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In spite  of their  unsolvability,  inconsistent  equations  arise  in practice  and must  be solved.    
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Space  curves  present  two challenges  that  were  not present  with  plane  curves.   First,  rather  than  

just one equation,  space  curves  require  several  equations;  a space  curve  in ℝn , n ≥ 3, requires  at 

least  n - 1 equations,  possibly  more.   Unlike  the equation  of a plane  curve  which  is unique  up to 

scalar  multiplication,  these  equations  are not at all unique.   Second  the complement  of the curve  

in  ℝn , unlike  in the plane  case,  is connected,  possibly  complicated,  and of limited  use in under -

standing  the curve.

I will  distinguish  between  two cases,  first  the naive case  of curves  given  by 2 equations  in ℝ3, the 

case seen  in multivariable  calculus  textbooks.   We will  see that  some  of plane  curve  techniques  

can still  be used  thanks  to the existence  of the cross  product  in ℝ3.  The general  case,  which  

consists  of perhaps  more  than  n - 1 equations  in n ≥ 3 variables  will  require  new techniques  and,  

in particular,  heavy  use of numerical  linear  algebra.

It is assumed  that  the reader  have  some  familiarity  with  my plane  curve  book  and Appendix  I on 

numerical  linear  algebra  or the Mathematica  Journal  article  and prior  familiarity  with  numerical  

linear  algebra.   All the code  is in the Mathematica  notebook   GlobalFunctionsMD.nb  available  at 

my website  listed  above.
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We recommend  that  the  reader  be familiar  with  our  book  A Numerical  Approach  to 

Real  Algebraic  Curves  with  the  Wolfram  Language,  henceforth  known  as “my  Plane  

Curve  book”,  or at least  with  the  Mathematica  Journal  summary  of this  book  (2018).   

And  the  reader  should  have  some  familiarity  with  the  Wolfram  Language.

Note  the  naming  conventions:    All  global  functions  defined  in this  Space  Curve  Book  

begin  with  a lowercase  letter,  compound  names  will  capitalize  first  letters   of subse -

quent  words,  (camel  casing).   This  avoids  confusion  with  built  in Mathematica  func -

tions.  Also  functions  with  polynomial  and/or  point  arguments  will   end  in  2D,  3D,    or 

MD  depending  on whether  they  work  in 2,3  or all  dimensions.   This  makes  clear  what   

the  arguments  are  and  distinguishes  these  functions  from  my Plane  Curve  functions  

so both  sets  can  be initialized  together  without  conflict,  however  most  plane  curve  

functions  that  you  may  need  are  contained  here  with  2D designation.   Note  that  

functions  with  suffix  3D or MD  take   variables  as a list,  but  members  of the  list  should  

be atomic  variables,  e.g.  not  X[[2]]  but  possibly  x[2].  

Disclaimer

The author makes no representations,  express  or implied,  with respect  to this documentation  or so�ware  it 

describes,  including,  without  limitation,  any implied warranties  of merchantability,  interoperability  or fitness  for 

a particular  purpose,  all of which are expressly  disclaimed.  Use of Mathematica  and other related so�ware  is 

subject  to the terms and conditions  as described  at www.wolfram.com/legal .

In addition  to the forgoing,  users should recognize  that all complex  so�ware  systems  and their documentation  

contain errors and omissions.  Barry H. Dayton and Wolfram  Research  a) shall not be responsible  under any 

circumstances  for providing  information  or corrections  to errors and omissions  discovered  at any time in this 

book or so�ware;  b) shall not be liable for damages  of any kind arising out of the use of (or inability  to use) this 

book or so�ware;  c) do not recommend  the use of the so�ware  for applications  in which errors or omissions  

could threaten  life, or cause injury or significant  loss.

Mathematica  and Wolfram  Language  are trademarks  of Wolfram  Research  Inc.
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1| Naive  Case:   curves  in ℝ3

1.1 Emulating Plane Curves 

As a seemingly  simple  example  consider  the  curve  produced  by intersecting  a hyper -

boloid  and  an ellipsoid.

1.1.1 Example

In[239]:= F1 = {f11, f12} = {x ^ 2-y ^ 2- z, x ^ 2+y ^ 2+ z ^ 2-4};

ContourPlot3D[{f11 ⩵ 0, f12 ⩵ 0}, {x, -3, 3}, {y, -3, 3}, {z, -3, 3}, Mesh → None]

Out[239]=

The  two  equations  {f11 = 0, f12 = 0} give  an under  determined  system  but  

Mathematica  will  still  give  a  pseudo  random  points

In[148]:= p1 = {x, y, z} / . NSolve[{f11, f12}, {x, y, z}, Reals]〚1〛
NSolve : Infinite solution set has dimension at least 1. Returning intersection of solutions with

-
142003 x

115806

+
40299 y

38602

-
69046 z

57903

== 1.

Out[148]= {1.15413, 1.44616, -0.75935}

The  first  thing  to notice  is that  at each  point  we have  a tangent  vector.

  First  we can  find  the  normal  vector  to each  of the  surfaces  at p1.  Recall  the  gradient,  Grad,  

gives  the  vector  {D[f,x],D[f,y],D[f,z]}.

In[244]:= nv1 = Grad[f11, {x, y, z}] / . Thread[{x, y, z} → p1]

nv2 = Grad[f12, {x, y, z}] / . Thread[{x, y, z} → p1]

Out[244]= {2.30826, -2.89231, -1}

Out[245]= {2.30826, 2.89231, -1.5187}

The  tangent  vector  is simply  the  cross  product

In[246]:= tv1 = Cross[nv1, nv2]

Out[246]= {7.28487, 1.19729, 13.3524}
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More  generally  we  can  use  the  function  below  to get  a unit  tangent  vector.

In[6]:= tangentVector3D[{f_, g_}, p_, {x_, y_, z_}] := Module[{n1, n2, bi},

If[Norm[{f, g} / . Thread[{x, y, z} → p]] > 1.*^-8, Echo[p, "not a point "];

Return[Fail]];

n1 = {D[f, x], D[f, y], D[f, z]} / . Thread[{x, y, z} → p];

n2 = {D[g, x], D[g, y], D[g, z]} / . Thread[{x, y, z} → p];

bi = N[Cross[n1, n2]];

If[Norm[bi] < .0001, Echo[p, "No tangent vector at "]; bi, Normalize[bi]]]

In[152]:= tangentVector3D[{f11, f12}, p1, {x, y, z}]

Out[152]= {0.477462, 0.0784727, 0.875141}

A point  with  a tangent  vector  is called  regular   while  one  without  a tangent  vector  is 

called  singular. As noticed  in the  plane  curve  book  singular  points  may  be unstable,  

further  there  are  some  new  technical  problems  with  this  definition  that  will  be dis-

cussed  later.

In this  naive  case  we can  get  critical  points  just  as for  plane  curves.

In[8]:= criticalPoints3D[{f_, g_}, {x_, y_, z_}] := Module[{J, ob},

ob = RandomReal[{.7, 1.3}, 3].{x ^ 2, y ^ 2, z ^ 2};

J = D[{f, g, ob}, {{x, y, z}}];

{x, y, z} / . NSolve[{f, g, N[Det[J]]}, {x, y, z}, Reals]]

In[9]:= critpts = criticalPoints3D[{f11, f12}, {x, y, z}]

Out[9]= {{1.45718, -1.25159, 0.556915}, {1.24962, 0., 1.56155}, {0., 1.24962, -1.56155},

{-1.45718, 1.25159, 0.556915}, {1.45718, 1.25159, 0.556915},

{0., -1.24962, -1.56155}, {-1.24962, 0., 1.56155}, {-1.45718, -1.25159, 0.556915}}

As in the  plane  curve  case  we can also find points on the curve by picking an 

arbitrary point and finding the point on the curve closest to it.

closestPoint3D[{f_, g_}, p_, {x_, y_, z_}] := Module[{J, sol},

J = D[{f, g, (x-p〚1〛)^ 2+ (y-p〚2〛)^ 2+ (z-p〚3〛)^ 2}, {{x, y, z}}];

sol = {x, y, z} / . NSolve[{f, g, N[Det[J]]}, {x, y, z}, Reals];

MinimalBy[sol, Norm[#-p] &]〚1〛
]

There  may  be infinitely  many  closest  points.

In[128]:= p2 = closestPoint3D[{f11, f12}, {1, 1, 1}, {x, y, z}]

Out[128]= {1.40516, 0.962189, 1.04867}

One  of the  main  things  we can  do in the  naive  case  is to trace  curves.   Typically  we 

first  attempt  a plot  with  critical  points  labeled  so we can  trace  from  one  critical  point  
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 attempt  plot  points  point

to the  next.  We use  an analog  of pathFinderT  from  my Plane  Curve  book.

 In our  code  p, q  will  be the  start  and  end  points  of the  path  and  s  will  be the  desired  

step  size.   One  may  choose  this  by trial.  

In[20]:= Options[pathFinder3D] = {maxit → 30};

pathFinder3D[{f_, g_}, p_, q_, s_, {x_, y_, z_}, OptionsPattern[]] :=

Module[{k, p0, p1, tv1, tv, L},

p0 = p;

L = Reap[Sow[p];

k = 0;

While[Norm[q-p0] > 2 s && k < OptionValue[maxit],

tv1 = tangentVector3D[{f, g}, p0, {x, y, z}];

If[tv1.(q-p0) > 0, tv = tv1, tv = -tv1];

p0 = closestPoint3D[{f, g}, p0+ s* tv, {x, y, z}];

Sow[p0];

k++];

If[k ≥ OptionValue[maxit], Print["Warning, iteration limit reached"]];

Sow[q]];

L〚2, 1〛];

The  reader  is cautioned  that  in ℝ3 we  don’t  have  a canonical  direction  of 

travel  on  curves,  unlike  ℝ2.  Therefore  tracing  in ℝ3 is somewhat  different.   

This  tracing  function  takes  what  appears  to be the  shortest  Euclidean  dis -

tance  to the  end  point.   If the  intended  path  does  not  go directly  to the  

desired  end  the  trace  may  fail,  so one  should  trace  short  or  relatively  

straight  paths  only.   Also  replacing  the  order  of {f , g } or their  signs  makes  no  

difference.   In particular  tracing  around  a closed  bounded  component  

requires  at least  3 paths.   Finally,  in the  unlikely  event  of a singular  point  

then  you  can  trace  into  this  point,  but  not  out.   By  default  the  procedure  will  

stop  after  30 steps,  this  can  be changed  to a different  number  n by the  

option  maxit→n.  If the  maximum  number  of iterations  is reached,  the  path  

will  jump  to the  indicated  end  point  as in the  plane  case.
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In Example  1.1.1  we plot

In[144]:= Show [ContourPlot3D [{f11 ⩵ 0, f12 ⩵ 0}, {x, -3, 3},

{y, -3, 3}, {z, -3, 3}, Mesh → None , ContourStyle → Opacity [0.4]],

Graphics3D [Table [{Text [Style [i, FontSize → 14], critpts 〚i〛]}, {i, 8}]]]

Out[144]=

This shows  that  our curve  will  be closed  and bounded,  in principle  we can have  a path  from  any 

critical  point  to any other.   But applying  pathFinder3D  to get from  critical  point  4 to critical  point  

6 we get

In[192]:= pth = pathFinder3D [{f11, f12}, critpts 〚4〛 , critpts 〚6〛, .6, {x, y, z}, maxit → 15]

Warning , iteration limit reached

Out[192]= {{-1.45718 , 1.25159 , 0.556915 }, {-1.41441 , 1.41401 , 0.00113412 },

{-1.25246 , 1.45722 , -0.554849 }, {-0.960051 , 1.40464 , -1.05132 }, {-0.535693 , 1.30548 , -1.41731 },

{-0.0167815 , 1.24968 , -1.56142 }, {0.502491 , 1.29911 , -1.4352 }, {-0.0196231 , 1.2497 , -1.56137 },

{0.499898 , 1.29863 , -1.43654 }, {-0.0224445 , 1.24972 , -1.56131 }, {0.49732 , 1.29815 , -1.43787 },

{-0.0252454 , 1.24975 , -1.56124 }, {0.494759 , 1.29768 , -1.43918 }, {-0.0280255 , 1.24978 , -1.56117 },

{0.492214 , 1.29721 , -1.44048 }, {-0.0307847 , 1.24982 , -1.56109 }, {0., -1.24962 , -1.56155 }}

In[193]:= Show[ContourPlot3D[{f12 ⩵ 0}, {x, -3, 3},

{y, -3, 3}, {z, -3, 3}, Mesh → None, ContourStyle→ Opacity[0.4]],

Graphics3D[{Table[{Text[Style[i, FontSize → 14], critpts〚i〛]}, {i, 8}], {Blue, Thick, Line[pth]}}],

ImageSize → Small]

Out[193]=
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In this  attempt  we find that  the tracing  gets  hung  up at critical  point  3 and doesn’t  know  how to 

get to point  6 from  there.

We could  however  find intermediate  points  and do

In[249]:= pth1 = pathFinder3D [{f11, f12}, critpts 〚4〛 , critpts 〚3〛, .3, {x, y, z}];

pth2 = pathFinder3D [{f11, f12}, critpts 〚3〛 , critpts 〚5〛, .3, {x, y, z}];

pth3 = pathFinder3D [{f11, f12}, critpts 〚5〛 , critpts 〚1〛, .3, {x, y, z}];

pth4 = pathFinder3D [{f11, f12}, critpts 〚1〛 , critpts 〚6〛, .3, {x, y, z}];

Or, if we are only  interested  in getting  from  4 to 6 we could  simply  do

In[257]:= pth5 = pathFinder3D [{f11, f12}, critpts 〚6〛 , critpts 〚4〛, .4, {x, y, z}];

But by now we have  gone  all around  the curve  so we can plot  the curve  only

In[190]:= Graphics3D [{{Blue, Thick , Line [{pth1 , pth2 , pth3 , pth4}]}, {Orange , Thick , Line [pth5 ]},

Table [{Text [Style [i, FontSize → 14], critpts 〚i〛 + {.1, .1, .1}]}, {i, 8}]}]

Out[190]=

As with  plane  curves  we  can  find  infinite  points  of space  curves.   We  need  

forms  which  can  just  as easily  be  defined  in any  number  of variables.

formMD[f_, k_, X_] :=

FromCoefficientRules[Select[CoefficientRules[f, X], Total[#〚1〛] ⩵ k &], X];

maxFormMD[f_, X_] := formMD[f, tDegMD[f, X], X];

infiniteRealPoints3D[{f_, g_}, {x_, y_, z_}] := Module[{sol},

sol = {x, y, z} / . NSolve[{maxFormMD[f, {x, y, z}],

maxFormMD[g, {x, y, z}], x ^ 2+y ^ 2+ z ^ 2-1}, {x, y, z}, Reals];

Append[#, 0] & /@ Tally[sol, Norm[#1+#2] < .0001 &]〚All, 1〛]

1.1.2  Our  simple  example  is 

In[233]:= F2 = {x ^ 2- y ^ 2- 1, x+ y+ z- 1};

infiniteRealPoints3D [F2, {x, y, z}]

Out[234]= {{-0.707107 , 0.707107 , 0., 0}, {-0.408248 , -0.408248 , 0.816497 , 0}}
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1.2  Projection

1.2.1  Linear  Projection

Later  in this  book  a major  tool  will  be projection.   Here  a projection  is a linear  transfor -

mation  ℝ3⟶ℝ2 expressed  in matrix  form  with  two  orthogonal  rows.   While  random  

or pseudo-random  projections  are  better,  discussed  in the  next  section,  for  our   

Example  1 the  simple  projection  by eliminating  the  z-coordinate  will  be good  enough.

Example  1.2.1.1:  Projection  Pxy

In[269]:= Pxy = {{1, 0, 0}, {0, 1, 0}};

Given  a point,  say   p = {1, 2, 3}, in ℝ3 we can  project  it onto  ℝ2 by

In[271]:= p = {1, 2, 3};

Pxy.p

Out[272]= {1, 2}

Here  Mathematica  treats,  by  context,  p  as  a column  vector,  that  is,  takes  its  

transpose.   But  typically  we  have  a list  of points,  for  instance

In[274]:= pts = {{1, 2, 3}, {0, 1, 4}, {0, 0, 3}}

Out[274]= {{1, 2, 3}, {0, 1, 4}, {0, 0, 3}}

it is easiest  to implement  the  projection  function  given  by Pxy as

In[275]:= pts.Transpose[Pxy]

Out[275]= {{1, 2}, {0, 1}, {0, 0}}

A better  example  using  Example  1.1.1

In[276]:= Pth = Join[pth1, pth2, pth3, pth4, pth5];

pth = Pth.Transpose[Pxy];

In[279]:= Graphics[{Blue, Thick, Line[pth]}, ImageSize → Tiny]

Out[279]=

So if we  path  trace  a curve  in ℝ3 we  can  plot  its  projection  in ℝ2. However  

the  main  technique  in this  book  is to find  the  equation  of a space  curve  after  

projection  to the  plane.   In Chapter  2 we  will  learn  how  to do this  alge -

braically  from  the  equations  but  for  now  we  can  simply  project  a sufficient  

number  of sufficiently  random  points  and  reconstruct  an equation  interpo -

lating  by my  plane  interpolation  function  acurve.  Here  it is as a 2D  function  

in our  Space  Curve  global  functions:
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 Space  global

aCurve2D [pts_, x_, y_] := Module [{d, P, M, B, n, c, pow},

pow [a_, n_] := If[n ⩵ 0, 1, a ^ n];

d = Switch [Length [pts], 2, 1, 5, 2, 9, 3, 14, 4, 20,

5, 27, 6, _, Return ["number of points must be 2,5,9,14,20,27"]];

P = exps [2, d];

n = Length [P];

M = Table [If[Length [p] ⩵ 2, pow [p〚1〛, e〚1〛] * pow [p〚2〛, e〚2〛],
pow [p〚1〛, e〚1〛] * pow [p〚2〛, e〚2〛] * pow [p〚3〛, d- e〚1〛 - e〚2〛]], {p, pts}, {e, P}];

AppendTo [M, RandomReal [{-1, 1}, n]];

B = Append [Table [0, {n- 1}], 1];

c = LinearSolve [M, B];

FromCoefficientRules [Table [P〚i〛 → c〚i〛, {i, n}], {x, y}]

];

Note  from  my  plane  curve  book  that   the  number  of points  to use  to get  a 

polynomial  of degree  d   is  
d + 2

2
- 1 =

(d+2) (d+1)

2
- 1.

One  difficult  issue  with  space  curves  is calculating  the  degree  of a projec -

tion.   This  depends  on  both  the  equations  and  the  projection  matrix.   But  

generically  in the  case  of a naive  curve  given  by equations  of degrees  

d1, d2 the  degree  of a reasonably  random  plane  projection  is d1 * d2.

For Example  1.1.1  both  equations  are  quadratics  so the  degree  of the  curve  is 4.  By 

interpolation  we need 6 * 5 / 2 - 1 = 14 points.   It turns  out,  relative  to these  specific  

equations  that  Pxy is sufficiently  random.   We can  get  14 points  easily  from  our  

projected  path  tracing.

In[295]:= pts2 = RandomSample[pth, 14];

g = aCurve2D[pts2, x, y]

Out[296]= 3.35997- 6.01438× 10-13 x- 0.839992 x2
+ 3.99152× 10-13 x3

- 0.839992 x4
- 4.91802× 10-13 y-

5.67127× 10-13 x y+ 4.48573× 10-13 x2 y+ 1.99789× 10-13 x3 y- 0.839992 y2
+

3.16171× 10-13 x y2
+ 1.67998 x2 y2

+ 1.96307× 10-13 y3
+ 3.63534× 10-13 x y3

- 0.839992 y4

By symmetry  we don’t  expect  terms  with  odd  degrees  in either  variable  so we can  

chop  small  coefficients.

In[297]:= pf1 = Chop[g, 1.*^-9]

Out[297]= 3.35997- 0.839992 x2
- 0.839992 x4

- 0.839992 y2
+ 1.67998 x2 y2

- 0.839992 y4

In fact,  this  looks  like  an exact  polynomial,  so divide  by the  smallest  coefficient

In[298]:= pf1 = Expand[pf1 /Coefficient[pf1, y ^ 4]]

Out[298]= -4.+ 1. x2
+ 1. x4

+ 1. y2
- 2. x2 y2

+ 1. y4

SpaceCurveBook_v2c.nb    9



The  plot  is the  same  as above.

In[300]:= ContourPlot[pf1 ⩵ 0, {x, -2, 2}, {y, -2, 2}, ImageSize → Tiny]

Out[300]=

-2 -1 0 1 2

-2

-1

0

1

2

But  notice  instead  if we  use  a different  projection  we  get  a badly  contitioned  

matrix

In[318]:= Pyz = {{0, 1, 0}, {0, 0, 1}};

pts3 = RandomSample[Pth.Transpose[Pyz], 14];

pf2 = aCurve2D[pts3, x, y]

LinearSolve : Result for LinearSolve of badly conditioned matrix

{{1., 1.25159 , 0.556915 , 1.56647 , 7, 1.09187 , 0.485846 , 0.216185 , 0.0961955 }, 13, {-20
, 14}} may contain significant numerical errors .

Instead  we  can  suspect  the  possibility  of a degree  2 projection  and  use  5 

points

In[326]:= pts3 = RandomSample[Pth.Transpose[Pyz], 5];

pth2dyz = Pth.Transpose[Pyz];

pf2 = Chop[aCurve2D[pts3, x, y], 1.*^-9]

Out[328]= -0.9141+ 0.45705 x2
+ 0.228525 y+ 0.228525 y2

This  is just  a circle,  due  partly  because  our  curve  lies  on  a sphere  in ℝ3.

In[335]:= Show[ContourPlot[pf2 ⩵ 0, {x, -2, 2}, {y, -3, 2}, ImageSize → Small],

Graphics[{Red, Thick, Line[pth2dyz]}]]

Out[335]=

-2 -1 0 1 2

-3

-2

-1

0

1

2

In fact,  the  actual  point  projection  is only  part  of a circle!   This  is an impor -

tant  lesson,  the  point  projection  of an algebraic  space  curve  will  lie  in an 

algebraic  curve  but  may  not  be the  entire  curve.   The  smallest  algebraic  curve  

containing  the  point  projection  is known  to algebraic  geometers  as the  

Zariski  Closure  of  the  projection.
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So this  is why  it is important  to use  generic,  that  is,  random  projections.   

Sometimes  it is useful,  for  replication,  to have  only  a pseudo-random  projec -

tion  that  we  will  use  over  and  over.   The  one  I have  chosen  is known  as prd3D 

and  given  by

In[336]:= prd3D

Out[336]= {{-0.305198, 0.952289, 0.}, {-0.141911, -0.0454808, 0.988834}}

In[341]:= pth2dr = Pth.Transpose[prd3D];

Graphics[{Blue, Thick, Line[pth2dr]}, ImageSize → Small]

Out[342]=

This  brings  up  another  issue.   When  curves  are  projected  the  projection  may  

have  singular  points  even  though  the  original  curve  did  not  have  a singular  

point  or at least  not  one  that  projects  to this  singularity.   I will  call  such  

points,  non-standardly,  artifactual.  In fact,  for  many  curves,  including  this  

one,  generic  projections  must  include  artifactual  points,  although  very  

possibly  complex  or infinite.   We  will  discuss  this  at the  end  of this  book  

when  considering  genus.  In addition  to ordinary  crossings  these  artifactual  

singularities  may  be cusps  or isolated  points.

For  an example  of an artifactual  cusp  we  introduce  the  famous  twisted  cubic  

to be discussed  at the  beginning  of Chapter  2.  This  is a curve  generally  given  

parametrically  as t ↦ {t , t 2, t 3}. As  we  will  explain  in Chapter  3 such  curves  

are  algebraic,  although  even  in ℝ3not  necessarily  naive.   In fact  this  curve  is 

the  poster  child  for  non-naive  curves  but  is contained  in the  naive  curve  

In[120]:= F2 = {y-x ^ 2, z-x y};

where  the  extra  component  lies  in the  infinite  plane  so won’t  influence  this  

discussion.   If we  project  to the  plane  with  Pyz  which  sends  the  first  compo -

nent  to 0 then  from  the  parametric  expression  we  get  the  parametric  plane  

curve  t ↦ {t 2, t 3} which  we  recognize  as a cusp.   Or  we  can  easily  describe  a 

set  of points  plotting  the  curve

In[181]:= twcpts = Table[{t, t ^ 2, t ^ 3}, {t, -1, 1, .2}];

ptwcpts = twcpts.Transpose[Pyz];
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In[183]:= {ContourPlot[y ^ 2 ⩵ x ^ 3, {x, 0, 1}, {y, -1, 1}, ImageSize → Small,

Axes → True, Frame → False, AspectRatio → 1.75], Invisible["xxx"],

ParametricPlot[{t ^ 2, t ^ 3}, {t, -1, 1}, ImageSize → Small], Invisible["xxx"] ,

Graphics[{Blue, Line[ptwcpts]}, Axes → True, ImageSize → Small]}

Out[183]= 
0.2 0.4 0.6 0.8 1.0
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, ,
0.2 0.4 0.6 0.8 1.0
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-0.5

0.5

1.0

, ,
0.2 0.4 0.6 0.8 1.0

-1.0

-0.5

0.5

1.0



As for  the  possibility  of the  projection  having  isolated  artifactual  singular  

points  the  easiest  example  is projecting  the  z-axis,  that  is the  naive  space  

curve  {x = 0, y = 0} with  Pxy.

One  can  certainly  find  non-singular  curves  and  projections  giving  more  

complicated  artifactual  singularities.   For  example  see  the  section  on  blow-

ing-up in Chapter  3 to see  how  to make  any  plane  singularity  artifactual.   

But  for  this  to happen  with  a truly  generic  projection  generated  indepen -

dently  from  the  curve  is very  unlikely.

1.2.1   Nice  Example:   Viviani  Curve

The  Viviani  Curve  [see  https://www.wolframalpha.com/input/?i=Vivian -

i+Curve]  gives  a nice  example  of a singular  space  curve  which  looks  very  

different  depending  on  the  projection.   The  curve,  often  seen  as a paramet -

ric curve,  is given  implicitly  by 

In[284]:= v1 = x ^ 2+y ^ 2+ z ^ 2-4;

v2 = (x-1)^ 2+y ^ 2-1;

V = {v1, v2}

Out[286]= -4+ x2
+ y2

+ z2, -1+ (-1+ x)2
+ y2

One  can  use  either  method  of 1.1  or 1.2,  or a parameterization,  to draw  the  

curve:
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Note  that  the  point  where  the  branches  seem  to cross  is actually  the  singular  

point  {2, 0, 0} where  they  do cross

In[287]:= tangentVector3D[V, {2, 0, 0}, {x, y, z}]

» No tangent vector at {2, 0, 0}

Out[287]= {0., 0., 0.}

Using  projections  the  best  is,  as usual  our  pseudo-random  prd3D  or FLT  

version  fprd3d  which  gives  a 4th  degree  plane  curve.

In[288]:= vd2 = FLTMD[V, fprd3D, 4, {x, y, z}, {x, y}, dTol]〚1〛
Out[288]= 1. + 4.30229 x+ 3.68817 x2

+ 0.024428 x3
+ 0.000444366x4

- 2.00048 y+ 0.312204 x y+

1.0116 x2 y- 3.77986 y2
- 1.05115 x y2

+ 0.0400199 x2 y2
+ 0.511479 y3

+ 0.901056 y4

This  curve  can  be drawn  in color  giving  4 segments  where  the  center  red  

point  is the  image  of the  singularity,  the  other  2 are  2D  critical  points.

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

Projecting  on  the  x,y  plane  using  the  projection  fCompProj[3,3]  gives  the  

SpaceCurveBook_v2c.nb    13



Projecting  x,y  plane  using  projection gives

circle

In[303]:= vxy = FLTMD[V, fCompProj[3, 3], 4, {x, y, z}, {x, y}, dTol]〚1〛
Out[303]= -2. x+ 1. x2

+ 1. y2

In[305]:= ContourPlot[vxy ⩵ 0, {x, -.5, 2.5}, {y, -1.5, 1.5},

Epilog → {Red, PointSize[Large], Point[s2d1]}]

Out[305]=

-0.5 0.0 0.5 1.0 1.5 2.0 2.5

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

where  again  the  red  point  is the  image  of the  singular  point.   Each  other  

point  of the  circle  has  a 2 point  fiber.   This  is an example  of how  a non-

generic  projection  can  take  a singular  point  to a non-singular  point.

It is weirder  to project  onto  the  x,z  plane

In[304]:= vxz = FLTMD[V, fCompProj[2, 3], 4, {x, y, z}, {x, z}, dTol]〚1〛
Out[304]= 1. - 0.5 x- 0.25 z2

Here  we  get  a parabola.   But  the  bounded  Viviani  curve  can’t  linearly  project  

on the  unbounded  parabola.   In fact  the  image  

-2 -1 0 1 2 3

-4

-2

0

2

4

lies  in the  range  0 ≤ x ≤ 2 where  each  point  image  other  than  the  end  points  

has  a two  point  fiber.   As  one  starts  at the  singularity  of the  Viviani  curve  and  

goes  around  a loop  the  projection  starts  at {2, 0} goes  out  one  colored  

branch  of the  parabola  and  back  on  the  same  branch  to {2, 0}.  This  is a good  
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 parabola { }  good

example  of where  a space  curve  may  not  map  onto  the  FLT  projection  curve,  

particularly  in the  case  of a non-random  projection.

The  non-random  projection  on  the  y-z  plane  does  act  somewhat  like  the  

random  prd3d  projection  giving  a 4th  degree  curve.  

Another  random  projection  with  FLT  matrix

Out[326]= RA = {{0.5611043190123369 ,̀ 0.6690386434437178 ,̀ -0.4873902304772753 ,̀ 0},

{0.6953402146462944 ,̀ -0.7004233312648177 ,̀

-0.1609631725443459 ,̀ 0}, {0, 0, 0, 1}};

gives  the  following  degree  4 projection

-1.0 -0.5 0.0 0.5 1.0 1.5 2.0

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

The  red  point  is the  image  of the  singular  point  of the  Viviani  curve  and  the  

other  2 singularities  are  artifactual  singularities  from  the  projection.   This  is 

expected  since  the  Viviani  curve  having  a rational  parameterization  means  it 

has  genus  0 so we  expect,  generically  3 singular  points  in the  projection.   

Actually  the  fprd3D[2,3] and  non-random  projection  on  the  y-z  plane  have  

isolated  singularities,  the  former  a double  singularity  at the  infinite  point  

{1,0,0}  and  the  later  two  real  plane  isolated  singularities.   So  all  the  projec -

tions  remain  rational  curves.

1.3  Ovals  and  Pseudo  Lines

In ℝn , n ≥ 3, we can  still  distinguish  between  ovals  and  pseudo-lines  by counting,  

according  to multiplicity,  infinite  points,  but  things  work  differently  than  in the  plane  

case.   Because  higher  dimensional  projective  spaces  allow  skew  lines,  pseudo-lines  

may  not  intersect,  thus  non-singular  space  curves,  even  in even  degree,  can  have  

multiple  pseudo-lines.   Ovals  no longer  separate  projective  space  into  two  compo -

nents  and  do not  have  well-defined  interiors.   A curve  can  intersect  an oval  in an odd  

number  of points.   The  basic  difference  between  an oval  and  pseudo-line  is that  an 

oval  can  be deformed  continuously  in projective  space  to a point,  whereas  a pseudo-

line  cannot.   For  this  reason  some  authors  call  an oval  a null-homotopic  component  

and  a pseudo-line  a non-null-homotopic  component.
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1.4  Fractional  Linear  Transformations  on  3-Space.

In the  plane  curve  book  I defined  Fractional  Linear  Transformations  in 

Chapter  6 and  use  them  heavily  there.   On  the  point  level  these  are  given  in 

the  Wolfram  Language  under  the  name  TransformationFunction.  My   abbrevia -

tion  for  TransformationFunction  was  flt.   Since  TransformationFunction   works  in all  

dimensions  this  appears  here  as fltMD[p,A].  Note  neither  the  curve  we  are  

working  with  nor  the  variables  matter  so we  need  to know  only  the  point  p  

and  the  transformation  matrix  A which  needs  to be neither  square  nor  

invertible.   However,  in the  affine  case  the  number  of columns  needs  to be 1 

more  than  the  length  of p  and  the  length  of the  output  will  be  one  less  than  

the  number  of rows.  That  is,  a (n + 1) × (m + 1) transformation  matrix  takes  a 

point  in  ℝm  to a point  in ℝn.  If p  is an infinite  point  then  

TransformationFunction should  be replaced  by either  matrix  multiplication  A .p  

or  fltiMD[p,A]. Then  a (n + 1) × (m+1)  transformation  matrix  takes  projective  

ℙn to projective  ℙm .   Actually  fltiMD[p,A] will  accept  either  an affine  point  of 

length  m  or  an infinite  point  of length  m + 1 and  if the  result  is not  an infi -

nite  point  it will  be  represented  as an affine  point  of length  n.

 However  an important  observation   was  that   invertible  Transformation  

Matrices  actually  take  curves  to curves  on  the  equation  level.   In the  plane  

case  this  was  simple  as each  curve  is given  by a single  bivariate  polynomial.   

This  plane  case  is represented  here  by FLT2D[f,A,x,y].  This  is easily  extended  to 

the  naive  case  and  given  by  FLT3D[F,A,X].

FLT3D[F_, A_, X_] := Module[{B, d, g, h, t, n},

n = Length[X];

If[Dimensions[A] ≠ {n+1, n+1}, Echo[{n+1, n+1}, "need A to be of size"];

Abort[]];

If[MatrixRank[A] ≠ n+1, Echo["A must be invertible"]; Abort[]];

B = Inverse[A].Append[X, t];

Reap[Do[

d = tDegMD[f, X];

g = Expand[t ^ d (f / . Thread[X → X / t])];

h = Expand[g / . Thread[Append[X, t] → B]];

Sow[Chop[h / . {t → 1}, dTol]], {f, F}]]〚2, 1〛]

Although  we  will  keep  the  name  FLT3D to distinguish  this  version  from  the  

much  more  complicated  general  FLTMD, the  main  workhorse  and  contribu -

tion  of this  book,  we  note  that  FLT3D actually  works  in all  dimensions  and  for  

systems  of any  number  of equations  as long  as the  transformation  matrix  is 

square  and  invertible.   Unlike  the  more  general  FLTMD this  works  separately  

on each  equation  so the  number  of equations  returned  is the  same  as the  
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 equation  equations

number  entered.

The  Wolfram  Language  has  many  transformation  matrices,  see,  for  example  

the  examples  under  Transformation  Matrices  in nD in the  help  page  Geomet-

ric  Transforms .    In addition  see  the  symbolic  transformation  functions,  

example

In[109]:= TranslationTransform[{3, -3, 2}]

Out[109]= TransformationFunction
1 0 0 3

0 1 0 -3

0 0 1 2

0 0 0 1



so to translate  the  curve  given  by 

In[111]:= F = {z-x2 -y2, x+y+ z};

use

In[114]:= FLT3D[F, (

1 0 0 3

0 1 0 -3

0 0 1 2

0 0 0 1

), {x, y, z}]

Out[114]= -20+ 6 x- x2
- 6 y- y2

+ z, -2+ x+ y+ z

Wolfram  also  has  rotations,  reflections  and  scaling  (homothety)  transforms  

in n  dimensions.

In addition  we  import  klRotation2D and  ip2z2D from  our  plane  curve  book  (code  

in GlobalFunctions.nb)  but  note  that  the  latter  does  not  need  the  dummy  

variables  x , y  entered,  the  syntax  is simply  ip2z2D[ip] where  ip is the  infinite  

point.    

For   3 dimensions  we  have  a generalization  of klRotation2D , uvRotationMD[u,v] 

which  takes  the  vector  u  and  rotates  it about  the  origin  until  it is in the  

direction  of v  and  a transformation  matrix  ip2z3D[ip] which  takes  the  infinite  

point  ip and  places  it at the  origin.

In[125]:= ip2z3D[ip_] := Module[{p, A}, p = Take[ip, 3];

A = {{1, 0, 0, 0}, {0, 1, 0, 0}, {0, 0, 0, 1}, {1, 1, 1, 0}};

If[Norm[Take[p, 2]] < 1.*^-6, A, A.uvRotationMD[p, {0, 0, 1}]]]

Example  1.4.1:   

In[197]:= F = {z (x ^ 2+ y ^ 2) - 1, x + y};

ips = infiniteRealPoints3D [F, {x, y, z}]

Out[198]= {{0., 0., -1., 0}, {0., 0., -1., 0}, {-0.707107 , 0.707107 , 0., 0}}
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In[199]:= Aip1 = ip2z3D [{0, 0, 1}]

Out[199]= {{1, 0, 0, 0}, {0, 1, 0, 0}, {0, 0, 0, 1}, {1, 1, 1, 0}}

In[201]:= F1 = FLT3D [F, Aip1, {x, y, z}]

Out[201]= x2
- x3

- x2 y+ y2
- x y2

- y3
- z3 , x+ y

In[217]:= tangentVector3D[F1, {0, 0, 0}, {x, y, z}]

» No tangent vector at {0, 0, 0}

Out[217]= {0., 0., 0.}

In[202]:= showProjection3D [F1, fprd3D , 4, {x, y, z}, {x, y}, 1]

» projection Function -1.22291 x2
- 0.00045095 x3

+ 0.0176417 x2 y- 0.230054 x y2
+ 1. y3

Out[202]=

x= 1x= 1

So this  infinite  point  has a cusp-like  singularity  at {0, 0, 1, 0}.

In[213]:= Aip2 = ip2z3D [ips〚3〛]
F2 = FLT3D [F, Aip2, {x, y, z}]

Out[213]= {{0.5, 0.5, 0.707107 , 0.}, {0.5, 0.5, -0.707107 , 0.}, {0., 0., 0., 1.}, {0.292893 , 1.70711 , 0., 0.}}

Out[214]= 0.707107 x- 1.41421 x2
+ 1.06066 x3

- 0.707107 y+

1.06066 x2 y+ 1.41421 y2
- 1.06066 x y2

- 1.06066 y3
- 1. z3 , 1. x+ 1. y

In[215]:= tangentVector3D [F2, {0, 0, 0}, {x, y, z}]

Out[215]= {0., 0., 1.}

So this  other  infinite  point  is non-singular.
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2| General  Case

We now  treat  the  general  case  of a curve  in ℝn , n ≥ 3 with  k ≥ n - 1 polynomial  

equations  F = {f1, f2,⋯, fk }in the  n variables.   But  first,  some  more  numerical  linear  

algebra.

2.1  The  Twisted  Cubic  

The  standard  example  of a curve  requiring  more  than  n - 1 equations  is the  

twisted  cubic .  

