- 1. z- 1. x z, -1. x- 1. x2
- 1. z+ 1. y z, 3. x+ 3. x2

- 1. x y- 3. x z+ 1. z2

As a second example we look at a rational parameterization of the piriform.

In[118]:= piriformpar = {
1- t4

1+ 2 t ^ 2+ t ^ 4
,

4 t

1+ 2 t ^ 2+ t ^ 4
}

Out[118]=  1- t4

1+ 2 t2 + t4
,

4 t

1+ 2 t2 + t4


We can construct a 3×5 FLT matrix by labeling the columns by t , t 2, t 3, t 4, 1 and rows by

coefficients of 1 - t 4, 4 t , 1 + 2 t 2 + t 4 respectively.

SpaceCurveBook_v2c.nb 101

In[206]:= piriformA = {{0, 0, 0, -1, 1}, {4, 0, 0, 0, 0}, {0, 2, 0, 1, 1}};

piriformA // MatrixForm

Out[207]//MatrixForm=

0 0 0 -1 1

4 0 0 0 0

0 2 0 1 1

Checking

In[177]:= fltMD [{t, t ^ 2, t ^ 3, t ^ 4}, piriformA]

Out[177]=  1- t4

1+ 2 t2 + t4
,

4 t

1+ 2 t2 + t4


Thus an implicitization of the piriform is

In[214]:= piriformEq = FLTMD [{x32
- x2 x4, x2 x3 - x1 x4, x22

- x4, x1 x3 - x4, x1 x2 - x3, x12
- x2},

piriformA , 4, {x1, x2, x3, x4}, {x, y}, dTol]〚1〛
» Hilbert Function {1, 2, 3, 4, 4}

Out[214]= 1. + 2. x- 2. x3
- 1. x4

- 1. y2

In[220]:= Show [ContourPlot [piriformEq ⩵ 0, {x, -2, 2}, {y, -2, 2}, ContourStyle → Orange], ParametricPlot [

piriformpar , {t, -6, 6}, PlotStyle → Directive [Dashed , Black], ImageSize → Small]]

Out[220]=

-2 -1 0 1 2

-2

-1

0

1

2

A more complicated example is

In[258]:= fpar = {
t+2

t ^ 2+1
,

t ^ 2-1

t ^ 2+1
,

t ^ 2- t+1

t ^ 2+1
,

4 t ^ 2

t ^ 2+1
};

Again this can be actualized by an FLT with matrix

In[259]:= fparA = {{1, 0, 2}, {0, 1, -1}, {-1, 1, 1}, {0, 4, 0}, {0, 1, 1}};

fltMD[{t, t ^ 2}, fparA]

Out[260]=  2+ t

1+ t2
,
-1+ t2

1+ t2
,

1- t+ t2

1+ t2
,

4 t2

1+ t2


So the implicit curve in ℝ4is

102 SpaceCurveBook_v2c.nb

In[261]:= fparEq = FLTMD[tBasis2, fparA, 2, {x1, x2}, {x, y, z , w}, dTol]

» Hilbert Function {1, 2, 2}

Out[261]= 1. w- 1. x- 3. y- 1. z, 1. - 0.5 x- 0.5 y- 0.5 z,

1. x2
+ 2. x y+ 2.33333 y2

- 3.33333 x z- 3.33333 y z+ 1. z2

At first we might be surprised that of the 3 equations two are linear which

means this curve lies in a 2 dimensional subset of ℝ4. But on further consid -

eration we see that this curve is contained in the image of a FLT defined on

ℝ2 which itself cannot have image greater than 2. Applying a somewhat

random orthogonal FLT projection with matrix

In[264]:= projA = {{0.7071067811865475 ,̀ 0.`, 0.`, 0.7071067811865475 ,̀ 0.`},

{0.4082482904638631 ,̀ 0.816496580927726 ,̀ 0.`, -0.4082482904638631 ,̀ 0.`},

{0.`, 0.`, 0.`, 0.`, 1.`}}

Out[264]= {{0.707107, 0., 0., 0.707107, 0.}, {0.408248, 0.816497, 0., -0.408248, 0.}, {0., 0., 0., 0., 1.}}

we find that the parametric curve projects to

In[265]:= fparproj = N[fltMD[fpar, projA]]

Out[265]=  2.82843 t2

1. + t2
+

0.707107× (2. + t)

1. + t2
, -

1.63299 t2

1. + t2
+

0.408248× (2. + t)

1. + t2
+

0.816497× -1.+ t2
1. + t2



while the curve in ℝ4projects to

In[267]:= fprojEq = FLTMD[fparEq, projA, 2, {x, y, z, w}, {x, y}, dTol]〚1〛
» Hilbert Function {1, 2, 2}

Out[267]= 1. - 1.21218 x+ 0.357143 x2
- 0.699854 y+ 0.742307 x y+ 1.07143 y2

In[268]:= Show[ContourPlot[fprojEq ⩵ 0, {x, 1, 3}, {y, -1.5, .5}, ContourStyle→ Orange],

ParametricPlot[fparproj, {t, -8, 8}, PlotStyle → Directive[Black, Dashed]],

ImageSize → Small]

Out[268]=

1.0 1.5 2.0 2.5 3.0

-1.5

-1.0

-0.5

0.0

0.5

So we merely have a plane ellipse lying in ℝ4.

3.2 Quadratic Surface Intersection Curves (QSIC)

SpaceCurveBook_v2c.nb 103

This is a classical area that only recently has seen a full solution. C.Tu,

W.Wang, B. Mourrain and J. Wang, [TWMW], have given in the journal

Computer aided Geometric Design 2009 a complete classification of QSIC

identifying 35 types including singular QSIC. L. Dupont, D. Lazard, S.

Lazard and S. Petitjean [DLLP] presented a 65 page discussion and working

black box algorithm in 2008 available on http://vegas.loria.fr/qi/index.html ,

a typical run looks like this

 Here I give my take on this subject.

3.2 .1 The Theory

A quadratic surface intersection curve (QSIC) is a naive curve where the 2

equations are quadratic (degree 2) in three variables. It helps, however, to

have the full general theory in understanding these curves.

In principle these curves have degree 4, that is, a generic plane projection

will be a curve of degree 4. Alternatively a generic plane intersects a generic

plane in 4 complex projective points. Using our Bezout theorem

104 SpaceCurveBook_v2c.nb

In[123]:= X = mExpsMD[2, {x, y, z}];

F1 = RandomInteger[{-9, 9}, {2, 10}].X

plane1 = RandomInteger[{-9, 9}, 4].{x, y, z, 1}

S7 = sylvesterMD[Append[F1, plane], 7, {x, y, z}];

dim = Dimensions[S7];

rnk = MatrixRank[S7];

dim〚2〛- rnk

Out[124]= -2+ 7 x+ 2 x2
- 6 y- 4 x y+ 2 z+ 8 x z- 6 y z+ 2 z2, -2+ 4 x- 7 x2

+ 8 y- 4 x y- 3 y2
+ 9 z- 7 x z+ 3 y z- z2

Out[125]= 4+ 2 x- 3 y- 6 z

Out[129]= 4

For a non-singular QSIC classical mathematicians have determined this is a

curve of genus 1. Plane curves of genus 1 include the elliptic curves

y 2 - x3 - a x - b and hyper-elliptic curves y 2 - x4 - a x2 - b x - c where in

both cases the cubic in x has no multiple zeros. As the screen image above

shows DLLP can parameterize these curves in the form of rational functions

of the form

ρ[u] = {(U1 [u] + V1 [u] Sqrt [δ [u]]) /Δ, (U2 [u] + V2 [u] Sqrt [δ]) /Δ, (U3 [u] + V3 [u] Sqrt [δ [u]]) /Δ}

Δ[u] = U4 [u] + V4 [u] Sqrt [δ [u]] (4)

where Ui, Vi, δ are polynomials of degree 4 in u, and Δ, δ are the same for all

three coordinates.

In my 2011 paper on QSIC I show that one can do better in that the Ui, Vi, δ

can be polynomials of degree 3. Here is an exposition in terms of the Wol -

fram Language.

Here Q is the equation of our QSIC and p is a point on Q. We obtain an FLT

projection Ω and right inverse ℧ which is not an FLT. In addition we obtain

a cubic plane curve h which is the domain of ℧ . The algorithm takes p to an

infinite point so is not in the domain of Ω.

Suppose we take a random example, say the one above

In[113]:= Qr = { -2+7 x+2 x2 -6 y-4 x y+2 z+8 x z-6 y z+2 z2,

-2+4 x-7 x2 +8 y-4 x y-3 y2 +9 z-7 x z+3 y z- z2};

We first obtain a point on the curve, in general this might not be random.

In[116]:= cp = criticalPoints3D[Q, {x, y, z}]〚2〛
Out[116]= {0.199762, 0.0222691, 0.176374}

Next we use the following function with codifies the method in my 2011

paper. This returns a plane polynomial h of degree 3, an FLT Ω which takes

SpaceCurveBook_v2c.nb 105

paper. plane polynomial degree

the curve Q to h and a function ℧ which maps h back up to Q as a right

inverse, that is ℧[Ω[q]] = q for almost all q in Q. One needs to be careful

with the usage since the routine does use randomization and will give a

different result each run. This randomization turns out to be essential since

most integer coefficient examples one might use, eg. from [TWMW], are not

full, that is the input polynomials must have non-zero coefficients for each

monomial, for the classical trick we use to work. Also to avoid messy output

I recommend running quietly with “;” .

In[108]:= nsQSIC3D[Q_, p_, {x_, y_, z_}] := Module[{p0, A, F, h, L, M, R, S, Ω, ℧},

p0 = Normalize[Append[p, 1]];

A = Reverse[Orthogonalize[Prepend[RandomReal[{-1, 1}, {3, 4}], p0]]];

F = FLT3D[Q, A, {x, y, z}];

L = formMD[F〚1〛, 1, {x, y, z}];

M = formMD[F〚2〛, 1, {x, y, z}];

R = formMD[F〚1〛, 2, {x, y, z}];

S = formMD[F〚2〛, 2, {x, y, z}];

h = Expand[L*S-R*M] / . {z → 1};

Ω = Take[fltMD[#, A], 2] / (fltMD[#, A]〚3〛) &;

℧ = Take[Inverse[A].Join[#, {1, (-R /L) / . Thread[{x, y, z} → Append[#, 1]]}], 3] /

Last[Inverse[A].Join[#, {1, (-R /L) / . Thread[{x, y, z} → Append[#, 1]]}]] &;

{h,

Ω,

℧}]

In[117]:= {hr, Ωr, ℧r} = nsQSIC3D[Q, cp, {x, y, z}]; (* non evaluative cell for illustration only*)

Now we carefully look at the output. First we note that we do get a cubic

polynomial for h. Note this will be numerical and full for the integer sparse

input.

In[118]:= hr (* non evaluative cell *)

Out[118]= 47.2734- 126.297 x+ 137.892 x2
- 2.33154 x3

+ 38.6005 y-

7.96867 x y- 4.20928 x2 y+ 33.8287 y2
+ 5.10199 x y2

- 5.79393 y3

Rather than look at the complicated definition of Ω, ℧ we evaluate the

output functions using variables for values. We see that we do get an FLT.

In[121]:= Ωr[{x, y, z}] (* non evaluative cell *)

Out[121]=  -0.192492+ 0.511139 x+ 0.724164 y+ 0.421034 z

0.167346- 0.654154 x+ 0.676769 y- 0.293362 z
,

0.0409707+ 0.523046 x+ 0.130794 y- 0.841212 z

0.167346- 0.654154 x+ 0.676769 y- 0.293362 z


106 SpaceCurveBook_v2c.nb

℧ takes points on the plane to points in ℝ3, it is easier to work with each

coordinate separately.

In[265]:= ℧rx= Simplify[℧r[{x, y}]〚1〛] (* non evaluative cell *)

℧ry= Simplify[℧r[{x, y}]〚2〛]
℧rz= Simplify[℧r[{x, y}]〚3〛]

Out[265]=

6.77097+ 0.677412 x2 + x (-5.94613+ 0.730631 y) - 6.95909 y+ 0.262376 y2

-5.37988+ 5.23728 x+ 0.505216 x2 - 5.00917 y+ 0.619406 x y+ 1. y2

Out[266]=

7.79955+ 7.48938 x- 0.775353 x2 + 1.51171 y- 0.238621 x y- 0.0380644 y2

5.37988- 5.23728 x- 0.505216 x2 + 5.00917 y- 0.619406 x y- 1. y2

Out[267]=

2.73532+ 0.56636 x2 + x (-4.60656- 0.725381 y) + 8.75834 y+ 0.0731931 y2

-5.37988+ 5.23728 x+ 0.505216 x2 - 5.00917 y+ 0.619406 x y+ 1. y2

Important Note: If you execute this code then even if you use the same input these

values will change. To continue with this particular example between sessions we

initialize now as follows:

SpaceCurveBook_v2c.nb 107

In[252]:= Qr = {-2+7 x+2 x2 -6 y-4 x y+2 z+8 x z-6 y z+2 z2,

-2+4 x-7 x2 +8 y-4 x y-3 y2 +9 z-7 x z+3 y z- z2};

hr = 47.27339766682051`-126.29676742395714`x+137.8924583577859`x2 -

2.3315379753889216`x3 +38.600477189804465`y-

7.968669330520427`x y-4.209276523596027`x2 y+

33.82865025275894`y2 +5.101992253822809`x y2 -5.793933359433088`y3;

Ωr[x_, y_, z_] := {(-0.19249242259065155`+0.511138659376466`x+

0.7241643930306724`y+0.4210342860178124`z) /

(0.1673459529911122`-0.6541543196115073`x+

0.6767688687679541`y-0.29336215914402825`z),

(0.04097065367206614`+0.5230464061760043`x+0.13079378255133922`y-

0.8412115363985226`z) / (0.1673459529911122`-0.6541543196115073`x+

0.6767688687679541`y-0.29336215914402825`z)};

℧rx[{x_, y_}] := (6.770973793600855`-5.946132153292747`x+

0.6774118751211937`x2 + (-6.959092852928387`+0.7306313695805137`x) y+

0.2623764415412226`y2) /

(-5.379876935689428`+5.2372843516982615`x+0.5052157400292752`x2 -

5.009169689826631`y+0.6194057061472128`x y+1.` y2);

℧ry[{x_, y_}] := (7.799549554433994`+7.489375420102824`x-

0.7753526722058538`x2 +1.511709673478418`y-

0.23862093428751913`x y-0.038064407750122875`y2) /

(5.379876935689428`-5.2372843516982615`x-0.5052157400292752`x2 +

5.009169689826631`y-0.6194057061472128`x y-1.` y2);

℧rz[{x_, y_}] := (2.7353213149626185`-4.606560493457439`x+

0.5663595351370571`x2 + (8.758337796121568`-0.725381245932385`x) y+

0.07319306835158754`y2) /

(-5.379876935689428`+5.2372843516982615`x+0.5052157400292752`x2 -

5.009169689826631`y+0.6194057061472128`x y+1.` y2)

℧r[{x_, y_}] := {℧rx[{x, y}], ℧ry[{x, y}], ℧rz[{x, y}]};

We observe that each ℧ is a fraction of two quadratics in x,y with a common

denominator we will call Δ.In practice we will parameterize the cubic h by

putting it in Weierstrass normal form as in Chapter 7 of my plane curve

book y ^ 2 = x ^ 3 + a x + b . There is a 2 dimensional FLT taking We write

δ = x ^ 3 + a x + b so we can parameterize this latter curve by

{t , ±Sqrt [δ[t]]}. There is a 2-dimensional flt taking h to this Weierstrass

curve so h is parameterized by t⟶flt2D[{t, ±Sqrt[δ [t]]},Inverse[Ah]] for a

3×3 invertible matrix Ah obtained as part of the reduction of h to Weier -

strass form.