In[116]:= twCubic = {x z-y ^ 2, y-x ^ 2, z-x y};

The  claim  is that  no  two  of these  equations  describe  this  curve,  all  3 are  

needed.   In fact  the  naive  curve  defined  by any  two  contains  a line  in addi -

tion  to the  curve.   Later,  in section  3.2  we  will  learn  how  to analyze  these  

curves  defined  by two  quadratics  known  as QSIC.   For  now  we  use  a trick.   In 

ℝ3 given  a line  and  a plane  they  need  not  intersect  but  usually  will,  the  

exception  is when  the  line  is parallel  to the  plane.   But  if the  line  is given  

then  a random  choice  of plane  will  intersect  that  line  with  probability  very  

near  1.  Now  if we  intersect  the  twisted  cubic  defined  by all  three  equations  

with  a random  plane  we  get  3 points,  possibly  2 are  complex.

In[127]:= l = RandomReal[{-1, 1}, 4].{x, y, z, 1}

Out[127]= 0.539366- 0.665691 x- 0.249707 y- 0.449716 z

In[161]:= sol = {x, y, z} / . NSolve[Append[twCubic, l]]

Out[161]= {{-0.561007+ 1.34217 ⅈ, -1.4867- 1.50594 ⅈ, 2.85528- 1.15057 ⅈ},
{-0.561007- 1.34217 ⅈ, -1.4867+ 1.50594 ⅈ, 2.85528+ 1.15057 ⅈ},
{0.566758, 0.321214, 0.182051}}

Thus  it is enough  to show  that  intersecting  the  QSIC  defined  by two  of the  

three  equations  actually  gives  4 intersection  points,  meaning  the  QSIC  must  

have  an extra  component.   This  works  fine  in the  first  two  cases
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In[129]:= NSolve[{x z-y ^ 2, y-x ^ 2, l}]

Out[129]= {{x → -0.561007+ 1.34217 ⅈ, y → -1.4867- 1.50594 ⅈ, z → 2.85528- 1.15057 ⅈ},
{x → -0.561007- 1.34217 ⅈ, y → -1.4867+ 1.50594 ⅈ, z → 2.85528+ 1.15057 ⅈ},
{x → 0., y → 0., z → 1.19935}, {x → 0.566758, y → 0.321214, z → 0.182051}}

In[131]:= NSolve[{x z-y ^ 2, z-x y, l}]

Out[131]= {{x → -0.561007- 1.34217 ⅈ, y → -1.4867+ 1.50594 ⅈ, z → 2.85528+ 1.15057 ⅈ},
{x → -0.561007+ 1.34217 ⅈ, y → -1.4867- 1.50594 ⅈ, z → 2.85528- 1.15057 ⅈ},
{x → 0.810235, y → 0., z → 0.}, {x → 0.566758, y → 0.321214, z → 0.182051}}

But  this  fails  for  the  last  two  equations!

In[158]:= NSolve[{y-x ^ 2, z- x y, l}]

Out[158]= {{x → -0.561007+ 1.34217 ⅈ, y → -1.4867- 1.50594 ⅈ, z → 2.85528- 1.15057 ⅈ},
{x → -0.561007- 1.34217 ⅈ, y → -1.4867+ 1.50594 ⅈ, z → 2.85528+ 1.15057 ⅈ},
{x → 0.566758, y → 0.321214, z → 0.182051}}

The  reason  is that  the  extra  line  is contained  in the  infinite  plane!   So we  use  

the  trick  from  Chapter  6 of my  plane  curve  book,  we  bring  most  of the  line

back  into  the  affine  plane  by ip2z3D[{0,0,1,0}]

In[243]:= A = ip2z3D[{0, 0, 1, 0}];

eq = FLT3D[{y-x ^ 2, z-x y}, A, {x, y, z}]

Out[244]= -x2
+ y z, -x y+ z- x z- y z

In[245]:= {x, y, z} / . NSolve[Append[eq, l]]

Out[245]= {{1.80204+ 1.60657 ⅈ, -2.37285+ 0.126197 ⅈ, -0.150579- 2.4482 ⅈ},
{1.80204- 1.60657 ⅈ, -2.37285- 0.126197 ⅈ, -0.150579+ 2.4482 ⅈ},
{0., 2.16, 0.}, {0.384404, 0.330846, 0.446632}}

Again  we  get  4, not  3 solutions.   We  conclude  it takes  all  3 equations  to 

define  the  twisted  cubic!   We  will  see  this  curve  several  more  times.

2.2  Tangent  Vectors  and  Definition  of curve.

So suppose  we have  a system  of k ≥ n - 1 polynomial  equations  in n unknowns.   Our  

first  task  is to say  what  we mean  by a curve.   For  example,  if k = n the  typical  situation  

is that  the  solution  set  is a set  of isolated  points.   The  key  feature  of curves,  rather  than  

other  point  sets  is that  there  are  infinitely  many  solutions  with  tangent  vectors  and  at 

most  finitely  many  points  without.   Here  is a simple  function  using  the  Jacobian  of the  

system, D[F,{X}] ,  to find  the  tangent  vector  at a point  or to indicate  that  one  does  

not  exist,  F  is a list  of polynomials  in the  n variables  X .
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In[178]:= tangentVectorJMD[F_, p_, X_] := Module[{J, ns},

If[Norm[F / . Thread[X → p]] > 1.*^-7, Echo["Large Residue, use tangentVectorMD"];

Return[Fail]];

J = D[F, {X}] / . Thread[X → p];

ns = NullSpace[J];

If[Length[ns] ⩵ 1, Return[ns〚1〛], Echo[p, "No unique tangent vector"]];

Table[0, {Length[X]}]]

If a non-zero  list  of length  n is returned  then  it is a tangent  vector  and  p  is 

called  a regular point.  Otherwise  p  is called  a non-regular  point  point.

Example  2.2.1:  

It is easy  to see that  the twisted  cubic

In[171]:= twCubic = {x z- y ^ 2, y- x ^ 2, z- x y};

is parameterized  by t ↦ {t , t 2, t 3}

In[172]:= twCubic /. Thread [{x, y, z} → {t, t ^ 2, t ^ 3}]

Out[172]= {0, 0, 0}

Picking  a random  point  on this  curve

In[173]:= p = {t, t ^ 2, t ^ 3} /. {t → RandomReal [{-3, 3}]}

Out[173]= {-1.05995 , 1.12349 , -1.19085 }

In[183]:= tv1 = tangentVectorJ3D [twCubic , p, {x, y, z}]

Out[183]= {0.243583 , -0.516372 , 0.820992 }

Note that  in calculus  or differential  geometry  the tangent  vector  of the curve  at t = p〚1〛 would  be 

defined  by 

In[182]:= tv2 = D[{t, t ^ 2, t ^ 3}, t] /. {t → p〚1〛}
Out[182]= {1, -2.1199 , 3.37048 }

But tangent  vectors  are defined  only  up to a non - zero  constant

In[184]:= Evaluate [tv1〚1〛 * tv2]

Out[184]= {0.243583 , -0.516372 , 0.820992 }

which  is tv1 so the classical  definition  of a tangent  vector  to a curve  agrees  with  ours!

Example  2.2.2:   We consider  the  apparent  naive  curve

In[185]:= G = {x z, y z};

If p = {0, 0, r} where  r is random
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In[190]:= p1 = {0, 0, RandomReal [{-5, 5}]};

tangentVectorJMD [G, p1, {x, y, z}]

Out[191]= {0., 0., 1.}

so this  is a regular  point.   But if p = {a, b, 0} then  it is a point  on algebraic  set G  but is not regular

In[192]:= p2 = Append [RandomReal [{-5, 5}, 2], 0];

tangentVectorJMD [G, p2, {x, y, z}]

» no unique tangent vector at {4.52064 , -4.0333 , 0}

Out[193]= {0, 0, 0}

Finally,  any other  point  is not on the set.

In[194]:= p3 = RandomReal [{-5, 5}, 3];

tangentVector3D [{-5, 5}, p3, {x, y, z}]

» not a point {-4.90776 , -2.23185 , 4.7079 }

Out[195]= Fail

So this  set  has  infinitely  many  regular  points  but  also  infinitely  many  non-

regular  points,  so it is not  a curve  so even  though  it is given  by 2 equations  in 

3 unknowns  it is not  a curve.

Example  2.2.3   Cyclic  4 

Here  is well  studied  curve  in ℝ4, the Cyclic  4. We will  examine  this  further  later  on in this  Chapter.

In[168]:= C4 = {w + x+ y+ z, w x+ x y+ y z+ z w, w x y+ x y z+ y z w + z w x, w x y z- 1};

We note  that  for any random  number  r , possibly  complex,  the points  {r , 1 / r , -r , -1 / r} and 

�{r , -1 / r , -r , 1 / r} are solutions.

In[178]:= Clear [r]

C4 /. Thread [{w, x, y, z} → {r, 1 / r, -r, -1 / r}]

C4 /. Thread [{w, x, y, z} → {r, -1 / r, -r, 1 / r}]

Out[179]= {0, 0, 0, 0}

Out[180]= {0, 0, 0, 0}

But not all these  points  are regular

In[174]:= r = RandomReal [{-4, 4}]

Out[174]= -0.30827
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In[176]:= tangentVectorJMD [C4, {r, 1 / r, -r, -1 / r}, {w, x, y, z}]

tangentVectorJMD [C4, {r, -1 / r, -r, 1 / r}, {w, x, y, z}]

Out[176]= {0.0668952 , -0.703935 , -0.0668952 , 0.703935 }

Out[177]= {-0.0668952 , -0.703935 , 0.0668952 , 0.703935 }

But if r = ±1 or r = ± ⅈ then  

In[181]:= r = 1;

In[182]:= tangentVectorJMD [C4, {r, 1 / r, -r, -1 / r}, {w, x, y, z}]

tangentVectorJMD [C4, {r, -1 / r, -r, 1 / r}, {w, x, y, z}]

» no unique tangent vector at {1, 1, -1, -1}

Out[182]= {0, 0, 0, 0}

» no unique tangent vector at {1, -1, -1, 1}

Out[183]= {0, 0, 0, 0}

In[184]:= r = -1;

In[185]:= tangentVectorJMD [C4, {r, 1 / r, -r, -1 / r}, {w, x, y, z}]

tangentVectorJMD [C4, {r, -1 / r, -r, 1 / r}, {w, x, y, z}]

» no unique tangent vector at {-1, -1, 1, 1}

Out[185]= {0, 0, 0, 0}

» no unique tangent vector at {-1, 1, 1, -1}

Out[186]= {0, 0, 0, 0}

In[187]:= r = ⅈ;

In[188]:= tangentVectorJMD [C4, {r, 1 / r, -r, -1 / r}, {w, x, y, z}]

tangentVectorJMD [C4, {r, -1 / r, -r, 1 / r}, {w, x, y, z}]

» no unique tangent vector at {ⅈ, -ⅈ, -ⅈ, ⅈ}
Out[188]= {0, 0, 0, 0}

» no unique tangent vector at {ⅈ, ⅈ, -ⅈ, -ⅈ}
Out[189]= {0, 0, 0, 0}

And similarly  for -ⅈ.  Thus  this  curve  has 8 complex  singular  points.   It can be shown  that  all 

solutions  are of this  form  and only  these  8 are singular  so the cyclic  4 is a curve.  

 A strange  fact,  discussed  later  in this  chapter,   is that  the parametric  curves  

{r , 1 / r , -r , -1 / r}, {r , -1 / r , -r , 1 / r} comprising  the solution  set of C4 are non-singular  as 

parametric  curves.   So singularity  is based  on the equation  system  rather  than  the geometry  of the 

point  set.   We have  actually  seen  this  before  with  plane  curves  x + y = 0 is non-singular  but the 

same  solution  set is given  by (x + y)2 = 0  where  every  point  is singular.

One  other  general  algorithm  we  can  give  at this  point  is a general   critical  

point  finder.   It does  not  work  as well  as criticalPoint3D  for  naive  curves  but  

SpaceCurveBook_v2c.nb    23



point

it will  return  some  critical  points  using  standard  optimization  techniques.   It 

does  not  give  isolated  points  but  it may  identify  possibly  singular  points  by 

repeated  solutions.   This  method  was  suggested  by the  paper  by [Wang,  

Bican]  but  since  the  methods  are  not  specifically  related  to this  paper  we  

just  give  the  code.   The  objective  function  is random  so you  might  run  this  

several  times.

In[8]:= Options [criticalPointsMD ] = {solutions → Reals };

criticalPointsMD [F_, X_, OptionsPattern []] := Module [{uv, n, k, wbg, b},

n = Length [X];

k = Length [F];

uv = Table [u[i], {i, k}];

b = RandomReal [{-1, 1}, {n, 1}];

Echo [X.b - RandomReal [{-1, 1}], "Objective Function "];

wbg = Flatten [Expand [uv.Grad [F, X] - b]];

X /. NSolve [Join [F, wbg ], Join [X, uv], OptionValue [solutions ]]]

2.2.4  Example  2.2.3  continued.

In[144]:= criticalPointsMD [C4, {w, x, y, z}]

» Objective Function {-0.00220762 + 0.730347 w - 0.564975 x- 0.446484 y+ 0.993358 z}

Out[144]= {w, x, y, z}

In[148]:= ccp4 = criticalPointsMD [C4, {w, x, y, z}, solutions → Complexes ]

» Objective Function {-0.57865 + 0.596792 w - 0.160889 x + 0.100207 y - 0.981373 z}

Out[148]= 9.93591 × 10-8
- 1. ⅈ, -6.69459 × 10-8

+ 1. ⅈ, 6.69474 × 10-8
+ 1. ⅈ, -9.93606 × 10-8

- 1. ⅈ,

1. - 1.01799 × 10-7 ⅈ, 1. + 1.01799 × 10-7 ⅈ, -1. - 5.92361 × 10-7 ⅈ, -0.999999 + 5.92361 × 10-7 ⅈ,

-1. - 6.95247 × 10-7 ⅈ, -1. + 6.95247 × 10-7 ⅈ, 1. - 2.01104 × 10-7 ⅈ, 0.999999 + 2.01104 × 10-7 ⅈ,

1. + 4.11075 × 10-7 ⅈ, 1. - 4.11076 × 10-7 ⅈ, -1. + 6.44503 × 10-7 ⅈ, -0.999999 - 6.44503 × 10-7 ⅈ

In[149]:= Chop[ccp4, 1.*^-6]

Out[149]= {{0. - 1. ⅈ, 0. + 1. ⅈ, 0. + 1. ⅈ, 0. - 1. ⅈ}, {1., 1., -1., -0.999999},

{-1., -1., 1., 0.999999}, {1., 1., -1., -0.999999}}

2.3  Macaulay  and  Sylvester  Matrices

We first  generalize  the  Macaulay  and  Sylvester  matrices  of my Plane  Curve  book  to an 

arbitrary  number  of variables.   A problem  often  mentioned  to me is that  these  matri -

ces can  get  quite  large,  for  example  even  in only  4 variables  a Sylvester  matrix  of order  

10 of a system  of 4 degree  5 polynomials  has  505K  entries  and  takes  13.5   seconds  to 

generate  (64  bit,12  core  3.4GHZ  Linux)  while  the  Macaulay  matrix  of the  same  order  

and  degree  has  as many  as 2860K  entries  and  can  take  76 seconds  to generate.   Analyz -

ing these  matrices  using  singular  value  decompositions  will  take  much  longer.   Fortu -

nately  there  are  enough  interesting  examples  already  in 3-space  that  we will  only  
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nately  enough  interesting  examples  already  3-space  only

occasionally  venture  into  higher  dimensions.

The  difference  between  the  Macaulay  and  Sylvester  matrices  is that  Macaulay  matri -

ces are  defined  at a point  and  measure  local  properties.   Essentially  the  rows  are  

germs of functions  and  can  be truncated  so monomial  multiples  of the  defining  

polynomials  will  appear  even  if the  resulting  degree  is larger  than  the  order.   The  

Sylvester  matrix  is independent  of point  and  measures  global  properties.   So if a 

monomial  multiple  of a defining  polynomial  has  degree  greater  than  the  order  this  

row  is left  out.   This  is why  there  are  many  more  rows  in the  Macaulay  matrix.   For  

either  the  number  of rows  is dependent  on the  defining  polynomials  so there  is no 

general  count.   The  number  of columns  in both  cases  is always  Length[expsMD[n,d] 

where  n is the  number  of variables  and  d  is the  order,  that  is  Binomial [n+d,d].

Already  in 1916  Macaulay  defined  the  dual  vectors  to his  arrays.   I implement  these  by 

the (right)  null  space  of the  Macaulay  matrix  as a column  matrix,  see  for  example  

section  2.2  of our  paper  [DLZ:  Dayton,  Li,  Zeng,  Math  Comp  80 (276),  free  from  

ams.org/mcom].  Likewise  we can  also  define  the  dual  of a Sylvester  matrix.   Note  that  

dual  vectors  of a Macaulay  matrix  should  not  be truncated  but  the  dual  vectors  of a 

Sylvester  matrix  can  be.   So in a sense,  the  dual  of a Macaulay  matrix  is a Sylvester  

matrix  and  conversely.

One  can,  essentially,  recover  the  Macaulay  and  Sylvester  matrix  from  their  duals   by 

taking  the  left  nullspace.   In a few  cases  later  on constructions  such  as the  important  

transformation  FLTMD  or taking  unions  of curves  require  working  with  duals  and  

then  taking  the  dual  of the  dual.   Unfortunately  the  result  can  often  be a system  of 

more  equations  than  necessary  and  possibly  higher  degrees  than  necessary.

2.3.1  Construction  of Macaulay  and  Sylvester  Matrices.

As mentioned  above  these  matrices  can  be large,  therefore  it is important  to 

have  efficient  methods  for  constructing  these.  Fortunately  Mathematica  has  

adequate  data  manipulation  methods  which  allow  us to do that.   

I generally  use  m  to represent  the  order  of a Macaulay  or Sylvester  Matrix,  

this  is the  largest   total  degree  of a monomial  to be considered.   The  

columns  of both  types  represent  the  monomials  in given  variables  up  to 

total  degree  m .  One  can  get  a list  of the  monomials  in the  ordering  used  by 

the  routine  mE xpsMD.  For  example  the  columns  of order  3 with  3 variables  

{x , y , z} correspond  to the  following  list.

In[120]:= mExpsMD[3, {x, y, z}]

Out[120]= 1, x, y, z, x2, x y, x z, y2, y z, z2, x3, x2 y, x2 z, x y2, x y z, x z2, y3, y2 z, y z2, z3

For  Sylvester  matrices  the  rows  represent  the  coefficients  of monomials  in 

this  list  of the  multivariate  polynomials  defining  a curve,  or other  algebraic  

set,  together  with  multiples  of these  polynomials  by monomials  of degree  

small  enough  that  the  product  is of degree  less  than  or equal  to m .  For  
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 enough  product  degree  equal

Macaulay  matrices  we  apply  a change  of variables  sending  the  given  point  to 

the  origin  and  then  allow  multiplication  by all  monomials  of order  less  than  

m  but  then  truncating  the  result  by  dropping  all  terms  of total  degree  

greater  than  m .  If this  truncating  results  in the  zero  row  we  do not  add  this  

row  to the  Macaulay  matrix.

Note  that  if m  is smaller  than  the  largest  total  degree  of the  equations  the  

Sylvester  Matrix  would  be empty  or will  ignore  some  equations,  so our  

routine  sylvesterMD will  refuse  a result  returning  only  an error  message.   On  

the  other  hand,  macaulayMD will  return  a result  for  any  m ≥ 1. As  you  will  

notice  in the  applications  we  generally  use  small  orders  for  the  Macaulay  

matrix  but  need  larger  orders  for  the  Sylvester  matrix.   Although  for  the  

same  m  the  Macaulay  matrix  will  have  far  more  rows  than  the  Sylvester  

matrix  it is misleading  to say  Macaulay  matrices  are  larger  since  we  use   

smaller  orders  for  the  Macaulay  matrices  than  the  degrees  of the  equations.

In the  rest  this  subsection  I will  explain  the  details  of the  construction,  the  

reader  uninterested  in these  will  skip  to the  next  subsection.

Rather  than  using  the actual  variables,  since  only  coefficients  appear  in these  matrices  we use 

integer  lists  corresponding  to the exponents  of the monomials,  so, for example,  if our variables  are 

given  as �{x, y , z, w} then instead  of the monomial   x2 z w 3  we will  use {2,0,1,3}.   Note  that  our 

variables  are used  in the order  indicated  in the last  argument  X .  Here  n is the number  of variables.

Our first  task is to create  the list of possible  exponents.    We do this  one degree  at a time  with  a 

recursive  routine,  essentially  getting  homogeneous  monomials  hence  the “h”.

hExpsMD [n_ , d_] := Module [{hps},

hps[0] = {Table [0, {n}]};

hps[m_] := hps[m] = DeleteDuplicates [

Flatten [Table [ReplacePart [p, i → (p〚i〛 + 1)], {p, hps[m - 1]}, {i, n}], 1]];

hps[

d]];

For instance

In[131]:= hExpsMD [4, 3]

Out[131]= {{3, 0, 0, 0}, {2, 1, 0, 0}, {2, 0, 1, 0}, {2, 0, 0, 1}, {1, 2, 0, 0}, {1, 1, 1, 0},

{1, 1, 0, 1}, {1, 0, 2, 0}, {1, 0, 1, 1}, {1, 0, 0, 2}, {0, 3, 0, 0}, {0, 2, 1, 0}, {0, 2, 0, 1},

{0, 1, 2, 0}, {0, 1, 1, 1}, {0, 1, 0, 2}, {0, 0, 3, 0}, {0, 0, 2, 1}, {0, 0, 1, 2}, {0, 0, 0, 3}}

To get the list for all degrees  up to d  we use the trick

expsMD [n_ , d_] := Drop [hExpsMD [n+ 1, d], None , 1];
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In[133]:= Timing[expsMD[4, 3]]

Out[133]= {0.001096, {{0, 0, 0, 0}, {1, 0, 0, 0}, {0, 1, 0, 0}, {0, 0, 1, 0}, {0, 0, 0, 1}, {2, 0, 0, 0}, {1, 1, 0, 0},

{1, 0, 1, 0}, {1, 0, 0, 1}, {0, 2, 0, 0}, {0, 1, 1, 0}, {0, 1, 0, 1}, {0, 0, 2, 0}, {0, 0, 1, 1},

{0, 0, 0, 2}, {3, 0, 0, 0}, {2, 1, 0, 0}, {2, 0, 1, 0}, {2, 0, 0, 1}, {1, 2, 0, 0}, {1, 1, 1, 0},

{1, 1, 0, 1}, {1, 0, 2, 0}, {1, 0, 1, 1}, {1, 0, 0, 2}, {0, 3, 0, 0}, {0, 2, 1, 0}, {0, 2, 0, 1},

{0, 1, 2, 0}, {0, 1, 1, 1}, {0, 1, 0, 2}, {0, 0, 3, 0}, {0, 0, 2, 1}, {0, 0, 1, 2}, {0, 0, 0, 3}}}

constructing  this  list in about  .001 seconds.   Note,  as an aside,  that  we can use this  to get all the 

monomials  of degree  less than  or equal  to d in an arbitrary  set of variables.

In[119]:= mExpsMD [d_ , X_] := Module [{n},

n = Length [X];

Table [FromCoefficientRules [{p → 1}, X], {p, expsMD [n, d]}]];

In[120]:= mExpsMD [3, {x[1], x[2], x[3]}]

Out[120]= 1, x[1], x[2], x[3], x[1]2 , x[1] × x[2], x[1] × x[3], x[2]2 , x[2] × x[3], x[3]2 , x[1]3 , x[1]2 x[2],

x[1]2 x[3], x[1] x[2]2 , x[1] × x[2] × x[3], x[1] x[3]2 , x[2]3 , x[2]2 x[3], x[2] x[3]2 , x[3]3

Next  we convert  the built  in CoefficientRules  to an association  adding  missing  monomials.  As an

extra  we calculate  the total  degree.

fAssocMD [f_, X_] := Module [{A, d, n, FA},

n = Length [X];

A = Association [CoefficientRules [f, X]];

d = Max[Table [Total [p], {p, Keys [A]}]];

FA = Association [Table [If[MissingQ [A[p]], p → 0, p → A[p]], {p, exps [n, d]}]];

{FA, d}]

In[145]:= FA = fAssocMD [1+ 3 x- 2 x y, {x, y}]

Out[145]= { {0, 0} → 1, {1, 0} → 3, {0, 1} → 0, {2, 0} → 0, {1, 1} → -2, {0, 2} → 0 , 2}

We perform  multiplication  by a monomial  by shifting  and adding  in missing  terms.

In[24]:= shi�FAMD [FA_, q_ , d_] := Module [{S, K, n},

K = Keys [FA];

n = Length [K〚1〛];
S = Association [Table [p+ q → FA[p], {p, K}]];

Association [Table [If[MissingQ [S[p]], p → 0, p → S[p]], {p, exps [n, d]}]]];

In the above  example  we multiply  by monomial  x 2  for use with  order  4.

In[149]:= sFA = shi�FAMD [FA〚1〛, {2, 0}, 4]

Out[149]=  {0, 0} → 0, {1, 0} → 0, {0, 1} → 0, {2, 0} → 1, {1, 1} → 0, {0, 2} → 0, {3, 0} → 3,

{2, 1} → 0, {1, 2} → 0, {0, 3} → 0, {4, 0} → 0, {3, 1} → -2, {2, 2} → 0, {1, 3} → 0, {0, 4} → 0

Note we can recover  our product  x2 (1 + 3 x - 2 x y)
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In[150]:= FromCoefficientRules [Normal [sFA], {x, y}]

Out[150]= x2
+ 3 x3

- 2 x3 y

Now we treat  the special  case  of one equation

In[25]:= sylMD [f_, m_ , X_] := Module [{FA, d},

n = Length [X];

{FA, d} = fAssocMD [f, X];

If[d > m, Print ["Degree error in syl"]; Abort []];

Table [Values [shi�FAMD [FA, q, m]], {q, exps [n, m - d]}]];

In[152]:= sylMD [1+ 3 x - 2 x y, 4, {x, y}] // MatrixForm

Out[152]//MatrixForm=

1 3 0 0 -2 0 0 0 0 0 0 0 0 0 0

0 1 0 3 0 0 0 -2 0 0 0 0 0 0 0

0 0 1 0 3 0 0 0 -2 0 0 0 0 0 0

0 0 0 1 0 0 3 0 0 0 0 -2 0 0 0

0 0 0 0 1 0 0 3 0 0 0 0 -2 0 0

0 0 0 0 0 1 0 0 3 0 0 0 0 -2 0

For the general  Sylvester  matrix  case  we apply  the above  equation  by equation.

In[26]:= sylvesterMD [F_,m_ ,X_]:=Flatten [Table [sylMD [F〚i〛,m,X],{i,Length [F]}],1];

The Macaulay  matrix  is similar  with  exception  of using  the following  instead  of sylMD  in the one 

equation  case:

macaMD [f_, m_ , p_ , X_] := Module [{M, fp, FA, d, n},

fp = Expand [f /. Thread [X → X+ p]];

n = Length [X];

{FA, d} = fAssocMD [fp, X];

M = Table [Values [shi�FAMD [FA, q, m]], {q, expsMD [n, m - 1]}];

Select [M, AnyTrue [#, Abs[## ] > 0 &] &]]

In[154]:= macaMD [1+ 3 x- 2 x y, 3, {-1 /3, 0}, {x, y}] // MatrixForm

Out[154]//MatrixForm=

0 3
2

3
0 -2 0 0 0 0 0

0 0 0 3
2

3
0 0 -2 0 0

0 0 0 0 3
2

3
0 0 -2 0

0 0 0 0 0 0 3
2

3
0 0

0 0 0 0 0 0 0 3
2

3
0

0 0 0 0 0 0 0 0 3
2

3

To finish

In[28]:= macaulayMD [F_, m_ , p_ , X_] := Flatten [Table [macaMD [F〚i〛, m, p, X], {i, Length [F]}], 1];

2.3.2  Application  of Sylvester  Matrices.   
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Sylvester  matrices  will  play  a large  role  below.   For  those  readers  familiar  

with  contemporary  algebraic  geometry  they  essentially  replace  the  concept  

of ideal.  So  we  give  only  two  simple  applications  here  which  are  multivari -

ate  extensions  procedures  in  Appendix  1 of our  plane  curve  book.

2.3.2.1 Numerical Division of multivariate polynomials.

 Given  polynomials  f , g   of  degrees  d1, d2 in variables  X  we  note  that  we  can  

use  sylMD  to do  matrix  multiplication  with  the  formulas

sylMD[f *g, d1 +d2, X] = syl[f, d1, X].syl[g, d1 +d2, X]

h = f *g = sylMD[h, d1 +d2, X].mExpsMD[d1 +d2, X]

Of course  this  will  be  about  100  times  slower  than  the  built  - in  Expand[f*g] 

but  it gives  us a suggestion  for  undoing  this  multiplication  : recover  f by  

multiplying  sylMD[h, d1 +d2, X] on the  right  by syl[g , d1 + d2, X ]-1 .  Of  course  this  

rarely  would  be an invertible  matrix  but  we  can  use  the  pseudo-inverse  

instead.   This  gives  us the  procedure,  using  the  faster  FromCoefficientRules 

instead  of multiplying  by mExps:

nDivideMD [h_, g_, X_, tol_] := Module [{n, l, m, d1, d2, P, S, f, ex},

n = Length [X];

d1 = tDegMD [g, X];

d2 = tDegMD [h, X];

If [d1 > d2, Print ["Does Not Divide "]; Return [Fail]];

P = PseudoInverse [N[sylMD [g, d2, X]], Tolerance → tol];

S = Chop [sylMD [h, d2, X].P];

ex = expsMD [n, d2 - d1];

l = Length [ex];

f = FromCoefficientRules [Table [ex〚i〛 → S〚1, i〛, {i, l}], X];

If[Norm [Flatten [sylMD [f * g- h, d2, X]]] > d2 * tol,

Print ["Does not divide at this tolerance "];

Return [Fail]];

f];

Of course  you  cannot  use  this  on  arbitrary  h, g  but,  especially  with  numeri -

cal  polynomials,  even  if h does  factor  we  probably  need  to use  a looser  

tolerance  than  dTol.

Example  2.3.2.1.1  We  divide  three  variable  polynomials  h by  g

In[149]:= h = 10 + 36 x+ 38 x2
+ 4 x3

- 28 x4
- 28 y- 70 x y- 16 x2 y+ 92 x3 y- 19 y2

- 64 x y2
- 57 x2 y2

+ 40 y3
-

5 x y3
+ 25 y4

- 34 z- 76 x z- 2 x2 z- 6 x3 z- 21 y z- 98 x y z+ 69 x2 y z+ 92 y2 z- 14 x y2 z+

65 y3 z+ 47 z2
+ 94 x z2

- 5 x2 z2
+ 2 y z2

+ 58 x y z2
- 14 y2 z2

- 40 z3
- 35 x z3

- 65 y z3
+ 25 z4 ;

In[150]:= g = 5+ 8 x- 7 x2
- 4 y+ 9 x y- 5 y2

- 2 z- 5 x z- 4 y z+ 5 z2 ;
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In[152]:= nDivideMD [h, g, {x, y, z}, dTol ]

Out[152]= 2. + 4. x+ 4. x2
- 4. y- 8. x y- 5. y2

- 6. z- 2. x z- 9. y z+ 5. z2

This  idea  can  be extended  to finding  the  greatest  common  divisor  of 2 n-

variable  polynomials.   In my  plane  curve  book  I give  the  code  in the  case  of 2 

variables  but  it is easily  extended  to the  general  n-variable  case.   The  code  is 

in my  GlobalFunctionsMD  notebook.   For  more  information  on  this  algo -

rithm  see  our  paper  [Zeng,Dayton  2004].

2.3.2.2  The  Membership  Problem

When  using  more  than  2 variables  a more  common  and  important  question  

than  GCD  finding   is the  ideal  membership  problem  given  polynomial  g in n-

variables  X  is it a polynomial  combination  of n-variable  polynomials  

{f1, …, fk}?

The  easiest  way  to handle  this  in general  is as follows.  Set  a tolerance  τ 

which  could  be dTol for  or weaker  for  numerical  systems.   Suppose  tDeg[g,X] = 

dg .  Then   we  calculate  the  ranks  by

S = sylvesterMD[{f1, …, fk}, mi, X];

r1 = Length[SingularValueList[S, Tolerance → τ]]
r2 = Length[SingularValueList[Append[S, sylMD[g, mi, X]〚1〛], Tolerance → τ]]

starting  with  m1 = Max f1, …, fk , dg .  If these  are  equal  then  g  is a mem -

ber.   If not  then  let  m2 ≥ m1 + 1 and  try  again.   We  continue  this  way  for  a 

few  more  tries  but  give  up  after  about  3 or 4 tries  concluding  that  g  is proba -

bly  not  a polynomial  combination  of {f1, …, fk}.  

2.3.2.2.1  Example:   

In[172]:= f1 = x+ y- 2 z+ y z2
- z4 ;

f2 = -x2
+ y- x y+ 2 x z- z2

- x y z2
+ x z4 ;

g = x+ y- 2 z;

We can take m1 = 5

In[175]:= S = sylvesterMD [{f1, f2}, 5, {x, y, z}];

r1 = Length [SingularValueList [S, Tolerance → dTol ]]

r2 = Length [SingularValueList [Append [S, sylMD [g, 5, {x, y, z}]〚1〛], Tolerance → dTol ]]

Out[176]= 5

Out[177]= 6

These are not equal . Trying m2  =  6 they still are not equal , but
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In[178]:= S = sylvesterMD [{f1, f2}, 7, {x, y, z}];

r1 = Length [SingularValueList [S, Tolerance → dTol ]]

r2 = Length [SingularValueList [Append [S, sylMD [g, 7, {x, y, z}]〚1〛], Tolerance → dTol ]]

Out[179]= 30

Out[180]= 30

So g is a polynomial combination of {f1, f2}.

Things  can  be much  worse,  that  is the  final  mi  could  be much  bigger  than  

m1 and  as formulated  there  is no  stopping  criterion  in this  method  to con -

clude  that  g  is not  a polynomial  combination  of the  fi.  In the  next  section  

2.4  we  will  see   that  there  is a defect  in the  curve  system  { f1, f2}, we  should  

have  g  and  one  more  polynomial  in our  system  and  then  the  first  try  will  be  

definitive.

2.3.3  Applications  of Macaulay  Matrices

2.3.3.1  Intersection  Multiplicity

The  main  application  of Macaulay  matrices  is Macaulay’s  original  applica -

tion,  the  computation  of intersection  multiplicity.   For  this  application  we  

will  have  a system  of n or more  equations  in n  variables,  n ≥ 2, and  an 

isolated  solution.  In our  case  isolated means  a solution  point  p  such  that  

there  is no  other  solution  point  q  such  that  Norm[p-q]<ϵ for  some  ϵ > 0.  In 

particular p  will  not  be  a regular  point  of a curve.

 A full  description  of this  algorithm  is given  in [Dayton-Li- Zeng] where  we  

emphasize  that  multiplicity is not  just  a number.   This  was  known  but  not

well  known  previously.   We  describe  this  concept  with  a sequence  called,  

historically,  the  Hilbert Function  although  the  reader  is forewarned  that  

there  are  other  different  sequences  with  this  name  in the  literature  and  even  

in this  book  where  in addition  to this local Hilbert  Function  there  is a global  

Hilbert  Function.   Essentially  this  measures  the  change  in dimension  of the  

null  space  of the  Macaulay  matrix  of order  m  as m  increases.   The  first  term  

(m = 0) of  the  Hilbert  Function   should  be 1 indicating  that  point  p  is a zero  

of our  system.  The  second  term  (m = 1) we call  the  breadth which  is also  

known  as the  embedding  dimension  by  algebraic  geometers,  it is always  less  

than  n.  The  fact  that  p  is isolated  implies  that  the  numbers  in this  Hilbert  

Function  become  zero  at some  point,  once  this  happens  it will  continue  to 

happen  if we  calculated  further.   The  order  of the  last  non-zero  number  in 

the  Hilbert  function  we  call  the  depth   which  should  not  be confused  with  

Macaulay’s  notion  of depth.   Finally  the  sum  of all  non-zero  numbers  in the  

Hilbert  Function  is simply  called  the  intersection  multiplicity,  or just  
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 simply  multiplicity,  just

multiplicity.

As mentioned  above  in section  2.3.1  the  Macaulay  matrix  for  large  m , n  can  

be very  large  already  when  m  or  n  is greater  than  3.  Thus  calculating  null  

spaces  can  be time  consuming.   Therefore  I give  several  algorithms  for  

multiplicity.   

The  first  is our  original  which  requires  the  user  to guess  an upper  bound  for  

the  depth.  It is the  only  version  that  gives  the  Hilbert  Function.  Usually  this  

is a small  number  so the  calculation  will  be  quick.   If the  depth  turns  out  to 

be large  this  version  stops  before  termination  so as not  to force  the  user  to 

wait.   On  the  other  hand  this  version  does  not  halt  at the  first  occurrence  of 

0 in the  Hilbert  function.   In order  to make  this  as fast  as possible  we  calcu -

late  only  the  final  Macaulay  Matrix  and  deduce  the  Hilbert  function  from  

that.

We  need  two  subroutines.   The  first,  nrref is simply  a numerical   version  of 

the  reduced  row  echelon  form,  the  code,  in GlobalFunctions.nb  will  be  

discussed  in the  next  subsection.   This  nrref does  return  a sequence  which  

allows  computation  of the  Hilbert  function.   Here  is that  algorithm.

Options [hilbertFunctionMD ] = {diff → False };

hilbertFunctionMD [p_ , m_ , n_ , OptionsPattern []] :=

Module [{h}, h = Table [Binomial [d+ n- 1, n - 1] -

Length [Select [p, Binomial [d+ n- 1, n] < # ≤ Binomial [d+ n, n] &]], {d, 0, m}];

If[OptionValue [diff ], Differences [Prepend [h, 0]], h]]

Then  the  multiplicity  algorithm  is

In[128]:= multiplicity0MD [F_, m_ , p_ , X_, tol_] := Module [{M, n, l, A, h},

n = Length [X];

M = macaulayMD [F, m, p, X];

{l, A} = nrref [M, tol];

h = hilbertFunctionMD [l, m, n];

Echo [h, "hilbert Function "];

Echo [Length [Select [h, # > 0 &]] - 1, "Depth "];

If[h〚m + 1〛 > 0, Echo [h〚n+ 1〛, "Warning : use higher m"]];

Total [h]]

Here  F  is the  equation  system,  m  is the  maximum  order  to compute,  p  is the  

isolated  solution  point,  X  is the  set  of variables  and  tol  is a desired  tolerance.   

For  numerical  systems,  in particular,  this  can  make  a difference,  for  example  

a very  loose  tolerance  can  pick  up  nearby  isolated  points.   But  the  reader  

should  be aware  that,  for  high  depth,  computation  of intersection  points  

accurately  is a problem,  see  our  paper  [Dayton-Li-Zeng].   A loose  tolerance  
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accurately  problem,  paper  [Dayton-Li-Zeng].

can  make  up  for  an inaccurately  calculated  intersection  point.   Note  the  

built-in  function  Timing returns  the  time  of execution  and  the  value.  If the  last  

entry  of the  Hilbert  function  is not  0 a warning  message  is given.

 Example  2.3.3.1.1:  Consider  the  two  variable  system  at {0,0}

In[125]:= F = {x ^ 2-y ^ 2+x ^ 3, x ^ 2-y ^ 2+y ^ 3};

In[131]:= Timing[multiplicity0MD[F, 6, {0, 0}, {x, y}, dTol]]

» hilbert Function {1, 2, 2, 1, 1, 0, 0}

» Depth 4

Out[131]= {0.038308, 7}

Our  second  version  recalculates  the  Macaulay  matrix  at each  step,  but  it 

stops  at the  first  0 in the  Hilbert  function  so,  since  low  multiplicities  are  the  

most  common,  is usually  the  fastest  although  this  could  run  a long  time  if 

the  depth  is large.   The  user  does  not  need  to give  an upper  depth.   The  

subroutines  are  not  necessary.

multiplicityMD [F_, p_ , X_, tol_] := Module [{ttd, svdl, cols, rnk, k, M, h, dh, hk},

ttd = Total [tDegMD [#, X] & /@ F];

k = tDegMD [F〚1〛, X];

dh = 1;

h = 0;

While [k ≤ ttd && dh > 0,

M = macaulayMD [F, k, p, X];

cols = Last [Dimensions [M]];

rnk = Length [SingularValueList [N[M], Tolerance → tol]];

hk = cols - rnk;

dh = hk - h;

h = hk;

k++];

h]

In[132]:= Timing[multiplicityMD[{x ^ 2-y ^ 2+x ^ 3, x ^ 2-y ^ 2+y ^ 3}, {0, 0}, {x, y}, dTol]]

Out[132]= {0.033905, 7}

The  final  version  assumes  the  maximal  depth  will  be  less  than  the  sum  of 

the  total  degrees  of the  equations.   This  seems  to be valid,  although  the  

author  has  no  proof.   The  advantage  is the  code  is short  but  the  answer  is 

not  guaranteed  unless  the  multiplicity  is less  than  the  sum  of total  degrees.
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multiplicity2MD [F_, p_ , X_, tol_] := Module [{ ttd, M, svdl, cols, rnk, h},

ttd = Total [tDegMD [#, X] & /@ F];

M = macaulayMD [F, ttd, p, X];

cols = Last [Dimensions [M]];

rnk = Length [SingularValueList [N[M], Tolerance → tol]];

cols - rnk]

In[133]:= Timing[multiplicity2MD[{x ^ 2-y ^ 2+x ^ 3, x ^ 2-y ^ 2+y ^ 3}, {0, 0}, {x, y}, dTol]]

Out[133]= {0.040724, 7}

Example  2.3.3.1.2  Here  is a numerical  example:

In[244]:= {a, b, c} = N[{Sqrt [7], Sqrt [11], CubeRoot [29]}]

Out[244]= {2.64575 , 3.31662 , 3.07232 }

In[245]:= F0 = Expand [

{(x- a)^ 3+ (y- b)^ 2+ (z- c)^ 2, (x- a)^ 2+ (y- b)^ 3+ (z- c)^ 2, (x- a)^ 2+ (y- b)^ 2+ (z- c)^ 3}]

Out[245]= 1.91887 + 21. x- 7.93725 x2
+ x3

- 6.63325 y+ y2
- 6.14463 z+ z2 ,

-20.0437 - 5.2915 x+ x2
+ 33. y- 9.94987 y2

+ y3
- 6.14463 z+ z2 ,

-11. - 5.2915 x+ x2
- 6.63325 y+ y2

+ 28.3174 z- 9.21695 z2
+ z3

In[257]:= sol = {x, y, z} /. NSolve [F0];

p = sol〚16〛
Out[258]= 2.64575 + 8.33743 × 10-8 ⅈ, 3.31662 + 4.84024 × 10-8 ⅈ, 3.07232 - 2.09602 × 10-15 ⅈ

We first  try multiplicity0MD  to actually  see what  is happening

In[264]:= Timing [multiplicity0MD [F0, 4, p, {x, y, z}, dTol ]]

» hilbert Function {1, 0, 3, 3, 1}

» Depth 3

» Warning : use higher m 3

Out[264]= {0.494936 , 8}

In[265]:= Timing [multiplicity0MD [F0, 4, p, {x, y, z}, 1.*^-6 ]]

» hilbert Function {1, 3, 3, 1, 0}

» Depth 3

Out[265]= {0.263942 , 8}

In both  cases  we  get  the  same  multiplicity  but  with  tighter  tolerance  the  

wrong  Hilbert  function.

Now  using  the  other  methods
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In[268]:= Timing[multiplicityMD[F0, p, {x, y, z}, 1.*^-6]]

Timing[multiplicity2MD[F0, p, {x, y, z}, 1.*^-6]]

Out[268]= {0.057562, 8}

Out[269]= {3.0274, 8}

In this  case  we  see  multiplicityMD is the  fastest  but  if we  tried  it with  dTol per -

haps  getting  the  correct  answer  was  luck.

2.3.3.2   Tangent  Vectors

Our  function  tangentVectorJMD works  in simple  cases  but  may  not  work  in near  

singular  cases.   An  alternate  uses  the  local  property  of the  Macaulay  matrix  

and  gives  some  information  about  singular  points  encountered.  Unlike  the  

multiplicity  finders  above  we  do not  expect  to apply  this  to an isolated  point  

so we  will  use  a global  Hilbert  function  rather  than  the  local  one  used  above.   

These  Hilbert  functions  are  related  in some  sense  as integrals  or derivatives  

of each  other.   The  discrete  built-in  functions  Accumulate and  Differences will  

connect  these  two  Hilbert  functions.

Our  function  nrref mentioned  above  is very  important  here  so we  give  the  

code.

nrref [M_ , eps_] := Module [{p, P, j, R, mn, n, r, s, U, S, V},

{U, S, V} = SingularValueDecomposition [N[M], Tolerance → eps];

r = Length [Select [Diagonal [S], # > 0 &]]; (* rank *)

R = Take [Transpose [V], r]; (* row space of M *)

mn = Dimensions [R];

n = 1;

While [Norm [Take [R, All, {n}]] < eps, n++];

p = {n};

For[j = n, j > 0, j++ ,

If[mn〚1〛 ≤ Length [p], Break [],

p = Append [p, j];

P = Check [R〚All, p〛, Abort []];

s = Length [Select [SingularValueList [N[P], Tolerance → eps], # > 0 &]];

If[s < Length [p],

p = Drop [p, -1];, Null ];

];

];

P = R〚All, p〛;

{p, Chop [Inverse [P].R]} ]

Example  2.3.3.2.1   We  consider  example  2.2.1  the  twisted  cubic  at {2,4,8}.
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In[307]:= twCubic = {x z- y ^ 2, y- x ^ 2, z- x y};

p = {2, 4, 8};

We calculate  the Macaulay  matrix  at p for m = 2 since  we are basically  only  interested  in the linear  

part.

In[316]:= M = macaulayMD [twCubic , 2, {2, 4, 8}, {x, y, z}];

M // MatrixForm

Out[317]//MatrixForm=

0 8 -8 2 0 0 1 -1 0 0

0 0 0 0 8 -8 2 0 0 0

0 0 0 0 0 8 0 -8 2 0

0 0 0 0 0 0 8 0 -8 2

0 -4 1 0 -1 0 0 0 0 0

0 0 0 0 -4 1 0 0 0 0

0 0 0 0 0 -4 0 1 0 0

0 0 0 0 0 0 -4 0 1 0

0 -4 -2 1 0 -1 0 0 0 0

0 0 0 0 -4 -2 1 0 0 0

0 0 0 0 0 -4 0 -2 1 0

0 0 0 0 0 0 -4 0 -2 1

Next  we apply  nrref

In[318]:= {pv, M2} = nrref [M, dTol ];

pv

M2 // MatrixForm

Out[319]= {2, 3, 5, 6, 7, 8, 9}

Out[320]//MatrixForm=

0 1. 0 -0.0833333 0 0 0 0 0 0.00347222

0 0 1. -0.333333 0 0 0 0 0 0.00694444

0 0 0 0 1. 0 0 0 0 -0.00694444

0 0 0 0 0 1. 0 0 0 -0.0277778

0 0 0 0 0 0 1. 0 0 -0.0833333

0 0 0 0 0 0 0 1. 0 -0.111111

0 0 0 0 0 0 0 0 1. -0.333333

Columns  2, 3, 4  give the linear  span  of these  equations  which,  since  we have  a curve  should  be of 

dimension  n - 1 = 2. 

In[337]:= nv1 = {1, 0, -0.08333333333333334` };

nv2 = {0, 1, -0.3333333333333334` };

Note that

In[339]:= Normalize [N[tangentVectorJMD [twCubic , p, {x, y, z}]]]

Normalize [Cross [nv1, nv2]]

Out[339]= {0.078811 , 0.315244 , 0.945732 }

Out[340]= {0.078811 , 0.315244 , 0.945732 }
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give the same  result.   In the case  of general  n the analog  of the cross  product  of n - 1 rows  is the 

last row orthogonal  completion  of these  rows

In[342]:= Orthogonalize [{nv1, nv2, RandomReal [{-1, 1}, 3]}] // MatrixForm

Out[342]//MatrixForm=

0.996546 0. -0.0830455

-0.0261796 0.949011 -0.314155

-0.078811 -0.315244 -0.945732

This  is the  idea  behind  our  algorithm

Options [tangentVectorMD ] = {tol → 1.*^-7 , ord → 4, hilbertFunction → True};

tangentVectorMD [F_, p_ , X_, OptionsPattern []] := Module [{M2, n, pv, orth, J, hf},

If[OptionValue [ord] < 2, Echo ["ord must be at least 2"]; Abort []];

n = Length [X];

{pv, M2} = nrref [macaulayMD [F, OptionValue [ord], p, X], OptionValue [tol]];

If[AnyTrue [Flatten [Take [M2, All, 1]], Abs[#] > OptionValue [tol] &],

Echo [p, "Not a solution , p = "];

Return []];

hf = hilbertFunctionMD [pv, OptionValue [ord], n];

If[OptionValue [hilbertFunction ], Echo [hf, "Hilbert Function "]];

If[hf〚OptionValue [ord] + 1〛 ⩵ 0, Echo [ "point may be isolated ", "Warning "]];

If[hf〚2〛 ⩵ 1, Return [Take [Orthogonalize [

Append [M2〚1 ;; n- 1, 2 ;; n + 1〛, RandomReal [{-1, 1}, n]]], -1]〚1〛],
Echo [p, "No unique tangent vector at "]];

Null ];

Example  2.3.3.2.1  continued

In[343]:= tangentVectorMD [twCubic , p, {x, y, z}, ord → 2]

» Hilbert Function {1, 1, 1}

Out[343]= {-0.078811 , -0.315244 , -0.945732 }

Increasing  the  order  of the  Macaulay  matrix   gives  more  of the  Hilbert  

function.   Since  this  is the  accumulation  of the  local  Hilbert  function  this  

stabilizes  at the  multiplicity.   In this  example  we  had  a regular  point  so the  

multiplicity  is 1.  We  could  use  this  to calculate  2-dimensional  singularities,  

note  the  first  argument  of tangentVectorMD  is a set  so even  with  one  equa -

tion  we  need  set  braces.

Examples  2.3.3.2.2

In[345]:= tangentVectorMD [{x y (x- y)}, {0, 0}, {x, y}]

» Hilbert Function {1, 2, 3, 3, 3}

» No unique tangent vector at {0, 0}

Compare  with
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In[346]:= singPointMult2D [x y (x- y), {0, 0}, x, y, dTol ]

Out[346]= 3

Applying  to a system  with  only  isolated  solutions

In[348]:= tangentVectorMD [{x z- y, y z- x ^ 2- x, z ^ 2- x ^ 2- 1}, {0, 0, 1}, {x, y, z}]

» Hilbert Function {1, 1, 0, 0, 0}

» Warning point may be isolated

Out[348]= {-0.707107 , -0.707107 , 0.}

we get a tangent  vector  but it has multiplicity  0.

Going  back  to example  2.3.3  the cyclic-4  curve

In[350]:= C4 = {w + x+ y+ z, w x+ x y+ y z+ z w, w x y+ x y z+ y z w + z w x, w x y z- 1};

In[351]:= tangentVectorMD [C4, {1, -1, -1, 1}, {w, x, y, z}]

» Hilbert Function {1, 2, 1, 1, 1}

» No unique tangent vector at {1, -1, -1, 1}

we have  a singular  point  of multiplicity  1.  We will  explain  later.

2.4  H-bases

We  saw  in Example  2.3.2.2.1  that  there  is a lack  of a stopping  point  in the  

membership  problem  but  is was  suggested  that  an equation  system  could  

be modified  so that  only  one  step  is needed.   This  is the  main  thrust  of this  

section  is to describe  a type  of equation  system  where  this  is true.

However  there  are  infinitely  many  equations  that  any  given  curve,  or more  

generally  algebraic  set,  will  satisfy.   Several  algorithms  we  will  see  generate  a 

large  number  of these  and  we  want  to pick  a good,  but  relatively  small,  

equation  set.   The  equation  sets  that  satisfy  the  previous  paragraph  are  good  

candidates  for  this.   

Fortunately  Macaulay  in the  same  1916  book  where  he described  his  

Macaulay  matrix  did  come  up  with  an answer.   He  was  using  homogeneous  

equations  for  projective  space  and  so called  this  an H-basis. Some  authors  

use  the  name  Macaulay  basis  for  this.   In this  book  , even  though  we  recog -

nize  that  algebraic  curves  live  in projective  space,  prefer  working  in affine  

space  as it is more  algorithm  friendly.   It turns  out  that  H-bases  work  fine  in 

affine  space  too.

A system  of polynomial  equations  in n  variables  is a H-basis if the  member -

ship  problem  can  always  be solved  in one  step.   Specifically  a system  

F = {f1, f2, …, fk} of polynomials  in n-variables  is an H-basis  if given  any   n-

38     SpaceCurveBook_v2c.nb



variable  polynomial  g  of  degree  d  it is a polynomial  combination  of the  

polynomials  of F  if and  only  if there  exist  polynomials {g1, …, gk} so that  

g1 f1 + g2 f2 + ⋯ + gk fk = h with each gi fi of total degree ≤ d

In particular  suppose  k = 3, f1 is linear,  f2 is quadratic  and  f3  is cubic.   If h is 

linear  then  to be a polynomial  combination  of H-basis  F = {f1, f2, f3} then  h 

must  be  a constant  times  f1.  If h  is quadratic  it can  be a linear  times  f1 plus  

a constant  times  f2. If h is cubic  it can  be a quadratic  times  f1 plus  a linear  

times  f2 plus  a constant  times  f3.  And  so on.

H-bases  do exist  and  every  polynomial  system  is a subset  of an H-basis.   We  

will  see  that  Mathematica  has  a built-in  algorithm  GroebnerBasis to find  one.   

This  algorithm  uses  abstract  algebra  so we  will  not  try  to explain  here  how  it 

works.   A simple  introduction  to Gröbner  bases  is given  at the  beginning  of 

the  book  by [Cox,Little  and  O’Shea]  but  unfortunately  I do  not  know  of an 

elementary  exposition  of H-bases  that  does  not  require  lots  of algebra.   My

position  in this  book  has  always  been  that  any  algorithm  of Mathematica  

does  not  require  my  explanation.   The  big  problem  using  GroebnerBasis is that  

this  algorithm  is intended  for  integer  systems  only.   Mathematica  will  try  to 

handle  numerical  systems  but  we  can’t  rely  on  this  working.

If F  is a H-basis  any  larger  system  is also  an H-basis.   The  trick  is to find  a 

small  H-basis  and  in the  rest  of this  section  I will  concentrate  on  this.

2.4.1  The  algorithm  hBasisMD

This  algorithm  (revised  5/2020)  which  takes  a large  polynomial  system  and   

attempt  to find  a small  H-basis.   It will  not  give  an H-basis  if the  argument  

m is not  large  enough,  unfortunately  one  cannot  know  what  m  is large  

enough  in advance.   One  can  check  with  hBasisMDQ below.   The  big  advantage  

of  this  version  of hBasisMD  is that  it works  fine  with  numerical  systems  

which  will  occur  in applications.

There  are  essentially  three  steps  in this  algorithm.   The  first  step  is to calcu -

late  the  Sylvester  Matrix   for  the  user  given  m  and  use  the  singular  value  

decomposition  to find  a full  rank  row  space.   For  numerical  systems  this  

essentially  replaces  the  possibly  numerically  inconsistent  input  system  with  

a least  squares  approximation  of a consistent  system.   We  then  apply  a 

reverse  row  reduction  to find  polynomials  of small  degree  among  polynomi -

als  combinations  of the  now  consistent  input  system.   This  is the  essential  

reason  for  H-bases.   These  first  two  steps  are  contained  in the  more  general  

matrix  reduction  procedure  arref below.   The  final,  third,  step  is to return  the  

resulting  Sylvester  matrix  back  into  a polynomial  system  and  use  the  mem -

bership  problem  solution  to reject  polynomials  which  are  already  polyno -
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bership  problem  reject  polynomials  already  polyno

mial  combinations  inside  the  vector  space  of polynomials  of degree  m  or  

less  of preceding  accepted  polynomials.   The  output  is what  is left  after  the  

rejections.

arref [M_ , eps_] := Module [{p, P, j, r, s, R, mn, n, U, S, V},

{U, S, V} = SingularValueDecomposition [N[M], Tolerance → eps];

r = Length [Select [Diagonal [S], # > 0 &]]; (* rank *)

R = Take [Transpose [V], r]; (* row space of M *)

mn = Dimensions [R];

n = mn〚2〛;

While [Norm [Take [R, All, {n}]] < eps, n--];

p = {n};

For[j = n- 1, j > 0, j-- ,

If[mn〚1〛 ≤ Length [p], Break [],

p = Prepend [p, j];

P = Check [R〚All, p〛, Abort []];

s = Length [Select [SingularValueList [N[P], Tolerance → eps], # > 0 &]];

If[s < Length [p],

p = Drop [p, 1];, Null ];

];

];

P = R〚All, p〛;

{p, Chop [Check [Inverse [P], Abort []].R]} ]

The  idea  is that  arref will  allow  us to pick  out  polynomial  combinations  of 

our  input  of lowest  degrees.   We  look  at a previous  example:

Example  2.4.1.1.   We  consider  example  2.3.2.2.1  where  we  found  a linear  

polynomial  that  was  a polynomial  combination  of a fourth  and  fifth  degree  

polynomial.

In[116]:= f1 = x+ y- 2 z+ y z2
- z4 ;

f2 = -x2
+ y- x y+ 2 x z- z2

- x y z2
+ x z4 ;

We start  by picking  m = 6 and calculating  the Sylvester  matrix  and its arref decomposition.

In[120]:= S6 = sylvesterMD [{f1, f2}, 6, {x, y, z}];

{p6, A6} = arref [S6, dTol ];

Length [p6]

Out[122]= 14

This last  number  says  we have  created  14 polynomial  combinations  of {f1,f2}.  Lets  look at the first  5

In[123]:= Take [A6, 5].mExpsMD [6, {x, y, z}]

Out[123]= -1. y+ 1. z2 , -1. x y+ 1. x z2 , -1. y2
+ 1. y z2 , -1. y z+ 1. z3 , -1. x- 1. y- 1. y2

+ 2. z+ 1. z4
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In[130]:= S7 = sylvesterMD [{f1, f2}, 7, {x, y, z}];

{p7, A7} = arref [S7, dTol ];

Length [p7]

Take [A7, 5].mExpsMD [7, {x, y, z}]

Out[132]= 30

Out[133]= -0.5 x- 0.5 y+ 1. z, -1. y+ 1. z2 , -1. x y+ 1. x z2 , -1. y2
+ 1. y z2 , -1. y z+ 1. z3

So we have  produced  our linear  polynomial  and can hope  that  m = 7 is large  enough,  that  is that  

from these  30 polynomial  combinations  we can get all polynomial  combinations  of {f1,f2}  without  

relying  on cancellation  of terms  to do our work.

So the  algorithm  hBasisMD creates  a list  of polynomial  combinations   using  

arref  that  we  hope  is a building  block  for  all  polynomial  combinations  of our  

input  system.   The  first  entry  of  is becomes  an element  of our  proposed  H-

Basis  H  and  we  proceed  to go down  the  list   using  our  membership  prob -

lem  method  to test  if it is a polynomial  combination  of the  previous  choices.   

If not  we  add  it to our  list  H .  So  we  hypothesize  that  every  polynomial  

combination  of our  input  system  is an appropriate  combination  of polynomi -

als  in the  list   which  in turn  are  appropriate  combinations  of our  list  

H . The  code  follows:
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In[135]:= hBasisMD [F_, m_ , X_, tol_] := Module [{n, p, S, A, a, Sa, H, H1, r, s, s1, k, temp },

n = Length [X];

H = {};

H1 = {};

S = sylvesterMD [F, m, X];

{p, A} = arref [S, tol];

Echo [hilbertFunctionMD [p, m, n], "Initial Hilbert Function "];

r = Length [p];

H1 = {A〚1〛.mExpsMD [m, X]};

H = H1;

S = sylvesterMD [H, m, X];

s = Length [SingularValueList [S, Tolerance → tol]];

k = 2;

While [k ≤ r,

H1 = Append [H, A〚k〛.mExpsMD [m, X]];

Sa = sylvesterMD [H1, m, X];

s1 = Length [SingularValueList [Sa, Tolerance → tol]];

If[s1 > s, s = s1; H = H1];

If[r > 30 && Mod [k, 10] ⩵ 0,

temp = PrintTemporary ["hBasis :: At equation ", k, " of ", r];

Pause [3];

NotebookDelete [temp ]];

k++];

S = sylvesterMD [H, m + 1, X];

{p, A} = arref [S, tol];

Echo [hilbertFunctionMD [p, m, n], "Final Hilbert Function "];

H];

Although  this  code  is fairly  simple  we  are  finding  the  rank  of increasingly  

large  matrices.   This  can  take  a long  time.   A new  feature  (5/2020)  is if A has  

many  rows  then  the  procedure  gives  temporary  output  of progress.   This  

could  give  the  user  a chance  to abort  the  procedure  if the  user  does  not  wish  

to wait.  Unlike  previous  versions  there  are  no  options  available.   A global  

Hilbert  function  of the  original  system  and  the  H-basis  are  given,  ideally  the  

second  Hilbert  function  will  stabilize.   If not  you  may  wish  to try  a larger  m  

or to use  the  algorithm  hBasisMDQ  below  to test  the  output  of this  

algorithm.

Example  2.4.1.1  Continued.   We  use  the  algorithm  to calculate  a H-basis  for  

{f1,f2}.

In[136]:= Timing [hBasisMD [{f1, f2}, 7, {x, y, z}, dTol ]]
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» Initial Hilbert Function {1, 2, 5, 7, 9, 18, 22, 26}

» Final Hilbert Function {1, 2, 2, 2, 2, 2, 2, 2}

Out[136]= 44.5493 , -0.5 x- 0.5 y+ 1. z, -1. y+ 1. z2

2.4.2  hBasisMDQ

Typically  hBasisMD is used  as a subroutine  for  other  algorithms  which  return  a 

large  set  of polynomials  to get  a smaller  set,  not  necessarily  an actual  H-

Basis.   This  will  terminate  with  a warning  message  if some  of the  input  

polynomials  have  degree  greater  than  m .  Then  the  one  thing  that  should  

always  happen  is that   the  set  H returned  will  at least  generate  the  input  set,  

so even  if one  does  not  get  an H-basis  something  useful  is returned.

But  one  will  not  get  an H-basis  if two  small  an m  is used.   There  is no  easy  a-

priori  method  to guess  a large  enough  m  but  the  algorithm  in this  subsec -

tion  should  be able  to check  to see  if you  do have  an H-basis.   

 So  you  can  use  the  output  from  hBasisMD in hBasisMDQ.  If using  hBasisMD as a 

stand-alone  procedure  you  may  wish  to run  hBasisMDQ  first  to see  if you  

already  have  an H-Basis  and  to get  a value  of m  that  should  work.  

hBasisMDQ works  by comparing  the  input  system  with  a known  H-Basis.   By  

default  this  the  output  of the  built-in  Mathematica  function  GroebnerBasis 

with  option  MonomialOrder→DegreeLexicographic.  As  mentioned  before  this  is not  

cheating  the  reader  as I have  never  promised  to explain  built-in  functions,  

only  my  own.   Normally  Gröbner  Bases  only  work  for  systems  with  integer  

coefficients,  Mathematica’s  will  attempt  numerical  systems  but  I offer  no  

guarantees.   In particular  GroebnerBasis will  flag  inconsistent  systems  and  

abort.   An  over-determined  numerical  system  that  may  be fine  in other  

places  in this  book  may  look  inconsistent  to GroebnerBasis.

The  syntax  is  hBasisMDQ[F,H, X, tol ] where  F is your  known  system,  H  is the  

system  you  wish  to check  to see  if it is an H-basis.   As  usual  X  is the  variable  

set,   and  tol  is desired  tolerance.  Note  that  m  is not  used  as input  so one  

does  not  need  to know  m  beforehand.    Here,  especially,  the  order  of the  

variables  matter,  Lexicographic is respect  to the  order  in X for  instance   the  

built  in MonomialList  used  in GroebnerBasis returns  a different  list  depending  on  

the  way  the  variables  are  listed:

In[123]:= MonomialList[(x+y+ z)^ 3, {x, y, z}, "DegreeLexicographic"]

MonomialList[(x+y+ z)^ 3, {z, y, x}, "DegreeLexicographic"]

Out[123]= x3, 3 x2 y, 3 x2 z, 3 x y2, 6 x y z, 3 x z2, y3, 3 y2 z, 3 y z2, z3

Out[124]= z3, 3 y z2, 3 x z2, 3 y2 z, 6 x y z, 3 x2 z, y3, 3 x y2, 3 x2 y, x3

SpaceCurveBook_v2c.nb    43



As an option  hBasisMDQ will  treat  the  first  argument  F as a known  H-basis  and  

check  the  argument  H against  that.  This  could  be useful,  for  example,   if one  

has  an H-basis  but  is concerned  that  it is not  minimal.   This  may  be,  for  

instance,  the  case  for  the  H-basis  returned  by GroebnerBasis.

Our  function  hBasisMDQ gives  an information  notice  with  the  size  of the  

Gröbner  Basis  and  a list  of total  degrees  of polynomials  present.  In the  case  

above  where  the  option  useF→True this  information  refers  to F rather  than  the  

Gröbner  Basis  which  is not  calculated.   If it is determined  that  H is a Gröb -

ner  basis  the  the  procedure  returns  only  the  value  True.  Otherwise  it stops  at 

the  first  instance  an element  of  F is not  expressible  in terms  of the  polynomi -

als  in H.  If the  Gröbner  Basis   (or  optionally  F) has  polynomials  of degree  1 

but  H does  not  then  hBasisMDQ flags  that  fact  and  stops,  doing  no  calculations.   

Otherwise  it gives  the  degree  of the  missing  polynomial  and  which  polyno -

mial  of the  Gröbner  Basis  in that  degree  it is and  halts.   For  the  user’s  conve -

nience  this  routine  creates  a global  variable  lastHBGroebner  so this  polyno -

mial  can  be retrieved.

Using  the  last  sentence  above  the  user  could  use  hBasisMDQ perhaps  several  

times  to find  a minimal  H-basis  from  the  Gröbner  basis,  but  if the  Gröbner  

basis  is large  probably  it is better  to use  hBasisMD  with  the  m  given  by the  

largest  degree  in the  Gröbner  basis.

The  procedure  hBasisMDQ  works  by running  the  membership  test  above  on  

each  member  of the  Gröbner  basis,  or optionally  the  H-basis  F.  Here  is the  

code
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Options [hBasisMDQ ] = {useF → False };

hBasisMDQ [F_, H_ , X_, tol_ , OptionsPattern []] :=

Module [{G, m , j, degG , degH , selG, SH, SG, r1, r2},

G = If[OptionValue [useF ], G = F,

G = GroebnerBasis [F, X, MonomialOrder → DegreeLexicographic ]];

m = Max[tDegMD [#, X] & /@ G];

degG = Sort [DeleteDuplicates [tDegMD [#, X] & /@ G]];

G = SortBy [G, tDegMD [#, X] &];

lastHBGroebner = G;

If[MemberQ [degG , 0], Echo ["F not proper ideal "]; Return [False ]];

Echo [{Length [G], degG }, "{size of Groebner Basis , degrees }"];

degH = Sort [DeleteDuplicates [tDegMD [#, X] & /@ H]];

If[degG〚1〛 < degH〚1〛, Echo [degG〚1〛, "No poly in H of degree "];

Return [False ]];

Catch [Do[SH = sylvesterMD [Select [H, tDegMD [#, X] ≤ k &], k, X];

r1 = Length [SingularValueList [N[SH], Tolerance → tol]];

r2 = r1;

selG = Select [G, tDegMD [#, X] ⩵ k &];

j = Length [selG ];

i = 0;

While [r1 ⩵ r2 && i < j,

i++ ;

SG = sylMD [selG〚i〛, k, X];

r2 = Length [SingularValueList [N[Join [SH, SG]], Tolerance → tol]]];

If[r1 ⩵ r2, Continue [], Echo [{k, i}, "Problem at poly i degree k "];

Throw [Return [False ]]],

{k, degG }]];

True ]

Gröbner  bases  may  be large  so this  routine  could  take  a long  time  to run,  

especially  if H is an h-Basis.   But  since  it stops  at the  first  omission  this  

version  does  not  give  running  information.   Again,  this  could  give  a false  

negative  in the  numerical  case,  but  a return  of True should  be reliable.

Example  2.4.2.1 , see  2.4.1.1

In[140]:= f1 = x+ y- 2 z+ y z2
- z4 ;

f2 = -x2
+ y- x y+ 2 x z- z2

- x y z2
+ x z4 ;

In[142]:= hBasisMDQ [{f1, f2}, {f1, f2}, {x, y, z}, dTol ]

» {size of Groebner Basis , degrees } {2, {1, 2}}

» No poly in F of degree 1

Out[142]= False

Adding  the previously  known  linear  polynomial
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In[150]:= hBasisMDQ [{f1, f2}, {f1, f2, x+ y- 2 z}, {x, y, z}, dTol ]

» {size of Groebner Basis , degrees } {2, {1, 2}}

» Problem at {degree , poly} {2, 1}

Out[150]= False

We see what  we need  from

In[145]:= lastHBGroebner

Out[145]= x+ y- 2 z, y- z2

Example  2.4.2.2  Twisted  Cubic  (Section  2.1)

Consider  the twisted  Cubic  first  as a naive  curve

In[151]:= tw2 = {y- x ^ 2, z- x ^ 3};

hBasisMDQ [tw2, tw2, {x, y, z}, dTol ]

» {size of Groebner Basis , degrees } {4, {2, 3}}

» Problem at {degree , poly} {2, 2}

Out[152]= False

This is not an H-basis.   So even  without  the geometric  input  of section  2.1 we need  additional/dif -

ferent  equations.   The suggestion  is 

In[153]:= lastHBGroebner

Out[153]= x2
- y, x y- z, -y2

+ x z, y3
- z2

But even  this  is bigger  than  necessary

In[154]:= hBasisMDQ [{x ^ 2- y, x y- z, x z- y ^ 2}, {x ^ 2- y, x y- z, x z- y ^ 2}, {x, y, z}, dTol ]

» {size of Groebner Basis , degrees } {4, {2, 3}}

Out[154]= True

So the basis  we found  in 2.1 of thee  quadratics  is sufficient  as an H - basis.

2.4.3 Application:  Making slightly inconsistent numerical systems consistent.  

The  following  example  of 4 linear  equations  in 4 unknowns  is motivated  by 

an example  at the  end  of section  3.2.
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In[330]:= lsys = {0.277262174208273` + 0.5144436627966619` x+

0.10598605713201434` y+ 0.8045124985078014` z,

0.7202433507070195` - 0.626115747655119` x+ 0.27531975154910765` y+

0.1158776108984591` z, -0.258819002786987` - 0.3361601677996709` x-

0.0989359825030034` y+ 0.9001226231727609` z, 0.4685805085964169` -

0.849601020102557` x+ 0.17911927833946` y- 0.16287018674812506` z}

Out[330]= {0.277262 + 0.514444 x+ 0.105986 y+ 0.804512 z, 0.720243 - 0.626116 x+ 0.27532 y+ 0.115878 z,

-0.258819 - 0.33616 x- 0.098936 y+ 0.900123 z, 0.468581 - 0.849601 x+ 0.179119 y- 0.16287 z}

In[331]:= NSolve [lsys]

Out[331]= {}

So this  system  in inconsistent.   But

In[332]:= hsys = hBasisMD [lsys, 1, {x, y, z}, 1.*^-8 ]

» Initial Hilbert Function {1, 0}

» Final Hilbert Function {1, 0}

Out[332]= {1. x, 2.61602 + 1. y, 1. z}

In[333]:= {x, y, z} /. NSolve [hsys ]

Out[333]= {{0., -2.61602 , 0.}}

is consistent.

2.5  Duality,  Union  , Intersection  and  decomposition  of Curves.

Already  in 1916  Macaulay  talked  about  the  dual  to his  Macaulay  matrix.   

Duality  will  play  a small  but  important  technical  role  in our  considerations.  

2.5.1  Duality

Given  a matrix,  generally  a Macaulay  or Sylvester  matrix,  M  the  dual  matrix  

is a matrix  ⅅ with  independent  columns  with  the  property  that  M .ⅅ = 0 

where  here  0 represents  the  zero  matrix  of the  appropriate  size.   Essentially  

a dual  matrix  of M  is just  a matrix  whose  columns  give  a basis  for  the  null  

space  of M .  We  will  assume  our  matrix  has  numerical  entries  so instead  of 

using  the  built  in NullSpace procedure  we  choose  a tolerance  and  use  the  

following,  see  for  example  Appendix  1 of my  curve  theory  book.
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In[31]:= dualMatrix[A_, tol_] := Module[{ns, r, c, U, S, V},

c = Dimensions[A]〚2〛;

{U, S, V} = SingularValueDecomposition[N[A], Tolerance → tol];

r = Length[Select[Diagonal[S], # > 0 &]];

Take[V, All, r-c]]

Example  2.5.1.1   Consider  the  matrix

In[142]:= M = RandomReal[{-1, 1}, {3, 5}];

M // MatrixForm

Out[143]//MatrixForm=

-0.739775 -0.276164 0.648798 0.524576 -0.542521

0.578205 -0.88494 0.0673685 -0.636653 0.309926

-0.900584 0.355809 0.975681 -0.0357853 -0.0451929

In[146]:= ⅅ1 = NullSpace[M];

ⅅ1 // MatrixForm

ⅅ2 = dualMatrix[M, dTol];

ⅅ2 // MatrixForm

Out[147]//MatrixForm=

0.540947 0.106097 0.497849 0.568587 0.353518

-0.468768 -0.28463 -0.284309 0.294731 0.729072

Out[149]//MatrixForm=

0.540947 -0.468768

0.106097 -0.28463

0.497849 -0.284309

0.568587 0.294731

0.353518 0.729072

In this  case  the  difference  is that  dualMatrix gives  a column  vector  rather  than  

giving  the  nullspace  basis  as rows.   If we  had  used  an integer  matrix  then  we  

would  have
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In[159]:= A = RandomInteger[{-9, 9}, {3, 5}];

A // MatrixForm

ⅅ1 = NullSpace[A]; ⅅ1 // MatrixForm

ⅅ2 = dualMatrix[A, dTol]; ⅅ2 // MatrixForm

ⅅ3 = Transpose[NullSpace[N[A]]]; ⅅ3 // MatrixForm

Out[160]//MatrixForm=

8 -4 -1 2 3

-5 -5 2 3 -5

4 9 3 1 8

Out[161]//MatrixForm=

-218 -159 -115 0 331

-70 119 -374 331 0

Out[162]//MatrixForm=

-0.0879398 -0.487715

0.26806 -0.380637

-0.704857 -0.20789

0.646603 -0.0485011

-0.0741015 0.756095

Out[163]//MatrixForm=

-0.0879398 -0.487715

0.26806 -0.380637

-0.704857 -0.20789

0.646603 -0.0485011

-0.0741015 0.756095

So we  see  that  for  small  well  conditioned  matrices  we  could  use  the  formula

Transpose[Nullspace[N[M]]]

instead  of dualMatrix.

On the  other  hand,  the  left  dual  space  ℒ  of  M is the  matrix  with  indepen -

dent  rows  with  ℒ.M = 0.  I have  been  calling  it the  localDualMatrix  given  by 

localDualMatrix[A_, tol_] := Transpose[dualMatrix[Transpose[A], tol]];

Note  that  this  is properly  a row  matrix,  that  is the  rows  form  a basis  for  the  

left  null  space.  

Traditionally  the  dual  of the  Macaulay  matrix  was  considered  to be a space  

of differentials  describing  the  local  structure.   The  left  (or  local)  dual  of this  

should  recover  our  original.   We  will  typically  be  interested  here  in the  dual  

of the  Sylvester  Matrix  with  the  left  dual  of that  recovering  our  curve.

Example  2.5.1.2   Consider  the  twisted  cubic.

In[164]:= twCubic = {x ^ 2-y, x y- z, x z-y ^ 2}

Out[164]= x2
- y, x y- z, -y2

+ x z
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In[180]:= S2 = sylvesterMD[twCubic, 2, {x, y, z}]

D2 = dualMatrix[S2, dTol]

Out[180]= {{0, 0, -1, 0, 1, 0, 0, 0, 0, 0}, {0, 0, 0, -1, 0, 1, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0, 1, -1, 0, 0}}

Out[181]= {{0., -0.707107, 0., -0.5, 0.5, 0., 0.}, {0.707107, 0., -0.707107, 0., 0., 0., 0.},

{0., 0.5, 0., -0.353553, 0.353553, 0., 0.}, {0.5, 0., 0.5, 0., 0., 0., 0.},

{0., 0.5, 0., -0.353553, 0.353553, 0., 0.}, {0.5, 0., 0.5, 0., 0., 0., 0.}, {0., 0., 0., 0.5, 0.5, 0., 0.},

{0., 0., 0., 0.5, 0.5, 0., 0.}, {0., 0., 0., 0., 0., 1., 0.}, {0., 0., 0., 0., 0., 0., 1.}}

This  doesn't  mean  much  to us.   Now  take  the  local  dual  of this

In[182]:= LD2 = localDualMatrix[D2, dTol]

Out[182]= -1.38778× 10-16, 1.51669× 10-16, 0.43613, -0.244521, -0.43613, 0.244521, -0.5, 0.5, 0., 0.,
-1.11022× 10-16, -3.07488× 10-16, 0.345805, 0.616781,

-0.345805, -0.616781, -1.73672× 10-17, -9.28866× 10-17, 0., 0.,
6.93889× 10-17, -1.59101× 10-16, -0.43613, 0.244521, 0.43613, -0.244521, -0.5, 0.5, 0., 0.