108 SpaceCurveBook_v2c.nb

In[119]:= allInflectionPoints2D[hr, x, y]

Out[119]= {{39.5436, 14.2075}, {2.82384, 9.43578}, {-3.64555, 8.59508}}

In[121]:= inflecPt = {2.8238358825981082 ,̀ 9.43577590447643 }̀

Out[121]= {2.82384, 9.43578}

In[122]:= {w, Aw} = weierstrassNormalForm2D[hr, inflecPt, x, y]

Out[122]= -4.07613- 4.68308 x+ 1. x3
- 1. y2, {{0.60151, -0.00139735, -1.68538},

{0.516591, 0.875264, 0.182328}, {0.17991, -0.15676, 0.971112}}

In[126]:= ω = w / . {x → t, y → 0}

Out[126]= -4.07613- 4.68308 t+ 1. t3

In[123]:= Clear[s, t]

Our transformation from the curve s2 = ω[t] is given by

In[129]:= {x, y} = TransformationFunction[Inverse[Aw]][{t, s}]

Out[129]=  1.58421+ 0.285239 s+ 0.943677 t

0.566277+ 0.101011 s- 0.256123 t
,
-1.05298+ 0.953119 s- 0.503615 t

0.566277+ 0.101011 s- 0.256123 t


In pictures

In[135]:= {ContourPlot[s2 ⩵ ω, {t, 0, 10}, {s, -20, 20}, ImageSize → Tiny],

"⟶", ContourPlot[hr ⩵ 0, {x, -20, 20}, {y, 5, 25}, ImageSize → Tiny]}

Out[135]= 

0 2 4 6 8 10

-20

-10

0

10

20

, ⟶ ,

-20 -10 0 10 20

5

10

15

20

25



Now we note that composing the transformation function with ℧rx gives

In[124]:= ux = Simplify[℧rx[TransformationFunction[Inverse[Aw]][{t, s}]]]

Out[124]=

2.40371- 4.35144 s- 0.382852 s2 - 2.22272 t+ 3.05474 s t+ 1.78529 t2

9.98189- 2.60174 s+ 1. s2 + 5.15708 t+ 2.25881 s t- 2.53622 t2

which is again a quadratic rational expression, likewise for y,z. Now the

upper and lower half of s2 = ω[t] can be parameterized by s = ±Sqrt [ω].
We have the following special function to replace s by the right hand side

and simplify:

SpaceCurveBook_v2c.nb 109

In[113]:= specialExpand[w_, u_, s_, sgn_] := Module[{w1},

w1 = Expand[w / . {s ^ 2 → u}];

Collect[w1, s] / . {s → sgn*Sqrt[u]}]

In[178]:= μx := specialExpand[Numerator[ux], ω, s, 1] / . {t → #} &

Likewise

In[211]:= uy = Simplify[℧ry[TransformationFunction[Inverse[Aw]][{t, s}]]];

uz = Simplify[℧rz[TransformationFunction[Inverse[Aw]][{t, s}]]];

μy= specialExpand[Numerator[uy], ω, s, 1] / . {t → #} &;

μz= specialExpand[Numerator[uz], ω, s, 1] / . {t → #} &;

Δ = specialExpand[Denominator[uy], ω, s, 1] / . {t → #} &;

So we have our local parameterization of Q as described above

In[216]:= μ[t_] := {μx[t] /Δ[t], μy[t] /Δ[t], μz[t] /Δ[t]}

where

In[136]:= μx[t]

μy[t]

μz[t]

Δ[t]

Out[136]= 3.96427- 0.429792 t+ 1.78529 t2
- 0.382852 t3

+

(-4.35144+ 3.05474 t) -4.07613- 4.68308 t+ 1. t3

Out[137]= -7.64494+ 6.22854 t+ 2.31009 t2
- 0.380456 t3

+

(-4.1584+ 1.70014 t) -4.07613- 4.68308 t+ 1. t3

Out[138]= -11.5215- 2.06748 t+ 4.49677 t2
+ 0.893507 t3

+

(2.89031- 4.29325 t) -4.07613- 4.68308 t+ 1. t3

Out[139]= 5.90575+ 0.474002 t- 2.53622 t2
+ 1. t3

+ (-2.60174+ 2.25881 t) -4.07613- 4.68308 t+ 1. t3

Before we use these we need to find the domains, we need ω ≥ 0 and Δ[t]≠0.

110 SpaceCurveBook_v2c.nb

In[237]:= Reduce[ω > 0]

a = t / . NSolve[ω]〚3〛
NSolve[Δ[t]]

Reduce : Reduce was unable to solve the system with inexact coefficients . The answer was obtained by

solving a corresponding exact system and numericizing the result .

Out[237]= t > 2.51122

Out[238]= 2.51122

Out[239]= {}

The latter result says that Δ[t]≠0 on the domain of ω ≥0, that is (a , ∞). We

see, for instance, this curve lies on the second surface of Q.

In[261]:= Show[ContourPlot3D[Qr〚2〛 ⩵ 0, {x, 0, 2}, {y, 0, 2}, {z, 0, 2}, Mesh → False],

ParametricPlot3D[μ[t], {t, a, 10}], ImageSize → Small]

Out[261]=

 We are not done, we still need to consider the negatives of the square root

of ω. But this is the basic method which should be fairly general as we

started with a random Q.

We use the above as a template to do the example shown in the screen

image of [DLLP]

In[121]:= Q2 = {1+2 x y+ z2, 2-x2 +y2 + z2}

Out[121]= 1+ 2 x y+ z2, 2- x2
+ y2

+ z2

In[123]:= cpF2 = criticalPoints3D[Q2, {x, y, z}]

Out[123]= {{1.45535, -0.343561, 0.}, {-1.45535, 0.343561, 0.}}

In[124]:= {h2, Ω2, ℧2} = nsQSIC3D[Q2, cpF2〚1〛, {x, y, z}];

In[125]:= h2

Out[125]= 2.01482+ 0.478216 x+ 0.00696313x2
+ 2.20142 x3

+ 1.8164 y-

0.761615 x y- 1.1613 x2 y+ 2.41745 y2
+ 2.26213 x y2

- 0.620397 y3

SpaceCurveBook_v2c.nb 111

In[126]:= Ω2[{x, y, z}]

Out[126]=  -0.475535+ 0.465969 x+ 0.589738 y- 0.457109 z

0.464506- 0.134245 x+ 0.783365 y+ 0.390579 z
,

0.499082- 0.332179 x+ 0.0455429 y- 0.799062 z

0.464506- 0.134245 x+ 0.783365 y+ 0.390579 z


In[127]:= ℧2x[{x_, y_}] = ℧2[{x, y}]〚1〛;

℧2y[{x_, y_}] = ℧2[{x, y}]〚2〛;

℧2z[{x_, y_}] = ℧2[{x, y}]〚3〛;

In[130]:= inflect2 = allInflectionPoints2D[h2, x, y]〚1〛
Out[130]= {-0.868301, -0.10578}

In[131]:= {w2, Aw2} = weierstrassNormalForm2D[h2, inflect2, x, y]

Out[131]= -0.544673- 0.529355 x+ 1. x3
- 1. y2, {{-0.451752, 0.568297, -0.332142},

{-0.697489, 0.290734, 0.753708}, {0.728672, 0.202775, 0.654156}}

In[132]:= ω2 = w2 / . {x → t, y → 0}

Out[132]= -0.544673- 0.529355 t+ 1. t3

In[144]:= u2x = Simplify[℧2x[TransformationFunction[Inverse[Aw2]][{t, s}]]];

u2y = Simplify[℧2y[TransformationFunction[Inverse[Aw2]][{t, s}]]];

u2z = Simplify[℧2z[TransformationFunction[Inverse[Aw2]][{t, s}]]];

μ2x= specialExpand[Numerator[u2x], ω2, s, 1] / . {t → #} &;

μ2y= specialExpand[Numerator[u2y], ω2, s, 1] / . {t → #} &;

μ2z= specialExpand[Numerator[u2z], ω2, s, 1] / . {t → #} &;

Δ2 = specialExpand[Denominator[u2x], ω2, s, 1] / . {t → #} &;

Here is our parameterization for Q2, compare with [DLLP] above.

112 SpaceCurveBook_v2c.nb

In[173]:= μ2x[t]

μ2y[t]

μ2z[t]

Δ2[t]

Out[173]= -1.33227× 10-15
- 1.80591 t- 1.44353 t2

- 1.45535 t3
+

2.13788× 10-14
+ 1.23957× 10-14 t -1.09443- 0.84291 t+ 1. t3

Out[174]= 5.55112× 10-17
- 2.16386 t+ 2.33569 t2

+ 0.343561 t3
+

-9.34093× 10-15
+ 1.8324× 10-14 t -1.09443- 0.84291 t+ 1. t3

Out[175]= -6.53777× 10-15
- 1.59014× 10-14 t- 6.0631× 10-16 t2

+

5.91741× 10-15 t3
+ 2.31988× 10-16

+ 3.60332 t -1.09443- 0.84291 t+ 1. t3

Out[176]= 4.44089× 10-16
- 2.52873 t- 2.59678 t2

+ 1. t3
+

-2.09392× 10-14
+ 3.03155× 10-16 t -1.09443- 0.84291 t+ 1. t3

In[186]:= μ2[t_] := {μ2x[t] /Δ2[t], μ2y[t] /Δ2[t], μ2z[t] /Δ2[t]};

This will change if one re - runs the above

In[169]:= Reduce[ω2 > 0]

a2 = t / . NSolve[ω2]〚3〛
b2 = t / . NSolve[Δ2[t]]〚1, 1〛

Reduce : Reduce was unable to solve the system with inexact coefficients . The answer was obtained by

solving a corresponding exact system and numericizing the result .

Out[169]= t > 1.29839

Out[170]= 1.29839

Out[171]= 3.35133

Note here, unlike our random example, there is a zero in the domain of ω so

we need to avoid b2 also.

SpaceCurveBook_v2c.nb 113

In[190]:= Show[ParametricPlot3D[μ2[t], {t, a2, b2- .0001}, PlotStyle → Blue],

ParametricPlot3D[μ2[t], {t, b2+ .0001, 26}, PlotStyle → Green]]

Out[190]=

Now we need to consider negatives of square roots of ω
In[191]:= μ2xn= specialExpand[Numerator[u2x], ω2, s, -1] / . {t → #} &;

μ2yn= specialExpand[Numerator[u2y], ω2, s, -1] / . {t → #} &;

μ2zn= specialExpand[Numerator[u2z], ω2, s, -1] / . {t → #} &;

Δ2n = specialExpand[Denominator[u2x], ω2, s, -1] / . {t → #} &;

μ2n[t_] := {μ2xn[t] /Δ2n[t], μ2yn[t] /Δ2n[t], μ2zn[t] /Δ2n[t]}

In[196]:= c = NSolve[Δ2n[t]]

Out[196]= {t → 3.35133}, {t → 3.35133}, {t → -0.754546}, {t → -0.754546},

t → 1.75617× 10-16
- 8.66265× 10-15 ⅈ, t → 1.75617× 10-16

+ 8.66265× 10-15 ⅈ

In[197]:= c2 = t / . c〚1, 1〛
Out[197]= 3.35133

114 SpaceCurveBook_v2c.nb

In[198]:= Show[ParametricPlot3D[μ2[t], {t, a2, b2- .0001}, PlotStyle → Blue],

ParametricPlot3D[μ2[t], {t, b2+ .00001, 26}, PlotStyle → Green],

ParametricPlot3D[μ2n[t], {t, a2, c2- .0001}, PlotStyle → Black],

ParametricPlot3D[μ2n[t], {t, c2+ .0001, 1000}, PlotStyle → Orange]]

Out[198]=

As described by [DLLP] we get an oval in projective 3 space. Note that

In[199]:= rpts = RandomReal[{1.3, 3.3}, 4]

lpts = Table[μ2[rpts〚i〛], {i, 4}]

Q2 / . Thread[{x, y, z} → #] & /@ lpts

linearSetMD[lpts, {x, y, z}]

Out[199]= {2.98973, 2.17819, 2.98768, 2.17466}

Out[200]= {{14.1295, -5.8276, -12.7938}, {3.44573, -1.32356, -2.84978},

{14.0421, -5.79123, -12.7139}, {3.4316, -1.31727, -2.83561}}

Out[201]= -2.84217× 10-14, 3.41061× 10-12, -1.77636× 10-15, 1.98952× 10-13,
-5.68434× 10-14, 3.2685× 10-12, -3.55271× 10-15, 1.95399× 10-13

Out[202]= {}

These random points are on our curve Q2 but are not planar.

3.2.2 Direct use of nsQSIC3D.

The function nsQSIC3D can be used directly as the image of Ω, h, returned is a

cubic curve which can be path traced and then lifted to ℝ3by ℧ , there is no

SpaceCurveBook_v2c.nb 115

 path by

need to transform to Weierstrass form and re-format the resulting parameter -

ization to look like that in [DLLP]. Although the method in nsQSIC3D follows

a classical method to be applied to non-singular QSIC it still works for some

singular examples.

In section 2.0 we introduced the famous twisted cubic which is parameter -

ized by p[t] = {t , t 2, t 3}. We noticed that the naive curve curve given by

the last two equations {y - x2, z - x y } contained the twisted cubic but also

something else contained in the infinite plane of ℝ3. But nsQSIC3D starts by

doing a random projective transformation so is a good thing to try when a

QSIC has something interesting going on at infinity.

So let

Q3 = {y-x ^ 2, z-x y};

From the parameterization we see {2, 4, 8} is a point on the curve. We apply

nsQSIC3D to get a curve h3.

{h3, Ω3, ℧3} = nsQSIC3D[Q3, {2, 4, 8}, {x, y, z}];

In[266]:= h3

Out[266]= 0.0138615- 0.0383705 x- 0.344181 x2
+ 0.449508 x3

- 0.230084 y-

1.45555 x y- 0.0402686 x2 y- 0.477413 y2
+ 0.406024 x y2

+ 0.281218 y3

We plot

In[267]:= ContourPlot[{h3 ⩵ 0, y+1, y-3}, {x, -2, 3}, {y, -2, 4}, MaxRecursion→ 3,

ContourStyle→ {Blue, Dashed, Dashed}, Epilog → {Red, PointSize[Medium], Point[cp2D]}]

Out[267]=

-2 -1 0 1 2 3

-2

-1

0

1

2

3

4

By inspection this looks like the union of a line and an ellipse. We see h3

intersects the horizontal lines y = 3, y = -1 one point each on the line.

116 SpaceCurveBook_v2c.nb

In[268]:= sol1 = {x, y} / . NSolve[{h3, y-3}]

sol2 = {x, y} / . NSolve[{h3, y+1}]

Out[268]= {{-1.76987, 3.}, {1.40215- 1.15192 ⅈ, 3.}, {1.40215+ 1.15192 ⅈ, 3.}}

Out[269]= {{0.192893- 1.97656 ⅈ, -1.}, {0.192893+ 1.97656 ⅈ, -1.}, {0.290313, -1.}}

We notice that

In[274]:= ℧3[sol1〚1〛]
℧3[sol2〚3〛]

Out[274]= 14., 8.86404× 1016, 3.66954× 1016

Out[275]= 2., -2.59898× 1016, -4.53894× 1016

the two points on the line appear to lift to infinite points so the line in h3

comes from an infinite line. It is not hard to guess from the above what this

infinite line is in homogeneous variables {x , y , z , w }. It is {x = 0, w = 0}.

We can find the affine line though these points

In[270]:= L = linearSetMD[{sol1〚1〛, sol2〚3〛}, {x, y}]〚1〛
Out[270]= 0.195918+ 0.871784 x+ 0.449008 y

Dividing h3 by this polynomial

In[271]:= q3 = nDivideMD[h3, L, {x, y}, dTol]

Out[271]= 0.0707515- 0.510676 x+ 0.515618 x2
- 1.33654 y- 0.311758 x y+ 0.626308 y2

we get the equation of the ellipse. Critical points are shown on the plot

above

In[276]:= cp2D = criticalPoints2D[h3, x, y]

Out[276]= {{2.03139, 2.35944}, {-0.177616, -0.09148},

{-0.471063, 0.478272}, {-0.471386, 0.478898}, {0.018471, 0.0468364}}

The third critical point is the intersection of the line and ellipse, but recall

from the Plane Curve Book that singular points are not calculated

accurately.