But  

In[183]:= F = Chop[LD2].mExpsMD[2, {x, y, z}]

Out[183]= -0.43613 x2
+ 0.43613 y+ 0.244521 x y+ 0.5 y2

- 0.244521 z- 0.5 x z,

-0.345805 x2
+ 0.345805 y- 0.616781 x y+ 0.616781 z,

0.43613 x2
- 0.43613 y- 0.244521 x y+ 0.5 y2

+ 0.244521 z- 0.5 x z

is actually  another  system  for  the  twisted  cubic.   But  note

In[184]:= hBasisMD[F, 2, {x, y, z}, dTol]

» Initial Hilbert Function {1, 3, 3}

» Final Hilbert Function {1, 3, 3}

Out[184]= 1. x2
- 1. y, 1. x y- 1. z, 1. y2

- 1. x z

is our  original  system!   This  is why  H-bases  and  our  hBasisMD are  so useful.

2.5.3  Intersection  and  Union  of curves.

The  intersection  of two  curves  is typically  a point  set.   But  to find  the  equa -

tion  set  one  simply  combines  the  two  equations.   For  the  twisted  cubic  

system  above  we  noticed  in Section  2.1  that  the  naive  curves   {x2 - y , x y - z} 

and  {x y - z , y 2 - x z} each  have  an extra  line  but  these  extra  lines  are  differ -

ent  so the  intersection  {x2 - y , x y - z , y 2 - x z} gives  just  the  twisted  cubic  

without   the  extra  lines.  

The  union  of two  space  curves  is more  difficult.   For  plane  curves  we  simply  

multiplied  the  equations.   But  in space  we  have  several  equations  for  each.   
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multiplied  equations.  space  equations

The  trick  is to go to duals,  duality  takes  unions  to intersections  and  vice  

versa.   So we  take  the  dual  matrices  of appropriate  Sylvester  matrices  and  

then  join  these,  note  same  m .  Then  we  take  the  local  dual  of the  combined  

dual  matrix.   The  question  is how  big  do we  make  the  matrices.   Here  the  

idea  of H-bases  helps.   We  make  sure  each  Sylvester  matrix  is large  enough  

to contain  an H-basis.   And  at the  end  we  give  the  result  as an H-Basis.

Example  2.5.3.1:   We  will  take  the  union  of a line  and  the  twisted  cubic  for  a 

relatively  easy  but  non-trivial  example  starting  from  H-bases  

(recommended).

In[133]:= twc = {x ^ 2- y, x y- z, y ^ 2- x z};

ln = lineMD [{-1, 1, -1}, {2, 4, 8}, {x, y, z}]

Out[134]= {0.12738 - 0.764319 x- 0.477694 y+ 0.414004 z, 0.818223 + 0.398339 x- 0.414498 y+ 0.00538627 z}

We don’t  show  the intermediate  matrices  but we do give their  dimensions.   First  we calculate  

duals  of the Sylvester  matrices

In[135]:= Dtwc = dualMatrix [sylvesterMD [twc, 3, {x, y, z}], dTol ];

Dimensions [Dtwc ]

Dln = dualMatrix [sylvesterMD [ln, 3, {x, y, z}], dTol ];

Dimensions [Dln]

Out[136]= {20, 10}

Out[138]= {20, 4}

Join these  column  wise  to get the dual  of the union.

In[139]:= dualF = Join [Dtwc , Dln, 2];

Dimensions [dualF ]

Out[140]= {20, 14}

Finally  take the localDual  and reduce  by hBasisMD.

In[144]:= Fraw = localDualMatrix [dualF , dTol ].mExpsMD [3, {x, y, z}];

Length [Fraw ]

F = hBasisMD [Fraw , 3, {x, y, z}, dTol ]

Out[145]= 8

» Initial Hilbert Function {1, 3, 4, 4}

» Final Hilbert Function {1, 3, 4, 4}

Out[146]= -1. x2
+ 1. y+ 1. x y- 1. z, 2. x2

- 2. y+ 1. y2
- 1. x z

Even though  the twisted  cubic  is not a naive  curve,  the union  is, in fact  this  is a quadratic  surface  

intersection  curve  (QSIC),  see section  3.2.  An unintended   feature  of my hBasisMD function  is that  

even though  the line was given  by numeric  equations  the end result  is integer!   One could  have  
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 though  given  by  equations  integer!

exploited  that  immediately  at the input  level

In[150]:= hBasisMD [ln, 2, {x, y, z}, dTol ]

» Initial Hilbert Function {1, 1, 1}

» Final Hilbert Function {1, 1, 1}

Out[150]= {-2. - 1. x+ 1. y, -2. - 3. x+ 1. z}

We will  look  at this  example  again.   For now note  that  we could  also calculate  the intersection.

In[148]:= NSolve [Join [twc, ln]]

Out[148]= {}

But this  is actually  wrong,   Mathematica  does  not like numerical  systems  of 5 equations  in 3 

unknowns!   Using  exact  representations

In[192]:= {x, y, z} / . NSolve[Join[twc, {-2-x+y, -2-3 x+ z}]]

Out[192]= {{2., 4., 8.}, {-1., 1., -1.}}

  We might  expect  a third  point  since  we are intersecting  a cubic  and a line,  but it is a well  known  

fact that  no 3 points  on the twisted  cubic  are co-linear  [see Harris].

Note  it is easy  to plot  this  curve  since  both  components  are  parametic

In[182]:= ParametricPlot3D[{{-1+3 t, 1+3 t, -1+9 t}, {t, t ^ 2, t ^ 3}},

{t, -2, 3}, ImageSize → Small, Boxed → False, Axes → False]

Out[182]=

Example  2.5.3.2:  Another  simple  example:  three  lines.

One  can  go on  for  a long  time  constructing  equations  systems  for  unions  of 

lines  in space,  see  for  example  my  paper  on  [Numeric  Lines].   

In[195]:= l1 = {x, y};

l2 = {x, z};

l3 = {z, y- 1};

In[198]:= Dl1 = dualMatrix [sylvesterMD [l1, 3, {x, y, z}], dTol ];

Dl2 = dualMatrix [sylvesterMD [l2, 3, {x, y, z}], dTol ];

Dl3 = dualMatrix [sylvesterMD [l3, 3, {x, y, z}], dTol ];

DG = Join [Dl1, Dl2, Dl3, 2];

Dimensions [DG]

Out[202]= {20, 12}
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In[203]:= Graw = localDualMatrix [DG, dTol ].mExpsMD [3, {x, y, z}];

Dimensions [Graw ]

Out[204]= {10}

In[205]:= hBasisMD [Graw , 4, {x, y, z}, dTol ]

» Initial Hilbert Function {1, 3, 3, 3, 3}

» Final Hilbert Function {1, 3, 3, 3, 3}

Out[205]= {-1. x+ 1. x y, 1. x z, 1. y z}

So this  is the  intersection  of 3 quadric  surfaces.   In Section  3.2  below  we  

study  the  classification  of curves  given  as the  intersection  of 2 quadric  

surfaces,  QSIC,  and  although  there  are  examples  with  three  lines,  this  shows  

that  not  all  unions  of 3 lines  in ℝ3 are  QSIC.

2.5.3.3 Here  is one  more  example  relevant  to Section  3.2

In[117]:= q1 = {x, y ^ 2+ z ^ 2- 1};

q2 = {z, x- y};

q3 = {z, x+ y};

In[123]:= Dq1 = dualMatrix [sylvesterMD [q1, 4, {x, y, z}], dTol ];

Dq2 = dualMatrix [sylvesterMD [q2, 4, {x, y, z}], dTol ];

Dq3 = dualMatrix [sylvesterMD [q3, 4, {x, y, z}], dTol ];

DQ = Join [Dq1, Dq2, Dq3, 2];

Dimensions [DQ]

Out[127]= {35, 19}

In[128]:= Qraw = localDualMatrix [DQ, dTol ].mExpsMD [4, {x, y, z}];

Length [Qraw ]

Out[129]= 17

In[130]:= Q = hBasisMD [Qraw , 4, {x, y, z}, dTol ]

» Initial Hilbert Function {1, 3, 5, 5, 4}

» Final Hilbert Function {1, 3, 5, 5, 4}

Out[130]= 1. x z, -1. x3
+ 1. x y2 , -1. z+ 1. y2 z+ 1. z3 , 1. x2

- 1. x4
- 1. y2

+ 1. y4
+ 1. y2 z2

Since  all  the  pieces  can  be parameterized  it is easy  to plot.   Again  this  looks  

similar  to a QSIC  but  is not  a QSIC.   [See  C.  Tu,  W.  Wang,  B.  Mourrain,  J. 

Wang  case  numbers  23-26]
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2.5.4  Decomposition  of reducible  curves.

Unlike  the  plane  case  where  the  single  equation  of a reducible  curve  factors,  

possibly  with  irrational  complex  coefficients,  the  equation  system  for  a 

reducible  space  curve,  see  our  examples  in the  previous  section,  do not  

factor.  For  Example   2.5.3.1  the  two  equations  are  give  smooth  quadric  

surfaces  and  thus  not  factorable.

In[186]:= {ContourPlot3D[-x ^ 2+y+x y- z ⩵ 0, {x, -5, 5}, {y, -5, 5}, {z, -5, 5}, ImageSize → Small],

ContourPlot3D[{2 x2 -2 y+ y2 - x z ⩵ 0},

{x, -5, 5}, {y, -5, 5}, {z, -5, 5}, ImageSize → Small]}

Out[186]=  , 

It is important  not  to confuse  topological  components  with  algebraic  compo -

nents.   For  plane  curves  the  simple  example  

In[117]:= ContourPlot[y ^ 2 ⩵ x ^ 3-x, {x, -2, 2}, {y, -2, 2}, ImageSize → Tiny]

Out[117]=

-2 -1 0 1 2

-2

-1

0

1

2

show  two  topological  components  but  this  curve  is irreducible.   We  will  
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 topological  components

have  plenty  of examples  like  this  for  space  curves  later.

Another  big  difference  between  plane  curves  and  space  curves  is the  the  

plane  Bézout  theorem  says  that  a reducible  curve  with  components  of 

degree  d1, d2 will  have  d1 d2 singular  intersection  points,  possibly  one  of 

d1, d2 could  be 1.  We  saw  in the  plane  curve  books  that  if this  number  is 

large  enough  we  can  even  use  these  points  to factor.   But  reducible  space  

curves  could  have  no  singular  points  at all,  for  example  a curve  consisting  of 

two  skew  lines.

Without  fully  describing  a space  curve  the  only  sure  way  to test  for  irre -

ducibility  is to use  one  of the  higher  powered  solvers  such  as [PHCpack]  or 

Bertini  [Bates,  Hauenstein, Sommese]. I give  my  solution  to this  problem  

below  but  it may  require  plotting  the  curve  first  using  methods  later  in the  

book.

2.5.4.1 Dual Interpolation

We  saw  in Section  2.5.3  that  duality  takes  unions  to intersections,  that  is the  

duals  of components  can  have  separate  rows  in the  dual  matrix.   We  exploit  

this  by  considering  the  dual  matrix  of the  curve  and  attempting  to find  

equations  describing  a given  component.  But  first  we  need  a technical  

subroutine.

To try  to explain,  in principle  the  Sylvester  Matrix  of high  enough  order  

contains  all  the  information  necessary  to determine  the  curve.   One  prop -

erty  of a curve  is the  Macaulay  information  at a point.   Of   could  recover  the  

equation,  perhaps  using  duality  and  hBasisMD and  take  the  Taylor  series  at 

that  point  which  can  be used  to do a hand  calculation  of the  Macaulay  

matrix.   Or  figure  out  how  this  works  within  the  dual  matrix.   At  one  point  

your  author  did  this  in general  but  don’t  ever  ask  him  to show  his  work  but  

the  answer  is encoded  in this  Mathematica  procedure.
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c2zMD [q_ , n_] := Module [{m, Tn, ss, bi, bj, r1, C, s, pow},

pow [a_, m_] := If[m ≤ 0, 1, a ^ m];

s = Length [q];

Tn = expsMD [s, n];

ss = Length [Tn];

ss = Length [Tn];

C = {};

Do[bj = Tn〚 j〛;

C = Append [C,

Table [Product [Binomial [Tn〚i〛〚k〛, bj〚k〛] * pow [q〚k〛, (Tn〚i〛〚k〛 - bj〚k〛)], {k, s}],

{i, ss}]],

{ j, ss}];

Transpose [C]]

The  following  example  gives  some  idea  how  this  might  work.

Example  2.5.4.1.1  See  Example  2.5.3.1  the  union  of a line  and  twisted  cubic.

In[217]:= F = {-x ^ 2+ y+ x y- z, 2 x ^ 2- 2 y+ y ^ 2- x z};

p = {1, 1, 1};

I start  with  the answer,  the Macaulay  matrix  at this  point.    Since  this  is a regular  point  the interest -

ing part  of this  is the first  two rows.   Since  the two equations  become  separated  we look at the 

equivalent  nrref form.

In[253]:= Take [nrref [macaulayMD [F, 2, p, {x, y, z}], dTol ]〚2〛, 2, 4] // MatrixForm

Out[253]//MatrixForm=

0 1. 0 -0.333333

0 0 1. -0.666667

Now I show  how to recover  this  from  the Sylvester  Matrix  using  my procedure  c2zMD above.

In[255]:= S2 = sylvesterMD [F, 2, {x, y, z}];

DS2 = dualMatrix [S2, dTol ];

ICDS2 = Inverse [c2zMD [p, 2]].DS2;

Take [nrref [localDualMatrix [ICDS2 , dTol ], dTol ]〚2〛, 2, 4] // MatrixForm

Out[258]//MatrixForm=

0 1. 0 -0.333333

0 0 1. -0.666667

Incidentally  this  example  somewhat  explains  why   I called  the  left  dual  the  

local  dual,  it gives  local  information.

For  our  problem  the  point  is that  this  is sort  of reversible.   We  go back  to the  

original  Macaulay  matrix  and  up  the  order  to 4.
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In[298]:= DM = dualMatrix[macaulayMD[F, 4, p, {x, y, z}], dTol];

CDM = c2zMD[p, 4].DM;

LCDM = localDualMatrix[CDM, dTol].mExpsMD[4, {x, y, z}];

hBasisMD[LCDM, 4, {x, y, z}, dTol]

» Initial Hilbert Function {1, 3, 1, 0, 0}

» Final Hilbert Function {1, 3, 1, 0, 0}

Out[301]= 1. x2
- 1. y, 1. x y- 1. z, 1. y2

- 1. x z,

-1.+ 5. x- 10. y+ 10. z- 5. x z+ 1. y z, -5.+ 24. x- 45. y+ 40. z- 15. x z+ 1. z2

We  don'  t quite  get  the  original  system  but  the  surprise  is the  first  3 equa -

tions  define  the  twisted  cubic,  not  the  union  F which  was  the  only  input  

data.  This  is because  we  started  with  a Macaulay  matrix  which  gives  only

local  information  at the  point  p = {1, 1, 1}and  doesn’t  see  the  line.   We  

would  get  better  results  if we  used  additional  points  on  the  twisted  cubic  

and/or  higher  order.   So  this  will  give  us our  algorithm  for  finding  equations  

of irreducible  components  of reducible  curves.

In[87]:= Options [dualInterpolationMD ] := {hBasis → True}

dualInterpolationMD [F_, P_ , m_ , X_, tol_ , OptionsPattern []] :=

Module [{M, DM, DSi, DS, S, G, i, np},

np = Length [P];

DS = {{}};

For[i = 1, i ≤ np, i++ ,

M = macaulayMD [F, m, P〚i〛, X];

DM = dualMatrix [M, tol];

DSi = c2zMD [P〚i〛, m].DM;

DS = Join [DS, DSi, 2]];

S = localDualMatrix [DS, tol];

If[Dimensions [S]〚1〛 ⩵ 0, Print ["no curve , try larger m"]; Abort []];

G = S.mExpsMD [m, X];

If[OptionValue [hBasis ], Return [Chop [hBasisMD [G, m, X, tol], tol]], Return [G]];

]

Example  2.5.4.1.1  Continued

In[117]:= F = {-x ^ 2+ y+ x y- z, 2 x ^ 2- 2 y+ y ^ 2- x z};

P = {{0, 0, 0}, {.5, .25, .125}, {1, 1, 1}}

dualInterpolationMD [F, P, 4, {x, y, z}, 1.*^-10 ]

Out[118]= {{0, 0, 0}, {0.5, 0.25, 0.125 }, {1, 1, 1}}
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» Initial Hilbert Function {1, 3, 3, 3, 3}

» Final Hilbert Function {1, 3, 3, 3, 3}

Out[119]= 1. x2
- 1. y, 1. x y- 1. z, 1. y2

- 1. x z

This is our standard  H - basis  for the twisted  cubic.

Here  are two points  on the line 

In[131]:= q1 = N[{
1

2
,

5

2
,

7

2
}];

q2 = N[{-
1

4
,

7

4
,

5

4
}];

In[133]:= Q = {q1, q2}

Out[133]= {{0.5, 2.5, 3.5}, {-0.25, 1.75, 1.25 }}

In[134]:= dualInterpolationMD [F, Q, 2, {x, y, z}, 1.*^-10 ]

» Initial Hilbert Function {1, 1, 1}

» Final Hilbert Function {1, 1, 1}

Out[134]= {-2. - 1. x+ 1. y, -2. - 3. x+ 1. z}

Which  is an H-basis  for our line.

Example  2.5.4.1.2   A slightly  more  difficult  example  is Example  2.5.3.3.   One  

component  is the  circle  in the  plane  x = 0.

In[140]:= G = {1. x z, -1. x ^ 3+ 1. x y ^ 2,

-1. z+ 1. y ^ 2 z+ 1. z ^ 3, 1. x ^ 2- 1. x ^ 4- 1. y ^ 2+ 1. y ^ 4+ 1. y ^ 2 z ^ 2};

P2 = N[{{0, 1, 0}, {0, 0, 1}, {0, Sqrt [2] /2, Sqrt [2] /2}}]

Out[141]= {{0., 1., 0.}, {0., 0., 1.}, {0., 0.707107 , 0.707107 }}

In[142]:= dualInterpolationMD [G, P2, 4, {x, y, z}, 1.*^-10 ]

» Initial Hilbert Function {1, 2, 2, 2, 2}

» Final Hilbert Function {1, 2, 2, 2, 2}

Out[142]= 1. x, -1. + 1. y2
+ 1. z2

2.6  Fractional  Linear  Transformations   

We  come  to our  most  important  procedure  in this  book.   We  have  already  

introduced  Mathematica’s  TransformationFunction which  is otherwise  known  as 

a projective  linear  transformation   or  linear  fractional  transformation.   As 

the  reader  is well  aware  your  author  prefers  the  name  fractional  linear  

transformation,  FLT.   These  transformations  can  have  any  dimensional  

domain  and  range  and  are  given  by transformation  matrices   which  are  

(n + 1)⨯ (k + 1) matrices  where  the  transformation  goes  from  ℝk⟶ℝn.  
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( ) ( )  goes

Possibly  they  could  be complex  as well.   Thus  an example  ℝ4⟶ℝ2 could  be

Example  2.6.0.1

In[151]:= A = RandomInteger [{-9, 9}, {3, 5}];

In[151]:= A = {{7, 8, -4, 6, -8}, {9, -2, -6, 0, -2}, {9, 6, -3, 7, 2}};

In[155]:= A // MatrixForm

Out[155]//MatrixForm=

7 8 -4 6 -8

9 -2 -6 0 -2

9 6 -3 7 2

In[153]:= TransformationFunction [A][{w, x, y, z}]

Out[153]=  -8+ 7 w + 8 x- 4 y+ 6 z

2+ 9 w + 6 x- 3 y+ 7 z
,

-2+ 9 w - 2 x- 6 y

2+ 9 w + 6 x- 3 y+ 7 z


I also  have  alternate  notation

In[154]:= fltMD[{w, x, y, z}, A]

Out[154]=  -8+ 7 w+ 8 x- 4 y+ 6 z

2+ 9 w+ 6 x- 3 y+ 7 z
,

-2+ 9 w- 2 x- 6 y

2+ 9 w+ 6 x- 3 y+ 7 z


In my  Plane  Curve  Book  and  Chapter  1 of this  book  I restrict  to invertible  

square  transformation  functions  and  give  also   corresponding  functions  

FLT2D, FLT3D which  take  equations  to equations.   This  makes  these  much  more  

useful.   Actually  FLT3D will  work  for  any  dimension  n as long  as the  transfor -

mation  matrix  is invertible.   These  work  equation  by equation  by simply  

composing  each  equation  with  the  inverse  transformation.

In the  general  case,  however,  we  don't  have  an inverse  transformation  and  

the  number  of equations  in the  range  may  be more  or fewer  than  equations  

in the  domain.   In the  example  above  a curve   in ℝ4 would  have  3 or more  

equations  but  a curve  in ℝ2 has  only  one.  Thus  many  of the  techniques  we  

have  introduced  in this  chapter,  in particular  Sylvester  matrices,  duality  and  

H-bases,  will  be  used.

The  key  is,  as in FLT2D, FLT3D, is that  the  transformation  of equations  works  

naturally  in the  opposite  direction  as the  transformation  of points.   But  

duality  turns  this  around:  the  transform  of dual  spaces  works  in the  same  

direction  as the  transformation  of points.   The  other  thing  is we  will  have  to 

deal  with  is the  fact  that  these  transformations  are  actually  transformations  

of projective  space  so we  will  need  to work  with  homogeneous  polynomials.  

Then  these  FLT  will  be  simply  linear  transformations  rather  than  rational  

functions.   We  will  need  the  following  simple  subroutines
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In[48]:= fVecMD [f_, m_ , X_] := Module [{n, FA, d},

n = Length [X];

{FA, d} = fAssocMD [f, X];

Values [shi�FAMD [FA, 0, m]]]

fMatMD [F_, m_ , X_] := Table [fVecMD [F〚i〛, m, X], {i, Length [F]}];

gMapMD [T_, m_ , X_, Y_] :=

fMatMD [Expand [mExpsMD [m, Y] /. Thread [Y → T]], m, X]

So we  take  the  Sylvester  matrix  of our  domain  system,  dualize,  map  the  

duals  with  a linear  version  gmapMD of our  transformation,  return  with  the  

localDualMatrix getting  a large  system  which  we  reduce  using  hBasisMD.

Because  this  may  be time  consuming  we  do add  some  options  to help  the  

user  keep  track  of what  is going  on.   There  are  also  some  warning  messages  

included  all  making  the  code  somewhat  longer  than  usual  in this  book.

In[54]:= Options [FLTMD ] = {timing → False , hilbertReport → False , hBasis → True};

FLTMD [F_, A_, m_ , X_, Y_, tol_ , OptionsPattern []] :=

Module [{H, XH, YH, T, S, DS, G, TDS, ST, B0, B1, B, n, s, time},

time = TimeUsed [];

n = Length [X];

s = Length [Y];

If[Dimensions [A] ≠ {s+ 1, n + 1}, Print [Style ["Dimension Error A", Orange ]];

Abort []];

XH = Append [X, #x ];

YH = Append [Y, #y ];

H = Table [homogMD [f, X, #x ], {f, F}];

T = A.XH;

G = gMapMD [T, m, XH, YH];

S = sylvesterMD [H, m, XH];

If[OptionValue [timing ], Echo [TimeUsed [] - time, "Start Dual "]];

DS = dualMatrix [N[S], tol];

TDS = G.DS;

If[OptionValue [timing ],

Echo [{Dimensions [TDS ], MatrixRank [TDS ]}, "Dim TDS,rank TDS"]];

ST = localDualMatrix [TDS, tol];

If[Length [ST] ⩵ 0, Print [Style ["Fail, try larger m", Orange ]]; Abort []];

B0 = ST.mExpsMD [m, YH];

If[!OptionValue [hBasis ], Return [B0 /. {#y → 1}]];

If[OptionValue [timing ], Echo [TimeUsed [] - time, "Start HBasis "]];

B1 = hBasisMD [B0, m, YH, tol];

B = B1 /. {#y → 1};

If[OptionValue [timing ], Echo [TimeUsed [] - time, "Total Time "]];

B];

F  is the  equation  system  in the  domain,  A  is the  transformation  matrix,  X,Y  

are  the  variables  for  the  domain,  range  respectively.   m  will  be  the  order  of 
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 range  respectively.

the  Sylvester  matrix  used  so it must  be at least  the  largest  total  degree  of a 

polynomial  in F but  it often  needs  to be larger.   Especially  when  dealing  

with  numerical  data  the  tolerance  may  need  to be loosened.   Since  most  

interesting  FLT  are  numerical  this  is one  good  reason  why  I have  been  

working  numerically.   It does  help  if F  is an H-basis.

Because  of the  choices  this  some  what  of a trial  and  error  type  of algorithm,  

it probably  works  in good  cases  but  is not  guaranteed.   It is therefore  a good  

idea  to check  the  results.   The  important  property  that  the  output  G  must  

satisfy   is

If F /. Thread [X → p] = 0 then G / . Thread[Y → fltMD[p, A]] = 0.

where,  of course,  "=0" is interpreted  in the  numerical  sense.

Example  2.6.1  continued.

Consider  the  cyclic  4 curve  of  Example  2.2.3  and  A  above  in 2.6.1.

In[162]:= C4 = {w+x+y+ z, w x+x y+y z+ z w, w x y+x y z+y z w+ z w x, w x y z-1};

g = FLTMD[C4, A, 6, {w, x, y, z}, {x, y}, 1.*^-9]〚1〛
» Initial Hilbert Function {1, 3, 6, 10, 15, 21, 27}

» Final Hilbert Function {1, 3, 6, 10, 15, 21, 27}

Out[163]= 1. - 2.21919 x- 4.23331 x2
- 2.28808 x3

- 0.674452 x4
- 0.143014 x5

-

0.00887454x6
- 5.05948 y+ 10.7164 x y+ 14.1276 x2 y+ 5.2559 x3 y+ 1.06694 x4 y+

0.102317 x5 y+ 10.9212 y2
- 18.5895 x y2

- 16.1773 x2 y2
- 3.67542 x3 y2

-

0.372327 x4 y2
- 13.2113 y3

+ 14.2582 x y3
+ 7.34919 x2 y3

+ 0.747335 x3 y3
+

9.46424 y4
- 4.70723 x y4

- 1.09081 x2 y4
- 3.67116 y5

+ 0.544018 x y5
+ 0.556459 y6

Consider  point  p  of  the  cyclic  4:

In[164]:= p = {2, -1 /2, -2, 1 /2};

C4 / . Thread[{w, x, y, z} → p]

g / . Thread[{x, y} → fltMD[p, A]]

Out[165]= {0, 0, 0, 0}

Out[166]= 5.50501× 10-9

Since  our  tolerance  was  10-9  this  is good  enough  for  zero.   One  might  want  

to try  a few  more  points.

We  could  give  more  examples  now,  but  we  will  have  many  examples  in the  

rest  of this  book  so we  will  stop  here.
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2.7 Geometry and Projections

In this section we discuss the the geometry of FLT and the main application, projections.

2.7.1  Some  Geometry

As mentioned  above  a transformation  matrix  for  a transformation   ℝn⟶ℝk

is a (k + 1) × (n + 1) matrix  A .

I will  mention  here  that  since  transformation  functions  are  essentially  

projective  transformations  that  that  the  matrix  is homogeneous  in that  if 

one  multiplies  all  entries  by the  same  non-zero  real  (or  complex)  number  

the  transformation  remains  the  same.

If A  is square,  that  is k = n, and  A-1exists  then  the  transformation  is invert-

ible.   Geometrically  this  means  that  if FLTMD takes  curve  F  to curve  G then  

these  curves  are  isomorphic, that  is geometrically  the  same.   G  may  be 

rotated,  reflected,  translated  or the  infinite  hyperplane  may  have  been  

moved  or possibly  all  of the  above.   Some  positional  attributes  may  have  

changed  such  as critical  points,  infinite  points  or number  of affine  topologi -

cal  components.   But  geometrical  attributes  such  as number  of ovals  or 

pseudo-lines,  algebraic  irreducibility  and  number  and  characteristics  of 

singular  points  remain  unchanged.   For  invertible  transformation  functions  

one  may  use  FLT3D instead  of FLTMD even  if n  is not  3. This  will  be  much  

quicker  and  the  number  of equations  will  not  change.

If the  last  r0w  is {0, 0, , …, 0, 1}, or  by  homogeneity   the  last  entry  is some  

other  non-zero  number,  then  we  call  this  transformation  function  and  it’s  

matrix  affine.  This  means  the  infinite  hyperplane  remains  in place  and  we  

are  just  messing  with  the  affine  geometry.  While  critical  points  may  change  

have  the  same  infinite  points  and  same  number  of topological  components.   

This  latter  fact  is the  original  meaning  of the  word  affine.   The  formula  flt [X,A ] 

will  be  a list  of polynomials  rather  than  rational  functions.   For  example  

In[121]:= A = {{1, 2, 3, 4}, {5, 6, 7, 8}, {0, 0, 0, 1}};

fltMD[{x, y, z}, A]

Out[122]= {4+ x+ 2 y+ 3 z, 8+ 5 x+ 6 y+ 7 z}

If, for  an affine  transformation  A , the  last  column  is {{0}, {0}, … {0}, {1}} then  

the  transformation  function  is a linear  transformation.   In this  case  we  may  

strip  A  by  removing  the  last  row  and  column  to get  a k × n  matrix,  that  is 

A

= Drop[A,-1,-1]
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In[125]:= A = {{1, 2, 3, 0}, {5, 6, 7, 0}, {0, 0, 0, 1}};

A
˜
= Drop[A, -1, -1]

Out[126]= {{1, 2, 3}, {5, 6, 7}}

Then  we  can  actually  perform  the  transformation  just  by  matrix  

multiplication

In[127]:= fltMD[{x, y, z}, A]

A
˜

.{x, y, z}

Out[127]= {x+ 2 y+ 3 z, 5 x+ 6 y+ 7 z}

Out[128]= {x+ 2 y+ 3 z, 5 x+ 6 y+ 7 z}

The  process  of stripping  is reversible,  that  is a linear  transformation  

ℝn⟶ℝk   given  by an n × k  matrix  A


 will  give  a transformation  matrix  in the  

sense  of this  section  by,  for  example  

In[134]:= B = {{1, 2, 3}, {5, 6, 7}};

B = Append[Join[B, {{0}, {0}}, 2], {0, 0, 0, 1}]

Out[135]= {{1, 2, 3, 0}, {5, 6, 7, 0}, {0, 0, 0, 1}}

In[136]:= B.{x, y, z}

fltMD[{x, y, z}, B]
Out[136]= {x+ 2 y+ 3 z, 5 x+ 6 y+ 7 z}

Out[137]= {x+ 2 y+ 3 z, 5 x+ 6 y+ 7 z}

Finally,  a linear  transformation  B  is an orthogonal  transformation  if the  

rows,  equivalently   columns,  form  an orthonormal  set.   In the  real  case  only,  

for  a k × n  matrix,  k ≤ n  this  means  B.Transpose[B] is the  k × k  identity  matrix  

or if k ≥ n  then  Transpose[B].B is the  n × n  identity.   For  complex  matrices  one  

uses  the  ConjugateTranspose.  Orthogonal  transformations  preserve  Euclidean  

geometry, that  is that  lengths  and  angles  are  preserved  which  does  not  

necessarily  happen  with  affine  transformations  in general.   More  impor -

tantly  operations  with  orthogonal  transformations  are  more  numerically  

stable,  so since  we  often  work  with  numerical  transformation  matrices  this  

is good.   On  the  other  hand  orthogonal  matrices  almost  always  have  irra -

tional  entries  and  so numerical  methods  are  preferred  with  them.

 Two  utility  functions  that  may  be useful  are  given  below,  they  allow  us to go 

between   linear  transformations  and  FLT  transformations.

SpaceCurveBook_v2c.nb    63



m2TM[M_] := With[{dim = Dimensions[M]},

Join[Append[M, Table[0, {dim〚2〛}]], Append[Table[{0}, {dim〚1〛}], {1}], 2]]

tM2M[T_] := With[{dim = Dimensions[T]}, Take[T, dim〚1〛-1, dim〚2〛-1]]

2.7.2  Projections

In general  a projection  will  be  a linear  transformation  from  ℝn⟶ℝk , k < n, 

given  by a k × n  matrix  P .  Such  a matrix  can  be embedded  into  a 

(k + 1) × (n + 1) matrix  A  by  the  utility  functions  above.   This  is so we  can  

treat  the  projection,  as above,  as an FLT  and  have  it transform  curves  as well  

as points.   It is nice  if projections  are  orthogonal,  but  we  will  not  assume  this.

Later  we  may  start  with  a FLT  projection,  that  is an FLT  with  fewer  rows  

than  columns.   These  are  more  general  in that  infinite  points  may  become  

affine.   These  are  not  really  more  general  as it can  be shown  that  projecting  

a curve  with  an arbitrary  FLT  projection  is the  same  as transforming  the  

curve  with  an invertible  FLT  and  then  doing  a linear  projection  on  the  

image.   It is a bit  hard  to show  this  so rather  than  give  a proof  we  just  give  an 

algorithm  to accomplish  this  although  in practice  we  will  rarely  use  this.

In[296]:= factorFLT [A_] := Module [{n, k, m, tab1, tab2, A1, A2, A3, B, B1, B2, B3, P, M},

{n, k} = Dimensions [A] - {1, 1};

m = k+ 1;

tab1 = Table [{i, m} → #1 [i], {i, n}];

B1 = ReplacePart [IdentityMatrix [m], tab1 ];

A1 = A.B1;

B1 = ReplacePart [IdentityMatrix [m], (tab1 /. Solve [Take [A1, n, -1] ⩵ 0])〚1〛];
A1 = A.B1;

B2 = ReplacePart [IdentityMatrix [m], {{m, m} → A1〚n+ 1, m〛 ^-1}];

A2 = A1.B2;

B3 = ReplacePart [IdentityMatrix [m], Table [{m, i} → -A2〚n+ 1, i〛, {i, k}]];

A3 = A2.B3;

B = N[B1.B2.B3];

{Chop [A3], Chop [Inverse [B]]}];

Later,  for  example  at the  end  of section  3.2,  we  will  give  some  examples  of 

how  to use  this.

One  type  of projection  is projecting  onto  several  coordinates.   For   conve -

nience  we  have  a FLT  projection  from  ℝn⟶ℝn-1 which  removes  the  

i th component.
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fCompProj [i_, n_] := Module [{F},

If[i > n, Abort []];

F = IdentityMatrix [n+ 1];

Delete [F, {i}]];

We  will  distinguish  ordinary  projections  like  this  one  from  generic projec -

tions.   These   are  essentially  random  or pseudo-random  projections  

although  for  some  purposes  they  are  expected  to be stable  on  a given  curve  

under  small  perturbations  of the  projection.   This  is not  quite  guaranteed  by 

randomness.

Generally  different  random  projections  will  be  defined  as above  for  each  

application.   However  we  could  also  define  a random  projections,  with  

some  constraints  on  the  random  numbers  used  and  use  this  projection  

many  times.   Such  a projection  is called  pseudo-random.   An  example  is our  

default  pseudorandom  projection

prd3D = {{-0.30519764945947847` , 0.9522890290055899` , 0.`},

{-0.14191095867181538` , -0.045480825358668514` , 0.9888340479238873` }};

The  associated  fractional  linear  transformation  is

fprd3D =

{{-0.30519764945947847` , 0.9522890290055899` , 0.`, 0.`}, {-0.14191095867181538` ,

-0.045480825358668514` , 0.9888340479238873` , 0.`}, {0.`, 0.`, 0.`, 1.`}};

Both  of these  are  assigned  global  variables.

I like  this  particular  projection  because  the  axes  come  out  like  the  old  fash -

ioned  3-space  axes  for  pictures  we  drew  on  the  blackboard  in Calculus  3. It 

is convenient  to have  a function  to quickly  plot  the  projection  of a general  

curve  F  in ℝ3.

In[203]:= showProjection3D [F_, pr_ , m_ , X_, {u_, v_}, rng_] := Module [{PRT, AXS, marks },

PRT = FLTMD [F, pr, m, X, {u, v}, dTol ];

Echo [PRT, "projection Function "];

AXS := ListLinePlot [{{{0, 0}, fltMD [{1, 0, 0}, pr]}, {{0, 0}, fltMD [{0, 1, 0}, pr]},

{{0, 0}, fltMD [{0, 0, 1}, pr]}}, PlotStyle → Orange , PlotRange → All];

marks := ListPlot [{{fltMD [{1.2, 0, 0}, pr]}, {fltMD [{0, 1.2, 0}, pr]}, {fltMD [{0, 0, 1.2}, pr]}},

PlotMarkers → {"x= 1", "y=1", "z=1"}, PlotStyle → Black ];

Show [ContourPlot [PRT ⩵ 0, {u, -rng, rng}, {v, -rng, rng}], AXS, marks , Frame → False ]]

Here  F is a general  curve,  pr is an FLT  projection,  m the  order  of Sylvester  

matrices  to use,  generally  larger  then  the  degrees  of equations  in F, X  are  the  

variables  in ℝ3, {u,v}  the  variables  in ℝ2 and  rng the  size  of the  image,  eg. if rng 

is 2 then  the  projection  is given  in the  square  {{x , y }, -2 ≤ x , y ≤ 2}.
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2.7.2.1 Example:  The  Viviani  curve

In[204]:= V = {-4+ x2
+ y2

+ z2 , -1+ (-1+ x)2
+ y2

}

showProjection3D [V, fprd3D , 4, {x, y, z}, {x, y}, 3]

Out[204]= -4 + x2 + y2 + z2, -1 + (-1 + x)2 + y2

» projection Function 1. + 4.30229 x + 3.68817 x2
+ 0.024428 x3

+ 0.000444366 x4
- 2.00048 y +

0.312204 x y + 1.0116 x2 y - 3.77986 y2
- 1.05115 x y2

+ 0.0400199 x2 y2
+ 0.511479 y3

+ 0.901056 y4

Out[205]=
x= 1x= 1

y=1y=1

z=1z=1

A problem  with  ordinary  projections  is that  the  projection  may  change  the  

geometry  of curves.   This  may  be an accident  or,  as we  will  see  in Section  

3.3,  this  may  happen  because  of the  geometry   of the  curve.

2.7.2.2  Example:  If we  take  a curve  such  as {x2 + z2 - 1, y } under  the  

projection  fCompProj[3,3] we get  the  curve  projection  as a line   y = 0.

In[149]:= FLTMD [{x ^ 2+ z ^ 2- 1, y}, fCompProj [3, 3], 3, {x, y, z}, {x, y}, dTol ]

» Initial Hilbert Function {1, 2, 3, 4}

» Final Hilbert Function {1, 2, 3, 4}

Out[149]= {1. y}

But the  point  projection  is just  the  interval   -1 ≤ x ≤ 1 of that  line.   Using  our  default  

pseudo-random  projection  the  result

In[152]:= showProjection3D[{x ^ 2+ z ^ 2-1, y}, fprd3D, 3, {x, y, z}, {x, y}, 2]
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» Initial Hilbert Function {1, 3, 5, 7}

» Final Hilbert Function {1, 3, 5, 7}

» projection Function 1. - 10.957 x2
+ 0.951082 x y - 1.02271 y2

Out[152]=

x= 1x= 1
y=1y=1

z=1z=1

is correctly  given  as a circle.

2.7.2.3  Example:  Even  our  pseudorandom  projection  prd3D  may  not  be 

generic  for  some  curves.   For  example  we  consider  our  twisted  cubic:

In[250]:= twCubic = {-y2
+ x z, -x2

+ y, -x y+ z};

showProjection3D [twCubic , fprd3D , 3, {x, y, z}, {x, y}, 2]

» projection Function -0.464981 x + 16.8091 x2
- 64.3264 x3

+ 1. y - 51.2934 x y + 56.8131 y2

Out[251]=

x= 1x= 1
y=1y=1

z=1z=1

This appears  to give a cusp.

In[182]:= P = prd3D + RandomReal [{-.2, .2}, {2, 3}];

FP = m2TM [P]

Out[183]= {{-0.134773 , 0.808097 , 0.128253 , 0}, {-0.223291 , 0.0745526 , 0.884676 , 0}, {0, 0, 0, 1}}

In[252]:= tw2 = FLTMD [twCubic , FP, 3, {x, y, z}, {x, y}, 1.*^-9 ]〚1〛
ContourPlot [tw2 ⩵ 0, {x, -2, 2}, {y, -2, 2}, MaxRecursion → 4, ImageSize → Small ]
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» Initial Hilbert Function {1, 3, 6, 9}

» Final Hilbert Function {1, 3, 6, 9}

Out[252]= -1.65679 x+ 19.1206 x2
- 45.8792 x3

+ 1. y-

23.8022 x y+ 19.9535 x2 y+ 32.7582 y2
- 2.89269 x y2

+ 0.139785 y3

Out[253]=

-2 -1 0 1 2

-2

-1

0

1

2

is clearly  a node.   In his quoted  article  Barry  Mazur  [B.Mazur]  says  that  cusps  do not occur  under  

generic  projections  of non-singular  curves.

This  example  gives  one  reason  why  generic  projections  are  preferred  over  

ordinary  projections,  the  probability  that  the  point  projection  of a curve  is 

not  the  curve  projection  is much  less  with  pseudo-random  projections  and  

even  smaller  with  random  projections.   In classical  algebraic  geometry  this  

fact  is often  known  as Noether’s  Normalization  Theorem”,  one  of the  rare  

algebraic  geometry  theorems  attached  to the  name  Noether due  to the  

daughter  Emmy,  rather  than  father  Max,  of this  famous  mathematical  

family.   Emmy  Noether  was  known  for  her  algebra  while  her  father  for   

geometry  and,  in fact,  this  theorem  was  originally  stated  as a theorem  in 

algebra.   In this  book  we  take  this  not  as a theorem  but  a requirement  for  a 

random  or pseudo  random  projection  to be generic  for  the  curve.   Note  that  

for  us this  is a property  of the  curve,  not  the  projection,  for  a randomly  

generated  numerical  curve  the  projections  fCompProj may  be generic  but  

possibly  not  for  an integer  coefficient  curve.

As mentioned  in Chapter  1 a singularity  in a projection  of a non-singular  

curve  will  be  called  artifacts or  artifactual  singularities  to distinguish  from  

singularities  of the  plane  projection  coming  from  singularities  of  the  space  

curve.   The  curve  projection  may  also  contain  additional  components  that  

are  not  part  of the  point  projection,   in the  case  of a generic  projection  I call  

these  ghost  components  although  algebraists  may  call  them  embedded  

components.  The  important  result  is

Under  any  projection  of a space  curve  to the  plane  a non-singular  point  may  

go to a singular  point.   For  generic  projections  the  only  artifactual  singulari -

ties  will  be normal  crossings  (nodes),  cusps  or isolated  points.   
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2.8  Fibers  and  Plotting  Space  Curves

Our  general  strategy  for  plotting  space  curves  is to project  onto  ℝ2, path  

trace  and  lift  the  trace  to ℝ3 with  the  function  fFiberMD in the  next  subsection  

and  plot  there.

2.8.1  Fiber  lifting

A projection  is not  1-1,  in fact,  in this  section  where  we will  restrict  to linear  projec -

tions  ℝn⟶ℝn-1, the  set  of points  mapping  to a given  point  p  in ℝn-1 is a line.   We call  

this  line  the fiber  over  p.  It is quite  easy  to calculate  this  from  our  original,  not  FLT,  

projection.

Suppose  P is the  original  projection  i.e.  a  n × (n - 1) matrix  of rank  n - 1 and   p  is a 

point  in ℝn-1.  The  fiber  is returned  as a parameterized  line  with  parameter  t .  Note  

that  this  function  requires  neither  the  curve  or the  list  of variables.

pFiberMD [P_ , p_ , t_] := Module [{n, k, P1, ns, q},

{n, k} = Dimensions [P];

If[n ≠ k- 1 || MatrixRank [P] ≠ k- 1 , Echo ["not valid Projection "];

Abort []];

P1 = Append [P, RandomReal [{-3, 3}, k]];

ns = NullSpace [P]〚1〛;

q = Inverse [P1].Append [p, RandomReal [{-3, 3}]];

q+ t * ns]

For example

In[159]:= p = RandomReal[{-4, 4}, 2]

pFiberMD[prd3D, p, t]

Out[159]= {-0.257823, -0.846821}

Out[160]= {7.60814+ 0.941656 t, 2.16758+ 0.30179 t, 0.335184+ 0.149021 t}

Our  most  important  function  in this  subsection  gives  the  set  of points  in a curve  

contained  in the  fiber  over  a point  p, that  is, the  set  of points  on the  curve  projecting  

to p.  This  function  is much  easier  than  it looks  however  we want  it to tell  us if the  

number  of points  of the  curve  over  p  is different  from  1.  So this  is both  a diagnostic  

function  as well  as a function  to find  the  actual  points.   Further,  two  important  

characteristics  of this  function  are  that  it is very  fast  and  it works  even  when  the  curve  

is defined  by an overdetermined  set  of numerical  polynomials.   As we will  see  is these  

properties  that  allow  us to analyze  general  space  curves.
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F is the  list  of equations  for  the  curve,  possibly  numerical  and  overdetermined,  P is 

the original  projection  i.e.  a  n × (n - 1)  matrix  of rank  n - 1,  p   is a point  in ℝn-1, X  is 

the list  of variables  of F  and  tol is the  tolerance  which  will  often  be weaker  than  our  

default  tolerance.

In[73]:= Options [fFiberMD ] = {complex → False }

fFiberMD [F_, P_ , p_ , X_, tol_ , OptionsPattern []] :=

Module [{Pf, FF, FFs, sol, sol0, sol1, k, n, l, q, u, j, t0},

n = Dimensions [P]〚2〛;

k = Length [F];

Pf = pFiberMD [P, p, t734 ];

FF = Chop [Expand [F /. Thread [X → Pf]], tol];

t0 = RandomReal [{-1, 1}];

FF = SortBy [FF, (# /. {t734 → t0}) ⩵ 0 &];

If[AllTrue [FF, # ⩵ 0 &], Print ["inf many sols at", p]; Return [Fail]];

FF = Chop [FF, tol];

If[OptionValue [complex ], sol = NSolve [FF〚1〛], sol = NSolve [FF〚1〛, t734, Reals ]];

If[Length [sol] ⩵ 0, Echo [p, "(1) no point in fiber at"]; Return [{}]];

sol0 = t734 /. sol;

j = 2;

While [j ≤ k && Length [sol0 ] > 0 && (FF〚 j〛 /. {t734 → t0}) ≠ 0,

If[OptionValue [complex ], sol = NSolve [FF〚 j〛], sol = NSolve [FF〚 j〛, t734, Reals ]];

If[Length [sol] ⩵ 0, Echo [p, "(2) no point in fiber at"];

sol0 = {}; Break []];

sol1 = t734 /. sol;

sol0 =

Flatten [Reap [Do[If[Norm [q- u] < tol, Sow [q]], {q, sol0}, {u, sol1}]]〚2〛];
j++];

sol0 = DeleteDuplicates [sol0, Norm [#1 -#2 ] < tol &];

If[Length [sol0 ] ⩵ 0, Echo [p, "(3) no point in fiber at "]];

If[Length [sol0 ] > 1, Echo [p, "multiple fiber points "]];

Pf /. {t734 → #} & /@ sol0

]

This  function  returns  the  set  of points  in the  fiber  over  p, possibly  { }, in the  curve  as 

well  as possible  information.   If no information  is given  there  is a unique  point  given  

as a singleton  set.   When  constructing  a list  of points  in ℝn  over  a List  L in ℝn-1 in the  

curve  use  the  form  Flatten[Ffiber [F, P, #, X, tol ]&/@L, 1]. If any no point in fiber  warning 
occurs  then you can try loosening the tolerance. If this happens in list form you 
may need to delete empty sets {}  In the output.  The numbers in parenthesis in 
this warning may help in trouble shooting.

2.8.1.1  Example:

In[142]:= F = {-9 x-45 y-9 x z+9 y z, 18 x-0.25 x ^ 2+36 y+0.5 x y-0.25 y ^ 2-9 x z+9 x z ^ 2,

-54+1.5 x-1.5 y+99 z-54 z ^ 2+9 z ^ 3};
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We first  try the projection  onto  the xy  plane.

In[124]:= Pxy = {{1, 0, 0}, {0, 1, 0}};

  We look at some  examples  of fFiberMD.  

In[144]:= fFiberMD [F, Pxy, RandomReal [{-5, 5}, 2], {x, y, z}, 1.*^-9 ]

» (3) no point in fiber at {-3.62597 , 4.11431 }

Out[144]= {}

In[145]:= fFiberMD [F, Pxy, {-6, 30}, {x, y, z}, 1.*^-9 ]

Out[145]= {{-6., 30., 4.}}

In[147]:= fFiberMD [F, Pxy, {0, 0}, {x, y, z}, 1.*^-9 ]

» multiple fiber points {0, 0}

Out[147]= {{0., 0., 1.}, {0., 0., 2.}, {0., 0., 3.}}

In the first  case  the fiber  is empty  which  happens  for most  points.   In the second  case  the fiber  

consists  of one point  which  is typical  of points  in the projection  of the curve.   In the last  case  there  

are 3 points  in the fiber.

The projection  of the curve  on the xy plane  is

In[150]:= f = FLTMD [F, fCompProj [3, 3], 5, {x, y, z}, {x, y}, 1.*^-9 ]〚1〛
» Initial Hilbert Function {1, 3, 6, 10, 15, 20}

» Final Hilbert Function {1, 3, 6, 10, 15, 20}

Out[150]= 1. x3
- 0.00694444 x4

+ 3.5 x2 y+ 0.0277778 x3 y+

3.5 x y2
- 0.0416667 x2 y2

+ 1. y3
+ 0.0277778 x y3

- 0.00694444 y4

In[153]:= ContourPlot [f ⩵ 0, {x, -2, 2}, {y, -2, 2}, MaxRecursion → 6]

Out[153]=
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This shows  the point  {0, 0,} with  3 points  in its fiber  is a singular  point  of multiplicity  3 as verified  

by

In[154]:= tangentVectorMD [{f}, {0, 0}, {x, y}]
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» Hilbert Function {1, 2, 3, 3, 3}

» No unique tangent vector at {0, 0}

Our general  plotting  strategy  calls  for us to trace  the plane  curve  f .  Unfortunately  it has a singular -

ity which  will  require  us to break  this  into at least  6 paths  always  tracing  into the singularity  at 

{0,0}.   We will  show  one.

In[158]:= ps = {x, y} /. NSolve [{f, x ^ 2+ y ^ 2- 3}, {x, y}, Reals ]

Out[158]= {{1.58268 , -0.70365 }, {-0.70365 , 1.58268 }}

In[159]:= p1 = ps〚1〛;

pth1 = pathFinder2D [f, p1, {0, 0}, .1, x, y]

Out[160]= {{1.58268 , -0.70365 }, {1.48995 , -0.66622 }, {1.39735 , -0.628458 }, {1.3049 , -0.590356 },

{1.21259 , -0.551904 }, {1.12043 , -0.513092 }, {1.02842 , -0.47391 }, {0.936584 , -0.434346 },

{0.844914 , -0.394389 }, {0.753423 , -0.354025 }, {0.662119 , -0.313241 },

{0.571011 , -0.272021 }, {0.480108 , -0.230349 }, {0.389423 , -0.188206 },

{0.298967 , -0.145575 }, {0.208753 , -0.102433 }, {0.118797 , -0.0587558 }, {0, 0}}

We can now li� this to ℝ3 with the following

In[162]:= Pth = Flatten [fFiberMD [F, Pxy, #, {x, y, z}, 1.*^-9 ] & /@ pth1 , 1]

» multiple fiber points {0, 0}

Out[162]= {{1.58268 , -0.70365 , 0.846583 }, {1.48995 , -0.66622 , 0.853897 }, {1.39735 , -0.628458 , 0.861351 },

{1.3049 , -0.590356 , 0.868949 }, {1.21259 , -0.551904 , 0.8767 }, {1.12043 , -0.513092 , 0.884613 },

{1.02842 , -0.47391 , 0.892695 }, {0.936584 , -0.434346 , 0.900956 }, {0.844914 , -0.394389 , 0.909407 },

{0.753423 , -0.354025 , 0.918059 }, {0.662119 , -0.313241 , 0.926925 },

{0.571011 , -0.272021 , 0.936019 }, {0.480108 , -0.230349 , 0.945356 },

{0.389423 , -0.188206 , 0.954954 }, {0.298967 , -0.145575 , 0.964832 },

{0.208753 , -0.102433 , 0.975012 }, {0.118797 , -0.0587558 , 0.98552 }, {0., 0., 1.}, {0., 0., 2.}, {0., 0., 3.}}

This is good  except  for the last  3 points  which  are all liftings  of {0, 0}. We have  to pick  just  one of 

these,  the one that  most  closely  matches  the previous  point.   We see that  is {0,0,1}.   The plot  is the  

not exciting   green  curve  which  is what  we want.   Had we not dropped  the other  points  we would  

have the blue  dashed  curve  that  goes  though  all three  fiber  lifts.
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In[174]:= Pth1 = Drop [Pth, -2];

Graphics3D [{{Green , Thick , Line [Pth1 ]}, {Blue, Dashed , Line [Pth]}}, ImageSize → Small ]

Out[175]=

2.8.1.2  Example  2.8.1.1  Continued

Rather  than  continue  on the other  5 tracings  we project  again  using  our pseudo-random  projec -

tion prd3D which  has no singular  points.

In[178]:= g = FLTMD [F, fprd3D , 5, {x, y, z}, {x, y}, 1.*^-9 , quiet → True ]〚1〛
Out[178]= 1. + 0.271206 x- 0.00614083 x2

+ 0.000532178 x3
- 4.49813 × 10-6 x4

-

1.85033 y- 0.216147 x y+ 0.000588023 x2 y- 0.0000621309 x3 y+ 1.01583 y2
+

0.0494672 x y2
- 0.000321821 x2 y2

- 0.168582 y3
- 0.000740863 x y3

- 0.000639577 y4

In[180]:= ContourPlot [g ⩵ 0, {x, -4, 4}, {y, -1, 4}]

Out[180]=
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A single  trace  and lift suffices

In[183]:= sol = {x, y} /. NSolve [{g, x ^ 2+ y ^ 2- 13}, {x, y}, Reals ]

Out[183]= {{1.75625 , 3.1489 }, {-3.60479 , -0.0740102 }}
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In[185]:= pth2 = pathFinder2D [g, sol〚2〛, sol〚1〛, .3, x, y, maxit → 60]

Out[185]= {{-3.60479, -0.0740102 }, {-3.31723, 0.0114823 }, {-3.02954 , 0.096539 }, {-2.74174, 0.181205 },

{-2.45383, 0.265537 }, {-2.16585, 0.349601 }, {-1.87782 , 0.433483 }, {-1.58976, 0.517291 },

{-1.30173 , 0.601166 }, {-1.01376 , 0.68529 }, {-0.725946 , 0.769914 }, {-0.438382 , 0.855388 },

{-0.151228 , 0.942226 }, {0.135258 , 1.03122 }, {0.420622 , 1.1237}, {0.703909 , 1.22217 }, {0.982472 , 1.33246 },

{1.24036 , 1.47417 }, {1.30691, 1.60214 }, {1.14235 , 1.72082 }, {0.857493 , 1.80651 }, {0.564651 , 1.87072 },

{0.270109 , 1.92755 }, {-0.0248564 , 1.98228 }, {-0.31963, 2.038}, {-0.613649 , 2.09744 }, {-0.906041 , 2.16407 },

{-1.19469, 2.24418 }, {-1.46944, 2.35513 }, {-1.59794, 2.49846 }, {-1.49041, 2.62449 }, {-1.2187, 2.73378 },

{-0.928884 , 2.80859 }, {-0.634948 , 2.86767 }, {-0.339176 , 2.91739 }, {-0.0423628 , 2.96074 }, {0.25512, 2.99935 },

{0.553067 , 3.03426 }, {0.851357 , 3.06616 }, {1.14991, 3.09555 }, {1.44866, 3.1228}, {1.75625 , 3.1489}}

In[187]:= Pth2 = Flatten [fFiberMD [F, prd3D , #, {x, y, z}, 1.*^-9 ] & /@ pth2 , 1]

Out[187]= {{5.48543 , -2.02738, 0.619139 }, {4.99583, -1.88232 , 0.642004 }, {4.51393, -1.73466 , 0.665653 },

{4.03997, -1.58434, 0.69017 }, {3.57421, -1.43128, 0.715652 }, {3.11697, -1.27541, 0.742214 },

{2.6686, -1.11665, 0.769998 }, {2.22951, -0.95488 , 0.799178 }, {1.8002, -0.79, 0.829972 },

{1.38129, -0.621866 , 0.862659 }, {0.973522 , -0.450314 , 0.897609 }, {0.577872 , -0.275144 , 0.935325 },

{0.195637 , -0.0961059 , 0.976521 }, {-0.171355 , 0.0871173 , 1.02228 }, {-0.520314 , 0.274941 , 1.07436 },

{-0.846425 , 0.467907 , 1.13602 }, {-1.1393, 0.666562 , 1.21466 }, {-1.35985, 0.866691 , 1.33552 },

{-1.34487, 0.941369 , 1.47053 }, {-1.09363, 0.849083 , 1.62236 }, {-0.773361 , 0.652601 , 1.74594 },

{-0.485792 , 0.43725, 1.84223 }, {-0.222806 , 0.212235 , 1.92711 }, {0.0197011 , -0.0197877 , 2.00658 },

{0.243541 , -0.257592 , 2.08412 }, {0.449036 , -0.500483 , 2.16255 }, {0.634915 , -0.747952 , 2.24522 },

{0.796855 , -0.999161 , 2.33792 }, {0.918955 , -1.24855 , 2.45619 }, {0.92399, -1.38187, 2.59572 },

{0.806603 , -1.30657, 2.70979 }, {0.623279 , -1.08, 2.80443 }, {0.456993 , -0.828961 , 2.86776 },

{0.302882 , -0.569689 , 2.91731 }, {0.157592 , -0.305663 , 2.9589}, {0.0192306 , -0.0383221 , 2.99517 },

{-0.113399 , 0.231558 , 3.02759 }, {-0.241125 , 0.503499 , 3.05707 }, {-0.364552 , 0.777176 , 3.08421 },

{-0.484145 , 1.05236, 3.10943 }, {-0.60027, 1.32886, 3.13304 }, {-0.716456 , 1.61462, 3.1559}}

In[190]:= Graphics3D[{{Blue, Thick, Line[Pth2]}, {Orange, Thick, Line[{{0, 0, -1}, {0, 0, 4}}]}}]

Out[190]=

The orange  line is the z-axis  which  intersects  the curve  in 3 places.   Again,  don’t  expect  to find a 

generic  projection  with  no singularities,  that  will  usually  not happen  as remarked  above.   But at 

least  generic  projections  do eliminate  singularities  of multiplicity  greater  than  2.
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2.8.2  Example:  Application  to Cyclic  4

Recall  the cyclic-4  curve,  Example  2.2.3,   is given  by

In[122]:= C4 = {w + x+ y+ z, w x+ x y+ y z+ z w, w x y+ x y z+ y z w + z w x, w x y z- 1};

Here we sketch  an analysis  of the cyclic-4   curve   using  our method.   For curves  in ℝn  for n > 3 we 

project  first  to ℝ3, hopefully  this  will  not introduce  new singularities,  then  to ℝ2 preferably  with  a 

random  or pseudo-random  projection.   We then  lift back  to ℝ3  for plotting.    

For definiteness  here  is our random  affine  projection  ℝ4⟶ℝ3

In[129]:= P43 = {{0.9749194263273511` , 0.13015457882712486` , -0.1507314794304482` ,

-0.09935753060835883` }, {-0.1242169492514664` , 0.9851538622704206` ,

0.09443037927788776` , -0.07158855105228731` }, {0.17159792012482059` ,

-0.06309683839808246` , 0.9756771282924249` , 0.12094248269342328` }};

FP43 =

m2TM [

P43];

We could  project  directly  to ℝ2 but will  need  to know  the image  of C4 in ℝ3, it takes  some  time  but 

the answer  is

In[171]:= C43 = FLTMD [C4, FP43 , 6, {w, x, y, z}, {x, y, z}, 1.*^-9 ]

» Initial Hilbert Function {1, 4, 9, 15, 21, 26, 30}

» Final Hilbert Function {1, 4, 9, 15, 21, 26, 30}

Out[171]= 0.515334 x2
+ 0.0261946 x y+ 0.000332871 y2

+ 1.43574 x z+ 0.0364895 y z+ 1. z2 ,

-0.63185 x3
+ 0.561652 x2 y+ 0.73255 x y2

+ 0.0182448 y3
- 0.880176 x2 z+ 0.80476 x y z+ 1. y2 z,

1. + 0.58731 x4
- 1.11729 x3 y- 0.522163 x2 y2

+

0.249241 x y3
- 0.0282582 y4

+ 0.849617 x3 z- 1.26749 x2 y z

Now we project  to ℝ2.

In[208]:= C42 = FLTMD [C43, fprd3D , 6, {x, y, z}, {x, y}, 1.*^-9 ]〚1〛
» Initial Hilbert Function {1, 3, 6, 10, 15, 21, 27}

» Final Hilbert Function {1, 3, 6, 10, 15, 21, 27}

Out[208]= -1.43989 x2
+ 0.0789016 x6

+ 2.68184 x y+ 0.323495 x5 y+ 1. y2
-

0.558284 x4 y2
- 2.00039 x3 y3

+ 1.90728 x2 y4
+ 0.0432741 x y5

- 0.237496 y6
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We plot  C42

In[179]:= ContourPlot [C42 ⩵ 0, {x, -4, 4}, {y, -4, 4}]

Out[179]=
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In[180]:= cp2 = criticalPoints2D [C42, x, y]

Out[180]= {-1.48804 , -0.682283 }, {-1.48804 , -0.682283 }, {1.48804 , 0.682283 },

{1.48804 , 0.682283 }, {1.51333 , 0.612185 }, {-1.51333 , -0.612185 }, {0.384516 , -1.20751 },

{0.384516 , -1.20751 }, {-0.384516 , 1.20751 }, {-0.384516 , 1.20751 }, {-0.473031 , 1.16934 },

{0.473031 , -1.16934 }, -1.41781 × 10-38 , -2.33748 × 10-38 , {0., 0.}, {0., 0.}, {0., 0.}

It appears  that  we  have  two lines  through  {0,0}  which  will  be components  of  the point  curve  V(h).   

From  the critical  points  the other  singularities  are clear  so the two lines  are

In[203]:= l1 = line2D [{0, 0}, cp2〚2〛, x, y]

l2 = line2D [{0, 0}, cp2〚8〛, x, y]

Out[203]= 0. - 1.5907 x+ 3.46926 y

Out[204]= 0. - 1.58524 x- 0.504796 y

Note by symmetry  we expect  these  to be perpendicular,  but they  are not.   By nDivideMD  we get

In[207]:= c42 = nDivideMD [C42, l1 * l2, {x, y}, 1.*^-9 ]

Out[207]= -0.571014 + 0.0312899 x4
+ 0.186567 x3 y+ 0.14782 x2 y2

- 0.388404 x y3
+ 0.135614 y4

In[125]:= cp42 = criticalPoints2D [c42, x, y]

Out[125]= {{-7162.89 , 2009.12 }, {7162.89 , -2009.12 }, {1.51333 , 0.612185 },

{-1.51333 , -0.612185 }, {-0.473031 , 1.16934 }, {0.473031 , -1.16934 }}
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In[126]:= ContourPlot [c42 ⩵ 0, {x, -4, 4}, {y, -4, 4}, Epilog → {Red, PointSize [Medium ], Point [cp42 ]}, ]

Out[126]=
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In[127]:= infc42 = infiniteRealPoints2D [c42, x, y]

Out[127]= {{-54.2416 , -92.8895 , 0}, {-1.59294 , 0.446802 , 0}}

From  the fact  that  there  are two infinite  points  and apparently  4 arcs  connecting  with  each  that  

these  both  have  multiplicity  2.  One could  check  these  by inspecting  the infinite  points  as in my 

plane  curve  book.   But this  total  multiplicity  is too large  for a reducible  curve  so it must  be 

irreducible.   One could  use singularFactor from  the plane  curve  book  but we can use instead  

dualInterpolationMD discussed  earlier  in this  book.

In[140]:= c42a = dualInterpolationMD [{c42}, cp42〚{3, 4}〛, 2, {x, y}, 1.*^-9 ]〚1〛
c42b = dualInterpolationMD [{c42}, cp42〚{5, 6}〛, 2, {x, y}, 1.*^-9 ]〚1〛

» Initial Hilbert Function {1, 2, 2}

» Final Hilbert Function {1, 2, 2}

Out[140]= 2.05197 - 0.480342 x2
- 1.43202 x y+ 1. y2

» Initial Hilbert Function {1, 2, 2}

» Final Hilbert Function {1, 2, 2}

Out[141]= -2.05197 - 0.480342 x2
- 1.43202 x y+ 1. y2

Note that  these  are both  factors  of c42 but don’t  multiply  to c42 because  the curves  are defined  

only up to a constant,  but checking

In[161]:= Expand [c42a * c42b / c42a〚1〛 / c42b〚1〛 - c42 / c42〚1〛]
Out[161]= 0. + 5.07927 × 10-15 x2

- 6.8695 × 10-16 x4
+ 3.88578 × 10-15 x y- 6.32827 × 10-15 x3 y+

1.75415 × 10-14 y2
- 6.27276 × 10-15 x2 y2

+ 5.9952 × 10-15 x y3
- 9.40914 × 10-15 y4

In particular,  c42 is reducible  as the union  of two quadratics  and two linear  curves.

Normally  we would  now lift to ℝ3  to get a plot  of the curve,  or at least  its projection  in ℝ3.  We can 

work  with  each  component  separately.   For the lines  it is possible  that  they  lift to higher  degree  

curves,  but not likely  given  our pseudo-random  projection.   So we could  start  with  two points  on, 

say l1 but will  stay away  from  the origin  and infinite  point.  By very  elementary  algebra  setting  x = 3 

we get
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In[167]:= b = -Expand [(l1 /. {x → 3}) /Coefficient [l1, y]]

Out[167]= 1.37553 - 1. y

In[169]:= p1 = {3, b /. {y → 0}}

Out[169]= {3, 1.37553 }

p1 is on our line.   Lifting  to C43 with  a very  loose  tolerance

In[176]:= fFiberMD [C43, prd3D , p1, {x, y, z}, 1.*^-4 ]

» (3) no point in fiber at {3, 1.37553 }

Out[176]= {}

we find there  is no point!  Perhaps  checking  this  very  carefully  and trying  other  points  on the lines  

l1,l2  we suspect  that  these  are ghost  lines.   Finding  that  they  still  occur  in the plane  but not in 

space  also for other  projections  confirms  this.

We can still  try to lift the quadratic  curves  to ℝ3.   We pick  8 points  on the union  c42 of the 

quadratics

In[190]:= sol = {x, y} /. NSolve [{c42, x ^ 2+ y ^ 2- 9}]

Out[190]= {{-1.81015 , -2.39235 }, {1.81015 , 2.39235 }, {-1.21355 , -2.74359 }, {1.21355 , 2.74359 },

{2.96438 , -0.460916 }, {-2.96438 , 0.460916 }, {2.77979 , -1.12817 }, {-2.77979 , 1.12817 }}

In[195]:= sol3 = Flatten [fFiberMD [C43, prd3D , #, {x, y, z}, 1.*^-7 ] & /@ sol, 1]

Out[195]= {{2.88159 , -0.977326 , -2.05077 }, {-2.88159 , 0.977326 , 2.05077 },

{3.2387 , -0.236387 , -2.32065 }, {-3.2387 , 0.236387 , 2.32065 }, {0.301768 , 3.20961 , -0.275188 },

{-0.301768 , -3.20961 , 0.275188 }, {1.08098 , 3.2655 , -0.835578 }, {-1.08098 , -3.2655 , 0.835578 }}

and,  surprise

In[197]:= planar3D [cp43 ]

» Residue = 2.48742 × 10-8

Out[197]= -1.05818 × 10-7
- 3.56651 x- 0.0906435 y- 4.9682 z

these  points  all lie on a plane!

We can further  lift these  on the affine  projection  P43 from  ℝ4  to ℝ3.

In[201]:= sol4 = Flatten [fFiberMD [C4, P43, #, {w, x, y, z}, 1.*^-7 ] & /@ sol3, 1]

Out[201]= {{2.63725 , -0.379183 , -2.63725 , 0.379183 }, {-2.63725 , 0.379183 , 2.63725 , -0.379183 },

{2.80448 , 0.356572 , -2.80448 , -0.356572 }, {-2.80448 , -0.356572 , 2.80448 , 0.356572 },

{-0.336978 , 2.96755 , 0.336978 , -2.96755 }, {0.336978 , -2.96755 , -0.336978 , 2.96755 },

{0.316884 , 3.15573 , -0.316884 , -3.15573 }, {-0.316884 , -3.15573 , 0.316884 , 3.15573 }}

In[204]:= linearSetMD [Take [sol4, 5], {w, x, y, z}]

Out[204]= -8.88178 × 10-16
- 0.5 w - 0.5 x- 0.5 y- 0.5 z
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These  all lie in the vector  subspace  w + x + y + z = 0 which  is not a surprise  since  that  is one of the 

equations  in the system  C4.

But since  these  are numerical  we can calculate  the rank

In[205]:= SingularValueList [sol4 ]

Out[205]= 8.72602 , 7.75478 , 1.79033 × 10-8

which  is numerically  2.  So they  actually  lie in a plane  in ℝ4.  We numerically  calculate  the null  

space  of this  set as

In[209]:= {U, S, V} = SingularValueDecomposition [sol4 ];

Take [V, All, -2] // MatrixForm

Out[210]//MatrixForm=

-0.5 0.5

0.5 0.5

-0.5 0.5

0.5 0.5

which  says  that  set lies also in the hyperplane  -w + x - y + z = 0 

In[211]:= (-w + x- y+ z) /. Thread [{w, x, y, z} → #] & /@ sol4

Out[211]= 0., -1.68754 × 10-14 , 4.17632 × 10-8 , 1.77636 × 10-15 ,

1.06581 × 10-14 , -2.66454 × 10-15 , 3.9968 × 10-15 , -2.66454 × 10-15 

So the curve  C4 lies in a 2-plane  of ℝ4  and the plot  is the same  as c42.  Actually  this  is quite  well  

known,  see for example  the reference  [Androvic,  Verschelde].

The two linear  equations,  w + x + y + z = 0, -w + x - y + z = 0 are equivalent  to the two equa -

tions  w = -y , x = -z.  If we just  look at the output  of sol4 above  we see that  this  is the case  at least  

for the display  digits.  It is easy  to see from  the membership  problem  that  the second  equation  is 

not a member  of the C4 system.   This  is also quite  obvious  when  we add the second  equation  to C4 

and find the H-basis

In[135]:= C4e = Append [C4, -w + x- y+ z];

HC4e = hBasisMD [C4e, 4, {w, x, y, z}, dTol ]

» Initial Hilbert Function {1, 2, 3, 4, 4}

» Final Hilbert Function {1, 2, 3, 4, 4}

Out[136]= 1. w + 1. y, 1. x+ 1. z, -1. + 1. w2 x2

The first  two equations  here  are the ones  we deduced  above  while  the last  says  w = ±
1

x
.  Again  this  

is easy  to check  in sol4.

Further  this  is the equation  of the union  of two disjoint  hyperbolas  in the {w - y , x - z} plane  of 

ℝ4, the fact  we worked  hard  to get.   This  is also a well  known  fact  but other  derivations  are at least  

as hard  as ours  above.

We recall  that   in Section  2.2 that  we noticed  the strange  fact

In[137]:= tangentVectorMD[C4, {1, -1, -1, 1}, {w, x, y, z}]
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» Hilbert Function {1, 2, 1, 1, 1}

» No unique tangent vector at {1, -1, -1, 1}

that this  point  was singular  of multiplicity  1.  But with  our extended  C4e we have

In[138]:= tangentVectorMD [C4e, {1, -1, -1, 1}, {w, x, y, z}]

» Hilbert Function {1, 1, 1, 1, 1}

Out[138]= {0.5, 0.5, -0.5, -0.5}

so this  point  is regular.

The  takeaway  from  this  discussion  is that  what  makes  the  Cyclic  4 system  

strange  is that  it is missing,  by  membership,  an equation  satisfied  by the  1-

dimensional  solution.  This  also  explains  the  ghost  lines  in the  projection  of 

the  C4 on  the  plane,  these  are  gone  when  projecting  C4e.

2.8.3   Example  3, naive  curve  in ℝ4

The  previous  example  shows  how  much  we  can  learn  from  our  method.   

Unfortunately  the  resulting  curve  was  planar.   Here,  briefly  is another  exam -

ple  of a more  interesting  curve.

This  curve  was  originally  randomly  generated  as the  intersection  of 3 

quadratic  hypersurfaces  of 4 space.

In[238]:= f1 = 3 w-3 w2 -x-x2 +3 y-2 w y+4 x y+2 y2 -2 z-4 w z+x z+5 y z+5 z2;

f2 = -4 w+3 w2 +2 w x+x2 -2 y-w y+2 y2 -5 z-4 w z+4 x z-2 y z-5 z2;

f3 = 2 w-4 w2 -2 x-w x+2 x2 +y+5 w y+2 x y+y2 +3 z+w z+5 x z-2 y z+2 z2;

F4 = {f31, f32, f33};
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We first  project  with  Pxyz, the simple  projection  setting  w = 0.  This  gives  a system  of 7 equations  

of degree  5 in the three  variables  x, y , z.  We will  not reproduce  this.   We next  project  by our 

default  pseudo-random  projection  PRD.   We get a  numerical  plane  curve  of degree  8 with  

coefficients  ranging  in absolute  value  from  0.2 to 24 500.   We call  it g3 but do not give this  here,  it 

will  eventually  appear  in my Space  Curves  book.   The interesting  parts  are given  below.   Note  that  

we have  7 singularities,  all of which  will  turn out to be artifactual.

In[154]:= {ContourPlot [g3 ⩵ 0, {x, -.6, .6}, {y, -.2, .6}], ContourPlot [g3 ⩵ 0, {x, -1, 1}, {y, -3, -.5}]}

Out[154]= 

-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6

-0.2

0.0

0.2

0.4

0.6

,

-1.0 -0.5 0.0 0.5 1.0

-3.0

-2.5

-2.0

-1.5

-1.0

-0.5



Note the approximate  position  of the  infinite  points  are 
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With difficulty  we trace  paths,  first  remembering  that  we must  always  trace  into,  but not out from  

singularities.   Such  delicate  tracing  is best  done  by our pathFinder2D using  the  closestPoint2D 
algorithm.   But with  a curve  of degree  8 it is way too slow.   Our  2D  differential  equation  path  

finder interpolates  the curve  quickly  with  a piecewise  linear  curve  but the points  given  are too 

approximate  for fFiber.  So  we  use  pathFinderT2D using  normal  planes  which  is a compromise.   

We  are  able  to lift  to ℝ3  with   fFiber and get the following  picture  incorporating  the curve  in the 

union  of the two regions  above.

The  blue  and  green  curves  are  two  different  projective  topological  components.   This  

is about  as close  as we can  come  to visualizing  non-planar  curves  in ℝ4.  The  points  A, 

B, C, D represent  the  infinite  points,  consistent  with  the  projection  above,   where  each  

branch  of the  curve  is heading.   Do note  that  each  of the  singularities  of the  plane  

projections  lift  to two  distinct  points  in ℝ4 so the  curve  in ℝ4 is non-singular.   The  

plane  curve  is algebraically  irreducible  so the  space  curve  also  must  be.

2.9  Fundamental   Theorem

In my  plane  curve  book  I introduce  the  Fundamental  Theorem.   This  does  

carry  over  to space  curves  in the  general  case.   Again  projection  to the  plane  

and  fiber  lifting  can  be used  to find  a graph  of the  space  curve.   Singular  

points  in the  plane  projection  may  lift  to several  points  so the  corresponding  

vertex  will  be  the  image  of several  different  vertices,  but  the  edges  will  

project  to distinct  edges  in the  base  given  a random  enough  projection.    