In[278]:= L / . Thread[{x, y} → cp2D〚3〛]
q3 / . Thread[{x, y} → cp2D〚3〛]

Out[278]= 3.44465× 10-8

Out[279]= 4.52791× 10-8

SpaceCurveBook_v2c.nb 117

We can plot the ellipse using path finding and lift using ℧3

In[257]:= pth1 = pathFinder2D[q3, cp2D〚1〛, cp2D〚3〛, .3, x, y]

Out[257]= {{2.03139, 2.35944}, {1.7855, 2.51268}, {1.50431, 2.59389}, {1.2097, 2.60916},

{0.91616, 2.56786}, {0.632671, 2.47853}, {0.365284, 2.34778}, {0.118914, 2.18051},

{-0.101494, 1.98037}, {-0.290071, 1.75037}, {-0.439164, 1.49376},

{-0.538478, 1.21532}, {-0.574809, 0.923918}, {-0.471063, 0.478272}}

In[258]:= pth2 = pathFinder2D[-q3, cp2D〚1〛, cp2D〚3〛, .3, x, y]

Out[258]= {{2.03139, 2.35944}, {2.21613, 2.13865}, {2.32044, 1.86968}, {2.3412, 1.57919}, {2.28835, 1.29001},

{2.17598, 1.01637}, {2.01659, 0.765887}, {1.81977, 0.542839}, {1.59264, 0.35032},

{1.34077, 0.191458}, {1.06901, 0.0701613}, {0.782406, -0.00830201}, {0.487498, -0.0368244},

{0.194318, -0.00643236}, {-0.0808912, 0.0920785}, {-0.471063, 0.478272}}

In[280]:= Path1 = ℧3/@ pth1

Path2 = ℧3/@ pth2

Out[280]= {-0.632381, 0.399905, -0.252893}, {-0.706213, 0.498737, -0.352214},

{-0.780865, 0.609751, -0.476133}, {-0.857674, 0.735604, -0.630908},

{-0.938997, 0.881715, -0.827928}, {-1.02819, 1.05717, -1.08697},

{-1.12999, 1.27687, -1.44284}, {-1.2516, 1.56651, -1.96065}, {-1.40504, 1.97415, -2.77377},

{-1.61257, 2.60039, -4.19331}, {-1.92136, 3.69163, -7.09296}, {-2.45237, 6.01413, -14.7489},

{-3.63434, 13.2084, -48.0038}, 7869.23, 6.24219× 107, 2.47594× 1011

Out[281]= {-0.632381, 0.399905, -0.252893}, {-0.559109, 0.312603, -0.174779},

{-0.486932, 0.237103, -0.115453}, {-0.416013, 0.173067, -0.0719979},

{-0.34561, 0.119447, -0.041282}, {-0.274075, 0.075117, -0.0205877},

{-0.199084, 0.0396346, -0.00789063}, {-0.117642, 0.0138397, -0.00162813},

{-0.025692, 0.000660079, -0.0000169587}, {0.0827633, 0.00684977, 0.00056691},

{0.217483, 0.047299, 0.0102867}, {0.396062, 0.156865, 0.0621282},

{0.654299, 0.428107, 0.28011}, {1.07795, 1.16198, 1.25256},

{1.93303, 3.7366, 7.22294}, 7869.23, 6.24219× 107, 2.47594× 1011

getting some points with large coordinates. That is expected since the third

critical point lifts to the infinite plane. So we discard these points while

plotting.

118 SpaceCurveBook_v2c.nb

In[295]:= Show[

Graphics3D[{{Green, Thick, Line[Take[Path1, 8]]}, {Green, Thick, Line[Take[Path2, 14]]}}],

ParametricPlot3D[{t, t ^ 2, t ^ 3}, {t, -1.25, 1.15}, PlotStyle → Dashed]]

Out[295]=

Here are other examples, for display we will not re-run nsQSIC3D.

In[184]:= Q0 = {1-y ^ 2+ z ^ 2-4 x y, -3+y ^ 2+ z ^ 2};

By inspection {0,Sqrt[2],1} is a point on this curve .

In[222]:= Q0 / . Thread[{x, y, z} → {0, Sqrt[2], 1}]

Out[222]= {0, 0}

In[223]:= {h0, Ω0, ℧0} = nsQSIC3D[Q0, {0, Sqrt[2], 1}, {x, y, z}]; (*non-evaluatable*)

In[266]:= h0 = 2.945656140191897`-5.217838216917842`x-

1.9646988724373289`x2 -0.07585852051106767`x3 -4.806985694928316`y-

0.20976724723500872`x y+8.782381871328202`x2 y+

1.478912121204738`y2 +7.944951077631805`x y2 -0.6576260858236058`y3

Out[266]= 2.94566- 5.21784 x- 1.9647 x2
- 0.0758585 x3

- 4.80699 y-

0.209767 x y+ 8.78238 x2 y+ 1.47891 y2
+ 7.94495 x y2

- 0.657626 y3

Plotting

In[230]:= ContourPlot[{h0 ⩵ 0, x ^ 2+y ^ 2- .7 x-y ⩵ 0}, {x, -3, 3}, {y, -3, 3}, MaxRecursion→ 4]

Out[230]=

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

we see h0 is a singular cubic, therefore a rational curve. It follows from the

discussion in 3.2.1 that Q0 is a rational curve, further the singular point of

Q0 is {1, 0, 0, 0} which is an infinite singularity of Q0. We will leave it as an

exercise to plot this curve as above.

SpaceCurveBook_v2c.nb 119

We can find 4 real points on the curve as follows

In[233]:= pts = {x, y} / . NSolve[{h0, x ^ 2+y ^ 2- .7 x-y}, {x, y}, Reals]

Out[233]= {{0.960084, 0.517238}, {0.238219, 1.1}, {0.514636, -0.087703}, {-0.186962, 0.790124}}

In[234]:= Pts = ℧0/@ pts

Out[234]= {{-3.25431, -0.294004, 1.70692}, {-6.89478, -0.143543, -1.72609},

{2.62763, 0.356401, -1.69499}, {2.85034, 0.331553, 1.70002}}

In[235]:= linearSetMD[Pts, {x, y, z}]

Out[235]= {}

Thus this is again a non-planar QSIC.

The next example requires luck to get a nice picture, so the following is only

for show

In[226]:= Q4 = {x ^ 2+ z ^ 2-2 y, -3 x ^ 2+y ^ 2- z ^ 2}

Out[226]= x2
- 2 y+ z2, -3 x2

+ y2
- z2

In[248]:= {h4, Ω4, ℧4} = nsQSIC3D[Q5, {0, 0, 0}, {x, y, z}]; (* Non evaluatable*)

In[249]:= h5 (* non evaluatible *)

Out[252]= 1.02149+ 1.37722 x- 1.48595 x2
- 0.382509 x3

- 3.52956 y+

6.36564 x y- 0.769861 x2 y- 0.224828 y2
- 1.39048 x y2

+ 1.73501 y3

In[254]:= Ω4[{x, y, z}] (* non evaluatible *)

Out[254]=  0.0401846 x- 0.580388 y- 0.813348 z

0.579156 x+ 0.676849 y- 0.454372 z
,
-0.814226 x+ 0.452797 y- 0.363334 z

0.579156 x+ 0.676849 y- 0.454372 z


Simplify[℧4[{x, y}]〚1〛]
Simplify[℧4[{x, y}]〚2〛] (*non-evaluatable*)

Simplify[℧4[{x, y}]〚3〛]

Out[147]= -
0.0703392× (14.4124+ 1. x- 20.2621 y) × (-1.1662+ 1. x- 0.780161 y)

0.817124+ 1.18476 x+ 1. x2 - 0.924301 y+ 0.792575 x y+ 1.19879 y2

Out[148]=

1.01591 (1.1662- 1. x+ 0.780161 y)2

0.817124+ 1.18476 x+ 1. x2 - 0.924301 y+ 0.792575 x y+ 1.19879 y2

Out[149]=

1.42368× (-1.1662+ 1. x- 0.780161 y) × (0.558644+ 1. x+ 0.446715 y)

0.817124+ 1.18476 x+ 1. x2 - 0.924301 y+ 0.792575 x y+ 1.19879 y2

We notice the following linear factor appears in each numerator, so ℧ is

identically {0,0,0} on this line!

120 SpaceCurveBook_v2c.nb

In[267]:= line4 = -1.1661999857316967`+1.` x-0.7801613607079093`y (* evaluatable*)

Out[267]= -1.1662+ 1. x- 0.780161 y

In fact, this line is a factor of h4

In[152]:= qf = nDivideMD[h4, line, {x, y}, dTol] (* non-evaluatable*)

In[268]:= qf = -0.875916120629441`-1.9320362297177929`x-0.38250867953478784`x2 +

3.6125172138379646`y-1.068279503647881`x y-2.223905683299877`y2

(* this is evaluatable compare with the above *)

h4 = Expand[qf* line4]

Out[268]= -0.875916- 1.93204 x- 0.382509 x2
+ 3.61252 y- 1.06828 x y- 2.22391 y2

Out[269]= 1.02149+ 1.37722 x- 1.48595 x2
- 0.382509 x3

- 3.52956 y+

6.36564 x y- 0.769861 x2 y- 0.224828 y2
- 1.39048 x y2

+ 1.73501 y3

In[270]:= cpqf = criticalPoints2D[qf, x, y]

Out[270]= {{-11.1898, 3.69873}, {-0.131493, 0.188522}}

The contour plot of h4 is then

In[271]:= ContourPlot[{qf ⩵ 0, line4 ⩵ 0}, {x, -14, 4}, {y, -2, 5},

Axes → True, Epilog → {Red, PointSize[Medium], Point[cpqf]}]

Out[271]=

-10 -5 0

-2

-1

0

1

2

3

4

5

We can path trace qf

In[278]:= pth1 = pathFinder2D[qf, cpqf〚1〛, cpqf〚2〛, .25, x, y, maxit → 70];

pth2 = pathFinder2D[-qf, cpqf〚1〛, cpqf〚2〛, .25, x, y, maxit → 50];

pth4 = Join[pth1, Reverse[pth2]];

Now we li� to Q4

In[281]:= PTH4 = ℧4/@ pth4; (* non-evaluatable*)

SpaceCurveBook_v2c.nb 121

In[282]:= Graphics3D[{{Blue, Thick, Line[PTH4]}, {Red, PointSize[Large], Point[{0, 0, 0}]}}]

(* non evaluatable*)

Out[282]=

Thus we get an oval with an isolated point for this QSIC.

3.2.3 Plotting by projection

Often the easiest way to identify and plot QSIC is simply to project to a plane

quartic, path trace the plane curve and use fFiberMD to lift back to ℝ3. The

latter only works with affine projections so the previous method is prefer -

able, assuming it works, if you want to capture some feature on the infinite

plane. Here is one of my favorite QSIC

In[263]:= Q5 = {x ^ 2+y ^ 2+ z ^ 2-16, 57-12 x+4 x ^ 2+y ^ 2-64 z+16 z ^ 2};

We first project.

In[264]:= h5 = FLTMD[Q5, fprd3D, 4, {x, y, z}, {x, y}, dTol]〚1〛
» Initial Hilbert Function {1, 3, 6, 10, 14}

» Final Hilbert Function {1, 3, 6, 10, 14}

Out[264]= 1. - 0.0344652 x- 0.033403 x2
+ 0.00677934x3

+ 0.00134825x4
-

1.62713 y- 0.0245903 x y+ 0.0241702 x2 y- 0.00181159x3 y+ 0.893879 y2
+

0.0164066 x y2
- 0.00620129x2 y2

- 0.208146 y3
- 0.000832304x y3

+ 0.0196645 y4

We first find and label critical points.

In[265]:= cp5 = criticalPoints2D[h5, x, y];

ap5 = Association[Table[i → cp5〚i〛, {i, 10}]]

Out[266]= 1 → {-539.117, -251.121}, 2 → {-539.117, -251.121},

3 → {3.04937, 1.90971}, 4 → {-3.63348, 1.67267}, 5 → {-3.39309, 2.09769},

6 → {-3.14407, 2.47282}, 7 → {-3.89168, 3.90354}, 8 → {-3.89168, 3.90354},

9 → {-0.213013, 2.24798}, 10 → {0.250554, 1.21911}

122 SpaceCurveBook_v2c.nb

In[267]:= Show[ContourPlot[h5 ⩵ 0, {x, -4, 4},

{y, -0, 4}, Epilog → {Red, PointSize[Medium], Point[cp5]}],

Graphics[Table[{PointSize[Medium], Text[i, ap5[i] + {-.2, .1}]}, {i, 10}]]]

Out[267]=
3

4

5

6

78

9

10

-4 -2 0 2 4

0

1

2

3

4

Note that there are two isolated singularities, points 1-2 and 7-8.

In[268]:= fFiberMD[Q5, prd3D, cp5〚1〛, {x, y, z}, 1.*^-6]

fFiberMD[Q5, prd3D, cp5〚7〛, {x, y, z}, 1.*^-6]

» (1) no point in fiber at {-539.117, -251.121 }

Out[268]= {}

» (1) no point in fiber at {-3.89168, 3.90354 }

Out[269]= {}

These are artifactual isolated points, it should be noted that they must be

here, since this is a quartic of genus 1, see section 3.3 or Plane Curve Book.

We now plot paths in the plane, output omitted, some trial and error was

used.

In[270]:= pth1 = pathFinder2D[-h5, cp5〚6〛, cp5〚9〛, .2, x, y];

pth2 = pathFinder2D[-h5, cp5〚9〛, cp5〚3〛, .2, x, y];

pth3 = pathFinder2D[-h5, cp5〚3〛, cp5〚10〛, .2, x, y];

pth4 = pathFinder2D[-h5, cp5〚10〛, cp5〚4〛, .14, x, y, maxit → 40];

pth5 = pathFinder2D[-h5, cp5〚4〛, cp5〚6〛, .05, x, y];

Then we lift

In[275]:= Pth1 = Flatten[fFiberMD[Q5, prd3D, #, {x, y, z}, 1.*^-6], 1] & /@ pth1;

Pth2 = Flatten[fFiberMD[Q5, prd3D, #, {x, y, z}, 1.*^-8], 1] & /@ pth2;

Pth3 = Flatten[fFiberMD[Q5, prd3D, #, {x, y, z}, 1.*^-8], 1] & /@ pth3;

Pth4 = Flatten[fFiberMD[Q5, prd3D, #, {x, y, z}, 1.*^-8], 1] & /@ pth4;

Pth5 = Flatten[fFiberMD[Q5, prd3D, #, {x, y, z}, 1.*^-8], 1] & /@ pth5;

SpaceCurveBook_v2c.nb 123

» multiple fiber points {-3.14407 , 2.47282 }

» (3) no point in fiber at {-3.63348 , 1.67267 }

» (3) no point in fiber at {-3.63348 , 1.67267 }

» (3) no point in fiber at {-3.14407 , 2.47282 }

And now we can show our single oval with the first surface, a sphere, as the

background.

In[280]:= Show[ContourPlot3D[x ^ 2+y ^ 2+ z ^ 2 ⩵ 16, {x, -4, 4},

{y, -4, 4}, {z, -4, 4}, Mesh → False, ContourStyle→ Opacity[.5]],

Graphics3D[{Thick, Blue, Line[Pth1], Line[Pth2], Line[Pth3], Line[Pth4], , Line[Pth5]}],

Boxed → False, Axes → False]

3.2.4 Some more examples from [TWMW].

We give some more examples from the classification of QSIC in [TWMW]. In

Example 2.5.3.1 we already saw that the union of the twisted cubic and a line

through two points was a QSIC.

124 SpaceCurveBook_v2c.nb

In[281]:=

Out[281]=

 In other cases it will be enough just to project to the plane.

Example 6

In[282]:= Q6 = {x ^ 2+y ^ 2+ z ^ 2-1, x ^ 2+2 y ^ 2};

We project with our pseudo-random projection.

In[283]:= h6 = FLTMD[Q6, fprd3D, 4, {x, y, z}, {x, y}, dTol]〚1〛
» Initial Hilbert Function {1, 3, 6, 10, 14}

» Final Hilbert Function {1, 3, 6, 10, 14}

Out[283]= 1. + 1.27881 x2
+ 0.903815 x4

+ 0.162081 x y-

0.451232 x3 y- 2.04542 y2
- 1.14578 x2 y2

- 0.165762 x y3
+ 1.04594 y4

A contour plot with any scale gives nothing. But looking for critical points

we get 4 distinct points of multiplicity 2.

In[284]:= cp6 = criticalPoints2D[h6, x, y]

Out[284]= {{-0.636105, -1.13489}, {-0.636105, -1.13489}, {0.636105, 1.13489},

{0.636105, 1.13489}, {0., 0.988834}, {0., 0.988834}, {0., -0.988834}, {0., -0.988834}}

To show non-existence we use fFiberMD with a loose tolerance

SpaceCurveBook_v2c.nb 125

In[285]:= fFiberMD[Q6, prd3D, cp6〚1〛, {x, y, z}, 1.*^-6]

fFiberMD[Q6, prd3D, cp6〚3〛, {x, y, z}, 1.*^-6]

» (1) no point in fiber at {-0.636105 , -1.13489 }

Out[285]= {}

» (1) no point in fiber at {0.636105 , 1.13489 }

Out[286]= {}

The first two points are artifacts. For the second two we use fFiberMD with a

tight tolerance to show existence.

In[287]:= fFiberMD[Q6, prd3D, cp6〚5〛, {x, y, z}, 1.*^-12]

fFiberMD[Q6, prd3D, cp6〚7〛, {x, y, z}, 1.*^-12]

Out[287]= 5.80425× 10-13, 1.86406× 10-13, 1.

Out[288]= -4.94937× 10-13, -1.58706× 10-13, -1.

So {0, 0, 1}, {0, 0, -1} are points on Q6.Since no other real critical points show

up we conclude that there are no other real points. There are many complex

points, remove the condition "Reals" from the critical point code

In[289]:= criticalPoints3DC[{f_, g_}, {x_, y_, z_}] := Module[{J, ob},

ob = RandomReal[{.7, 1.3}, 3].{x ^ 2, y ^ 2, z ^ 2};

J = D[{f, g, ob}, {{x, y, z}}];

DeleteDuplicates[{x, y, z} / . NSolve[{f, g, N[Det[J]]}]]]

In[290]:= criticalPoints3DC[Q6, {x, y, z}]

Out[290]= {{-1.41421, 0. + 1. ⅈ, 0.}, {-1.41421, 0. - 1. ⅈ, 0.},

{1.41421, 0. + 1. ⅈ, 0.}, {1.41421, 0. - 1. ⅈ, 0.}, {0., 0., 1.}, {0., 0., -1.}}

Thus this real QSIC is a two point set but the complex solution has non-

isolated components. A similar example {y 2 - z2 + 2 z , x2 + z2} has only one

real point.

Example 7:

Here is a case where nsQSIC3D does not tell the whole story. We have a

reducible curve consisting of a plane quadric and 2 lines, thus very definitely

of degree 4 and not capable of being modelled by a plane cubic.

In[291]:= Q7 = {2 x y-y ^ 2, y ^ 2+ z ^ 2-1};

We see that {x = 0, y 2 + z2 = 0} is a plane circle contained in Q7.

We project to the plane with our standard pseudo-random projection.

126 SpaceCurveBook_v2c.nb

In[292]:= h7 = FLTMD[Q7, fprd3D, 4, {x, y, z}, {x, y}, dTol]〚1〛
» Initial Hilbert Function {1, 3, 6, 10, 14}

» Final Hilbert Function {1, 3, 6, 10, 14}

Out[292]= 1. - 1.80651 x2
+ 0.350558 x4

+ 0.653265 x y-

1.44199 x3 y- 2.04542 y2
+ 1.56429 x2 y2

- 0.668101 x y3
+ 1.04594 y4

The result is a circle and two lines in the plane.

In[293]:= cp7 = criticalPoints2D[h7, x, y];

acp7 = Table[i → Chop[cp7〚i〛], {i, 10}]
Out[294]= 1 → {-0.761959, -0.189212}, 2 → {0.761959, 0.189212}, 3 → {0, 0.988834},

4 → {0, 0.988834}, 5 → {0, -0.988834}, 6 → {0, -0.988834}, 7 → {0.242741, -0.977522},

8 → {-0.242741, 0.977522}, 9 → {0.378051, -0.813048}, 10 → {-0.378051, 0.813048}

We see points 3, 5 are singular critical points but surprisingly the other two

apparent intersection points were not picked up as critical points.

In[295]:= Show[ContourPlot[h7 ⩵ 0, {x, -2, 2},

{y, -2, 2}, MaxRecursion→ 4, Epilog → {Red, Point[cp7]}],

Graphics[{Table[Text[i, acp7[i] + {.1, -.1}], {i, {1, 2, 3, 5, 7, 8, 9, 10}}]}]]

Out[295]=

1

2

3

5 7

8

9

10

-2 -1 0 1 2

-2

-1

0

1

2

In[296]:= We li� points on the lines to ℝ3.

SpaceCurveBook_v2c.nb 127

In[296]:= p1=fFiberMD [Q7,prd3D,acp7[3],{x,y,z},1.*^-12]〚1〛
p2=fFiberMD [Q7,prd3D, acp7[10],{x,y,z},dTol]〚1〛
p3=fFiberMD [Q7,prd3D, acp7[5],{x,y,z},dTol]〚1〛
p4=fFiberMD [Q7,prd3D, acp7[9],{x,y,z},dTol]〚1〛

Out[296]= 6.66134× 10-16, 2.22045× 10-16, 1.

Out[297]= 1.23871, -5.55112× 10-16, 1.

Out[298]= -6.66134× 10-16, -3.33067× 10-16, -1.

Out[299]= -1.23871, -6.66134× 10-16, -1.

We can now plot in ℝ3

In[300]:= ParametricPlot3D[{{0, Cos[t], Sin[t]}, p1+ t*p2, p3+ t*p4}, {t, -Pi, Pi}]

Out[300]=

Comment : In this example there is a circle and two lines through a common

infinite point, each line intersecting the circle. Suppose instead the two lines do not

touch the circle, for example the curve in ℝ3 looks like

In[301]:= ParametricPlot3D [{{0, Cos [t], Sin[t]}, {t, t, 0}, {t, -t, 0}}, {t, -Pi, Pi}]

Out[301]=

In[302]:=

This is no longer a QSIC. By Example 2.5.3.3 we see this configuration requires 4

equations, one of degree 2 but 2 of degree 3 and one of degree 4.

128 SpaceCurveBook_v2c.nb

Out[188]= 1. x z, -1. x3
+ 1. x y2, -1. z+ 1. y2 z+ 1. z3, 1. x2

- 1. x4
- 1. y2

+ 1. y4
+ 1. y2 z2

There are, according to[TWMW] 8 cases with the QSIC a union of 2, 3 or 4

lines.In Chapter 4 I plan to cover unions of lines in ℝ3 more thoroughly, in

particular where situations as in the comment are more common.

3.2.5 A numerical Example of a degenerate QSIC.

In this example we show that our direct method works well for numerical

QSIC even in the singular case.

In[303]:= K =

{-3.0343373677870256`+4.760714817579225`x-0.8673102054064943`x2 -

2.3198076300045427`y+1.8198277283436077`x y-0.4433840726939407`y2 +

3.4471924447384925`z-2.7042312969112072`x z+1.317721526336166`y z+

0.02094474750770381`z2, 0.00005226006460796005`-0.014540466884057102`x+

1.0114088969866952`x2 +0.000039953796143140416`y-

0.005558229348449886`x y+7.636355973833214`*^-6y2 -

0.00005937062298695252`z+0.00825942891482889`x z-

0.000022694975460771253`y z-0.9999831378371788`z2}

Out[303]= -3.03434+ 4.76071 x- 0.86731 x2
- 2.31981 y+ 1.81983 x y-

0.443384 y2
+ 3.44719 z- 2.70423 x z+ 1.31772 y z+ 0.0209447 z2,

0.0000522601- 0.0145405 x+ 1.01141 x2
+ 0.0000399538y- 0.00555823x y+

7.63636× 10-6 y2
- 0.0000593706z+ 0.00825943x z- 0.000022695y z- 0.999983 z2

We check for infinite points

In[304]:= ipK = infiniteRealPoints3D[K, {x, y, z}]

Out[304]= {{-0.329006, -0.885872, 0.327087, 0}, {0.171804, 0.970211, 0.170802, 0},

{0.498804, 0.706713, 0.501749, 0}, {-0.472181, 0.742597, 0.474969, 0}}

Our standard method from Chapter 2 is to project on the plane and lift back

up to plot.

We choose a random projective FLT for projection, but for replication we

give it here

In[305]:= A =

{{-0.6934276433346329 ,̀ 0.07381779176491898 ,̀ -0.7573184238468178 ,̀

-0.12486357381645385 }̀, {-0.41481421719883427 ,̀ -0.24723634736560696 ,̀

0.5906825357052634 ,̀ 0.21818634914942425 }̀, {-0.6431194318709657 ,̀

-0.3715495908236628 ,̀ 0.3379270707587114 ,̀ -0.9578085718413809 }̀}

Out[305]= {{-0.693428, 0.0738178, -0.757318, -0.124864},

{-0.414814, -0.247236, 0.590683, 0.218186}, {-0.643119, -0.37155, 0.337927, -0.957809}}

SpaceCurveBook_v2c.nb 129

In[306]:= K2 = FLTMD[K, A, 4, {x, y, z}, {x, y}, 1.*^-9]〚1〛
» Initial Hilbert Function {1, 3, 6, 10, 14}

» Final Hilbert Function {1, 3, 6, 10, 14}

Out[306]= 1. - 9.1079 x+ 23.8809 x2
- 23.5535 x3

+ 7.31227 x4
- 3.41374 y+ 18.0057 x y- 26.7585 x2 y+

11.1384 x3 y+ 3.39349 y2
- 10.1319 x y2

+ 6.36118 x2 y2
- 1.27861 y3

+ 1.61432 x y3
+ 0.1536 y4

We map our infinite points of K to K2. We also intersect K2 with the line

y = -2

In[307]:= ipK2 = fltiMD[#, A] & /@ ipK

sol2 = {x, y} / . NSolve[{K2, y+2}]〚{1, 2, 4, 3}〛
Out[307]= {{-0.130453, 0.842512}, {0.427985, 0.508764}, {1.62802, 0.206039}, {0.119715, 1.55542}}

Out[308]= {{0.922963, -2.}, {1.37574, -2.}, {2.5008, -2.}, {1.46808, -2.}}

We now plot

In[309]:= ContourPlot[{K2 ⩵ 0}, {x, -1, 3}, {y, -3, 3}, ContourStyle→ Green,

Epilog → {{Black, PointSize[Medium], Table[Text[i, ipK2〚i〛], {i, 4}]},

{Purple, PointSize[Medium], Table[Text[i, sol2〚i〛], {i, 4}]}}, ImageSize → Medium]

Out[309]=

-1 0 1 2 3

-3

-2

-1

0

1

2

3

1

2

3

4

1 2 34

We see we have four apparently parallel lines, since FLT preserve lines we

can expect 4 lines in K. Importantly, note that we permuted our set sol2 so

that the indices of the two point sets match up on each line, this gives us two

points on each line so we can lift back to K. Our first set of points come from

the infinite points of K which can be viewed as slopes [Section 1.1 of my

plane curve book]. There are two problems, first fiber my lifting function

fFiberMD only works for linear projections. Secondly when we plot we need

130 SpaceCurveBook_v2c.nb

 only projections. Secondly plot

nice endpoints which will must be chosen when we plot. The first problem

is handled nicely with my factorFLT function [see 2.7.2] and for the second we

will find equations for each line.

In[310]:= {P, B} = factorFLT[A];

pl = tM2M[P];

pl // MatrixForm

B // MatrixForm

Out[312]//MatrixForm=

-0.693428 0.0738178 -0.757318

-0.414814 -0.247236 0.590683

Out[313]//MatrixForm=

1. 0 0 0.0730708

0 1. 0 -1.0051

0 0 1. 0

-0.643119 -0.37155 0.337927 -0.957809

We then have the intermediate curve K3 below which we do not need to fully

describe.

In[314]:= K3 = FLT3D[K, B, {x, y, z}]

Out[314]= -3.81978- 10.1431 x- 5.81064 x2
- 0.234581 y- 0.27421 x y-

0.00322577y2
- 1.28772 z- 1.76506 x z- 0.0406579 y z+ 0.8923 z2,

0.00422664+ 0.136201 x+ 1.09725 x2
+ 0.0027815 y+ 0.0448162 x y+

0.000457618y2
- 0.00232266z- 0.0374233 x z- 0.000764258y z- 0.999681 z2

We can now lift the points of sol2 above to K.

In[315]:= kpts = fltMD[fFiberMD[K3, pl, #1, {x, y, z}, 1.*^-8]〚1〛, Inverse[B]] & /@ sol2

Out[315]= {{0.158762, -2.18855, -0.157835}, {0.148034, -1.78005, 0.14717},

{0.488106, -1.92447, 0.490987}, {0.630171, -3.60709, -0.633891}}

Next we can describe the lines on K by one Mathematica function

In[316]:= l := lineMD[kpts〚#〛, ipK〚#〛, {x, y, z}] &

We don't actually need to see the equations but as an example

In[317]:= l[1]

Out[317]= {0.277262+ 0.514444 x+ 0.105986 y+ 0.804512 z, 0.720243- 0.626116 x+ 0.27532 y+ 0.115878 z}

The following utility functions find points on these lines by specifying only

the x-coordinate.

In[318]:= u := {x, y, z} / . NSolve[Append[l[#1], x+#2]]〚1〛 &

v := {x, y, z} / . NSolve[Append[l[#1], x+#2]]〚1〛 &

By trial we can find nice endpoints for plotting

SpaceCurveBook_v2c.nb 131

In[320]:= (
u1 u2 u3 u4

v1 v2 v3 v4
) =

(
u[1, 0.7`] u[2, 0.3`] u[3, 0.6`] u[4, 0.8`]

v[1, -0.4`] v[2, -0.3`] v[3, -0.6`] v[4, -0.8`]
)

Out[320]= {{{-0.7, -4.50082, 0.695916}, {-0.3, -4.31018, -0.29825},

{-0.6, -3.46611, -0.603542}, {-0.8, -1.35787, 0.804723}}, {{0.4, -1.539, -0.397666},

{0.3, -0.921867, 0.29825}, {0.6, -1.76594, 0.603542}, {0.8, -3.87418, -0.804723}}}

In[197]:= Graphics3D[{{Blue, Thick, Line[{u1, v1}]}, {Green, Thick, Line[{u2, v2}]},

{Orange, Thick, Line[{u3, v3}]}, {Magenta, Thick, Line[{u4, v4}]}}, Boxed → False]

In[321]:=

So we see K consists of 4 lines through a point. What is most interesting is

that we never actually used that point in our construction. Note in particu -

lar that these lines were given numerically so, for example,

In[322]:= NSolve[Join[l[1], l[2]]]

Out[322]= {}

finding the intersection of any two of these lines is an inconsistent problem

to NSolve. But it is not to our methods. One possibility is to consider the

linear equation set

132 SpaceCurveBook_v2c.nb

In[323]:= F = {l[1], l[2], l[3], l[4]}

Out[323]= {{0.277262+ 0.514444 x+ 0.105986 y+ 0.804512 z, 0.720243- 0.626116 x+ 0.27532 y+ 0.115878 z},

{-0.258819- 0.33616 x- 0.098936 y+ 0.900123 z,

0.468581- 0.849601 x+ 0.179119 y- 0.16287 z},

{-0.214984- 0.629812 x- 0.0821798 y+ 0.741866 z,

0.853126- 0.402957 x+ 0.326115 y- 0.0587414 z},

{-0.0354267+ 0.698008 x- 0.0135422 y+ 0.715085 z,

0.867771+ 0.288235 x+ 0.331713 y- 0.232079 z}}

and find an H-Basis.

In[324]:= sys = hBasisMD[F, 1, {x, y, z}, 1.*^-6]

» Initial Hilbert Function {1, 0}

» Final Hilbert Function {1, 0}

Out[324]= {1. x, 2.61602+ 1. y, 1. z}

Solving this last system for the singular point

In[325]:= spt = {x, y, z} / . Solve[sys ⩵ 0]〚1〛
Out[325]= {0., -2.61602, 0.}

Note

In[326]:= tangentVectorMD[K, spt , {x, y, z}]

» Hilbert Function {1, 3, 4, 4, 4}

» No unique tangent vector at {0., -2.61602, 0.}

Note the multiplicity of the singular point is correctly given as 4. Thus all

this numerical work does give a consistent story.