2.9.1.1  Example

In[232]:= F = {x + y - x z + y z, -x - 2 x ^ 2 y - 2 x y ^ 2 - 2 y ^ 3 + x z + 2 x ^ 3 z,

-1 + 6 x ^ 2 + 8 x y + 4 y ^ 2 - 4 x ^ 2 z + z ^ 2 + 2 x ^ 2 z ^ 2, x ^ 4 + x y + y ^ 4};
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Projecting  with  the non - generic  projection  z → 0 gives  the last  equation  x4 + x y + y 4 = 0.  Plotting  

this with  path  tracing  and lifting  gives

-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6

-0.5

0.0

0.5

1

2

3

where  the segments  of the space  curve  project  the same  colored  segments  of the plane  curve.   In 

the graphs  vertices  1,2 in space  go to 1,2 in the plane  and vertices  3a,3b  go to 3 in the plane.

Singularities  in space  typically  will  project  to singularities  in the  plane  but  

under  a generic  projection  different  singularities   go to different  singularities  

in the  plane  so the  whole  singularity  will  just  lift.  Thus  we  have  the  Funda -

mental  theorem

Each  space  curve  can  be described  by a graph  with  even  vertices.

We  pictured  the  graphs  as directed  graphs.   While  we  saw  that  there  was  a 

natural  direction,  given  a fixed  equation,  in the  plane  the  directions  in space  

may  be arbitrary.   But  since  each  component  of a graph  with  even  vertices  is 

a cycle,  by  Euler,  the  edge  directions  can  be chosen  so that  following  these  

directions  allows  one  to get  back  to the  starting  point.

2.9.1.2  Example  2.8.2  continued.

The  infinite  points  of F4 are  given  by 

In[243]:= infF4 = infiniteRealPointsMD[F4, {x, y, z, w}, 1.*^-10]

Out[243]= {{-0.538213 , 0.794671 , 0.245387 , 0.136415 , 0},

{-0.750913 , -0.416097 , 0.208369 , 0.468589 , 0},

{0.868006 , 0.134921 , -0.380594 , 0.28898 , 0},

{0.0882663 , 0.729859 , -0.548269 , -0.398641 , 0}}

labeled  by i1,…i4  which  project  to infinite  plane  points  
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{{-1.25675 , 1.55582 }, {1.07143 , 1.6888 },

{-1.63582 , 1.1507 }, {-1.68853 , -1.07186 }}

Using  the  Fundamental  Theorem  in the  plane  we can  infer  the  following  graph

In[244]:= Graph[{"c-2" → "i4", "i4" → "c-3", "c-3" → "c-4", "c-4" → "i3", "i3" → "c-1",

"c-1" → "c-2", "b-1" → "i2", "i2" → "b-4", "b-4" → "b-3", "b-3" → "i1",

"i1" → "b-2", "b-2" → "b-1"}, VertexLabels→ "Name", ImageSize → Small]

Out[244]=

which  compares  to the  plot  above  with  endpoints  labeled.

2.9.2   Ovals  and  pseudo  lines

We  can  decompose  the  graph  into  loops,  that  is subgraphs  where  each  

vertex  has  order  2.  In particular  these  are  closed.   If the  curve  is non-singu -

lar then  each  loop  represents  a topological  component,  the  converse  may  

not  be true  because  of the  existence  of cusps  etc.   In the  case  of disjoint  

loops  the  decomposition  is unique,  but  if there  exist  vertices  of higher  even  

order  the  decomposition  is not  unique.  

The  part  of the  curve  represented  by a loop  is topologically  a simple  closed  

sub-curve.   We  can  distinguish  two  types.   If the  closed  sub-curve  contains  

an even  number  of real  infinite  points,  by  multiplicity,  we  call  it a oval.  

Otherwise  we  call  it a pseudo-line.

Since  any  hyperplane  can  be considered  in some  specialization  to be the  

infinite  points  then  equivalently  one  can  intersect  the  curve  with  any  hyper -

plane  and  see  if the  number  of  intersection  points  is even  or odd  to deter -
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plane  points

mine  whether  we  have  an oval  or pseudo-line.   This  is especially  useful  if the  

original  graph  has  a vertex  representing  an infinite  point  of degree  4 or 

more,  since  there  will  be  more  than  one  loop  with  this  vertex  but  the  intersec -

tion  multiplicity  of the  original  curve  with  the  infinite  line  at this  point  will  

count  intersections  with  all  loops  through  this  vertex.

Of course,  if the  curve  has  bounded  real  part,  then  a far  away  hyperplane  

will  miss  the  curve  completely  so it is automatically  an oval.   One  difference  

between  the  space  and  plane  situation  is that  while  a non-singular  plane  

curve  can  have  at most  one  pseudo-line,  a non-singular  space  curve  can  

have  more  than  one  skew  pseudo-line.

Pseudo-lines  are  not  necessarily  preserved  under  projections,  in fact  loops  

are  not  preserved.   But  one  may  still  be  able  to get  information  from  the  

projection.

The  example  we  use  is Case  8  from  [Tu,  Wang,  Mourrain,  Wang,  Using  

Signature  sequences  to classify  intersection  curves  of two  quadrics,  Computer  

Aided  Geometric  Design,26  (2009),  317-335].   Further  details  appear  in 

Section  3.2  below

2.9.2.1  Example

In[245]:= case8 = {x y+ z, 1+ 2 x y+ y2
- z2

};

Checking  infinite  points

In[246]:= IP = infiniteRealPoints3D [case8 , {x, y, z}]

Out[246]= {{0., -0.707107 , 0.707107 , 0}, {1., 0., 0., 0}, {1., 0., 0., 0}, {0., 0.707107 , 0.707107 , 0}}

The second  infinite  point  is singular  which  is why it repeats.   We will  label  these  distinct  points  C, 

A, B respectively.   It can be shown  that  a graph  for this  3 dimensional  curve  is

In[247]:= Graph [{"A" → "C", "C" → "A", "A" → "B", "B" → "A"}, VertexLabels → "Name "]

Out[247]=

To get an idea of what  this  curve  actually  looks  like we project  it to the plane  using  our default  

pseudo-random  projection  fprd3D obtaining
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2.6 .1 Plot 1

where  c, a, b  represent  the infinite  projections  of  C, A, B respectively.   The intersections  in this  

plot are artifactual,  that  is they  are not in the original  curve.

Since  A is infinite  it is impossible  to attribute  them  to the individual  loops   ABA and ACA.   There -

fore we take  a pseudo-random  plane  intersecting  both  loops

In[248]:= plane = 0.4645861830018325`+0.1244823462922618`x+

0.847266521772098`y-0.22539579656588946`z;

This plane  intersects  the space  curve  in

In[249]:= sol1 = {x, y, z} / . NSolve[Append[case8, plane]]

Out[249]= {{-4.38804 , -0.575876 , -2.52697 }, {-3.90255 , -0.655679 , -2.55882 },

{-3.73668 , 0.112037 , 0.418644 }, {0.941646 , -0.549126 , 0.517083 }}

These  points  project  to the points

In[250]:= fltMD[#, fprd3D] & /@ sol1

Out[250]= {{0.790819 , -1.84985 }, {0.566653 , -1.94661 }, {1.24712 , 0.93915 }, {-0.810315 , 0.402654 }}

shown  as black  dots  on Plot  1 above.   We see that  3 lie in the orange  curve  aba while  only  the last  

one lines  in aca.   Thus  we conclude  that  ABA and ACA are both  pseudo-lines  as reported  in the 

paper  quoted  above.  

The reader  should  note  that  although  these  points  are not collinear   any line in the plane  will  

intersect  both  the blue  and orange  part  in an odd number  of points,  counted  by multiplicity.   On 

the other  hand  the reader  should   note  that  in the projection  there  are 3 singularities  and the non 

unique  decomposition  of the graph  could  have  3 or 4 loops,  some  of which  will  be ovals  so 

projections   do not directly  answer  the question  for the space  curve.

2.10  Bézout’s  Theorem

In plane  curve  theory  Bézout’s  theorem  counts  the  number  of complex  

projective  intersection  points  counting  multiplicity.   More  generally  in 

multiple  variables  Bezout’s  theorem  counts  the  number  of complex  projec -

tive  zeros  by multiplicity  of a zero   dimensional  system,  that  is,  a non-linear  

system  of equations  with  only  isolated  solutions,  that  is the  solution  set  does  
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system  equations  only

not  contain  a curve,  surface  etc.   It is well  known  that  the  solution  set  in this  

case  must  be finite.   The  case  of a square  zero  dimensional  system,  eg.  n  

equations  in n  unknowns  is a classical  result,  namely  if the  equations  have  

degree   d1, …, dn  then  there  are  d1 * d2 *⋯ * dn  solutions  by multiplicity.   

There  are  no  simple  proofs,  one  must  use  advanced  algebraic  geometry.  

In our  case  we  generally  have  more  equations  than  variables.   In this  case  it 

is more  complicated,  typically  adding  more  equations  decreases  the  num -

ber  of solutions.   In this  section  we  suggest  a different  solution,  the  nullity of  

large  Sylvester  matrices.   Specifically  we  mean  by nullity  the  difference  

between  the  number  of columns  and  the  matrix  rank.   While  we  do not  

claim  a proof  we  will  show  by examples  that  this  nullity  is at least  the  num -

ber  of distinct  projective  solutions.   The  reader  wanting  a proof  might  look  

at the  paper  [Telen,  Mourrain,  van  Barel,  Solving  polynomial  systems  via  

truncated  normal  forms,  Siam  J. Matrix  Anal.  Appl.  Vol39  no3  (2018)  pp.  

1421-1447]  for  ideas  on  how  to prove  the  existence  part  of the  theorem.

First  we  need  two  new  functions.   These  produce  dual vectors  to Sylvester  

matrices  for  each  affine  or infinite  point  of the  complex  projective  space  

ℂℙn.   I emphasize  that  the  dual  vectors  are  independent  of any  system,  they  

depend  only  on  the  points  and  an order m .  The  variables  are  essentially  

dummies  here,  any  set  of n variables  will  do  but  since  we  are  working  with  

certain  ones  it is most  convenient  to use  those.

In[105]:= aVecMD [p_ , m_ , X_] := mExpsMD [m, X] /. Thread [X → p]

iVecMD [p_ , m_ , X_] := Module [{lS, lh},

lS = Length [expsMD [Length [X], m]];

lh = Length [hExpsMD [Length [X], m]];

Join [Table [0, {lS - lh}], mhExpsMD [m, X] /. Thread [Append [X, #t ] → p]]]

I start  with  an example  of a square  integer  system  of 3 equations  in 3 unknowns  each  of which  has 

degree  2. which  has both  affine  and infinite  solutions.

Example  2.10.1

In[216]:= Clear [F]

F = {5- 11 x2
- 3 y- 17 x y- 17 y2

+ 4 z+ 2 x z+ 17 y z- 2 z2 , 1+ 5 x+ 41 x2
- 2 y+ 59 x y+ 53 y2

+

4 z- 8 x z- 59 y z+ 8 z2 , 1+ 3 x+ 9 x2
+ 3 y- 5 x y- 31 y2

+ 5 z- 4 x z+ 5 y z+ 4 z2
};

Note the sum of the degrees  is 6 and the product  is 8.  We first  find the complex  affine  and infinite  

solutions.

In[218]:= asolF = {x, y, z} /. NSolve [F]

Out[218]= {{-8.55422 , 7.35644 , 6.84027 }, {-0.0649037 , -0.112053 , -1.15724 },

{-0.44003 - 0.234104 ⅈ, -0.0206914 - 0.232533 ⅈ, -0.990669 - 0.122708 ⅈ},
{-0.44003 + 0.234104 ⅈ, -0.0206914 + 0.232533 ⅈ, -0.990669 + 0.122708 ⅈ}}
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In[221]:= isolF = infinitePointsMD [F, {x, y, z}, dTol ]

Out[221]= {{-0.298531 - 0.614054 ⅈ, 0.114688 - 0.027502 ⅈ, -1.1404 + 0.15798 ⅈ, 0},

{-0.298531 + 0.614054 ⅈ, 0.114688 + 0.027502 ⅈ, -1.1404 - 0.15798 ⅈ, 0},

{0.241102 , 0.363299 , 0.899935 , 0}, {-0.645934 , 0.552577 , 0.526715 , 0}}

So we have  2 real  and 2 complex  affine  solutions  and also 2 real  and 2 complex  infinite  solutions.    

We calculate  the dual  vectors  of order  6 to these  points.

In[231]:= adualsF = aVecMD [#, 6, {x, y, z}] & /@ asolF ;

idualsF = iVecMD [#, 6, {x, y, z}] & /@ isolF ;

dualsF = Transpose [Join [adualsF , idualsF ]];

Dimensions [dualsF ]

MatrixRank [dualsF ]

Out[234]= {84, 8}

Out[235]= 8

Note the  columns  are independent.   Now  we compare  with  the Sylvester  matrix.

In[226]:= S6F = sylvesterMD [F, 6, {x, y, z}];

Dimensions [S6F]

MatrixRank [S6F]

Out[227]= {105, 84}

Out[228]= 76

Thus  the nullity  is 84-76=8  as expected.  Now  to check  our dual  vectors

In[230]:= SingularValueList [S6F.dualsF ]

Out[230]= 7.36336 × 10-8 , 8.95816 × 10-13 , 2.97477 × 10-13 , 1.36979 × 10-13 ,

5.884 × 10-14 , 3.95082 × 10-14 , 7.41627 × 10-15 , 3.05139 × 10-15 

we see that  this  is numerically  the zero  matrix.   Since  dualsF  has 8 independent  columns  we 

conclude  that  these  columns  form  a basis  for the nullspace  of S6F.   The reader  should  be aware  

that although  there  are many  linear  algebra  methods  to calculate  a nullspace  they will  not give this  

basis,  essentially  one must  use non-linear  methods,  such  as system  solving,  to obtain  this  particu -

lar basis.

We  have  illustrated  our  theorem:

Suppose  F is an zero  dimensional   system  of r  non-linear  real  or complex  

polynomial  equations  in n ≤ r  variables  X = {x1, …, xn} . Suppose  the  equa -

tions  have  degrees   d1, …, dn and  m = d1 + d2 +⋯ + dn .  Let  ca be the  number  

of distinct  complex  affine  solutions  and  cinf be the  number  of distinct  com -

plex  infinite  solutions,  c = ca + cinf .   Further  let  k ≥ m and   for   each  affine  

solution  yj let  vi = aVecMD [yi, k , X ] and  for  each  infinite  solution   zj  let  w j = 
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iVecMD zj, k , X .  Then  v1, …, vca
, w1, …, wcinf

 as  column  vectors,  are  con -

tained  the  nullspace  of the  Sylvester  matrix  of F of order  k.

Remarks:   I conjecture  that  these  vectors  vi , wi  are  independent  and  that  if there  

are multiple  solutions  there  are  additional  vectors  as in the  2D version  to fully  span  

the nullspace.   So the  dimension  of the  nullspace  will  count  the  number  of complex  

projective  solutions  according  to multiplicity.

The  zero-dimensional  hypothesis  is non-trivial.   In the  r = n = 2 case  this  is equiva -

lent  to the  usual  hypothesis  of no common  divisor.   In the  general  case  the  best  way  

to test  this  hypothesis  is to solve  the  system  using  NSolve.  If the  hypothesis  is not  

true  an information  notice  starting  with

NSolve: Infinite solution set has dimension at least 1 ....

will  appear.

The  classical  version  r = n says  that  for  the  zero-dimensional  hypothesis  the  total  

number  of  complex  projective  solutions  is d1 *⋯*dn, called  the  Bézout  number.   

This  is a  deep  result  of algebraic  geometry  with  no easily  accessible  proof.   Note  

that  if r > n the  the  count  will  generally  be smaller.

The  formula  m = d1 + d2 +⋯ + dn is somewhat  conjectural  at this  point.   It is 

advised  that  one  calculate  the  nullity  of both  the  Sylvester  matrix  of order  m and  

order  m + 1.  If these  are  not  the  same  then  either  the  zero-dimensional  hypothesis  

or the  conjecture  on m does  not  hold.   In the  latter  case  this  nullity  will   still  stabi -

lize  at some  point  and  that  is the  number  to use.

Here  is an application  to curve  theory  with  a non-square  system.   Consider  

the  Shen-Yuan  example  in H-basis  form

In[107]:= SY = {3. + 6. x+ 3. x ^ 2- 4. y- 3. x y+ 1. y ^ 2- 1. z- 1. x z,

-1. x- 1. x ^ 2- 1. z+ 1. y z, 3. x+ 3. x ^ 2- 1. x y- 3. x z+ 1. z ^ 2};

This is a square  system  of 3 equations  of degree  2 in 3 unknowns.   But it is non zero-dimensional  

so Bezout  does  not hold.

In[109]:= NSolve[SY]

NSolve : Infinite solution set has dimension at least 1. Returning intersection of solutions with

40299 x

38602

-
69046 y

57903

-
142003 z

115806

== 1.

Out[109]= {{x → -1.01508, y → 0.994216, z → -2.64656},

{x → -2.78473+ 0.767326 ⅈ, y → -2.16878- 0.716577 ⅈ, z → -1.0773+ 1.35012 ⅈ},
{x → -2.78473- 0.767326 ⅈ, y → -2.16878+ 0.716577 ⅈ, z → -1.0773- 1.35012 ⅈ}}
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In[111]:= S6sy = sylvesterMD [SY, 6, {x, y, z}];

Dimensions [S6sy ]

MatrixRank [S6sy ]

Out[112]= {105, 84}

Out[113]= 65

So the nullity  is 19 rather  than  the expected  Bezout  number  8.  Try again

In[117]:= S7sy = sylvesterMD [SY, 7, {x, y, z}];

Dimensions [S7sy ]

MatrixRank [S7sy ]

Out[118]= {168, 120}

Out[119]= 98

Now the nullity  is 22 and will  continue  to increase  by 3 as the order  is increased.   Essentially  this  

tells  us we have  a curve  of effective  degree  3.  

Now we can use Bezout's  theorem  to calculate  how many  complex  projective  intersection  points  

this curve  will  have  with  a hypersurface,  that  is, surface  defined  by one equation,   in ℂℙ3.  We start  

with a plane

In[133]:= plane1 = -3- 3 x+ y+ z;

SYp = Append [SY, plane1 ]

Out[134]= 3. + 6. x+ 3. x2
- 4. y- 3. x y+ 1. y2

- 1. z- 1. x z,

-1. x- 1. x2
- 1. z+ 1. y z, 3. x+ 3. x2

- 1. x y- 3. x z+ 1. z2 , -3- 3 x+ y+ z

The sum of degrees  is now 7.

In[135]:= S7syp = sylvesterMD [SYp, 7, {x, y, z}];

Dimensions [S7syp ]

MatrixRank [S7syp ]

Out[136]= {252, 120}

Out[137]= 117

It should  not be a surprise  that  the nullity  is 3.  So we expect  3 complex  projective  points

In[138]:= asolsya = {x, y, z} /. NSolve [SYp]

solsya = infinitePointsMD [SYp, {x, y, z}, 1.*^-5 ]

Out[138]= {{-3., 0., -6.}, {0., 3., 0.}, {-1., 0., 0.}}

Out[139]= {}

So we have  3 affine  points  and no infinite  points.

In[141]:= n7sya = Transpose [Table [aVecMD [p, 7, {x, y, z}], {p, asolsya }]];
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In[143]:= Dimensions [n7sya ]

Out[143]= {120, 3}

In[144]:= SingularValueList [S7syp .n7sya , Tolerance → 0]

Out[144]= 9.70843 × 10-11 , 0., 0.

So n7sya  is the approximate  3 dimensional  nullspace  of the Sylvester  matrix  S7syp  illustrating  

Bezout’s  theorem  for a 4×3 system.   Now  lets try a surface  of degree  3.  Now  the sum of the degrees  

is 9.

In[151]:= s3 = x2 y+ x y z+ y z2 ;

SYs = Append [SY, s3]

Out[152]= 3. + 6. x+ 3. x2
- 4. y- 3. x y+ 1. y2

- 1. z- 1. x z,

-1. x- 1. x2
- 1. z+ 1. y z, 3. x+ 3. x2

- 1. x y- 3. x z+ 1. z2 , x2 y+ x y z+ y z2

In[153]:= S9sys = sylvesterMD [SYs, 9, {x, y, z}];

Dimensions [S9sys ]

MatrixRank [S9sys ]

Out[154]= {444, 220}

Out[155]= 211

The nullity  is 9.  Solving

In[156]:= solsys = {x, y, z} /. NSolve [SYs]

Out[156]= {{-3., 0., -6.}, {0., 3., 0.}, {0., 3., 0.}, {-0.333333 - 0.3849 ⅈ, 0.333333 - 0.3849 ⅈ, 0.5 - 0.096225 ⅈ},
{-0.333333 + 0.3849 ⅈ, 0.333333 + 0.3849 ⅈ, 0.5 + 0.096225 ⅈ},
{0., 1., 0.}, {0., 1., 0.}, {-1., 0., 0.}, {-1., 0., 0.}}

In[159]:= infinitePointsMD [SYs, {x, y, z}, 1.*^-10 ]

Out[159]= {}

This returns  9 points  as expected,  all affine,  but we note  that  3 of them  are listed  as being  multiplic -

ity 2 points.   For example

In[158]:= multiplicity0MD [SYs, 3, {0, 3, 0}, {x, y, z}, 1.*^-10 ]

» hilbert Function {1, 1, 0, 0}

» Depth 1

Out[158]= 2

So we have  only  6 distinct  affine  points.

In[165]:= n9sys = Transpose [

aVecMD [#, 9, {x, y, z}] & /@ {{-3, 0, -6}, {0, 3, 0}, solsys 〚4〛, solsys 〚5〛, {0, 1, 0}, {-1, 0, 0}}];
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In[167]:= MatrixRank [n9sys ]

Out[167]= 6

In[166]:= SingularValueList [S9sys .n9sys , Tolerance → 0]

Out[166]= 2.2641 × 10-14 , 1.70962 × 10-14 , 2.15257 × 10-30 , 9.41709 × 10-31 , 0., 0.

In this  case  it only  says  that  n9sys  is contained  in the 9 dimensional  nullspace  of S9sys.   The 

difference  is that  the nullspace  of S9sys  is counting  by multiplicity.   With  more  work  we could  find 

the missing  3 nullspace  vectors  similar  to the work  in the 2 dimensional  Bezout  theorem  at 

https://www.barryhdayton.space/curvebook/BezoutsTheorem.pdf

A slightly  different  example  is the  twisted  cubic  of section  2.0.   Consider  all  

three  equations

In[171]:= twcubic = {-y2
+ x z, -x2

+ y, -x y+ z}

l = RandomReal [{-1, 1}, 4].{x, y, z, 1}

Out[171]= -y2
+ x z, -x2

+ y, -x y+ z

Out[172]= -0.58838 - 0.122878 x- 0.854448 y- 0.523189 z

In[173]:= Stw7 = sylvesterMD [Append [twCubic , l], 7, {x, y, z}];

Dimensions [Stw7 ]

MatrixRank [Stw7 ]

Out[174]= {252, 120}

Out[175]= 117

So Bezout  says  that  the twisted  cubic  meets  this  random  hyperplane  in 3 complex  projective  

points.   If we take only  the last  2 equations  and l the sum of the degrees  is only  5

In[176]:= Stw5 = sylvesterMD [{-x2
+ y, -x y+ z, l}, 5, {x, y, z}];

Dimensions [Stw5 ]

MatrixRank [Stw5 ]

Out[177]= {75, 56}

Out[178]= 52

Now Bezout  reports  4 complex  projective  solutions.   But note  as in section  2.0

In[179]:= NSolve [{-x2
+ y, -x y+ z, l}]

Out[179]= {{x → 0.102527 + 0.775424 ⅈ, y → -0.59077 + 0.159003 ⅈ, z → -0.183865 - 0.441795 ⅈ},
{x → 0.102527 - 0.775424 ⅈ, y → -0.59077 - 0.159003 ⅈ, z → -0.183865 + 0.441795 ⅈ},
{x → -1.83821 , y → 3.379 , z → -6.2113 }}

we get  only  3 affine  solutions.   So Bezout  is telling  us that,  assuming  these  

three  solutions  are  simple  which  is true,  there  must  be an infinite  solution.   

In 2.0  we  had  to find  this  solution,  with  Bezout  we  can  simply  imply  the  
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 simply  imply

existence  of that  solution.  
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3|  Applications

The  last  few  sections  of this  Space  Curve  volume  cover  some  of my other  recent  work.   

These  will  get  somewhat  technical  and  are  aimed  at mathematically  sophisticated  

readers.

One  section  will  cover  Quadratic  Surface  Intersection  Curves.   Another  application  

looks  at classical  resolution  of plane  curve  singularities.   I avoided  this  topic  in my 

plane  curve  book  because  plane  curve  singularities  are  not  numerically  stable,  by 

blowing  up to a space  curve  we can  often  get  a numerically  stable  model  of the  

singularity.

Here  is the  first  section.

3.1 Implicitization  of Parametric  curves

3.1.1  General  theory  of parametric  curves

It is well  known  that  curves  parameterized  by polynomial,  or more  generally,  rational  

functions  are  algebraic  curves,  that  is can  be described  by a system  of algebraic  

equations.   In the  past  I have  treated  these  separately,  however  I recently  discovered  

that  the  theories  are  the  same  up to FLT.   A short  version  of this  section  is given  in 

Volume  22 of The Mathematica  Journal.

 So suppose  we start  with  a rational  curve  in ℝn .

Q[t ] = 
p1[t ]

Δ[t ]
,

p2[t ]

Δ[t ]
, …,

pn[t ]

Δ[t ]
 (1)

where  the  common  denominator Δ[t ] ≠ 0  and  the  pi  and  Δ are  univariate  polynomi -

als in t .   With  this  approach  I do not  need  to make  assumptions  on the  degrees  of the  

numerators  relative  to each  other  or the  denominator.   In particular  if  

pn+1[t ] = Δ[t ] = 1 is the  constant  polynomial  then  we say  Q[t ] is a polynomial  curve.   

The  degree  of a polynomial  or rational  curve  is the  largest  degree  d  of p1, …, pn+1.

A polynomial  will  be called  stripped if the  constant  term  is 0, that  is p[t ] is stripped  if 

p[0] = 0. We strip a polynomial  by dropping  the  constant  term,  we write  p

[t ] for  the  

stripped  polynomial  p[t ].  Here  we treat  rational  functions  a bit  differently  from  

polynomial  functions  since  we can  only  strip  Q[t ] in equation  (1)  if Q[t]  is not  con -

stant  as stripping  the  constant  polynomial  Δ [t] =1 gives  Δ [t ] = 0.  For  this  reason  we 

will  only  talk  of stripping  polynomials,  not  rational  functions.

Given  a rational  curve  as in (1),  including  polynomials,  assuming  

pi[t] = ai 0 + ai 1 t +⋯ + ai d td  for i = 1, … , n+ 1

 we get  a projective stripped   coefficient  matrix
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a11 a12 … ad

a21 a22 … a2 d

⋮ ⋮ ⋮ ⋮
an+1×1 an+1×2 … an+1 d

(2)

For example  for  the  polynomial  curve  � 2 + 3 t + 4 t 2, 5 + 6 t + 7 t 2 the  projective  

stripped  coefficient  matrix,  including  the  stripped  denominator  is 

3 4

6 7

0 0

While  for  the  rational  function   2+3 t+4 t 2 ,

1+8 t+9 t 2
,

5+6 t+7 t 2

1+8 t+9 t 2
 we get

3 4

6 7

8 9

From  this  we get  the  projective  augmented  coefficient  matrix   by adjoining  a last  

column  containing  the  constant  terms.   For  the  two  examples  above

A1 =

3 4 2

6 7 5

0 0 1

, A2 =

3 4 2

6 7 5

8 9 1

The  key  observation  is

In[119]:= fltMD [{t, t ^ 2}, {{3, 4, 2}, {6, 7, 5}, {0, 0, 1}}]

Out[119]= 2 + 3 t + 4 t2, 5 + 6 t + 7 t2

In[121]:= fltMD [{t, t ^ 2}, {{3, 4, 2}, {6, 7, 5}, {8, 9, 1}}]

Out[121]= 
2 + 3 t + 4 t2

1 + 8 t + 9 t2
,

5 + 6 t + 7 t2

1 + 8 t + 9 t2


More  generally  we have  the  following   FLT  Parametric  Curve  Theorem:

 If Q[t ] is a rational  curve  of degree  d with  projective  augmented  coefficient  matrix  A 

then  

Q[t]=fltMD[

t

t2

⋮
td

, A (3)

In particular,  every  rational  curve   of degree  d  is the  FLT  image  of the  stripped  polyno -

mial  curve  t , t 2, …, t d  in ℝd .

Note  that  this  theorem  implies  that  Td = t , t 2, …, t d  is a universal  curve  for  rational  

and  polynomial  curves.   I call  this  curve  a parabola  after  Kepler  because  it has  a single  
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 polynomial parabola  Kepler  single

infinite  point  {0, …, 0, 1, 0}.  When  d  is even  the  curve  is tangent  to the  infinite  

hyperplane  like  the  plane  parabola  T2.  Thus  every  rational  curve  is a specialization  

and/or  projection  of this  family  of curves.   Further,  it is not  necessary  to study  rational  

curves  separately  from  polynomial  curves.

3.1.2  Shen-Yuan  Example

This  example  from  2010  shows  the  problem  of finding  a good  implicitization.

We use  the  example  of L.Shen  and  C. Yuan  in ℝ3.  [L.Shen,  C.Yuan,  Implicitization  

using  Univariate  Resultants,  J Sys  Sci  Complex  (2010)  23,  pp.804  - 814.]

In[203]:= sy = {-2 t ^ 2 + t ^ 3, 1 - t - t ^ 2 + t ^ 3, 2 t - 3 t ^ 2 + t ^ 3};

Their  method  gives  the  system  of 3 equations,  not  actually  stated  in their  paper:

In[165]:= SY = {-3 - 7 x - 5 x2 - x3 + 7 y + 9 x y + 3 x2 y - 5 y2 - 3 x y2 + y3,

-x2 - x3 + 2 x z + 3 x2 z - 3 x z2 + z3,

-3 y + 4 y2 - y3 - 2 y z + 3 y2 z + 6 z2 - 3 y z2 + z3};

They  point  out  that  the  point   {-1, 1, 0} satisfies  these  equations  but  is not  on the  

curve.   In fact  there  are  actually  5 isolated  points,  all  real,  satisfying  this  system  which  

are not  on the  curve.   It is somewhat  difficult  to find  these  isolated  points  but  with  n 

equations  in n unknowns  we can  use  the  fact  that  a small  perturbation  of the  system  

will  have  only  isolated  solutions,  using  FindRoot  we can  locate  nearby  solutions  on 

the non-perturbation  system.  We can  check  to see  if they  are  actually  on the  paramet -

ric curve  using  the  parametric  curve  theorem  above.

We use  the  random  perturbation  below  which  finds  all  the  isolated  points,  this  was  

found  by trial  and  error

In[164]:= rr = {0.01306586198991111` , -0.09887929561077524` , -0.05150297032114362` };

In[169]:= solrr = {x, y, z} / . NSolve [SY + rr, {x, y, z}, Reals ]

Out[169]= {{-1.32717 , 0.848784 , -0.413263 }, {-0.180712 , 0.588029 , -0.388907 },

{-0.435589 , 0.308678 , -0.329942 }, {-1.03345 , -0.0117412 , 0.0489152 }}

These  4 real  solutions  are  close  to actual  solutions  of SY

In[199]:= rsol = {x, y, z} / . FindRoot [SY , Transpose [{{x, y, z}, #}]] & /@ solrr

Out[199]= {{-1.08567 , 0.966531 , -0.383168 }, {-0.0514731 , 0.809015 , -0.384493 },

{-0.585515 , 0.190521 , -0.264511 }, {-0.988233 , 0.000269103 , 0.0116319 }}
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In[194]:= root6 = {x, y, z} / .

Chop [FindRoot [SY , Transpose [

{{x, y, z},

{-0.28172479907074977 -

0.10554902609695169 * I,

1.2050352897534784 -

0.004529970239375305 * I,

-0.29474952022205597 +

0.0027247859065144867 * I}}]]]

Out[194]= {-0.684747 , 1.10801 , -0.301161 }

In addition  to these  4 real  solutions  of SY there  is the  multiplicity  2 solution    {-1, 1, 0} 

given  by Shen-Yuan.   Further  we find  one  additional  real  solution  starting  from  a 

complex  solution  of the  perturbed  system.   Checking  multiplicity

In[200]:= rsol = Join [rsol , {{-1, 1, 0}, root6 }];

Table [multiplicityMD [SY , s, {x, y, z}, dTol ], {s, rsol }]

Out[201]= {1, 1, 1, 10, 2, 1}

The  multiplicity  of the  fourth  real  solution  is 10 because  that  is the  default  maximum  

multiplicity  returned  by multiplicityMD,  this  suggests  that  that  point  is non-isolated  

and  thus  on the  parametric  curve,  while  the  others  are  not  on the  parametric  curve.  

We can  check  this  4th  point  using  our  parametric  curve  theorem.   The  stripped  curve  

is 

sy


= {-2 t ^ 2 + t ^ 3, - t - t ^ 2 + t ^ 3, 2 t - 3 t ^ 2 + t ^ 3};

the augmented  projective  stripped  coefficient  matrix  is 

In[209]:= symat = {{0, -2, 1, 0}, {-1, -1, 1, 1}, {2, -3, 1, 0}, {0, 0, 0, 1}};

giving  the  parametric  equation  as

In[210]:= sy = fltMD [{t, t ^ 2, t ^ 3}, symat ]

Out[210]= -2 t2 + t3, 1 - t - t2 + t3, 2 t - 3 t2 + t3

We see  that  symat is an invertible  matrix  so the  FLT  given  by this  is also  invertible.   

Thus  the  point  rsol[[4]]  comes  from

In[211]:= q = fltMD [rsol〚4〛, Inverse [symat ]]

Out[211]= {0.988366 , 0.976868 , 0.965504 }

But note  that  this  is on the  curve  t , t 2, t 3
In[212]:= {q〚1〛, q〚1〛^ 2, q〚1〛^ 3}

Out[212]= {0.988366 , 0.976868 , 0.965504 }
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So

In[215]:= rsol〚4〛
fltMD [{q〚1〛, q〚1〛^ 2, q〚1〛^ 3}, symat ]

Out[215]= {-0.988233 , 0.000269103 , 0.0116319 }

Out[216]= {-0.988233 , 0.000269103 , 0.0116319 }

is on the  curve  sy.   Thus  the  5 isolated  points  of SY not  on the  curve  sy are

In[213]:= Drop [rsol , {4}]

Out[213]= {{-1.08567 , 0.966531 , -0.383168 },

{-0.0514731 , 0.809015 , -0.384493 }, {-0.585515 , 0.190521 , -0.264511 },

{-1, 1, 0}, {-0.684747 , 1.10801 , -0.301161 }}

An important  observation  from  this  example  is that,  unlike  for  plane  curves,  none  of 

these  isolated  points  are  singular  because  isolated  points  are  the  default  case  for  3×3 

systems.   This  is what  makes  them  hard  to find.

In the  next  subsections  we will  show  how  to find  a system  for  this  last  curve  that  does  

not  have  isolated  points  not  on the  curve.

3.1.3  Direct  approach

The  direct  approach  to implicitization  for  polynomial  parameters  has  two  

parts,  first  we  find  all  polynomials  vanishing  on  the  parametric  curve  up  to a 

specified  degree,  then  we  find  a H - basis  of this  ideal.  We  should  check  this

as above  to make  sure  that  there  are  no  points  in this  ideal  that  are  not  on  

the  curve,  but  remember  complex  values  of t  are  valid  in this  setting.

Use  the  indirect  approach  for  rational  parameters.

The  user  will  need  to decide  the  maximum  degrees  of the  polynomials  to be 

found.   Often  the  correct  degree  is less  than  the  maximum  degree  of a com -

ponent  of F , but  apparently  never  larger.   Using  the  maximum  degree  of a 

component  the  second  step  will  give  the  lower  correct  degree  so this  is a 

safe,  but  maybe  not  the  quickest  choice.   In the  next  subsection  we  will  give  

a family  of curves  of arbitrarily  large  degree  and  dimension  with  impliciza -
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 family  arbitrarily  large  degree  impliciza

tion  consisting  of quadratic  polynomials.  

The  following  function  takes  as arguments  a polynomial  parametric  curve  

F , a specified  degree  d  the  parameter  t  and  the  variables  you  wish  to use  on  

the  target  space.   The  number  of variables  should  match  the  number  of 

components  of F .  This  routine  is similar  to the  routine  in section  A.5  of the  

plane  curve  book  but  better  even  for  2 variables.   This  routine  expects  exact  

or at least  very  accurate  numerical  coefficients  of F  otherwise  you  may  need  

to replace  the  built  in NullSpace  finder  with  an numerical  one  based  on  the  

SVD.

In[95]:= p2aRawMD[F_, d_, t_, X_] := Module[{n, TB, cr, ar, SA, NSA, FA},

n = Length[X];

If[Length[F] ≠ n, Echo["Dimension mismatch F,X"]; Abort[]];

TB = Expand[Table[m / . Thread[X → F], {m, mExpsMD[d, X]}]];

cr = CoefficientRules[#, {t}] & /@ TB;

ar = Append[

Flatten[Table[Table[{i, First[k] +1} → cr〚i〛[k], {k, Keys[cr〚i〛]}], {i, Length[cr]}], 1],

{_, _} → 0];

SA = SparseArray[ar];

NSA = NullSpace[Transpose[SA]];

If[Length[NSA] < n-1, Echo["Fail, Try higher d"]; Abort[]];

FA = NSA.mExpsMD[d, X];

Echo[Table[Expand[FA〚j〛 / . Thread[X → F]], {j, Length[FA]}], "Residues "];

FA]

We  will  illustrate  with  the  Shen-Yuan  example  above

In[96]:= sy = {-2 t ^ 2+ t ^ 3, 1- t- t ^ 2+ t ^ 3, 2 t- 3 t ^ 2+ t ^ 3};

In[99]:= G = p2aRawMD [sy, 3, t, {x, y, z}]

» Residues {0, 0, 0, 0, 0, 0, 0, 0, 0, 0}

Out[99]= 8 x2
+ 8 x3

- 3 x2 y+ 2 x z- 6 x2 z+ z3 , 3 x+ 3 x2
- x y- 4 x z- x2 z+ y z2 ,

-x- x2
- x y- x2 y- z+ y2 z, 12 + 32 x+ 28 x2

+ 8 x3
- 13 y- 18 x y- 6 x2 y+ y3

- 5 z- 8 x z- 3 x2 z,

3 x2
+ 3 x3

- x2 y- 3 x2 z+ x z2 , -x2
- x3

- x z+ x y z, 3 x+ 6 x2
+ 3 x3

- 4 x y- 3 x2 y+ x y2
- x z- x2 z,

3 x+ 3 x2
- x y- 3 x z+ z2 , -x- x2

- z+ y z, 3+ 6 x+ 3 x2
- 4 y- 3 x y+ y2

- z- x z

Note that  6 polynomials  are returned.   Now  we find a H-basis

In[100]:= H = hBasisMD [G, 3, {x, y, z}, dTol ]

» Hilbert Function {1, 3, 3, 3}

Out[100]= 3. + 6. x+ 3. x2
- 4. y- 3. x y+ 1. y2

- 1. z- 1. x z, -1. x- 1. x2
- 1. z+ 1. y z, 3. x+ 3. x2

- 1. x y- 3. x z+ 1. z2

Note that  3 equations  are returned.   One needs  to check  that  unlike  the Shen-Yuan  system,  this  

has no isolated  or other  solutions  not on the curve.   We only  check  their  point  here
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In[101]:= H /. Thread [{x, y, z} → {-1, 1, 0}]

Out[101]= 4.44089 × 10-16 , -1.77636 × 10-15 , 1.