3.3 Birational Equivalence and Genus

In the plane curve book we gave little emphasis to the idea of genus. For

most of the results there the important number was the degree of a curve.

But more importantly we viewed the genus from the standpoint of the

Clebsch-Noether formula which, in fact, is not numerically stable. A pertur -

bation could drastically change this, in fact every numerical curve is only a

small perturbation away from being non-singular.

However, for space curves things are different. The degree is not the best

parameter, especially when we have curves defined by an over-determined

system. Even in section 3.2 where we had naive curves the degree was 4 but

we saw these curves tended to be related to plane cubics. We will see the

SpaceCurveBook_v2c.nb 133

 plane

explanation is the genus. We will find, instead of Clebsch-Noether a more

numerically stable way to calculate genus. But, as we also saw in this last

section the role which we had previously given to FLT is now taken up with

birational equivalence.

3.3.1 Elliptic Curves and functions.

Historically the formalization of the notion of genus began with Riemann

and the Riemann-Roch Theorem (1857-1865). But some of the ideas sur -

faced as early as the early 1800. At that point a main interest was working

out closed form integration formulas. In particular the integral


0

ϕ du

1- κ Sin2 u

, 0 ≤ κ < 1

attracted special attention as it required new functions to give a closed form.

These functions became known as elliptic functions. (For an elementary

account see Chapter 6 of my Theory of Equations book https://barryhdayton.s-

pace/theoryEquations/theq6.pdf). Using these and then standard methods of

integration indefinite integrals of the form


dx

x4 +a x2 +b x+ c

, 
dx

x3 +a x+b

could be expressed in terms of these elliptic functions. This suggested that

the equations defining the denominators

y2 - (x4 +a x2 +b x+c), y2 - (x3 +a x+b)

could be called elliptic curves. From our study of QSIC we can show how

these are related. So we can use our numerical methods let us take an

explicit example:

In[129]:= f = y ^ 2- (x ^ 4+3 x ^ 2-2 x+2);

We form a QSIC by adding a new variable z = x2 getting

In[125]:= q1 = y ^ 2- (z ^ 2+3 z-2 x+2);

q2 = z-x ^ 2;

Q = {q1, q2}

Out[127]= -2+ 2 x+ y2
- 3 z- z2, -x2

+ z

We note the following simple algebraic maps between the curve f and the

QSIC Q .

In[121]:= Φ = {#〚1〛, #〚2〛, #〚1〛^ 2} &;

Θ = Take[#, 2] &;

134 SpaceCurveBook_v2c.nb

where Θ is actually the projection on the first 2 coordinates.

In[130]:= cpf = criticalPoints2D[f, x, y]

Out[130]= {{0.24284, 1.30181}, {0.24284, -1.30181}}

Then note that as claimed q is a point on Q .

In[132]:= q = Φ[cpf〚1〛]
Q / . Thread[{x, y, z} → q]

Out[132]= {0.24284, 1.30181, 0.0589711}

Out[133]= 5.05151× 10-15, 0.

So we can now use

In[134]:= {h, Ω, ℧} = nsQSIC3D[Q, q, {x, y, z}];

We get a cubic

In[135]:= h

Out[135]= -1.01523+ 3.51199 x- 0.395834 x2
- 0.451825 x3

+ 0.960383 y-

1.54767 x y+ 0.825717 x2 y- 0.639259 y2
+ 1.8056 x y2

- 0.154608 y3

Let p2 be the point on h given by

In[145]:= q2 = Φ[cpf〚2〛]
p2 = Ω[q2]

h / . Thread[{x, y} → p2]

Out[145]= {0.24284, -1.30181, 0.0589711}

Out[146]= {2.70196, 0.619418}

Out[147]= 1.77636× 10-15

Putting this cubic in Weierstrass form

In[137]:= afl = allInflectionPoints2D[h, x, y]

Out[137]= {{0.327046, 1.79307}, {0.235602, -2.95013}, {0.293491, 0.052556}}

In[138]:= {wh, Awh} = weierstrassNormalForm2D[h, afl〚1〛, x, y]

Out[138]= -0.776489- 2.00209 x+ 1. x3
- 1. y2, {{-0.899271, -0.305709, 0.842261},

{0.0938218, 0.814567, 0.587697}, {0.986819, -0.156009, -0.0430005}}

Note a we get point of wh which is in the image of our combined map

fltMD[Ω[Φ[{x,y}]]

SpaceCurveBook_v2c.nb 135

In[154]:= wp2 = fltMD[p2, Awh]

wh / . Thread[{x, y} → wp2]

fltMD[Ω[Φ[cpf〚2〛]], Awh]

Out[154]= {-0.703244, 0.532612}

Out[155]= -3.59712× 10-14

Out[156]= {-0.703244, 0.532612}

This combined map can be simplified to

In[162]:= α = Simplify[fltMD[Ω[Φ[{x, y}]], Awh]]

Out[162]=  -1.27575+ 1.68777 x- 0.851591 x2 + 0.703722 y

1.23811+ 0.0231189 x+ 1. x2 - 1.00068 y
,

0.723771+ 0.276694 x- 1.6471 x2 - 0.532974 y

1.23811+ 0.0231189 x+ 1. x2 - 1.00068 y


which is a rational algebraic function.

Going the other way we get a rational algebraic function

In[169]:= β = Simplify[Θ[℧[fltMD[{x, y}, Inverse[Awh]]]]]

Out[169]=  421.658+ 250.845 x- 326.455 x2 + 37.0921 y- 22.2616 x y+ 2.99488 y2

181.37- 74.9655 x+ 1. x2 + 426.963 y- 5.93584 x y+ 0.266356 y2
,

-359.535- 45.8446 x2 + 206.315 y+ 34.05 y2 + x (357.182+ 241.8 y)

181.37- 74.9655 x+ 1. x2 + 426.963 y- 5.93584 x y+ 0.266356 y2


In[165]:= p3 = β / . Thread[{x, y} → wp2]

f / . Thread[{x, y} → p3]

Out[165]= {0.24284, -1.30181}

Out[166]= 0.

Thus we have a birational equivalence between the quartic curve f and the

cubic curve wh.

In the plane curve book we noted the non-singular cubic curve was of genus

1, because of this we claim the quartic curve is also of genus 1.

We end this discussion with a little geometry.

136 SpaceCurveBook_v2c.nb

In[168]:= ContourPlot[{f ⩵ 0, wh ⩵ 0}, {x, -5, 5}, {y, -5, 5}, ImageSize → Small]

Out[168]=

-4 -2 0 2 4

-4

-2

0

2

4

In the affine plane both f and wh have two components. In fact further

experimentation with these birational maps the reader can check that the

smaller component of wh maps by β to the negative component of f while

the large component of wh maps to the positive component of f .

However in the projective plane there is a difference, f is connected as

these two affine components share the same infinite point {0,1,0}. Using

ip2z in the plane curve book we get a plot near this infinite point which is a

non-ordinary singularity of f .

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

In fact from the Clebsh-Noether formula f must have Clebsh number 2 in

order to arrive at genus 1. So the birational map α actually breaks this singu -

larity into two pieces. Birational maps have denominators so are not

defined everywhere and α cannot be defined at this singularity because wh

is non-singular.

For the convenience of the reader who wants to experiment with these maps

here are the full precision expressions for wh, α and β.

SpaceCurveBook_v2c.nb 137

wh = -0.7764892315302467`-2.0020871428383487`x+1.0000000000000004`x3 -1.` y2;

α = {(-1.2757508990903774`+1.6877669409285232`x-

0.8515908479957427`x2 +0.7037222750771311`y) / (1.2381110937061424`+

0.023118907708649807`x+1.` x2 -1.0006802451169017`y),

(0.7237711271825419`+0.27669402085278955`x-1.6471028507460224`x2 -

0.5329744284257336`y) / (1.2381110937061424`+

0.023118907708649807`x+1.` x2 -1.0006802451169017`y)};

β = {(421.65792029050067`+250.8446741231946`x-326.45452844178726`x2 +

37.0921077782662`y-22.26157450698797`x y+2.994881185534921`y2) /

(181.37021636228292`-74.96553026772098`x+1.` x2 +426.9632597935131`y-

5.935844588204833`x y+0.26635570919983936`y2),

(-359.53452326731184`-45.84457497214858`x2 +206.31534505924515`y+

34.05004604309161`y2 +x (357.1822933061392`+241.80005157723164`y)) /

(181.37021636228292`-74.96553026772098`x+1.` x2 +426.9632597935131`y-

5.935844588204833`x y+0.26635570919983936`y2)};

3.3.2 Blowing Up plane curves without exceptional curves

This is an important classical idea used to remove singularities by going up

a dimension. Because of the limiting classical techniques, eg. no numerics,

this becomes quite hard and the blown up curve has an extra component

called the exceptional curve . Classical algebraic geometers leave this in and

are able to make good use of it. However we can remove this exceptional

curve which makes things cleaner and more understandable.

Given a plane curve f (x,y) with singularities at various points p1, …, pk we

construct a rational function g(x,y) in x , y with denominator vanishing at

the singular points and set zi = gi(x , y), a different variable for each singular

point. We get a curve F = {f , z1 - g1, …, zk - gk}. In general the inverse

image, fiber, of a particular singular point is itself a curve. We get a rational

map Φ : f ⟶F with projection on the x,y plane a left inverse. We use dual

interpolation to remove these exceptional curves and make ϕ a birational

isomorphism. Note below that dual interpolation works best with only a

few random points and the lowest m possible. Randomness of the points is

important and we can get a good random set by using randomRealRegular -

Points2D from the plane curve book (see Global Functions 71).

Before starting we mention that one measure of a plane singularity that we

can easily deal with is the multiplicity. This concept has been recently

clarified by Araceli Bonifant and John Milnor in a long article on plane

curve theory (mostly complex) in the AMS Bulletin, Volume 57, Number 2,

April 2020 page 235. They define the multiplicity of a plane singularity at p

to be the intersection multiplicity at p of the curve and a generic line

138 SpaceCurveBook_v2c.nb

through p . For us a generic line is a random line. Here is some code to do

this calculation in the plane case. Here f = 0 is a plane curve and p is a

point, possibly complex but not infinite, on f .

singPointMult2D[f_, p_, x_, y_, tol_] := Module[{l},

l = line2D[p, p+RandomReal[{-.2, .2}, 2], x, y];

multiplicityMD[{f, l}, p, {x, y}, tol]]

Here is our first example.

3.3.2.1 The node

Consider the basic plane nodal cubic. It has a double point at the origin.

In[115]:= f1 = y ^ 2 - x ^ 3 - x ^ 2;

We add a new variable z and set it equal to z =
y

x
 getting the new equation y - x z. We now consider the curve in

ℝ3

In[116]:= F1 = {f1, y - x z};

 We note that the entire z - axis is contained in F, in fact it is a double line which is invisible in a contour plot. This

is our exceptional curve.

In[117]:= showProjection3D [F1, fprd3D, 6, {x, y, z}, {x, y}, 2]

» projection Function 1. x2
- 2.37355 x3

+ 0.0574214 x4
+ 0.000243617 x5

-

2.18663 x2 y + 0.955595 x3 y + 0.0153028 x4 y - 1.02271 x2 y2
+ 0.320413 x3 y2

+ 2.2363 x2 y3

Out[117]=
x= 1x= 1

y=1y=1

z=1z=1

We see the equation of our pseudo - random projection is divisible by x2 which is what makes it double and

invisible.

An important thing for us is the rational maps between f and F.

In[118]:= Φ := Append [#, #〚2〛 / #〚1〛] &

Θ := Take[#, 2] &

At this point we have Θ as a left inverse of Φ . We need to remove the exceptional curve to get the birational

equivalence.

In[120]:= Θ[Φ[{x, y}]]

Out[120]= {x, y}

We now, somewhat by trial and error choose a small number of points on f and lift those to the curve F by Φ .

SpaceCurveBook_v2c.nb 139

In[121]:= L = randomRealRegularPoints2D [f1, {{-2, 5}, {-5, 5}}, x, y, 5]

P =Φ /@ L

F1 /. Thread [{x, y, z}→#] & /@ P

Out[121]= {{1.10454 , -1.60237 }, {1.72728 , 2.85251 }, {-0.477635 , -0.34521 }, {1.36756, -2.10425 }, {1.71515, -2.82616 }}

Out[122]= {{1.10454 , -1.60237, -1.4507}, {1.72728, 2.85251, 1.65145 },

{-0.477635 , -0.34521 , 0.722748 }, {1.36756, -2.10425, -1.53869 }, {1.71515, -2.82616, -1.64777 }}

Out[123]= 1.59872 × 10-14, 0., 3.55271 × 10-15, 0., -8.32667 × 10-17, 5.55112 × 10-17,

-1.24345 × 10-14, 0., -1.45661 × 10-13, 4.44089 × 10-16

B1 = dualInterpolationMD [F, P, 4, {x, y, z}, 1.*^-7]

» Initial Hilbert Function {1, 3, 3, 3, 3}

» Final Hilbert Function {1, 3, 3, 3, 3}

Out[149]= -1. y + 1. x z, -1. x - 1. x2
+ 1. y z, -1. - 1. x + 1. z2

Note G contains the image of Φ even though the original equation f is not present.

In[126]:= p = randomRealRegularPoints2D [f1, {{-2, 5}, {-5, 5}}, x, y, 1]〚1〛
B1 /. Thread [{x, y, z}→Φ[p]]

Out[126]= {-0.554447 , 0.370092 }

Out[127]= -1.22125 × 10-15, -4.00863 × 10-12, 8.18939 × 10-12

However a typical point on the exceptional curve is not in G so, with a little more effort we see that Φ ,Θ are inverse

functions from f, away from {0,0} and G.

In[128]:= B /. Thread [{x, y, z}→ {0, 0, 3.13}]

Out[128]= {0., 0., 8.7969}

Finally we can plot B, the blowup of f using 2 dimensional path tracing and lifting by Φ .

In[134]:= pth1 = Drop[pathFinder2D [f1, {-1, 0}, {0, 0}, .1, x, y], -1];

pth2 = Drop[Reverse [pathFinder2D [-f1, {-1, 0}, {0, 0}, .1, x, y]], 1];

pth3 = Drop[pathFinder2D [f1, {2, N[Sqrt[2 ^ 2 + 2 ^ 3]]}, {0, 0}, .25, x, y], -1];

pth4 = Drop[pathFinder2D [-f1, {2, -N[Sqrt[2 ^ 2 + 2 ^ 3]]}, {0, 0}, .25, x, y], -1];

ListLinePlot [{pth2, pth1, pth3, pth4}]

Out[138]=

-1.0 -0.5 0.5 1.0 1.5 2.0

-3

-2

-1

1

2

3

140 SpaceCurveBook_v2c.nb

In[139]:= Pth1 =Φ /@ pth1;

Pth2 =Φ /@ pth2;

Pth3 = Reverse [Φ /@ pth3];

Pth4 =Φ /@ pth4;

Before plotting we want to add in our exceptional line. We can find out

where it intersects B1

In[143]:= excpt1 = fFiberMD[B1, {{1, 0, 0}, {0, 1, 0}}, {0, 0}, {x, y, z}, dTol]

» multiple fiber points {0, 0}

Out[143]= {{0., 0., 1.}, {0., 0., -1.}}

In[144]:= Graphics3D [{{Blue, Thick, Line[Join[Pth4, Pth2]]}, {Blue, Thick, Line[Join[Pth1, Pth3]]},

{Blue, PointSize [Large], Point[excpt1]}, {Red, Thick, Dashed, Line[excpt1]}}, ImageSize → Small]

Out[144]=

Comment: We could handle the node y 2 - x3 similarly but this curve only goes through the

singularity {0,0} once (eg: as the parametric curve {t 2, t 3}) so there is only one point in the blow up

over the singularity. In this case the blow-up is tangent to the exceptional line. We leave it for the

reader to plot this.

3.3.2.2 A lemniscate

Consider the lemniscate

In[143]:= f2 = x ^ 4+4 x y+y ^ 4;

In[144]:= ContourPlot[f2 ⩵ 0, {x, -2, 2}, {y, -2, 2}, ImageSize → Small]

Out[144]=

-2 -1 0 1 2

-2

-1

0

1

2

This is similar to the node above but brings up several issues not present in

the node since this is a bounded curve and should have a bounded blow-up.

Our method calls for a rational function with the denominator vanishing at

SpaceCurveBook_v2c.nb 141

 vanishing

the singular point {0,0}. In particular the denominator and curve intersect

in a multiple point of multiplicity greater than 1 because of the singularity of

f . We should choose this denominator so that the multiplicity of the inter -

section of the denominator is the multiplicity of the singularity In the case of

the node the multiplicity is calculated by

In[284]:= singPointMult2D[f2, {0, 0}, x, y, dTol]

Out[284]= 2

But if we attempt to use the rational function z =
y

x
 here

In[149]:= multiplicityMD[{f2, x}, {0, 0}, {x, y}, dTol]

Out[149]= 4

This could introduce infinite points above the singularity. Therefore we use,

instead, the rational function z =
x+y

x-y
. Then we are back to

In[150]:= multiplicityMD[{f2, x-y}, {0, 0}, {x, y}, dTol]

Out[150]= 2

Another consideration in this bounded case is that to avoid infinite points in

the blow-up then the curve of the denominator should not intersect our

curve f in a real point other than the singularity. This is not a problem:

NSolve[{f2, x-y}]

Out[129]= {{x → 0. - 1.41421 ⅈ, y → 0. - 1.41421 ⅈ},
{x → 0. + 1.41421 ⅈ, y → 0. + 1.41421 ⅈ}, {x → 0., y → 0.}, {x → 0., y → 0.}}

So we proceed

In[151]:= F2 = {f2, z (x-y) - (x+y)};

Φ = Append[#, (#〚1〛+#〚2〛) / (#〚1〛-#〚2〛)] &

Θ = Take[#, 2] &

Out[152]= Append#1,
#1〚1〛 +#1〚2〛
#1〚1〛 -#1〚2〛

 &

Out[153]= Take[#1, 2] &

We may need several attempts before finding a suitable system eliminating

the exceptional component.

142 SpaceCurveBook_v2c.nb

In[160]:= L = randomRealRegularPoints2D[f2, {{-2, 2}, {-2, 2}}, x, y , 5];

P = Φ /@ L

F2 / . Thread[{x, y, z} → #] & /@ P

Out[161]= {{-0.81389, 0.134885, 0.715664},

{0.963838, -0.224506, 0.622153}, {0.784433, -0.12074, 0.733222},

{-1.43947, 0.826858, 0.270311}, {-0.900132, 0.182639, 0.662645}}

Out[162]= 9.01348× 10-14, 0., -9.0847× 10-14, 0., 3.3185× 10-15, 0.,
-1.249× 10-14, 0., -1.02562× 10-12, 1.11022× 10-16

B2 = Chop[dualInterpolationMD[F, P, 4, {x, y, z}, 1.*^-7], 1.*^-8]

» Initial Hilbert Function {1, 3, 5, 7, 6}

» Final Hilbert Function {1, 3, 5, 7, 6}

Out[144]= 1. x+ 1. y- 1. x z+ 1. y z, -2. x- 1. x2 y- 1. x y2
- 1. y3

+ 2. x z+ 1. x3 z,

-2.+ 3. x2
+ 4. x y+ 2. y2

- 2. x2 z+ 2. z2
+ 1. x2 z2, 1. x4

+ 4. x y+ 1. y4

Testing at random points is sufficient as above

In[164]:= p = randomRealRegularPoints2D[f2, {{-2, 2}, {-2, 2}}, x, y , 1]〚1〛
B2 / . Thread[{x, y, z} → Φ[p]]

B2 / . Thread[{x, y, z} → {0, 0, RandomReal[{-4, 4}]}]

Out[164]= {0.911205, -0.189496}

Out[165]= -2.62457× 10-13, 4.54738× 10-10, 4.12434× 10-9, 6.21173× 10-12

Out[166]= {0., 0., 12.3511, 0.}

Thus the blowup contains the image of Φ but not other points on the excep -

tional line. We can plot our blow-up B.

In[168]:= cpf2 = criticalPoints2D[f2, x, y]

Out[168]= {1.41421, -1.41421}, {-1.41421, 1.41421},

1.90519× 10-175, 1.24893× 10-175, {0., 0.}, {0., 0.}, {0., 0.}

SpaceCurveBook_v2c.nb 143

In[169]:= pth1 = Drop[pathFinder2D[f2, cpf2〚1〛, {0, 0}, .15, x, y], -1];

pth2 = Reverse[Drop[pathFinder2D[-f2, cpf2〚1〛, {0, 0}, .15, x, y], -1]];

pth3 = Reverse[Drop[pathFinder2D[f2, cpf2〚2〛, {0, 0}, .15, x, y], -1]];

pth4 = Drop[pathFinder2D[-f2, cpf2〚2〛, {0, 0}, .15, x, y], -1];

ListLinePlot[{Join[pth1, pth3, pth4, pth2]}, ImageSize → Small]

Out[173]=

-1.5 -1.0 -0.5 0.5 1.0 1.5

-1.5

-1.0

-0.5

0.5

1.0

1.5

Again we look at our exceptional line

In[174]:= excpt2 = fFiberMD[B2, {{1, 0, 0}, {0, 1, 0}}, {0, 0}, {x, y, z}, dTol]

» multiple fiber points {0, 0}

Out[174]= {{0., 0., -1.}, {0., 0., 1.}}

In[175]:= Pth = Φ /@ Join[pth1, pth3, pth4, pth2];

Graphics3D[{{Blue, Thick , Line[Pth]},

{Blue, PointSize[Large], Point[excpt2]}, {Red, Thick, Dashed, Line[excpt2]}}]

Out[176]=

3.3.2.3 The Bow Curve

In[178]:= f3 = x ^ 4-x ^ 2 y+y ^ 3;

In[187]:= cpf3 = DeleteDuplicates[Chop[criticalPoints2D[f3, x, y]]]

pts3 = {x, y} / . NSolve[{f3, y+ .4}, {x, y}, Reals]

Out[187]= {{0.380892, 0.237985}, {-0.380892, 0.237985}, {0, 0}}

Out[188]= {{-0.349986, -0.4}, {0.349986, -0.4}}

144 SpaceCurveBook_v2c.nb

In[192]:= ContourPlot[{f3 ⩵ 0, x ⩵ 0}, {x, -.5, .5}, {y, -.5, .5}, MaxRecursion→ 6,

Epilog → {Red, PointSize[Medium], Point[Join[cpf3, pts3]]}, ImageSize → Small]

Out[192]=

-0.4 -0.2 0.0 0.2 0.4

-0.4

-0.2

0.0

0.2

0.4

In[191]:= multiplicityMD[{f3, x}, {0, 0}, {x, y}, dTol]

Out[191]= 3

So x is a good denominator.

F3 = {f3, z x-y};

In[196]:= Φ := Append[#,
#〚2〛
#〚1〛] &

Θ := Take[#, 2] &

In[223]:= L = randomRealRegularPoints2D[f3, {{-.5, .5}, {-.5, .5}}, x, y, 6]

P3 = Φ /@ L

Out[223]= {{-0.303216, -0.341592}, {0.226936, -0.249278}, {0.288911, 0.093154},

{-0.252178, -0.279407}, {-0.380898, 0.237976}, {0.312038, 0.111669}}

Out[224]= {{-0.303216, -0.341592, 1.12657}, {0.226936, -0.249278, -1.09845},

{0.288911, 0.093154, 0.322432}, {-0.252178, -0.279407, 1.10797},

{-0.380898, 0.237976, -0.624776}, {0.312038, 0.111669, 0.357871}}

In[225]:= B3 = dualInterpolationMD[F3, P3, 6, {x, y, z}, 1.*^-8]

» Initial Hilbert Function {1, 3, 5, 4, 4, 4, 4}

» Final Hilbert Function {1, 3, 5, 4, 4, 4, 4}

Out[225]= -1. y+ 1. x z, 1. x3
- 1. x y+ 1. y2 z, 1. x2

- 1. y+ 1. y z2, 1. x- 1. z+ 1. z3,

1. x y- 1. y z+ 1. y z3, 1. y- 1. z2
+ 1. z4, 1. x2

- 1. y+ 1. y2
+ 1. y z4,

1. x- 1. z+ 1. y z+ 1. z5, -1. x3
+ 2. x y- 1. y z+ 1. y z5, -1. x2

+ 2. y- 1. z2
+ 1. z6

In[226]:= p = randomRealRegularPoints2D[f3, {{-10, 20}, {-20, 10}}, x, y, 1]〚1〛
B3 / . Thread[{x, y, z} → Φ[p]]

Out[226]= {6.99065, -14.5823}

Out[227]= 1.06581× 10-14, -1.49726× 10-10, 5.4257× 10-11, -4.44835× 10-11, 1.28503× 10-9,

3.63109× 10-10, -6.06094× 10-9, -1.29319× 10-9, 1.39917× 10-8, 5.40972× 10-9

SpaceCurveBook_v2c.nb 145

In[229]:= excp3 = fFiberMD[B3, {{1, 0, 0}, {0, 1, 0}}, {0, 0}, {x, y, z}, 1.*^-9]

» multiple fiber points {0, 0}

Out[229]= {{0., 0., 1.}, {0., 0., 0.}, {0., 0., -1.}}

So now we plot

In[242]:= pth1 = pathFinder2D[f3, cpf3〚2〛, {0, 0}, .05, x, y];

pth2 = pathFinder2D[-f3, cpf3〚2〛, {0, 0}, .05, x, y];

pth3 = pathFinder2D[f3, cpf3〚1〛, {0, 0}, .05, x, y];

pth4 = pathFinder2D[-f3, cpf3〚1〛, {0, 0}, .05, x, y];

pth5 = pathFinder2D[-f3, pts3〚1〛, {0, 0}, .05, x, y];

pth6 = pathFinder2D[f3, pts3〚2〛, {0, 0}, .05, x, y];

ListLinePlot[Join[Drop[pth5, -1], Drop[Reverse[pth3], 1], Drop[pth4, -1],

Drop[Reverse[pth1], 1], Drop[pth2, -1], Drop[Reverse[pth6], 1]], ImageSize → Small]

Out[247]= -0.3 -0.2 -0.1 0.1 0.2 0.3

-0.4

-0.3

-0.2

-0.1

0.1

0.2

In[248]:= Pth = Φ /@ Join[Drop[pth5, -1], Drop[Reverse[pth3], 1], Drop[pth4, -1],

Drop[Reverse[pth1], 1], Drop[pth2, -1], Drop[Reverse[pth6], 1]];

In[251]:= Graphics3D[{{Blue, Thick, Line[Pth]}, {Red, Thick, Dashed, Line[excp3]},

{Blue, PointSize[Large], Point[excp3]}}, ImageSize → Small]

Out[251]=

3.3.2.4 The Bicuspid

The bicuspid will present new challenges.

In[152]:= f4 = 16 x-4 x3 +x4 -8 y2 +y4;

146 SpaceCurveBook_v2c.nb

In[118]:= ContourPlot[f4 ⩵ 0, {x, -3, 3}, {y, -3.5, 3.5}, ImageSize → Tiny]

Out[118]=

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

There are two cusps as singularities at {2, 2} and {2, -2}. Our strategy will be

to handle the two singularities simultaneously but separately in two new

dimensions. To have denominators meet the singularity in a low multiplic -

ity and miss the real part of the curve we construct the following lines

In[162]:= l1 = line2D[{2, 2}, {3, 0}, x, y];

l1 = Expand[l1 /Coefficient[l1, y]]

Out[163]= -6.+ 2. x+ 1. y

In[164]:= l2 = line2D[{2, -2}, {3, 0}, x, y];

l2 = Expand[l2 /Coefficient[l2, y]]

Out[165]= 6. - 2. x+ 1. y

The critical points of the bicuspid are

In[144]:= cpf4 = DeleteDuplicates[criticalPoints2D[f4, x, y]]

Out[144]= {{-1.55139, -2.9125}, {2., 2.}, {1.12457, 2.33407},

{-1.55139, 2.9125}, {1.12457, -2.33407}, {-1.67857, 0.}, {2., -2.}, {0., 0.}}

In[126]:= ContourPlot[{f4 ⩵ 0, l1 ⩵ 0, l2 ⩵ 0}, {x, -3, 3.5}, {y, -3.5, 3.5},

Epilog → {Red, PointSize[Medium], Point[cpf4]}, ImageSize → Small]

Out[126]=

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

We now define our blowup and rational functions

In[168]:= F4 = {f4, z l1- (x-y), w l2- (x+y)}

Out[168]= 16 x- 4 x3
+ x4

- 8 y2
+ y4, -x+ y+ (-6.+ 2. x+ 1. y) z, -x- y+ w (6. - 2. x+ 1. y)

SpaceCurveBook_v2c.nb 147

In[142]:= Φ := Join[#, {
#〚1〛-#〚2〛

2#〚1〛+#〚2〛-6
,

#〚1〛+#〚2〛
-2#〚1〛+#〚2〛+6

}] &

Θ := Take[#, 2] &

To check compatibility

In[166]:= p = randomRealRegularPoints2D[f4, {{-4, 4}, {4, 4}}, x, y, 1]〚1〛
F4 / . Thread[{x, y, z, w} → Φ[p]]

Out[166]= {-1.5978, 2.88581}

Out[167]= -8.52814× 10-9, 0., 2.22045× 10-16

We can calculate the exceptional curve by

In[141]:= Chop[F4 / . Thread[{x, y, z, w} → {2, 2, z, w}]]

F4 / . Thread[{x, y, z, w} → {2, -2, z, w}]

Out[141]= {0, 0, -4+ 4. w}

Out[142]= {0, -4- 4. z, 0.}

Since these evaluations should give 0 on the curve the exceptional curve is

the union of two lines in ℝ4 given by {2, 2, z , 1},and {2, -2, -1, w } for param -

eters z, w. Since we have cusps the actual blow-up without exceptional lines

will meet the exceptional lines tangentially at one double point. We need to

calculate these points but this will be hard as the equation of the exception

free blow-up B4 will be a system of degree 6 in 4 variables which is beyond

the capability of our dualInterpolation function.

But using our standard plotting method which involves path tracing f4 and

lifting by Φ we can “plot” B4 in ℝ4 by giving a large list of points. We can

actually see the plot by projecting down on ℝ3.

148 SpaceCurveBook_v2c.nb

In[145]:= pth1 = pathFinder2D[f4, {0, 0}, {2, 2}, .1, x, y, maxit → 40];

pth2 = pathFinder2D[-f4, {0, 0}, {2, -2}, .1, x, y, maxit → 40];

pth3 = pathFinder2D[-f4, cpf4〚3〛, {2, 2}, .03, x, y, maxit → 40];

pth4 = pathFinder2D[f4, cpf4〚3〛, cpf4〚6〛, .3, x, y];

pth5 = pathFinder2D[f4, cpf4〚6〛, cpf4〚5〛, .4, x, y];

pth6 = pathFinder2D[f4, cpf4〚5〛, {2, -2}, .07, x, y];

ListLinePlot[{Join[Drop[pth1, -1], Reverse[Drop[pth3, -1]], pth4,

pth5, Drop[pth6, -1], Reverse[Drop[pth2, -1]]]}, ImageSize → Small]

Out[151]=

-2 -1 1 2

-3

-2

-1

1

2

3

In[152]:= pth = Join[Drop[pth1, -1], Reverse[Drop[pth3, -1]],

pth4, pth5, Drop[pth6, -1], Reverse[Drop[pth2, -1]]];

Pth =

Φ /@

pth;

In[154]:= Length[Pth]

Out[154]= 138

To get an idea of what this looks like we can project down to ℝ3. We can

include the exceptional lines.