It does  satisfy  the first  two equations  but not the third.

3.1.4 The indirect approach.

The  FLT  Parametric  Curve  Theorem  says  every  polynomial  or rational  

parametric  curve  F  is the  image  of the  famous  rational  normal  curve   

�Td = t , t 2, …, t d where  d  is the  maximum  degree  of a polynomial  in t  in 

the  numerator  or denominator  of F .  So  we   use  FLTMD on  the  FLT  from  the  

theorem  using  a known  implicitation  of Td .  We  have  the

Theorem:[see  Joe  Harris’  book]   The  implicitization  of Td  is given  by 

quadratic   binomials  in {x1,…,xd},  in particular  the  
d

2
 monomials  given  by  

p2rawMD t , t ^ 2, …, t d, 2, t , {x1, …, xd }
We will  not prove  this  here  but it is easy  to check  any case  by the direct  method  in the last  section,  

for example  n=4

In[120]:= raw4 = p2aRawMD [{t, t ^ 2, t ^ 3, t ^ 4}, 4, t, {x1, x2, x3, x4}]

» Residues {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}

Out[120]= x32 x42
- x2 x43 , x33 x4 - x1 x43 , x34

- x43 , x2 x3 x42
- x1 x43 , x2 x32 x4 - x43 , x2 x33

- x3 x42 , x22 x42
- x43 ,

x22 x3 x4 - x3 x42 , x22 x32
- x2 x42 , x23 x4 - x2 x42 , x23 x3 - x1 x42 , x24

- x42 , x1 x3 x42
- x43 ,

x1 x32 x4 - x3 x42 , x1 x33
- x2 x42 , x1 x2 x42

- x3 x42 , x1 x2 x3 x4 - x2 x42 , x1 x2 x32
- x1 x42 ,

x1 x22 x4 - x1 x42 , x1 x22 x3 - x42 , x1 x23
- x3 x4, x12 x42

- x2 x42 , x12 x3 x4 - x1 x42 , x12 x32
- x42 ,

x12 x2 x4 - x42 , x12 x2 x3 - x3 x4, x12 x22
- x2 x4, x13 x4 - x3 x4, x13 x3 - x2 x4, x13 x2 - x1 x4, x14

- x4,

x32 x4 - x2 x42 , x33
- x1 x42 , x2 x3 x4 - x1 x42 , x2 x32

- x42 , x22 x4 - x42 , x22 x3 - x3 x4, x23
- x2 x4,

x1 x3 x4 - x42 , x1 x32
- x3 x4, x1 x2 x4 - x3 x4, x1 x2 x3 - x2 x4, x1 x22

- x1 x4, x12 x4 - x2 x4,

x12 x3 - x1 x4, x12 x2 - x4, x13
- x3, x32

- x2 x4, x2 x3 - x1 x4, x22
- x4, x1 x3 - x4, x1 x2 - x3, x12

- x2

In[121]:= tBasis4 = hBasisMD [raw4 , 4, {x1, x2, x3, x4}, dTol ]

» Hilbert Function {1, 4, 4, 4, 4}

Out[121]= 1. x12
- 1. x2, 1. x1 x2 - 1. x3, 1. x1 x3 - 1. x4, 1. x22

- 1. x4, 1. x2 x3 - 1. x1 x4, 1. x32
- 1. x2 x4

In[150]:= raw2 = p2aRawMD [{t, t ^ 2, t ^ 3, t ^ 4}, 2, t, {x1, x2, x3, x4}]

» Residues {0, 0, 0, 0, 0, 0}

Out[150]= x32
- x2 x4, x2 x3 - x1 x4, x22

- x4, x1 x3 - x4, x1 x2 - x3, x12
- x2

One  might  think  from  the  theorem  that  one  could  build  tBasis  up  recur -

sively  by merely  adding  d - 1 binomials  to the  previous  tBasis.   This  is not  

true  however,  but  the  new  terms  do imply  the  old  terms  are  also  in the  ideal  
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 imply

generated  by the  larger  basis.  For  example

In[114]:= tBasis3 = p2aRawMD [{t, t ^ 2, t ^ 3}, 2, t, {x1, x2, x3}]

» Residues {0, 0, 0}

Out[114]= x22
- x1 x3, x1 x2 - x3, x12

- x2

Here  x2 ^ 2 - x1 x3 has been  replaced  by x2 ^ 2 - x4 and x1 x3 - x4 which  imply  the former.

For  further  use  we  will  collect  the  first  few  cases  of tBasis,  they  should  be 

initialized  in GlobalFunctionsMD

In[210]:= tBasis2 = {x1^ 2-x2};

tBasis3 = {x2^ 2-x1 x3, x1 x2-x3, x1^ 2-x2};

tBasis4 = {x3^ 2-x2 x4, x2 x3-x1 x4, x2^ 2-x4, x1 x3-x4, x1 x2-x3, x1^ 2-x2};

tBasis5 = {x42 -x3 x5, x3 x4-x2 x5, x32 -x1 x5, x2 x4-x1 x5,

x2 x3-x5, x22 -x4, x1 x4-x5, x1 x3-x4, x1 x2-x3, x12 -x2};

We   can  redo  the  Shaun-Yuan  example  by using  the  FLT  from  section  3.1.2

In[174]:= symat = {{0, -2, 1, 0}, {-1, -1, 1, 1}, {2, -3, 1, 0}, {0, 0, 0, 1}};

sy = fltMD[{t, t ^ 2, t ^ 3}, symat]

Out[175]= -2 t2
+ t3, 1- t- t2

+ t3, 2 t- 3 t2
+ t3

In[176]:= H2 = FLTMD[tBasis3, symat, 3, {x1, x2, x3}, {x, y, z}, dTol]

» Hilbert Function {1, 3, 3, 3}

Out[176]= 3. x+ 3. x2
- 1. x y- 3. x z+ 1. z2, 1. x+ 1. x2

+ 1. z- 1. y z,

1. + 2.33333 x+ 1.33333 x2
- 1.33333 y- 1. x y+ 0.333333 y2

- 0.333333 x z- 0.333333 y z

Note that  this  is different  from  the implicitization  we got using  the direct  approach  above  because  

FLTMD  works  projectively  and applies  hBasisMD  on  a homogeneous  system  where  our direct  

method  works  completely  in the affine  situation.   But we can see these  are the same  by applying  

hBasisMD  to the result.   The fact  that  the Hilbert  function  is unchanged  implies  these  systems  are 

equivalent.

In[165]:= hBasisMD [H2, 3, {x, y, z}, dTol ]

» Hilbert Function {1, 3, 3, 3}

Out[165]= 3. + 6. x+ 3. x2
- 4. y- 3. x y+ 1. y2

- 1. z- 1. x z, -1. x- 1. x2
- 1. z+ 1. y z, 3. x+ 3. x2

- 1. x y- 3. x z+ 1. z2

As a second  example  we  look  at a rational  parameterization  of the  piriform.

In[118]:= piriformpar = {
1- t4

1+ 2 t ^ 2+ t ^ 4
,

4 t

1+ 2 t ^ 2+ t ^ 4
}

Out[118]=  1- t4

1+ 2 t2 + t4
,

4 t

1+ 2 t2 + t4


We can construct  a 3×5 FLT matrix  by labeling  the columns  by t , t 2, t 3, t 4, 1 and rows  by 

coefficients  of 1 - t 4, 4 t , 1 + 2 t 2 + t 4  respectively.
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In[206]:= piriformA = {{0, 0, 0, -1, 1}, {4, 0, 0, 0, 0}, {0, 2, 0, 1, 1}};

piriformA // MatrixForm

Out[207]//MatrixForm=

0 0 0 -1 1

4 0 0 0 0

0 2 0 1 1

Checking

In[177]:= fltMD [{t, t ^ 2, t ^ 3, t ^ 4}, piriformA ]

Out[177]=  1- t4

1+ 2 t2 + t4
,

4 t

1+ 2 t2 + t4


Thus  an implicitization  of the piriform  is

In[214]:= piriformEq = FLTMD [{x32
- x2 x4, x2 x3 - x1 x4, x22

- x4, x1 x3 - x4, x1 x2 - x3, x12
- x2},

piriformA , 4, {x1, x2, x3, x4}, {x, y}, dTol ]〚1〛
» Hilbert Function {1, 2, 3, 4, 4}

Out[214]= 1. + 2. x- 2. x3
- 1. x4

- 1. y2

In[220]:= Show [ContourPlot [piriformEq ⩵ 0, {x, -2, 2}, {y, -2, 2}, ContourStyle → Orange ], ParametricPlot [

piriformpar , {t, -6, 6}, PlotStyle → Directive [Dashed , Black ], ImageSize → Small ]]

Out[220]=

-2 -1 0 1 2

-2

-1

0

1

2

A more  complicated  example  is 

In[258]:= fpar = {
t+2

t ^ 2+1
,

t ^ 2-1

t ^ 2+1
,

t ^ 2- t+1

t ^ 2+1
,

4 t ^ 2

t ^ 2+1
};

Again  this  can  be actualized  by an FLT   with  matrix

In[259]:= fparA = {{1, 0, 2}, {0, 1, -1}, {-1, 1, 1}, {0, 4, 0}, {0, 1, 1}};

fltMD[{t, t ^ 2}, fparA]

Out[260]=  2+ t

1+ t2
,
-1+ t2

1+ t2
,

1- t+ t2

1+ t2
,

4 t2

1+ t2


So the  implicit  curve  in ℝ4is 
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In[261]:= fparEq = FLTMD[tBasis2, fparA, 2, {x1, x2}, {x, y, z , w}, dTol]

» Hilbert Function {1, 2, 2}

Out[261]= 1. w- 1. x- 3. y- 1. z, 1. - 0.5 x- 0.5 y- 0.5 z,

1. x2
+ 2. x y+ 2.33333 y2

- 3.33333 x z- 3.33333 y z+ 1. z2

At first  we  might  be surprised  that  of the  3 equations  two  are  linear  which  

means  this  curve  lies  in a 2 dimensional  subset  of ℝ4.  But  on  further  consid -

eration  we  see  that  this  curve  is contained  in the  image  of a FLT  defined  on  

ℝ2 which  itself  cannot  have  image  greater  than  2.  Applying  a somewhat  

random  orthogonal  FLT  projection  with  matrix

In[264]:= projA = {{0.7071067811865475 ,̀ 0.`, 0.`, 0.7071067811865475 ,̀ 0.`},

{0.4082482904638631 ,̀ 0.816496580927726 ,̀ 0.`, -0.4082482904638631 ,̀ 0.`},

{0.`, 0.`, 0.`, 0.`, 1.`}}

Out[264]= {{0.707107, 0., 0., 0.707107, 0.}, {0.408248, 0.816497, 0., -0.408248, 0.}, {0., 0., 0., 0., 1.}}

we find  that  the  parametric  curve  projects  to 

In[265]:= fparproj = N[fltMD[fpar, projA]]

Out[265]=  2.82843 t2

1. + t2
+

0.707107× (2. + t)

1. + t2
, -

1.63299 t2

1. + t2
+

0.408248× (2. + t)

1. + t2
+

0.816497× -1.+ t2
1. + t2



while  the  curve  in ℝ4projects  to 

In[267]:= fprojEq = FLTMD[fparEq, projA, 2, {x, y, z, w}, {x, y}, dTol]〚1〛
» Hilbert Function {1, 2, 2}

Out[267]= 1. - 1.21218 x+ 0.357143 x2
- 0.699854 y+ 0.742307 x y+ 1.07143 y2

In[268]:= Show[ContourPlot[fprojEq ⩵ 0, {x, 1, 3}, {y, -1.5, .5}, ContourStyle→ Orange],

ParametricPlot[fparproj, {t, -8, 8}, PlotStyle → Directive[Black, Dashed]],

ImageSize → Small]

Out[268]=

1.0 1.5 2.0 2.5 3.0

-1.5

-1.0

-0.5

0.0

0.5

So we  merely  have  a plane  ellipse  lying  in ℝ4.

3.2  Quadratic  Surface  Intersection  Curves  (QSIC)
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This  is a classical  area  that  only  recently  has  seen  a full  solution.  C.Tu,  

W.Wang,  B.  Mourrain  and  J. Wang,  [TWMW],  have  given  in the  journal  

Computer  aided  Geometric  Design  2009  a complete  classification  of QSIC  

identifying  35 types  including  singular  QSIC.    L. Dupont,  D.  Lazard,  S. 

Lazard  and  S. Petitjean  [DLLP]  presented  a 65 page  discussion  and  working  

black  box  algorithm  in 2008  available  on  http://vegas.loria.fr/qi/index.html , 

a typical  run  looks  like  this  

  Here  I give  my  take  on  this  subject.  

3.2 .1  The Theory

A quadratic  surface  intersection  curve   (QSIC)  is a  naive  curve  where  the  2 

equations  are  quadratic  (degree  2) in three  variables.   It helps,  however,  to 

have  the  full  general  theory  in understanding  these  curves.   

In principle  these  curves  have  degree  4, that  is,  a generic  plane   projection  

will  be  a curve  of degree  4.  Alternatively  a generic  plane  intersects  a generic  

plane  in 4 complex  projective  points.   Using  our  Bezout  theorem
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In[123]:= X = mExpsMD[2, {x, y, z}];

F1 = RandomInteger[{-9, 9}, {2, 10}].X

plane1 = RandomInteger[{-9, 9}, 4].{x, y, z, 1}

S7 = sylvesterMD[Append[F1, plane], 7, {x, y, z}];

dim = Dimensions[S7];

rnk = MatrixRank[S7];

dim〚2〛- rnk

Out[124]= -2+ 7 x+ 2 x2
- 6 y- 4 x y+ 2 z+ 8 x z- 6 y z+ 2 z2, -2+ 4 x- 7 x2

+ 8 y- 4 x y- 3 y2
+ 9 z- 7 x z+ 3 y z- z2

Out[125]= 4+ 2 x- 3 y- 6 z

Out[129]= 4

For  a non-singular  QSIC  classical  mathematicians  have  determined  this  is a 

curve  of genus  1.  Plane  curves  of genus  1 include  the  elliptic  curves   

y 2 - x3 - a x - b   and  hyper-elliptic  curves  y 2 - x4 - a x2 - b x - c where  in 

both  cases  the  cubic  in x  has  no  multiple  zeros.   As  the  screen  image  above  

shows  DLLP  can  parameterize  these  curves  in the  form  of rational  functions  

of the  form

ρ[u] = {(U1 [u] + V1 [u] Sqrt [δ [u]]) /Δ, (U2 [u] + V2 [u] Sqrt [δ ]) /Δ, (U3 [u] + V3 [u] Sqrt [δ [u]]) /Δ}

Δ[u] = U4 [u] + V4 [u] Sqrt [δ [u]] (4)

where  Ui, Vi, δ are  polynomials  of degree  4 in u, and  Δ, δ are  the  same  for  all  

three  coordinates.  

In my  2011  paper  on  QSIC  I show  that  one  can  do better  in that  the  Ui, Vi, δ 

can  be polynomials  of degree  3.  Here  is an exposition  in terms  of the  Wol -

fram  Language.

Here  Q is the  equation  of our  QSIC  and  p is a point  on  Q.  We  obtain  an FLT  

projection  Ω and  right  inverse  ℧ which  is not  an FLT.   In addition  we  obtain  

a cubic  plane  curve  h which  is the  domain  of ℧ .  The  algorithm  takes   p  to an 

infinite  point  so is not  in the  domain  of Ω.

Suppose  we  take  a random  example,  say  the  one  above

In[113]:= Qr = { -2+7 x+2 x2 -6 y-4 x y+2 z+8 x z-6 y z+2 z2,

-2+4 x-7 x2 +8 y-4 x y-3 y2 +9 z-7 x z+3 y z- z2};

We  first  obtain  a point  on  the  curve,  in general  this  might  not  be random.

In[116]:= cp = criticalPoints3D[Q, {x, y, z}]〚2〛
Out[116]= {0.199762, 0.0222691, 0.176374}

Next  we  use  the  following  function  with  codifies  the  method  in my  2011  

paper.   This  returns  a plane  polynomial  h of degree  3, an FLT  Ω which  takes  
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paper.  plane  polynomial  degree

the  curve   Q to h and  a function  ℧ which  maps  h back  up  to Q as a right  

inverse,  that  is ℧[Ω[q]] = q   for  almost  all  q  in Q.   One  needs  to be careful  

with  the  usage  since  the  routine  does  use  randomization  and  will  give  a 

different  result  each  run.   This  randomization  turns  out  to be essential  since  

most  integer  coefficient  examples  one  might  use,  eg. from  [TWMW],  are  not  

full,  that  is the  input  polynomials  must  have  non-zero  coefficients  for  each  

monomial,   for  the  classical  trick  we  use  to work.   Also  to avoid  messy  output  

I recommend  running  quietly  with  “;”  .

In[108]:= nsQSIC3D[Q_, p_, {x_, y_, z_}] := Module[{p0, A, F, h, L, M, R, S, Ω, ℧},

p0 = Normalize[Append[p, 1]];

A = Reverse[Orthogonalize[Prepend[RandomReal[{-1, 1}, {3, 4}], p0]]];

F = FLT3D[Q, A, {x, y, z}];

L = formMD[F〚1〛, 1, {x, y, z}];

M = formMD[F〚2〛, 1, {x, y, z}];

R = formMD[F〚1〛, 2, {x, y, z}];

S = formMD[F〚2〛, 2, {x, y, z}];

h = Expand[L*S-R*M] / . {z → 1};

Ω = Take[fltMD[#, A], 2] / (fltMD[#, A]〚3〛) &;

℧ = Take[Inverse[A].Join[#, {1, (-R /L) / . Thread[{x, y, z} → Append[#, 1]]}], 3] /

Last[Inverse[A].Join[#, {1, (-R /L) / . Thread[{x, y, z} → Append[#, 1]]}]] &;

{h,

Ω,

℧}]

In[117]:= {hr, Ωr, ℧r} = nsQSIC3D[Q, cp, {x, y, z}]; (* non evaluative cell for illustration only*)

Now  we  carefully  look  at the  output.   First  we  note  that  we  do get  a cubic  

polynomial  for  h.  Note  this  will  be  numerical  and  full  for  the  integer  sparse  

input.

In[118]:= hr (* non evaluative cell *)

Out[118]= 47.2734- 126.297 x+ 137.892 x2
- 2.33154 x3

+ 38.6005 y-

7.96867 x y- 4.20928 x2 y+ 33.8287 y2
+ 5.10199 x y2

- 5.79393 y3

Rather  than  look  at the   complicated  definition  of Ω, ℧ we  evaluate  the  

output  functions  using  variables  for  values.   We  see  that  we  do get  an FLT.

In[121]:= Ωr[{x, y, z}] (* non evaluative cell *)

Out[121]=  -0.192492+ 0.511139 x+ 0.724164 y+ 0.421034 z

0.167346- 0.654154 x+ 0.676769 y- 0.293362 z
,

0.0409707+ 0.523046 x+ 0.130794 y- 0.841212 z

0.167346- 0.654154 x+ 0.676769 y- 0.293362 z

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℧ takes  points  on  the  plane  to points  in ℝ3, it is easier  to  work  with  each  

coordinate  separately.

In[265]:= ℧rx= Simplify[℧r[{x, y}]〚1〛] (* non evaluative cell *)

℧ry= Simplify[℧r[{x, y}]〚2〛]
℧rz= Simplify[℧r[{x, y}]〚3〛]

Out[265]=

6.77097+ 0.677412 x2 + x (-5.94613+ 0.730631 y) - 6.95909 y+ 0.262376 y2

-5.37988+ 5.23728 x+ 0.505216 x2 - 5.00917 y+ 0.619406 x y+ 1. y2

Out[266]=

7.79955+ 7.48938 x- 0.775353 x2 + 1.51171 y- 0.238621 x y- 0.0380644 y2

5.37988- 5.23728 x- 0.505216 x2 + 5.00917 y- 0.619406 x y- 1. y2

Out[267]=

2.73532+ 0.56636 x2 + x (-4.60656- 0.725381 y) + 8.75834 y+ 0.0731931 y2

-5.37988+ 5.23728 x+ 0.505216 x2 - 5.00917 y+ 0.619406 x y+ 1. y2

Important  Note:   If you   execute  this  code  then  even  if you  use  the  same  input  these  

values  will  change.  To continue  with  this  particular  example   between  sessions  we 

initialize  now  as follows:
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In[252]:= Qr = {-2+7 x+2 x2 -6 y-4 x y+2 z+8 x z-6 y z+2 z2,

-2+4 x-7 x2 +8 y-4 x y-3 y2 +9 z-7 x z+3 y z- z2};

hr = 47.27339766682051`-126.29676742395714`x+137.8924583577859`x2 -

2.3315379753889216`x3 +38.600477189804465`y-

7.968669330520427`x y-4.209276523596027`x2 y+

33.82865025275894`y2 +5.101992253822809`x y2 -5.793933359433088`y3;

Ωr[x_, y_, z_] := {(-0.19249242259065155`+0.511138659376466`x+

0.7241643930306724`y+0.4210342860178124`z) /

(0.1673459529911122`-0.6541543196115073`x+

0.6767688687679541`y-0.29336215914402825`z),

(0.04097065367206614`+0.5230464061760043`x+0.13079378255133922`y-

0.8412115363985226`z) / (0.1673459529911122`-0.6541543196115073`x+

0.6767688687679541`y-0.29336215914402825`z)};

℧rx[{x_, y_}] := (6.770973793600855`-5.946132153292747`x+

0.6774118751211937`x2 + (-6.959092852928387`+0.7306313695805137`x) y+

0.2623764415412226`y2) /

(-5.379876935689428`+5.2372843516982615`x+0.5052157400292752`x2 -

5.009169689826631`y+0.6194057061472128`x y+1.` y2);

℧ry[{x_, y_}] := (7.799549554433994`+7.489375420102824`x-

0.7753526722058538`x2 +1.511709673478418`y-

0.23862093428751913`x y-0.038064407750122875`y2) /

(5.379876935689428`-5.2372843516982615`x-0.5052157400292752`x2 +

5.009169689826631`y-0.6194057061472128`x y-1.` y2);

℧rz[{x_, y_}] := (2.7353213149626185`-4.606560493457439`x+

0.5663595351370571`x2 + (8.758337796121568`-0.725381245932385`x) y+

0.07319306835158754`y2) /

(-5.379876935689428`+5.2372843516982615`x+0.5052157400292752`x2 -

5.009169689826631`y+0.6194057061472128`x y+1.` y2)

℧r[{x_, y_}] := {℧rx[{x, y}], ℧ry[{x, y}], ℧rz[{x, y}]};

We  observe  that  each  ℧ is a fraction  of two  quadratics  in x,y  with  a common  

denominator  we  will  call  Δ.In  practice  we  will  parameterize  the  cubic  h by 

putting  it in Weierstrass  normal  form  as in Chapter  7 of my  plane  curve  

book  y ^ 2 = x ^ 3 + a x + b . There  is a 2 dimensional  FLT  taking   We  write  

δ = x ^ 3 + a x + b  so we  can  parameterize  this  latter  curve  by 

{t , ±Sqrt [δ[t ]]}.  There  is a 2-dimensional  flt   taking  h to this  Weierstrass  

curve  so h is parameterized  by t⟶flt2D[{t,  ±Sqrt[δ [t]]},Inverse[Ah]]  for  a 

3×3 invertible  matrix  Ah  obtained  as part  of the  reduction  of h to Weier -

strass  form.
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In[119]:= allInflectionPoints2D[hr, x, y]

Out[119]= {{39.5436, 14.2075}, {2.82384, 9.43578}, {-3.64555, 8.59508}}

In[121]:= inflecPt = {2.8238358825981082 ,̀ 9.43577590447643 }̀

Out[121]= {2.82384, 9.43578}

In[122]:= {w, Aw} = weierstrassNormalForm2D[hr, inflecPt, x, y]

Out[122]= -4.07613- 4.68308 x+ 1. x3
- 1. y2, {{0.60151, -0.00139735, -1.68538},

{0.516591, 0.875264, 0.182328}, {0.17991, -0.15676, 0.971112}}

In[126]:= ω = w / . {x → t, y → 0}

Out[126]= -4.07613- 4.68308 t+ 1. t3

In[123]:= Clear[s, t]

Our  transformation  from  the  curve  s2 = ω[t ] is given  by 

In[129]:= {x, y} = TransformationFunction[Inverse[Aw]][{t, s}]

Out[129]=  1.58421+ 0.285239 s+ 0.943677 t

0.566277+ 0.101011 s- 0.256123 t
,
-1.05298+ 0.953119 s- 0.503615 t

0.566277+ 0.101011 s- 0.256123 t


In pictures

In[135]:= {ContourPlot[s2 ⩵ ω, {t, 0, 10}, {s, -20, 20}, ImageSize → Tiny],

"⟶", ContourPlot[hr ⩵ 0, {x, -20, 20}, {y, 5, 25}, ImageSize → Tiny]}

Out[135]= 
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

Now  we  note  that  composing  the  transformation  function  with ℧rx gives

In[124]:= ux = Simplify[℧rx[TransformationFunction[Inverse[Aw]][{t, s}]]]

Out[124]=

2.40371- 4.35144 s- 0.382852 s2 - 2.22272 t+ 3.05474 s t+ 1.78529 t2

9.98189- 2.60174 s+ 1. s2 + 5.15708 t+ 2.25881 s t- 2.53622 t2

which  is again  a quadratic  rational  expression,  likewise  for  y,z.   Now  the  

upper  and  lower  half  of s2 = ω[t ] can  be parameterized  by  s = ±Sqrt [ω].  
We  have  the  following  special  function  to replace  s by  the  right  hand  side  

and  simplify:
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In[113]:= specialExpand[w_, u_, s_, sgn_] := Module[{w1},

w1 = Expand[w / . {s ^ 2 → u}];

Collect[w1, s] / . {s → sgn*Sqrt[u]}]

In[178]:= μx := specialExpand[Numerator[ux], ω, s, 1] / . {t → #} &

Likewise

In[211]:= uy = Simplify[℧ry[TransformationFunction[Inverse[Aw]][{t, s}]]];

uz = Simplify[℧rz[TransformationFunction[Inverse[Aw]][{t, s}]]];

μy= specialExpand[Numerator[uy], ω, s, 1] / . {t → #} &;

μz= specialExpand[Numerator[uz], ω, s, 1] / . {t → #} &;

Δ = specialExpand[Denominator[uy], ω, s, 1] / . {t → #} &;

So we  have  our  local  parameterization  of Q as described  above

In[216]:= μ[t_] := {μx[t] /Δ[t], μy[t] /Δ[t], μz[t] /Δ[t]}

where

In[136]:= μx[t]

μy[t]

μz[t]

Δ[t]

Out[136]= 3.96427- 0.429792 t+ 1.78529 t2
- 0.382852 t3

+

(-4.35144+ 3.05474 t) -4.07613- 4.68308 t+ 1. t3

Out[137]= -7.64494+ 6.22854 t+ 2.31009 t2
- 0.380456 t3

+

(-4.1584+ 1.70014 t) -4.07613- 4.68308 t+ 1. t3

Out[138]= -11.5215- 2.06748 t+ 4.49677 t2
+ 0.893507 t3

+

(2.89031- 4.29325 t) -4.07613- 4.68308 t+ 1. t3

Out[139]= 5.90575+ 0.474002 t- 2.53622 t2
+ 1. t3

+ (-2.60174+ 2.25881 t) -4.07613- 4.68308 t+ 1. t3

Before  we  use  these  we  need  to find  the  domains,  we  need  ω ≥ 0 and  Δ[t]≠0.
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In[237]:= Reduce[ω > 0]

a = t / . NSolve[ω]〚3〛
NSolve[Δ[t]]

Reduce : Reduce was unable to solve the system with inexact coefficients . The answer was obtained by

solving a corresponding exact system and numericizing the result .

Out[237]= t > 2.51122

Out[238]= 2.51122

Out[239]= {}

The  latter  result  says  that  Δ[t]≠0  on  the  domain  of ω ≥0,  that  is (a , ∞). We  

see,  for  instance,  this  curve  lies  on  the  second  surface  of Q.

In[261]:= Show[ContourPlot3D[Qr〚2〛 ⩵ 0, {x, 0, 2}, {y, 0, 2}, {z, 0, 2}, Mesh → False],

ParametricPlot3D[μ[t], {t, a, 10}], ImageSize → Small]

Out[261]=

 We  are  not  done,  we  still  need  to consider  the  negatives  of the  square  root  

of ω.  But  this  is the  basic  method  which  should  be fairly  general  as we  

started  with  a random  Q. 

We  use  the  above  as a template  to do the  example  shown  in the  screen  

image  of [DLLP]

In[121]:= Q2 = {1+2 x y+ z2, 2-x2 +y2 + z2}

Out[121]= 1+ 2 x y+ z2, 2- x2
+ y2

+ z2

In[123]:= cpF2 = criticalPoints3D[Q2, {x, y, z}]

Out[123]= {{1.45535, -0.343561, 0.}, {-1.45535, 0.343561, 0.}}

In[124]:= {h2, Ω2, ℧2} = nsQSIC3D[Q2, cpF2〚1〛, {x, y, z}];

In[125]:= h2

Out[125]= 2.01482+ 0.478216 x+ 0.00696313x2
+ 2.20142 x3

+ 1.8164 y-

0.761615 x y- 1.1613 x2 y+ 2.41745 y2
+ 2.26213 x y2

- 0.620397 y3
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In[126]:= Ω2[{x, y, z}]

Out[126]=  -0.475535+ 0.465969 x+ 0.589738 y- 0.457109 z

0.464506- 0.134245 x+ 0.783365 y+ 0.390579 z
,

0.499082- 0.332179 x+ 0.0455429 y- 0.799062 z

0.464506- 0.134245 x+ 0.783365 y+ 0.390579 z


In[127]:= ℧2x[{x_, y_}] = ℧2[{x, y}]〚1〛;

℧2y[{x_, y_}] = ℧2[{x, y}]〚2〛;

℧2z[{x_, y_}] = ℧2[{x, y}]〚3〛;

In[130]:= inflect2 = allInflectionPoints2D[h2, x, y]〚1〛
Out[130]= {-0.868301, -0.10578}

In[131]:= {w2, Aw2} = weierstrassNormalForm2D[h2, inflect2, x, y]

Out[131]= -0.544673- 0.529355 x+ 1. x3
- 1. y2, {{-0.451752, 0.568297, -0.332142},

{-0.697489, 0.290734, 0.753708}, {0.728672, 0.202775, 0.654156}}

In[132]:= ω2 = w2 / . {x → t, y → 0}

Out[132]= -0.544673- 0.529355 t+ 1. t3

In[144]:= u2x = Simplify[℧2x[TransformationFunction[Inverse[Aw2]][{t, s}]]];

u2y = Simplify[℧2y[TransformationFunction[Inverse[Aw2]][{t, s}]]];

u2z = Simplify[℧2z[TransformationFunction[Inverse[Aw2]][{t, s}]]];

μ2x= specialExpand[Numerator[u2x], ω2, s, 1] / . {t → #} &;

μ2y= specialExpand[Numerator[u2y], ω2, s, 1] / . {t → #} &;

μ2z= specialExpand[Numerator[u2z], ω2, s, 1] / . {t → #} &;

Δ2 = specialExpand[Denominator[u2x], ω2, s, 1] / . {t → #} &;

Here  is our  parameterization  for  Q2,  compare  with  [DLLP]  above.
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In[173]:= μ2x[t]

μ2y[t]

μ2z[t]

Δ2[t]

Out[173]= -1.33227× 10-15
- 1.80591 t- 1.44353 t2

- 1.45535 t3
+

2.13788× 10-14
+ 1.23957× 10-14 t -1.09443- 0.84291 t+ 1. t3

Out[174]= 5.55112× 10-17
- 2.16386 t+ 2.33569 t2

+ 0.343561 t3
+

-9.34093× 10-15
+ 1.8324× 10-14 t -1.09443- 0.84291 t+ 1. t3

Out[175]= -6.53777× 10-15
- 1.59014× 10-14 t- 6.0631× 10-16 t2

+

5.91741× 10-15 t3
+ 2.31988× 10-16

+ 3.60332 t -1.09443- 0.84291 t+ 1. t3

Out[176]= 4.44089× 10-16
- 2.52873 t- 2.59678 t2

+ 1. t3
+

-2.09392× 10-14
+ 3.03155× 10-16 t -1.09443- 0.84291 t+ 1. t3

In[186]:= μ2[t_] := {μ2x[t] /Δ2[t], μ2y[t] /Δ2[t], μ2z[t] /Δ2[t]};

This  will  change  if one  re - runs  the  above

In[169]:= Reduce[ω2 > 0]

a2 = t / . NSolve[ω2]〚3〛
b2 = t / . NSolve[Δ2[t]]〚1, 1〛

Reduce : Reduce was unable to solve the system with inexact coefficients . The answer was obtained by

solving a corresponding exact system and numericizing the result .

Out[169]= t > 1.29839

Out[170]= 1.29839

Out[171]= 3.35133

Note  here,  unlike  our  random  example,  there  is a zero  in the  domain  of ω so 

we need  to avoid  b2 also.
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In[190]:= Show[ParametricPlot3D[μ2[t], {t, a2, b2- .0001}, PlotStyle → Blue],

ParametricPlot3D[μ2[t], {t, b2+ .0001, 26}, PlotStyle → Green]]

Out[190]=

Now  we  need  to consider  negatives  of square  roots  of ω
In[191]:= μ2xn= specialExpand[Numerator[u2x], ω2, s, -1] / . {t → #} &;

μ2yn= specialExpand[Numerator[u2y], ω2, s, -1] / . {t → #} &;

μ2zn= specialExpand[Numerator[u2z], ω2, s, -1] / . {t → #} &;

Δ2n = specialExpand[Denominator[u2x], ω2, s, -1] / . {t → #} &;

μ2n[t_] := {μ2xn[t] /Δ2n[t], μ2yn[t] /Δ2n[t], μ2zn[t] /Δ2n[t]}

In[196]:= c = NSolve[Δ2n[t]]

Out[196]= {t → 3.35133}, {t → 3.35133}, {t → -0.754546}, {t → -0.754546},

t → 1.75617× 10-16
- 8.66265× 10-15 ⅈ, t → 1.75617× 10-16

+ 8.66265× 10-15 ⅈ

In[197]:= c2 = t / . c〚1, 1〛
Out[197]= 3.35133
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In[198]:= Show[ParametricPlot3D[μ2[t], {t, a2, b2- .0001}, PlotStyle → Blue],

ParametricPlot3D[μ2[t], {t, b2+ .00001, 26}, PlotStyle → Green],

ParametricPlot3D[μ2n[t], {t, a2, c2- .0001}, PlotStyle → Black],

ParametricPlot3D[μ2n[t], {t, c2+ .0001, 1000}, PlotStyle → Orange]]

Out[198]=

As described  by [DLLP]  we  get  an oval  in projective  3 space.  Note  that

In[199]:= rpts = RandomReal[{1.3, 3.3}, 4]

lpts = Table[μ2[rpts〚i〛], {i, 4}]

Q2 / . Thread[{x, y, z} → #] & /@ lpts

linearSetMD[lpts, {x, y, z}]

Out[199]= {2.98973, 2.17819, 2.98768, 2.17466}

Out[200]= {{14.1295, -5.8276, -12.7938}, {3.44573, -1.32356, -2.84978},

{14.0421, -5.79123, -12.7139}, {3.4316, -1.31727, -2.83561}}

Out[201]= -2.84217× 10-14, 3.41061× 10-12, -1.77636× 10-15, 1.98952× 10-13,
-5.68434× 10-14, 3.2685× 10-12, -3.55271× 10-15, 1.95399× 10-13

Out[202]= {}

These  random  points  are  on  our  curve  Q2  but  are  not  planar.

3.2.2  Direct  use  of  nsQSIC3D.

The  function  nsQSIC3D can  be used  directly  as the  image  of Ω, h, returned  is a 

cubic  curve  which  can  be path  traced  and  then  lifted  to ℝ3by ℧ , there  is no  
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 path by

need  to transform  to Weierstrass  form  and  re-format  the  resulting  parameter -

ization  to look  like  that  in [DLLP].   Although  the  method  in  nsQSIC3D follows  

a classical  method  to be applied  to non-singular  QSIC  it still  works  for  some  

singular  examples.

In section  2.0  we  introduced  the  famous  twisted  cubic  which  is parameter -

ized  by p[t ] = {t , t 2, t 3}.  We  noticed  that  the  naive  curve  curve  given  by 

the  last  two  equations  {y - x2, z - x y } contained  the  twisted  cubic  but  also  

something  else  contained  in the  infinite  plane  of ℝ3.  But   nsQSIC3D starts  by  

doing  a random  projective  transformation  so is a good  thing  to try  when  a 

QSIC  has  something  interesting  going  on  at infinity.

So let

Q3 = {y-x ^ 2, z-x y};

From  the  parameterization  we  see  {2, 4, 8} is a point  on  the  curve.  We  apply    

nsQSIC3D  to get  a curve  h3.