In[184]:= proj4 = {{1, 0, 0, 0}, {0, 1, 0, 0}, {0, 0, -1, 1}};

Pth3 = Pth.Transpose[proj4];

SpaceCurveBook_v2c.nb 149

In[168]:= Graphics3D[{{Blue, Thick, Line[Pth3]}, {Orange, Thick,

Line[{{2, 2, 1}, {2, 2, 0}}], Line[{{2, -2, 0}, {2, -2, 1}}]}}, ImageSize → Medium]

Out[168]=

Our problem with dualInterpolation is two fold. First it will take far to long

to run, the sizes of the matrices will be enormous. Second using only

machine numbers these calculations will have small numerical errors, but

using more precision will take even longer. We can somewhat fix the first

problem is that most of the time will be used in the last step of finding the H-

basis. Leaving out that step will give us a much quicker algorithm but the

output will consist of a very large number of equations. But these should all,

at least approximately, contain our B4. We use option hBasis→False

We choose 8 points

pts = RandomChoice[Pth, 8];

In[173]:= pts

Out[173]= {{1.12457, 2.33407, 0.853685, 0.568394}, {1.17864, 2.30806, 0.846226, 0.585924},

{-1.67853, 2.82846, 0.690347, 0.0943692}, {-0.547515, 2.98335, 0.858741, 0.241689},

{1.50526, -2.15674, -0.711592, -0.782327}, {1.50526, -2.15674, -0.711592, -0.782327},

{0.719194, 1.26876, 0.166895, 0.340965}, {1.3413, 2.23097, 0.818889, 0.64384}}

In[161]:= B4 = dualInterpolationMD[F4, pts, 6, {x, y, z, w}, 1.*^-8, hBasis → False]

Out[161]=

-0.0110519+ ⋯ 323 ⋯ + 0.103655 y z5 + 0.155079 z6,

⋯ 176 ⋯ , ⋯ 324 ⋯ + ⋯ 22 ⋯ ⋯ 1 ⋯ 

large output show less show more show all set size limit ...

There are 178 equations, each of which have 210 terms! So we will merely

150 SpaceCurveBook_v2c.nb

 equations, merely

sample B4. Our goal is to find where B4 intersects the exceptional lines. We

are looking for multiple solutions. First we look at the line through {2, 2}.

In[189]:= RandomChoice[Table[i, {i, 178}], 3]

Out[189]= {55, 128, 61}

In[190]:= g55 = B4〚55〛 / . {x → 2, y → 2, w → 1}

NSolve[g55]

Out[190]= -0.195394+ 0.957736 z- 1.56741 z2
+ 1.03747 z3

- 0.351087 z4
+ 0.00708735z5

+ 0.0265151 z6

Out[191]= {{z → -5.0055}, {z → 0.500067- 0.00212638 ⅈ}, {z → 0.500067+ 0.00212638 ⅈ},
{z → 0.888658- 1.48755 ⅈ}, {z → 0.888658+ 1.48755 ⅈ}, {z → 1.96075}}

In[192]:= g128 = B〚128〛 / . {x → 2, y → 2, w → 1}

NSolve[g128]

Out[192]= 0.0708331- 0.303968 z+ 0.340114 z2
+ 0.00558316z3

- 0.0424019 z4
- 0.0567799 z5

- 0.00900801z6

Out[193]= {{z → -5.69544}, {z → -1.32082- 1.89438 ⅈ}, {z → -1.32082+ 1.89438 ⅈ},
{z → 0.500703- 0.00700209 ⅈ}, {z → 0.500703+ 0.00700209 ⅈ}, {z → 1.03239}}

In[194]:= g61 = B〚61〛 / . {x → 2, y → 2, w → 1}

NSolve[g61]

Out[194]= -0.0907389+ 0.331602 z- 0.202743 z2
- 0.253104 z3

+ 0.0994685 z4
+ 0.0238999 z5

+ 0.0193771 z6

Out[195]= {{z → -1.31375}, {z → -1.20845- 2.84028 ⅈ},
{z → -1.20845+ 2.84028 ⅈ}, {z → 0.496376}, {z → 0.50328}, {z → 1.49758}}

In each of these case there are two solutions, possibly complex, very close to

z = .5 So we will suggest that z = .5 is at least a good approximation for the

intersection of the exceptional line through {2, 2} and B4. We do this again

for {2, -2}

In[215]:= RandomChoice[Table[i, {i, 178}], 3]

Out[215]= {130, 73, 50}

In[216]:= g130 = B〚130〛 / . {x → 2, y → -2, z → -1}

NSolve[g130]

Out[216]= -0.589159- 2.18272 w- 1.91965 w2
+ 0.112316 w3

- 0.190499 w4
+ 0.0251769 w5

- 0.0164628 w6

Out[217]= {{w → -1.01985- 3.03538 ⅈ}, {w → -1.01985+ 3.03538 ⅈ}, {w → -0.515133- 0.0412104 ⅈ},
{w → -0.515133+ 0.0412104 ⅈ}, {w → 2.29965- 2.78939 ⅈ}, {w → 2.29965+ 2.78939 ⅈ}}

SpaceCurveBook_v2c.nb 151

In[218]:= g73 = B〚73〛 / . {x → 2, y → -2, z → -1}

NSolve[g73]

Out[218]= 0.507827+ 1.23116 w- 0.252052 w2
- 0.64533 w3

+ 1.52396 w4
- 0.166313 w5

+ 0.0242305 w6

Out[219]= {{w → -0.527983- 0.0480729 ⅈ}, {w → -0.527983+ 0.0480729 ⅈ}, {w → 0.76187- 0.813969 ⅈ},
{w → 0.76187+ 0.813969 ⅈ}, {w → 3.19801- 7.05408 ⅈ}, {w → 3.19801+ 7.05408 ⅈ}}

In[222]:= g50 = B〚50〛 / . {x → 2, y → -2, z → -1}

NSolve[g50]

Out[222]= 0.0140237- 0.256541 w- 0.491441 w2
+

0.0285561 w3
- 0.0145955 w4

+ 0.0403071 w5
+ 0.0151122 w6

Out[223]= {{w → -3.64706}, {w → -0.546267}, {w → -0.287786- 2.11328 ⅈ},
{w → -0.287786+ 2.11328 ⅈ}, {w → 0.049907}, {w → 2.0518}}

 This is not so clear but it seems that we are getting solutions near - .5 This

is somewhat consistent with the point

{1.90006,-2.01554,-0.928878,-0.626432} which is seeming closest to the line

{2, -2, -1, w }.

Unfortunately we are close to the limits of what we can do with our

methodology.

3.3.2.5 A compound example

We consider the singularity at {0, 0} of

In[285]:= f5 = Expand[(y ^ 3-x ^ 2) (y+x ^ 2)]

Out[285]= -x4
- x2 y+ x2 y3

+ y4

In[834]:= ContourPlot[{f ⩵ 0, x-y ⩵ 0}, {x, -1, 1}, {y, -1, 1}, MaxRecursion→ 4, ImageSize → Small]

Out[834]=

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

This is technically a reducible curve and we only discuss genus for irre -

ducible curves, however we can still blow up. This will be essentially the

singularity of a higher degree irreducible curve such as

In[849]:= h = f5+x ^ 8+y ^ 8;

152 SpaceCurveBook_v2c.nb

In[850]:= ContourPlot[h ⩵ 0, {x, -2, 2}, {y, -.5, 1}, MaxRecursion→ 4, ImageSize → Small]

Out[850]=

-2 -1 0 1 2

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

so it is worth studying this sort of singularity.

The multiplicity of our singularity of f5 is

In[851]:= singPointMult2D[f5, {0, 0}, x, y, dTol]

From the first contour plot above we see the line x - y is as good a choice as

any but we we restrict our blow up to the region -1 < x , y < 1 because there

will be infinite points above {-1, 1} and {1, 1}. This has the right multiplicity.

In[853]:= multiplicityMD[{f5, x-y}, {0, 0}, {x, y}, dTol]

Out[853]= 3

We obtain the equation of the blow-up

In[6]:= F5 = {f5, z (x-y) - (x+y)}

Out[6]= -x4
- x2 y+ x2 y3

+ y4, -x- y+ (x- y) z

dualInterpolation will work in default mode and degree 5 but needs a large

set of random points not near the origin. But it returns a large system even

after reducing to something like a H-basis. We throw out most of the equa -

tions to get a reasonable basis for the blow-up.

In[18]:= B5 = {-x4 -x2 y+x2 y3 +y4, -x-y+ (x-y) z,

1-8 x-x2 -8 y+ z+8 x z+3 x2 z- z2 -8 x z2 -3 x2 z2 - z3 +x2 z3,

1-8 x+4 x2 -8 y+6 x y+y2 + z+8 x z-5 x2 z- z2 -8 x z2 +x2 z2 - z3 +y2 z3};

We then calculate where the blow-up hits the exceptional line for F .

In[863]:= Bo = B5 / . {x → 0, y → 0}

NSolve[Bo]

Out[863]= 0, 0, 1+ z- z2
- z3, 1+ z- z2

- z3

Out[864]= {{z → -1.}, {z → -1.}, {z → 1.}}

These intersections are at {0, 0 , ±1}. Note these points are regular.

SpaceCurveBook_v2c.nb 153

In[865]:= tangentVectorMD[B5, {0, 0, 1}, {x, y, z}]

» Hilbert Function {1, 1, 1, 1, 1}

Out[865]= {0.447214, 0., -0.894427}

This is otherwise known as {1,0,-2}.

In[135]:= tangentVectorMD[B5, {0, 0, -1}, {x, y, z}]

» Hilbert Function {1, 1, 1, 1, 1}

Out[135]= {0., 0., 1.}

We plot the blow up using our rational function and the fact that both

components are parametric curves:

In[2]:= Φ := Append[#, (#〚1〛+#〚2〛) / (#〚1〛-#〚2〛)] &

Note that

In[14]:= F5 / . Thread[{x, y, z} → Φ[{t ^ 3, t ^ 2}]]

F5 / . Thread[{x, y, z} → Φ[{t, -t ^ 2}]]

Out[14]= {0, 0}

Out[15]= {0, 0}

In[16]:= ParametricPlot3D[{Φ[{t ^ 3, t ^ 2}], Φ[{t, -t ^ 2}], {0, 0, t}}, {t, -.9, .9}]

3.3.2.5 A harder compound example

Our final example is

In[125]:= f6 = y ^ 2-x ^ 6;

154 SpaceCurveBook_v2c.nb

In[204]:= ContourPlot[f6 ⩵ 0, {x, -1, 1}, {y, -1, 1}, MaxRecursion→ 4, ImageSize → Small]

Out[204]=

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

We see the multiplicity is smaller

l = RandomReal[{-2, 2}, 2].{x, y}

In[205]:= multiplicityMD[{f6, l}, {0, 0}, {x, y}, dTol]

Out[205]= 2

We will not actually try to find the blow-up but just look at the plots. First

In[126]:= F6 = {f6, z x-y};

Φ := Append[#, #〚2〛 /#〚1〛] &;

Note that

In[208]:= F6 / . Thread[{x, y, z} → Φ[{t, t ^ 3}]]

F6 / . Thread[{x, y, z} → Φ[{t, -t ^ 3}]]

Out[208]= {0, 0}

Out[209]= {0, 0}

In[210]:= ParametricPlot3D[{Φ[{t, t ^ 3}], Φ[{t, -t ^ 3}]}, {t, -1, 1}]

Out[210]=

We see that we still have a singularity at {0, 0, 0} over {0, 0}. In fact we can

generalize the multiplicity of a singularity to higher dimension

SpaceCurveBook_v2c.nb 155

In[211]:= pl = RandomReal[{-1, 1}, 3].{x, y, z}

Out[211]= 0.385291 x+ 0.571885 y- 0.097667 z

In[212]:= multiplicityMD[Append[F, pl], {0, 0, 0}, {x, y, z}, 1.*^-10]

Out[212]= 4

So our singularity is actually worse in some sense. So we blow this up.

In[128]:= G6 = Append[F6, w x- (x-y+ z)]

Λ := Append[#, (#〚1〛-#〚2〛+#〚3〛) / (#〚1〛)] &

Out[128]= -x6
+ y2, -y+ x z, -x+ w x+ y- z

In[130]:= G6 / . Thread[{x, y, z, w} → Λ[Φ[{t, t ^ 3}]]]

G6 / . Thread[{x, y, z, w} → Λ[Φ[{t, -t ^ 3}]]]

Out[130]= {0, 0, 0}

Out[131]= {0, 0, 0}

To plot we project back to ℝ3

In[118]:= Λ3 := (Λ[Φ[#]].{{1, 0, 0}, {0, 1, 0}, {0, 0, 0}, {0, 0, 1}}) &

In[226]:= ParametricPlot3D[{Λ3[{t, t ^ 3}], Λ3[{t, -t ^ 3}]}, {t, -1, 1}]

Out[226]=

Our singularity looks better but is still there over {0, 0}. In fact looking at the

vertical scale in this plot we can guess correctly that the singularity is actu -

ally at {0, 0, 0, 1} in ℝ4.

156 SpaceCurveBook_v2c.nb

In[243]:= hp4 = RandomReal[{-1, 1}, 4].{x, y, z, w-1}

multiplicityMD[Append[G, hp4], {0, 0, 0, 1}, {x, y, z, w}, 1.*^-9]

Out[243]= -0.628167× (-1+ w) - 0.441975 x+ 0.453086 y- 0.545897 z

Out[244]= 6

So we blow up once more

In[132]:= H6 = Append[G, u (w-1) -x]

Γ := Append[#, #〚1〛 / (#〚4〛-1)] &

Out[132]= -x6
+ y2, -y+ x z, -x+ w x+ y- z, u (-1+ w) - x

In[134]:= H6 / . Thread[{x, y, z, w, u} → Γ[Λ[Φ[{t, t ^ 3}]]]]

H6 / . Thread[{x, y, z, w, u} → Γ[Λ[Φ[{t, -t ^ 3}]]]]

Out[134]= {0, 0, 0, 0}

Out[135]= {0, 0, 0, 0}

So H6 is compatible with the composition Γ[Λ[Φ[#]]]. Now project

In[137]:= Γ3 := (Γ[Λ[Φ[#]]].{{1, 0, 0}, {0, 1, 0}, {0, 0, 0}, {0, 0, 0}, {0, 0, 1}}) &

In[294]:= ParametricPlot3D[{Γ3[{t, t ^ 3}], Γ3[{t, -t ^ 3}], {0, 0, t}}, {t, -1, 1}]

Out[294]=

Where the green segment is again the exceptional line over {0, 0}.

So this takes 3 blow-ups to accomplish the job.

3.3.3 Conclusion on blowing-up

We have seen that given a square free algebraic plane curve f with only

affine singularities we can find, by a sequence of blowing up, a non-singular

algebraic curve F in ℝn for some n that projects to f using the projection

taking a point {x1, x2, …, xn} to {x1, x2}.

We should compare this with Abhyankar’s Theorem of resolution of singulari -

ties of plane curves in Lecture 18 of his book. Our theorem is a little more

explicit than his as it actually produces such a curve with no exceptional

lines and projecting on the first two coordinates. We also explicitly give the

SpaceCurveBook_v2c.nb 157

 projecting explicitly give

equation of this plane curve, at least in theory, and the rational function

from f to F .

Of course we already saw in Chapter 6 of the Plane Curve Book that given

any plane curve we can move all the projective singularities to the affine

plane so the requirement that all singularities be affine is not really a

restriction.

An important point about blowing-up is that it is numerically stable. We

saw in the examples of this subsection that choice of the linear function in

the denominator has few restrictions, only that the multiplicity at the point

of the intersection of the denominator with the curve is the multiplicity of

the singularity. Since this multiplicity is numerically stable under small

perturbations even a slight error in identifying the singularity will not materi -

ally effect the blow-up.

3.3.4 Genus of curves

Barry Mazur, in his famous 1986 paper Arithmetic on Curves (Reprinted in

the AMS Bulletin, Vol 55, No.3, July 2018) states on page 219

[A non-singular space curve] under a generic projection to a 2-dimensional

projective space yields a plane curve with at worst nodal (or ordinary double

point) singularities.

This is not quite right when working numerically. I give the numerical

version in section 1.2.1 and 2.7.2:

 For random numerical projections, with high probability, the only artifac -

tual singularities will be normal crossings (nodes), cusps or isolated points.

Recall that artifactual singularities are those that do not come from singulari -

ties of the original space curve, so for a non-singular space curve all singulari -

ties of the projection are artifactual. In the generic case artifactual singular

points are double points, they have multiplicity 2. Nodes are ordinary, in

the sense of Section 3.4 of my Plane Curve Book, cusps and isolated points

(which arise only in the real case) are not. But these do still have Clebsch

number 1, the same as ordinary double points, so Mazur’s formula below

still works. Note that Example 3.3.2.6 is a double point but not a node or

cusp.

 Mazur’s Formula: [Mazur page 220] Let ν be the number of singular points

of a generic (random) projection of a non-singular space curve. Then the

genus ℊ of the space curve and its plane projection of degree d is given by

ℊ =
(d- 1) (d- 2)

2
- ν

158 SpaceCurveBook_v2c.nb

We can use this formula to calculate the genus. But note that this should

not be taken as a definition of genus but the consequence of the formal

study of genus by algebraic geometers.

Example 3.3.4.1: A nice example is the bow curve 3.3.2.3. We found the non-singular blow-up to

be curve

In[188]:= B3 = {-1. y+ 1. x z, 1. x ^ 3- 1. x y+ 1. y ^ 2 z, 1. x ^ 2- 1. y+ 1. y z ^ 2, 1. x- 1. z+ 1. z ^ 3,

1. x y- 1. y z+ 1. y z ^ 3, 1. y- 1. z ^ 2+ 1. z ^ 4, 1. x ^ 2- 1. y+ 1. y ^ 2+ 1. y z ^ 4,

1. x- 1. z+ 1. y z+ 1. z ^ 5, -1. x ^ 3+ 2. x y- 1. y z+ 1. y z ^ 5, -1. x ^ 2+ 2. y- 1. z ^ 2+ 1. z ^ 6};

In[123]:= bbc = FLTMD [B3, A, 6, {x, y, z}, {x, y}, 1.*^-9]〚1〛
Out[123]= 1. - 7.64881 x- 14.4732 x2

- 9.41023 x3
- 2.81002 x4

+ 11.0999 y+ 4.72927 x y- 0.912787 x2 y+

1.42335 x3 y+ 12.5987 y2
+ 10.9587 x y2

+ 3.71029 x2 y2
+ 0.216945 y3

- 0.478956 x y3
+ 0.0523491 y4

In[138]:= csp = complexProjectiveSingularPoints2D [bbc, x, y, 1.*^-9]

Out[138]= {{-1.98573 , -11.9106 }, {-0.617785 , -0.546592 }, {-0.860395 , -0.497789 }}

Take a generic projection from ℙ3 to ℙ1

In[121]:= A = Orthogonalize [RandomReal [{-1, 1}, {3, 4}]]

Out[121]= {{0.084272 , 0.846137 , 0.364511 , 0.379582 },

{-0.591153 , 0.464949 , -0.517101 , -0.408617 }, {-0.632973 , -0.163991 , 0.730846 , -0.195745 }}

In[146]:= bbc = FLTMD [B3, A, 6, {x, y, z}, {x, y}, 1.*^-9]〚1〛
Out[146]= 1. - 7.64881 x- 14.4732 x2

- 9.41023 x3
- 2.81002 x4

+ 11.0999 y+ 4.72927 x y- 0.912787 x2 y+

1.42335 x3 y+ 12.5987 y2
+ 10.9587 x y2

+ 3.71029 x2 y2
+ 0.216945 y3

- 0.478956 x y3
+ 0.0523491 y4

In[143]:= csp = complexProjectiveSingularPoints2D [bbc, x, y, 1.*^-8]

Out[143]= {{-0.860395 , -0.497789 }, {-0.617785 , -0.546592 }, {-1.98573 , -11.9106 }}

In[151]:= ContourPlot [bbc ⩵ 0, {x, -2, 0}, {y, -1, 0}, MaxRecursion → 5,

Epilog → {Red, PointSize [Medium], Point [Take [csp, 2]]}, ImageSize → Small]

Out[151]=

-2.0 -1.5 -1.0 -0.5 0.0

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

The third singular point {-1.98573, -11.9106} is an isolated singularity. Since ν = 3 and d = 4 then

ℊ = 0 which is what we expect given this is a parameterized curve.

Example 3.3.4.2: The lemniscate.

SpaceCurveBook_v2c.nb 159

We calculated the blow-up of the lemniscate as

In[292]:= B2 = {1. x+ 1. y- 1. x z+ 1. y z, -2. x- 1. x ^ 2 y- 1. x y ^ 2- 1. y ^ 3+ 2. x z+ 1. x ^ 3 z,

-2. + 3. x ^ 2+ 4. x y+ 2. y ^ 2- 2. x ^ 2 z+ 2. z ^ 2+ 1. x ^ 2 z ^ 2, 1. x ^ 4+ 4. x y+ 1. y ^ 4};

Since the lemniscate is a bounded we let the random projection be

In[312]:= A2 = Append [Orthogonalize [RandomReal [{-1, 1}, {2, 4}]], {0, 0, 0, 1}]

h2 = FLTMD [B2, A2, 6, {x, y, z}, {x, y}, 1.*^-7]〚1〛
Out[312]= {{0.0648747 , -0.730778 , 0.479363 , 0.481628 },

{-0.844846 , 0.0847465 , -0.232867 , 0.474159 }, {0, 0, 0, 1}}

Out[313]= 1. + 0.809265 x- 1.59889 x2
- 2.62573 x3

+ 2.89494 x4
- 0.69337 x5

+

0.169007 x6
- 0.662574 y- 1.32448 x y+ 1.10846 x2 y+ 1.91681 x3 y- 1.61182 x4 y+

0.748308 x5 y- 0.00606811 y2
- 0.0856423 x y2

- 1.72749 x2 y2
+ 0.734084 x3 y2

+

0.945916 x4 y2
- 2.06329 y3

- 1.4528 x y3
+ 2.94894 x2 y3

+ 0.322685 x3 y3
+

0.925493 y4
+ 1.1306 x y4

+ 0.334215 x2 y4
- 0.452467 y5

+ 0.576751 x y5
+ 0.400899 y6

In[316]:= ContourPlot[h2 ⩵ 0, {x, -1.5, 2}, {y, -1.5, 2}]

Out[316]=

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

For finding all singular points we find a very large tolerance works best, although it is recom -

mended that this be checked carefully.

160 SpaceCurveBook_v2c.nb

In[317]:= csp = complexProjectiveSingularPoints2D [h2, x, y, .01]

Out[317]= {{-0.432648 + 0.415856 ⅈ, -0.643362 + 0.829752 ⅈ},
{-0.432648 - 0.415856 ⅈ, -0.643362 - 0.829752 ⅈ}, {-1.23861 - 0.922593 ⅈ, 1.04178 + 1.87947 ⅈ},
{-1.23861 + 0.922593 ⅈ, 1.04178 - 1.87947 ⅈ}, {2.41939 + 1.30732 ⅈ, -0.394761 - 2.28109 ⅈ},
{2.41939 - 1.30732 ⅈ, -0.394761 + 2.28109 ⅈ}, {0.954581 , 0.306315 }, {1., -0.485784 , 0}}

In[318]:= Length [csp]

Out[318]= 8

So we have 6 complex singular points, one real affine singular point and one affine infinite

singular points. Since the degree of the projection is 6 Mazur’s formula gives ℊ = 10 - 8 = 2. Note

that it is impossible for a non-singular plane curve to have genus 2.

3.3.4.3 Example. This example is different in that we start with a non-singu -

lar space curve and don’t blow up. The example is a case of Exercise IV 5.2.2

from Hartshorne’s Algebraic Geometry book.

We take a naive intersection of a quadric and cubic surface in ℝ3.

In[288]:= f1 = x ^ 2+y ^ 2+ z ^ 2-25;

f2 = -51+3 x-3 x2 +x3 -3 y-3 y2 -y3 +14 z- z2;

We will use a random affine projection

In[291]:= A = {{-0.163999, 0.250186, -0.294883, -0.138623},

{-0.609386, 0.427477, -0.396493, -0.530766}, {0, 0, 0, 1}};

In[292]:= g4 = FLTMD[{f1, f2}, A, 6, {x, y, z}, {x, y}, 1.*^-10]〚1〛
Out[292]= 1. + 1.73533 x+ 1.55993 x2

- 0.656023 x3
- 2.60795 x4

- 2.7081 x5
+ 2.70678 x6

-

0.00233382y- 1.17272 x y+ 0.266015 x2 y+ 4.17205 x3 y+ 7.69862 x4 y-

8.26483 x5 y+ 0.365579 y2
- 0.122065 x y2

- 2.71565 x2 y2
- 8.65234 x3 y2

+

10.9325 x4 y2
+ 0.0466165 y3

+ 0.792389 x y3
+ 4.87301 x2 y3

- 7.91459 x3 y3
-

0.0857802 y4
- 1.37971 x y4

+ 3.2871 x2 y4
+ 0.156806 y5

- 0.739525 x y5
+ 0.0701592 y6

As usual we need to fiddle with complexProjectiveSingularPoints to get a

reliable answer but we come up with one answer we can verify

{{1.289, 0.0206694}, {3.56225, 7.6008}, {-1.54168+0.346882 I, -2.16869+0.495606 I},

{-1.54168-0.346882 I, -2.16869-0.495606 I},

{-1.74148, -3.95367}, {-2.04685, -4.49551}}

Since g4 is of degree 6 Mazur’s formula shows the genus ℊ = 10 - 6 = 4 agree-

ing with Hartshorne’s claim. Note that the first two real singular points are

actually isolated points from the projection.

3.3.5 Examples of non-singular Curves of genus 0 - 6

Now that we have developed our software and theory I end by plotting an

example of a curve of each genus from 0 to 6. We don’t show work but we

SpaceCurveBook_v2c.nb 161

example genus

use the methods we have developed. Some of these examples have

appeared before in this book or my plane curve book. We give a plane

model on the left and, where the plane model is singular, a non-singular

model in ℝ3 on the right.

Genus 0, Rational curve, parabola y = x 2

In[128]:= ContourPlot[y ⩵ x ^ 2, {x, -2, 2}, {y, -.2, 3.5}, ImageSize → Small]

Out[128]=

-2 -1 0 1 2

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Genus 1, Elliptic curve y 2 = x ^ 3 - 5 x + 2

In[126]:= ContourPlot[y ^ 2 ⩵ x ^ 3-5 x+2, {x, -4, 5}, {y, -9, 9}, ImageSize → Small]

Out[126]=

-4 -2 0 2 4

-5

0

5

Genus 2, Lemniscate x4 + x y + y4

In[175]:= ContourPlot[x ^ 4+ x y+y ^ 4 ⩵ 0, {x, -1, 1}, {y, -1, 1}, ImageSize → Small]

(Red dashed line is exceptional line over {0,0})

Out[175]= {

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

, }

162 SpaceCurveBook_v2c.nb

Genus 3, Klein Curve x2 +
y 2

4
- 1  x 2

4
+ y2 = -.04

In[122]:= ContourPlot[(x ^ 2+y ^ 2 /4-1) (x ^ 2 /4+y ^ 2-1) ⩵ -.04,

{x, -3, 3}, {y, -3, 3}, ImageSize → Small]

Out[122]=

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

Genus 4 (See Example 3.3.4.3) g4 on the le�, {f1, f2} plotted on f1 on the right. In addition

to the singular points shown in the plot of g4 there are two isolated real singular points and

2 complex singular points.

{

-2.5 -2.0 -1.5 -1.0 -0.5

-5.0

-4.5

-4.0

-3.5

-3.0

-2.5

-2.0

, }

SpaceCurveBook_v2c.nb 163

Genus 5: Gauss’ curve g5 = -5 x2 +9 x3 -5 x4 + x5 +5 y2 -27 x y2 +30 x2 y2 -10 x3 y2 -5 y4 +5 x y4

(Dashed red line is blowing-up denominator, A,B,C,D,E,0 infinite points.)

{

E

B

B

C

D

E

C

D

O

A

A

, }

Genus 6

In[173]:= g6 = 1-10 x2 +5 x4 -3 y+18 x2 y-3 x4 y-5 y2 +15 x2 y2 +15 y3 -15 x2 y3 +4 y4 -12 y5;

In[174]:= ContourPlot[g6 ⩵ 0, {x, -5, 5}, {y, -2, 3}, ImageSize → Small]

Out[174]=

-4 -2 0 2 4

-2

-1

0

1

2

3

164 SpaceCurveBook_v2c.nb

4| References

1. B.H. Dayton, A Numerical Approach to Real Algebraic Curves, with the Wolfram Language, Wolfram-

Media, 2018.

2. B.H. Dayton, A Wolfram Language Approach to Real Numerical Plane curves https://www.mathematica-

journal.com/2018/08/29/a-wolfram-language-approach-to-real-numerical-algebraic-plane-curves/,

2018.

3. B.H. Dayton, T.Y. Li, Z. Zeng, Multiple Zeros of Non-linear Systems, Mathematics of Computation, 80, no.

276, pp. 2143-2168, 2011. Free access at

https://www.ams.org/mcom/2011-80-276/S0025-5718-2011-02462-2/.

4. Wolfram-alpha: https://www.wolframalpha.com/input/?i=Viviani+Curve.

5. J. Harris, Algebraic Geometry, A first Course, Graduate Texts in Mathematics, Springer, 2010.

6. D. Adrovic and J. Verschelde, Tropical Approach to the Cyclic n-Roots Problem, Presentation 2013

http://homepages.math.uic.edu/~adrovic/jmm13a.pdf (accessed May 9,2020).

7. Y. Yang and X. Bican, A Hybrid Procedure for Finding Real Points on a Real

Algebraic Set, J Syst Sci Complex (2019) 32: 185–204.

8. F.S. Macaulay, The Algebraic Theory of Modular Systems, Cambridge University Press, 1916.

9. Z.Zeng, B.Dayton, The approximate GCD of inexact polynomials,

Proceedings of ISSAC 2004, ACM.

10. D.Cox, J.Little, D. O’Shea, Using Algebraic Geometry, Graduate Texts in Mathematics 185, Springer,

1998.

11. B.H. Dayton, Ideals of numeric representations of Unions of Lines, in Interactions of Classical and

Numerical Algebraic Geometry, D.Bates, G-M . Besana,S. Di Rocco and C.W.Wampler Eds,

Contemporary Mathematics 496, AMS, 2009. (see https://barryhdayton.space/NumericLines.pdf and

the appendix).

12. Xiangcheng Yu., PHC pack, https://kepler.math.uic.edu

13. S. Telen, B. Mourrain, B. van Barel, Solving polynomial systems via truncated normal forms, Siam J.

Matrix Anal. Appl. Vol39 no3 (2018) pp. 1421-1447.

14. L. Shen, C. Yuan, Implicitization using Univariate Resultants, J Sys Sci Complex (2010) 23, pp. 804-814.

15. D.J. Bates, J. D. Hauenstein, A.J. Sommese, C.W.Wampler, Numerically solving Polynomial Systems

with Bertini, SIAM, 2013.

16. C. Tu, W. Wang, B. Mourrain, J. Wang, Using signature sequences to classify

intersection curves of two quadrics, Computer Aided Geometric Design 26 (2009), pp. 317-335.

17. L . Dupont, D. Lazard, S. Lazard and S. Petitjean,Near-optimal parameterization of the intersection of

quadrics, Parts I,II,III, J. Symbolic Comput. 3(43), 2008, pp. 168–232. See also

http://vegas.loria.fr/qi/server.

18. B.H. Dayton, Algorithms for real numerical varieties with application to parameterizing quadratic

surface intersection curves, Albanian J. Math, Vol. 7 no. 2, 2013. (see

http://barryhdayton.space/RQSIC.pdf).

19. B. H. Dayton, Theory of Equations, https://barryhdayton.space/theoryEquations See specifically

Chapter 6.

20. S. Abhyankar, Algebraic Geometry for Scientists and Engineers, AMS, 1990.

SpaceCurveBook_v2c.nb 165

21. A. Bonifant, J.Milnor, Group Actions, Divisors , and Plane Curves, Bulletin of AMS, Volume 57, Number

2, April 2020, Pages 171–267

https://www.ams.org/journals/bull/2020-57-02/S0273-0979-2020-01681-2/S0273-0979-2020-01681-2.pdf

22. B. Mazur, Arithmetic on Curves, Bulletin of AMS 14, 1986.

https://www.ams.org/journals/bull/1986-14-02/S0273-0979-1986-15430-3/S0273-0979-1986-15430-3.pdf

23. R. Hartshorne, Algebraic Geometry, Springer-Verlag, 1977.

24. B.H. Dayton, Degree versus Dimension for Rational Parametric Curves, Mathematica Journal 22, Free

PDF at https://content.wolfram.com/uploads/sites/19/2020/09/Dayton.pdf , Mathematica Notebook

version also available.

166 SpaceCurveBook_v2c.nb