{h3, Ω3, ℧3} = nsQSIC3D[Q3, {2, 4, 8}, {x, y, z}];

In[266]:= h3

Out[266]= 0.0138615- 0.0383705 x- 0.344181 x2
+ 0.449508 x3

- 0.230084 y-

1.45555 x y- 0.0402686 x2 y- 0.477413 y2
+ 0.406024 x y2

+ 0.281218 y3

We  plot

In[267]:= ContourPlot[{h3 ⩵ 0, y+1, y-3}, {x, -2, 3}, {y, -2, 4}, MaxRecursion→ 3,

ContourStyle→ {Blue, Dashed, Dashed}, Epilog → {Red, PointSize[Medium], Point[cp2D]}]

Out[267]=

-2 -1 0 1 2 3

-2

-1

0

1

2

3

4

By inspection  this  looks  like  the  union  of a line  and  an ellipse.   We  see  h3 

intersects  the  horizontal  lines  y = 3, y = -1 one  point  each  on  the  line.
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In[268]:= sol1 = {x, y} / . NSolve[{h3, y-3}]

sol2 = {x, y} / . NSolve[{h3, y+1}]

Out[268]= {{-1.76987, 3.}, {1.40215- 1.15192 ⅈ, 3.}, {1.40215+ 1.15192 ⅈ, 3.}}

Out[269]= {{0.192893- 1.97656 ⅈ, -1.}, {0.192893+ 1.97656 ⅈ, -1.}, {0.290313, -1.}}

We  notice  that

In[274]:= ℧3[sol1〚1〛]
℧3[sol2〚3〛]

Out[274]= 14., 8.86404× 1016, 3.66954× 1016

Out[275]= 2., -2.59898× 1016, -4.53894× 1016

the  two  points  on  the  line  appear  to lift  to infinite  points  so the  line  in h3 

comes  from  an infinite  line.  It is not  hard  to guess  from  the  above  what  this  

infinite  line  is in homogeneous  variables  {x , y , z , w }. It is {x = 0, w = 0}.

We  can  find  the  affine  line  though  these  points

In[270]:= L = linearSetMD[{sol1〚1〛, sol2〚3〛}, {x, y}]〚1〛
Out[270]= 0.195918+ 0.871784 x+ 0.449008 y

Dividing  h3 by this  polynomial

In[271]:= q3 = nDivideMD[h3, L, {x, y}, dTol]

Out[271]= 0.0707515- 0.510676 x+ 0.515618 x2
- 1.33654 y- 0.311758 x y+ 0.626308 y2

we get  the  equation  of the  ellipse.   Critical  points  are  shown  on  the  plot  

above

In[276]:= cp2D = criticalPoints2D[h3, x, y]

Out[276]= {{2.03139, 2.35944}, {-0.177616, -0.09148},

{-0.471063, 0.478272}, {-0.471386, 0.478898}, {0.018471, 0.0468364}}

The  third  critical  point  is the  intersection  of the  line  and  ellipse,  but  recall  

from  the  Plane  Curve  Book  that   singular  points  are  not  calculated  

accurately.

In[278]:= L / . Thread[{x, y} → cp2D〚3〛]
q3 / . Thread[{x, y} → cp2D〚3〛]

Out[278]= 3.44465× 10-8

Out[279]= 4.52791× 10-8
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We  can  plot  the  ellipse  using  path  finding  and  lift  using  ℧3

In[257]:= pth1 = pathFinder2D[q3, cp2D〚1〛, cp2D〚3〛, .3, x, y]

Out[257]= {{2.03139, 2.35944}, {1.7855, 2.51268}, {1.50431, 2.59389}, {1.2097, 2.60916},

{0.91616, 2.56786}, {0.632671, 2.47853}, {0.365284, 2.34778}, {0.118914, 2.18051},

{-0.101494, 1.98037}, {-0.290071, 1.75037}, {-0.439164, 1.49376},

{-0.538478, 1.21532}, {-0.574809, 0.923918}, {-0.471063, 0.478272}}

In[258]:= pth2 = pathFinder2D[-q3, cp2D〚1〛, cp2D〚3〛, .3, x, y]

Out[258]= {{2.03139, 2.35944}, {2.21613, 2.13865}, {2.32044, 1.86968}, {2.3412, 1.57919}, {2.28835, 1.29001},

{2.17598, 1.01637}, {2.01659, 0.765887}, {1.81977, 0.542839}, {1.59264, 0.35032},

{1.34077, 0.191458}, {1.06901, 0.0701613}, {0.782406, -0.00830201}, {0.487498, -0.0368244},

{0.194318, -0.00643236}, {-0.0808912, 0.0920785}, {-0.471063, 0.478272}}

In[280]:= Path1 = ℧3/@ pth1

Path2 = ℧3/@ pth2

Out[280]= {-0.632381, 0.399905, -0.252893}, {-0.706213, 0.498737, -0.352214},

{-0.780865, 0.609751, -0.476133}, {-0.857674, 0.735604, -0.630908},

{-0.938997, 0.881715, -0.827928}, {-1.02819, 1.05717, -1.08697},

{-1.12999, 1.27687, -1.44284}, {-1.2516, 1.56651, -1.96065}, {-1.40504, 1.97415, -2.77377},

{-1.61257, 2.60039, -4.19331}, {-1.92136, 3.69163, -7.09296}, {-2.45237, 6.01413, -14.7489},

{-3.63434, 13.2084, -48.0038}, 7869.23, 6.24219× 107, 2.47594× 1011

Out[281]= {-0.632381, 0.399905, -0.252893}, {-0.559109, 0.312603, -0.174779},

{-0.486932, 0.237103, -0.115453}, {-0.416013, 0.173067, -0.0719979},

{-0.34561, 0.119447, -0.041282}, {-0.274075, 0.075117, -0.0205877},

{-0.199084, 0.0396346, -0.00789063}, {-0.117642, 0.0138397, -0.00162813},

{-0.025692, 0.000660079, -0.0000169587}, {0.0827633, 0.00684977, 0.00056691},

{0.217483, 0.047299, 0.0102867}, {0.396062, 0.156865, 0.0621282},

{0.654299, 0.428107, 0.28011}, {1.07795, 1.16198, 1.25256},

{1.93303, 3.7366, 7.22294}, 7869.23, 6.24219× 107, 2.47594× 1011

getting  some  points  with  large  coordinates.  That  is expected  since  the  third

critical  point  lifts  to the  infinite  plane.   So we  discard  these  points  while  

plotting.  
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In[295]:= Show[

Graphics3D[{{Green, Thick, Line[Take[Path1, 8]]}, {Green, Thick, Line[Take[Path2, 14]]}}],

ParametricPlot3D[{t, t ^ 2, t ^ 3}, {t, -1.25, 1.15}, PlotStyle → Dashed]]

Out[295]=

Here  are  other  examples,  for  display  we  will  not  re-run  nsQSIC3D.

In[184]:= Q0 = {1-y ^ 2+ z ^ 2-4 x y, -3+y ^ 2+ z ^ 2};

By inspection {0,Sqrt[2],1} is a point on this curve .

In[222]:= Q0 / . Thread[{x, y, z} → {0, Sqrt[2], 1}]

Out[222]= {0, 0}

In[223]:= {h0, Ω0, ℧0} = nsQSIC3D[Q0, {0, Sqrt[2], 1}, {x, y, z}]; (*non-evaluatable*)

In[266]:= h0 = 2.945656140191897`-5.217838216917842`x-

1.9646988724373289`x2 -0.07585852051106767`x3 -4.806985694928316`y-

0.20976724723500872`x y+8.782381871328202`x2 y+

1.478912121204738`y2 +7.944951077631805`x y2 -0.6576260858236058`y3

Out[266]= 2.94566- 5.21784 x- 1.9647 x2
- 0.0758585 x3

- 4.80699 y-

0.209767 x y+ 8.78238 x2 y+ 1.47891 y2
+ 7.94495 x y2

- 0.657626 y3

Plotting

In[230]:= ContourPlot[{h0 ⩵ 0, x ^ 2+y ^ 2- .7 x-y ⩵ 0}, {x, -3, 3}, {y, -3, 3}, MaxRecursion→ 4]

Out[230]=
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we see  h0 is a singular  cubic,  therefore  a rational  curve.   It follows  from  the  

discussion  in 3.2.1  that  Q0  is a rational  curve,  further  the  singular  point  of 

Q0 is {1, 0, 0, 0} which  is an infinite  singularity  of Q0.    We  will  leave  it as an 

exercise  to plot  this  curve  as above.   
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We  can  find  4 real  points  on  the  curve  as follows

In[233]:= pts = {x, y} / . NSolve[{h0, x ^ 2+y ^ 2- .7 x-y}, {x, y}, Reals]

Out[233]= {{0.960084, 0.517238}, {0.238219, 1.1}, {0.514636, -0.087703}, {-0.186962, 0.790124}}

In[234]:= Pts = ℧0/@ pts

Out[234]= {{-3.25431, -0.294004, 1.70692}, {-6.89478, -0.143543, -1.72609},

{2.62763, 0.356401, -1.69499}, {2.85034, 0.331553, 1.70002}}

In[235]:= linearSetMD[Pts, {x, y, z}]

Out[235]= {}

Thus  this  is again  a non-planar  QSIC.

The  next  example  requires  luck  to get  a nice  picture,  so the  following  is only  

for  show

In[226]:= Q4 = {x ^ 2+ z ^ 2-2 y, -3 x ^ 2+y ^ 2- z ^ 2}

Out[226]= x2
- 2 y+ z2, -3 x2

+ y2
- z2

In[248]:= {h4, Ω4, ℧4} = nsQSIC3D[Q5, {0, 0, 0}, {x, y, z}]; (* Non evaluatable*)

In[249]:= h5 (* non evaluatible *)

Out[252]= 1.02149+ 1.37722 x- 1.48595 x2
- 0.382509 x3

- 3.52956 y+

6.36564 x y- 0.769861 x2 y- 0.224828 y2
- 1.39048 x y2

+ 1.73501 y3

In[254]:= Ω4[{x, y, z}] (* non evaluatible *)

Out[254]=  0.0401846 x- 0.580388 y- 0.813348 z

0.579156 x+ 0.676849 y- 0.454372 z
,
-0.814226 x+ 0.452797 y- 0.363334 z

0.579156 x+ 0.676849 y- 0.454372 z


Simplify[℧4[{x, y}]〚1〛]
Simplify[℧4[{x, y}]〚2〛] (*non-evaluatable*)

Simplify[℧4[{x, y}]〚3〛]

Out[147]= -
0.0703392× (14.4124+ 1. x- 20.2621 y) × (-1.1662+ 1. x- 0.780161 y)

0.817124+ 1.18476 x+ 1. x2 - 0.924301 y+ 0.792575 x y+ 1.19879 y2

Out[148]=

1.01591 (1.1662- 1. x+ 0.780161 y)2

0.817124+ 1.18476 x+ 1. x2 - 0.924301 y+ 0.792575 x y+ 1.19879 y2

Out[149]=

1.42368× (-1.1662+ 1. x- 0.780161 y) × (0.558644+ 1. x+ 0.446715 y)

0.817124+ 1.18476 x+ 1. x2 - 0.924301 y+ 0.792575 x y+ 1.19879 y2

We  notice  the  following  linear  factor  appears  in each  numerator,  so ℧ is 

identically  {0,0,0}  on  this  line!
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In[267]:= line4 = -1.1661999857316967`+1.` x-0.7801613607079093`y (* evaluatable*)

Out[267]= -1.1662+ 1. x- 0.780161 y

In fact,  this  line  is a factor  of h4

In[152]:= qf = nDivideMD[h4, line, {x, y}, dTol] (* non-evaluatable*)

In[268]:= qf = -0.875916120629441`-1.9320362297177929`x-0.38250867953478784`x2 +

3.6125172138379646`y-1.068279503647881`x y-2.223905683299877`y2

(* this is evaluatable compare with the above *)

h4 = Expand[ qf* line4]

Out[268]= -0.875916- 1.93204 x- 0.382509 x2
+ 3.61252 y- 1.06828 x y- 2.22391 y2

Out[269]= 1.02149+ 1.37722 x- 1.48595 x2
- 0.382509 x3

- 3.52956 y+

6.36564 x y- 0.769861 x2 y- 0.224828 y2
- 1.39048 x y2

+ 1.73501 y3

In[270]:= cpqf = criticalPoints2D[qf, x, y]

Out[270]= {{-11.1898, 3.69873}, {-0.131493, 0.188522}}

The  contour  plot  of h4  is then

In[271]:= ContourPlot[{qf ⩵ 0, line4 ⩵ 0}, {x, -14, 4}, {y, -2, 5},

Axes → True, Epilog → {Red, PointSize[Medium], Point[cpqf]}]

Out[271]=
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We  can  path  trace  qf

In[278]:= pth1 = pathFinder2D[qf, cpqf〚1〛, cpqf〚2〛, .25, x, y, maxit → 70];

pth2 = pathFinder2D[-qf, cpqf〚1〛, cpqf〚2〛, .25, x, y, maxit → 50];

pth4 = Join[pth1, Reverse[pth2]];

Now we li� to Q4

In[281]:= PTH4 = ℧4/@ pth4; (* non-evaluatable*)
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In[282]:= Graphics3D[{{Blue, Thick, Line[PTH4]}, {Red, PointSize[Large], Point[{0, 0, 0}]}}]

(* non evaluatable*)

Out[282]=

Thus  we  get  an oval  with  an isolated  point  for  this  QSIC.

3.2.3  Plotting  by  projection

Often  the  easiest  way  to identify  and  plot  QSIC  is simply  to project  to a plane  

quartic,  path  trace  the  plane  curve  and  use  fFiberMD to lift  back  to ℝ3.  The  

latter  only  works  with  affine  projections  so the  previous  method  is prefer -

able,  assuming  it works,  if you  want  to capture  some  feature  on  the  infinite  

plane.   Here  is one  of my  favorite  QSIC

In[263]:= Q5 = {x ^ 2+y ^ 2+ z ^ 2-16, 57-12 x+4 x ^ 2+y ^ 2-64 z+16 z ^ 2};

We  first  project.

In[264]:= h5 = FLTMD[Q5, fprd3D, 4, {x, y, z}, {x, y}, dTol]〚1〛
» Initial Hilbert Function {1, 3, 6, 10, 14}

» Final Hilbert Function {1, 3, 6, 10, 14}

Out[264]= 1. - 0.0344652 x- 0.033403 x2
+ 0.00677934x3

+ 0.00134825x4
-

1.62713 y- 0.0245903 x y+ 0.0241702 x2 y- 0.00181159x3 y+ 0.893879 y2
+

0.0164066 x y2
- 0.00620129x2 y2

- 0.208146 y3
- 0.000832304x y3

+ 0.0196645 y4

We  first  find  and  label  critical  points.

In[265]:= cp5 = criticalPoints2D[h5, x, y];

ap5 = Association[Table[i → cp5〚i〛, {i, 10}]]

Out[266]= 1 → {-539.117, -251.121}, 2 → {-539.117, -251.121},

3 → {3.04937, 1.90971}, 4 → {-3.63348, 1.67267}, 5 → {-3.39309, 2.09769},

6 → {-3.14407, 2.47282}, 7 → {-3.89168, 3.90354}, 8 → {-3.89168, 3.90354},

9 → {-0.213013, 2.24798}, 10 → {0.250554, 1.21911}
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In[267]:= Show[ContourPlot[h5 ⩵ 0, {x, -4, 4},

{y, -0, 4}, Epilog → {Red, PointSize[Medium], Point[cp5]}],

Graphics[Table[{PointSize[Medium], Text[i, ap5[i] + {-.2, .1}]}, {i, 10}]]]

Out[267]=
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Note  that  there  are  two  isolated  singularities,  points  1-2  and  7-8.

In[268]:= fFiberMD[Q5, prd3D, cp5〚1〛, {x, y, z}, 1.*^-6]

fFiberMD[Q5, prd3D, cp5〚7〛, {x, y, z}, 1.*^-6]

» (1) no point in fiber at {-539.117, -251.121 }

Out[268]= {}

» (1) no point in fiber at {-3.89168, 3.90354 }

Out[269]= {}

These  are  artifactual   isolated  points,  it should  be noted  that  they  must  be 

here,  since  this  is a quartic  of genus  1, see  section  3.3  or Plane  Curve  Book.

We  now  plot  paths  in the  plane,  output  omitted,  some  trial  and  error  was  

used.

In[270]:= pth1 = pathFinder2D[-h5, cp5〚6〛, cp5〚9〛, .2, x, y];

pth2 = pathFinder2D[-h5, cp5〚9〛, cp5〚3〛, .2, x, y];

pth3 = pathFinder2D[-h5, cp5〚3〛, cp5〚10〛, .2, x, y];

pth4 = pathFinder2D[-h5, cp5〚10〛, cp5〚4〛, .14, x, y, maxit → 40];

pth5 = pathFinder2D[-h5, cp5〚4〛, cp5〚6〛, .05, x, y];

Then  we  lift

In[275]:= Pth1 = Flatten[fFiberMD[Q5, prd3D, #, {x, y, z}, 1.*^-6], 1] & /@ pth1;

Pth2 = Flatten[fFiberMD[Q5, prd3D, #, {x, y, z}, 1.*^-8], 1] & /@ pth2;

Pth3 = Flatten[fFiberMD[Q5, prd3D, #, {x, y, z}, 1.*^-8], 1] & /@ pth3;

Pth4 = Flatten[fFiberMD[Q5, prd3D, #, {x, y, z}, 1.*^-8], 1] & /@ pth4;

Pth5 = Flatten[fFiberMD[Q5, prd3D, #, {x, y, z}, 1.*^-8], 1] & /@ pth5;
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» multiple fiber points {-3.14407 , 2.47282 }

» (3) no point in fiber at {-3.63348 , 1.67267 }

» (3) no point in fiber at {-3.63348 , 1.67267 }

» (3) no point in fiber at {-3.14407 , 2.47282 }

And  now  we  can  show  our  single  oval  with  the  first  surface,  a sphere,  as the  

background.

In[280]:= Show[ContourPlot3D[x ^ 2+y ^ 2+ z ^ 2 ⩵ 16, {x, -4, 4},

{y, -4, 4}, {z, -4, 4}, Mesh → False, ContourStyle→ Opacity[.5]],

Graphics3D[{Thick, Blue, Line[Pth1], Line[Pth2], Line[Pth3], Line[Pth4], , Line[Pth5]}],

Boxed → False, Axes → False]

3.2.4 Some more examples from [TWMW].

We  give  some  more  examples  from  the  classification  of QSIC  in [TWMW].  In 

Example  2.5.3.1  we  already  saw  that  the  union  of the  twisted  cubic  and  a line  

through  two  points  was  a QSIC.   
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In[281]:=

Out[281]=

 In other  cases  it will  be  enough  just  to project  to the  plane.

Example  6

In[282]:= Q6 = {x ^ 2+y ^ 2+ z ^ 2-1, x ^ 2+2 y ^ 2};

We  project  with  our  pseudo-random  projection.

In[283]:= h6 = FLTMD[Q6, fprd3D, 4, {x, y, z}, {x, y}, dTol]〚1〛
» Initial Hilbert Function {1, 3, 6, 10, 14}

» Final Hilbert Function {1, 3, 6, 10, 14}

Out[283]= 1. + 1.27881 x2
+ 0.903815 x4

+ 0.162081 x y-

0.451232 x3 y- 2.04542 y2
- 1.14578 x2 y2

- 0.165762 x y3
+ 1.04594 y4

A contour  plot  with  any  scale  gives  nothing.   But  looking  for  critical  points  

we get  4 distinct  points  of multiplicity  2.  

In[284]:= cp6 = criticalPoints2D[h6, x, y]

Out[284]= {{-0.636105, -1.13489}, {-0.636105, -1.13489}, {0.636105, 1.13489},

{0.636105, 1.13489}, {0., 0.988834}, {0., 0.988834}, {0., -0.988834}, {0., -0.988834}}

To show  non-existence  we  use  fFiberMD  with  a loose  tolerance
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In[285]:= fFiberMD[Q6, prd3D, cp6〚1〛, {x, y, z}, 1.*^-6]

fFiberMD[Q6, prd3D, cp6〚3〛, {x, y, z}, 1.*^-6]

» (1) no point in fiber at {-0.636105 , -1.13489 }

Out[285]= {}

» (1) no point in fiber at {0.636105 , 1.13489 }

Out[286]= {}

The  first  two  points  are  artifacts.   For  the  second  two  we  use  fFiberMD  with  a 

tight  tolerance  to show  existence.

In[287]:= fFiberMD[Q6, prd3D, cp6〚5〛, {x, y, z}, 1.*^-12]

fFiberMD[Q6, prd3D, cp6〚7〛, {x, y, z}, 1.*^-12]

Out[287]= 5.80425× 10-13, 1.86406× 10-13, 1.

Out[288]= -4.94937× 10-13, -1.58706× 10-13, -1.

So {0,  0, 1},  {0,  0, -1}  are  points  on  Q6.Since  no  other  real  critical  points  show  

up we  conclude  that  there  are  no  other  real  points.  There  are  many  complex  

points,  remove  the  condition  "Reals"  from  the  critical  point  code

In[289]:= criticalPoints3DC[{f_, g_}, {x_, y_, z_}] := Module[{J, ob},

ob = RandomReal[{.7, 1.3}, 3].{x ^ 2, y ^ 2, z ^ 2};

J = D[{f, g, ob}, {{x, y, z}}];

DeleteDuplicates[{x, y, z} / . NSolve[{f, g, N[Det[J]]}]]]

In[290]:= criticalPoints3DC[Q6, {x, y, z}]

Out[290]= {{-1.41421, 0. + 1. ⅈ, 0.}, {-1.41421, 0. - 1. ⅈ, 0.},

{1.41421, 0. + 1. ⅈ, 0.}, {1.41421, 0. - 1. ⅈ, 0.}, {0., 0., 1.}, {0., 0., -1.}}

Thus  this  real  QSIC  is a two  point  set  but  the  complex  solution  has  non-

isolated  components.   A similar  example  {y 2 - z2 + 2 z , x2 + z2} has  only  one  

real  point.

Example  7:

Here  is a case  where  nsQSIC3D does  not  tell  the  whole  story.   We  have  a 

reducible  curve  consisting  of a plane  quadric  and  2 lines,  thus  very  definitely  

of degree  4 and  not  capable  of being  modelled  by a plane  cubic.

In[291]:= Q7 = {2 x y-y ^ 2, y ^ 2+ z ^ 2-1};

We  see  that  {x = 0, y 2 + z2 = 0} is a plane  circle  contained  in Q7.

We  project  to the  plane  with  our  standard  pseudo-random  projection.
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In[292]:= h7 = FLTMD[Q7, fprd3D, 4, {x, y, z}, {x, y}, dTol]〚1〛
» Initial Hilbert Function {1, 3, 6, 10, 14}

» Final Hilbert Function {1, 3, 6, 10, 14}

Out[292]= 1. - 1.80651 x2
+ 0.350558 x4

+ 0.653265 x y-

1.44199 x3 y- 2.04542 y2
+ 1.56429 x2 y2

- 0.668101 x y3
+ 1.04594 y4

The  result  is a circle  and  two  lines  in the  plane.

In[293]:= cp7 = criticalPoints2D[h7, x, y];

acp7 = Table[i → Chop[cp7〚i〛], {i, 10}]
Out[294]= 1 → {-0.761959, -0.189212}, 2 → {0.761959, 0.189212}, 3 → {0, 0.988834},

4 → {0, 0.988834}, 5 → {0, -0.988834}, 6 → {0, -0.988834}, 7 → {0.242741, -0.977522},

8 → {-0.242741, 0.977522}, 9 → {0.378051, -0.813048}, 10 → {-0.378051, 0.813048}

We  see  points  3, 5 are  singular  critical  points  but  surprisingly  the  other  two  

apparent  intersection  points   were  not  picked  up  as critical  points.

In[295]:= Show[ContourPlot[h7 ⩵ 0, {x, -2, 2},

{y, -2, 2}, MaxRecursion→ 4, Epilog → {Red, Point[cp7]}],

Graphics[{Table[Text[i, acp7[i] + {.1, -.1}], {i, {1, 2, 3, 5, 7, 8, 9, 10}}]}]]

Out[295]=

1

2

3

5 7

8

9

10

-2 -1 0 1 2

-2

-1

0

1

2

In[296]:= We li� points on the lines to ℝ3.
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In[296]:= p1=fFiberMD [Q7,prd3D,acp7[3],{x,y,z},1.*^-12 ]〚1〛
p2=fFiberMD [Q7,prd3D, acp7[10],{x,y,z},dTol]〚1〛
p3=fFiberMD [Q7,prd3D, acp7[5],{x,y,z},dTol]〚1〛
p4=fFiberMD [Q7,prd3D, acp7[9],{x,y,z},dTol]〚1〛

Out[296]= 6.66134× 10-16, 2.22045× 10-16, 1.

Out[297]= 1.23871, -5.55112× 10-16, 1.

Out[298]= -6.66134× 10-16, -3.33067× 10-16, -1.

Out[299]= -1.23871, -6.66134× 10-16, -1.

We can now plot in ℝ3

In[300]:= ParametricPlot3D[{{0, Cos[t], Sin[t]}, p1+ t*p2, p3+ t*p4}, {t, -Pi, Pi}]

Out[300]=

Comment  : In this  example  there  is a circle  and  two  lines  through  a common  

infinite  point,  each  line  intersecting  the  circle.   Suppose  instead  the  two  lines  do not  

touch  the  circle,  for  example  the  curve  in ℝ3 looks  like

In[301]:= ParametricPlot3D [{{0, Cos [t], Sin[t]}, {t, t, 0}, {t, -t, 0}}, {t, -Pi, Pi}]

Out[301]=

In[302]:=

This  is no longer  a QSIC.   By Example  2.5.3.3  we see  this  configuration  requires  4 

equations,  one  of degree  2 but  2 of degree  3 and  one  of degree  4.
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Out[188]= 1. x z, -1. x3
+ 1. x y2, -1. z+ 1. y2 z+ 1. z3, 1. x2

- 1. x4
- 1. y2

+ 1. y4
+ 1. y2 z2

There  are,  according  to[TWMW]  8 cases  with  the  QSIC  a union  of 2, 3 or 4 

lines.In  Chapter  4 I plan  to cover  unions  of lines  in ℝ3 more  thoroughly,  in 

particular  where  situations  as in the  comment  are  more  common.

3.2.5 A numerical Example of a degenerate QSIC.

In this  example  we  show  that  our  direct  method  works  well  for  numerical  

QSIC  even  in the  singular  case.

In[303]:= K =

{-3.0343373677870256`+4.760714817579225`x-0.8673102054064943`x2 -

2.3198076300045427`y+1.8198277283436077`x y-0.4433840726939407`y2 +

3.4471924447384925`z-2.7042312969112072`x z+1.317721526336166`y z+

0.02094474750770381`z2, 0.00005226006460796005`-0.014540466884057102`x+

1.0114088969866952`x2 +0.000039953796143140416`y-

0.005558229348449886`x y+7.636355973833214`*^-6y2 -

0.00005937062298695252`z+0.00825942891482889`x z-

0.000022694975460771253`y z-0.9999831378371788`z2}

Out[303]= -3.03434+ 4.76071 x- 0.86731 x2
- 2.31981 y+ 1.81983 x y-

0.443384 y2
+ 3.44719 z- 2.70423 x z+ 1.31772 y z+ 0.0209447 z2,

0.0000522601- 0.0145405 x+ 1.01141 x2
+ 0.0000399538y- 0.00555823x y+

7.63636× 10-6 y2
- 0.0000593706z+ 0.00825943x z- 0.000022695y z- 0.999983 z2

We   check  for  infinite  points

In[304]:= ipK = infiniteRealPoints3D[K, {x, y, z}]

Out[304]= {{-0.329006, -0.885872, 0.327087, 0}, {0.171804, 0.970211, 0.170802, 0},

{0.498804, 0.706713, 0.501749, 0}, {-0.472181, 0.742597, 0.474969, 0}}

Our  standard  method  from  Chapter  2 is to project  on  the  plane  and  lift  back  

up to plot.

We  choose  a random  projective  FLT  for  projection,  but  for  replication  we  

give  it here

In[305]:= A =

{{-0.6934276433346329 ,̀ 0.07381779176491898 ,̀ -0.7573184238468178 ,̀

-0.12486357381645385 }̀, {-0.41481421719883427 ,̀ -0.24723634736560696 ,̀

0.5906825357052634 ,̀ 0.21818634914942425 }̀, {-0.6431194318709657 ,̀

-0.3715495908236628 ,̀ 0.3379270707587114 ,̀ -0.9578085718413809 }̀}

Out[305]= {{-0.693428, 0.0738178, -0.757318, -0.124864},

{-0.414814, -0.247236, 0.590683, 0.218186}, {-0.643119, -0.37155, 0.337927, -0.957809}}
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In[306]:= K2 = FLTMD[K, A, 4, {x, y, z}, {x, y}, 1.*^-9]〚1〛
» Initial Hilbert Function {1, 3, 6, 10, 14}

» Final Hilbert Function {1, 3, 6, 10, 14}

Out[306]= 1. - 9.1079 x+ 23.8809 x2
- 23.5535 x3

+ 7.31227 x4
- 3.41374 y+ 18.0057 x y- 26.7585 x2 y+

11.1384 x3 y+ 3.39349 y2
- 10.1319 x y2

+ 6.36118 x2 y2
- 1.27861 y3

+ 1.61432 x y3
+ 0.1536 y4

We  map  our  infinite  points  of K to K2.   We  also  intersect  K2  with  the  line  

y = -2

In[307]:= ipK2 = fltiMD[#, A] & /@ ipK

sol2 = {x, y} / . NSolve[{K2, y+2}]〚{1, 2, 4, 3}〛
Out[307]= {{-0.130453, 0.842512}, {0.427985, 0.508764}, {1.62802, 0.206039}, {0.119715, 1.55542}}

Out[308]= {{0.922963, -2.}, {1.37574, -2.}, {2.5008, -2.}, {1.46808, -2.}}

We  now  plot

In[309]:= ContourPlot[{K2 ⩵ 0}, {x, -1, 3}, {y, -3, 3}, ContourStyle→ Green,

Epilog → {{Black, PointSize[Medium], Table[Text[i, ipK2〚i〛], {i, 4}]},

{Purple, PointSize[Medium], Table[Text[i, sol2〚i〛], {i, 4}]}}, ImageSize → Medium]

Out[309]=

-1 0 1 2 3
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-2

-1

0

1

2

3

1

2

3

4

1 2 34

We  see  we  have  four  apparently  parallel  lines,  since  FLT  preserve  lines  we  

can  expect  4 lines  in K.  Importantly,  note  that  we  permuted  our  set  sol2 so 

that  the  indices  of the  two  point  sets  match  up  on  each  line,  this  gives  us two  

points  on  each  line  so we  can  lift  back  to  K.  Our  first  set  of points  come  from  

the  infinite  points  of K which  can  be viewed  as slopes  [Section  1.1  of my  

plane  curve  book].  There  are  two  problems,  first  fiber  my  lifting  function  

fFiberMD only  works  for  linear  projections.   Secondly  when  we  plot  we  need  
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 only  projections.  Secondly  plot

nice  endpoints  which  will  must  be chosen  when  we  plot.   The  first  problem  

is handled  nicely  with  my  factorFLT function  [see  2.7.2]  and  for  the  second  we  

will  find  equations  for  each  line.

In[310]:= {P, B} = factorFLT[A];

pl = tM2M[P];

pl // MatrixForm

B // MatrixForm

Out[312]//MatrixForm=

-0.693428 0.0738178 -0.757318

-0.414814 -0.247236 0.590683

Out[313]//MatrixForm=

1. 0 0 0.0730708

0 1. 0 -1.0051

0 0 1. 0

-0.643119 -0.37155 0.337927 -0.957809

We  then  have  the  intermediate  curve  K3 below  which  we  do not  need  to fully  

describe.

In[314]:= K3 = FLT3D[K, B, {x, y, z}]

Out[314]= -3.81978- 10.1431 x- 5.81064 x2
- 0.234581 y- 0.27421 x y-

0.00322577y2
- 1.28772 z- 1.76506 x z- 0.0406579 y z+ 0.8923 z2,

0.00422664+ 0.136201 x+ 1.09725 x2
+ 0.0027815 y+ 0.0448162 x y+

0.000457618y2
- 0.00232266z- 0.0374233 x z- 0.000764258y z- 0.999681 z2

We  can  now  lift  the  points  of  sol2 above  to  K.

In[315]:= kpts = fltMD[fFiberMD[K3, pl, #1, {x, y, z}, 1.*^-8]〚1〛, Inverse[B]] & /@ sol2

Out[315]= {{0.158762, -2.18855, -0.157835}, {0.148034, -1.78005, 0.14717},

{0.488106, -1.92447, 0.490987}, {0.630171, -3.60709, -0.633891}}

Next  we  can  describe  the  lines  on  K by one  Mathematica  function

In[316]:= l := lineMD[kpts〚#〛, ipK〚#〛, {x, y, z}] &

We  don't  actually  need  to see  the  equations  but  as an example

In[317]:= l[1]

Out[317]= {0.277262+ 0.514444 x+ 0.105986 y+ 0.804512 z, 0.720243- 0.626116 x+ 0.27532 y+ 0.115878 z}

The  following  utility  functions  find  points  on  these  lines  by specifying  only  

the  x-coordinate.

In[318]:= u := {x, y, z} / . NSolve[Append[l[#1], x+#2]]〚1〛 &

v := {x, y, z} / . NSolve[Append[l[#1], x+#2]]〚1〛 &

By trial  we  can  find  nice  endpoints  for  plotting
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In[320]:= (
u1 u2 u3 u4

v1 v2 v3 v4
) =

(
u[1, 0.7`] u[2, 0.3`] u[3, 0.6`] u[4, 0.8`]

v[1, -0.4`] v[2, -0.3`] v[3, -0.6`] v[4, -0.8`]
)

Out[320]= {{{-0.7, -4.50082, 0.695916}, {-0.3, -4.31018, -0.29825},

{-0.6, -3.46611, -0.603542}, {-0.8, -1.35787, 0.804723}}, {{0.4, -1.539, -0.397666},

{0.3, -0.921867, 0.29825}, {0.6, -1.76594, 0.603542}, {0.8, -3.87418, -0.804723}}}

In[197]:= Graphics3D[{{Blue, Thick, Line[{u1, v1}]}, {Green, Thick, Line[{u2, v2}]},

{Orange, Thick, Line[{u3, v3}]}, {Magenta, Thick, Line[{u4, v4}]}}, Boxed → False]

In[321]:=

So we  see  K consists  of 4 lines  through  a point.   What  is most  interesting  is 

that  we  never  actually  used  that  point  in our  construction.   Note  in particu -

lar that  these  lines  were  given  numerically  so,  for  example,

In[322]:= NSolve[Join[l[1], l[2]]]

Out[322]= {}

finding  the  intersection  of any  two  of these  lines  is an inconsistent  problem  

to NSolve. But  it is not  to our  methods.   One  possibility  is to consider  the  

linear  equation  set
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In[323]:= F = {l[1], l[2], l[3], l[4]}

Out[323]= {{0.277262+ 0.514444 x+ 0.105986 y+ 0.804512 z, 0.720243- 0.626116 x+ 0.27532 y+ 0.115878 z},

{-0.258819- 0.33616 x- 0.098936 y+ 0.900123 z,

0.468581- 0.849601 x+ 0.179119 y- 0.16287 z},

{-0.214984- 0.629812 x- 0.0821798 y+ 0.741866 z,

0.853126- 0.402957 x+ 0.326115 y- 0.0587414 z},

{-0.0354267+ 0.698008 x- 0.0135422 y+ 0.715085 z,

0.867771+ 0.288235 x+ 0.331713 y- 0.232079 z}}

and  find  an H-Basis.

In[324]:= sys = hBasisMD[F, 1, {x, y, z}, 1.*^-6]

» Initial Hilbert Function {1, 0}

» Final Hilbert Function {1, 0}

Out[324]= {1. x, 2.61602+ 1. y, 1. z}

Solving  this  last  system  for  the  singular  point

In[325]:= spt = {x, y, z} / . Solve[sys ⩵ 0]〚1〛
Out[325]= {0., -2.61602, 0.}

Note  

In[326]:= tangentVectorMD[K, spt , {x, y, z}]

» Hilbert Function {1, 3, 4, 4, 4}

» No unique tangent vector at {0., -2.61602, 0.}

Note  the  multiplicity  of the  singular  point  is correctly  given  as 4.  Thus  all  

this  numerical  work  does  give  a consistent  story.

3.3  Birational  Equivalence  and  Genus

In the  plane  curve  book  we  gave  little  emphasis  to the  idea  of genus.   For  

most  of the  results  there  the  important  number  was  the  degree  of a curve.   

But  more  importantly  we  viewed  the  genus  from  the   standpoint  of the  

Clebsch-Noether  formula  which,  in fact,  is not  numerically  stable.   A pertur -

bation  could  drastically  change  this,  in fact  every  numerical  curve  is only  a 

small  perturbation  away  from  being  non-singular.  

However,  for  space  curves  things  are  different.   The  degree  is not  the  best  

parameter,  especially  when  we  have  curves  defined  by an over-determined  

system.   Even  in section  3.2  where  we  had  naive  curves  the  degree  was  4 but  

we saw  these  curves  tended  to be related  to plane  cubics.   We  will  see  the  
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 plane

explanation  is the  genus.   We  will  find,  instead  of Clebsch-Noether  a more  

numerically  stable  way  to calculate  genus.   But,  as we  also  saw  in this  last  

section  the  role  which  we  had  previously  given  to FLT  is now  taken  up  with   

birational  equivalence.

3.3.1 Elliptic Curves and functions.

Historically  the  formalization  of the  notion  of genus  began  with  Riemann  

and  the  Riemann-Roch  Theorem  (1857-1865).   But  some  of the  ideas  sur -

faced  as early  as the  early  1800.   At  that  point  a main  interest  was  working  

out  closed  form  integration  formulas.   In particular  the  integral


0

ϕ du

1- κ Sin2 u

, 0 ≤ κ < 1

attracted  special  attention  as it required  new  functions  to give  a closed  form.   

These  functions  became  known  as elliptic  functions.    (For  an elementary  

account  see  Chapter  6 of my  Theory  of Equations  book  https://barryhdayton.s-

pace/theoryEquations/theq6.pdf ).  Using  these  and  then  standard  methods  of 

integration  indefinite  integrals  of the  form


dx

x4 +a x2 +b x+ c

, 
dx

x3 +a x+b

could  be expressed  in terms  of these  elliptic  functions.   This  suggested  that  

the  equations  defining  the  denominators  

y2 - (x4 +a x2 +b x+c), y2 - (x3 +a x+b )

could  be called  elliptic  curves.   From  our  study  of QSIC  we  can  show  how  

these  are  related.   So we  can  use  our  numerical  methods  let  us  take  an 

explicit  example:

In[129]:= f = y ^ 2- (x ^ 4+3 x ^ 2-2 x+2);

We  form  a QSIC  by adding  a new  variable  z = x2 getting  

In[125]:= q1 = y ^ 2- (z ^ 2+3 z-2 x+2);

q2 = z-x ^ 2;

Q = {q1, q2}

Out[127]= -2+ 2 x+ y2
- 3 z- z2, -x2

+ z

We  note  the  following  simple  algebraic  maps  between  the  curve  f  and  the  

QSIC  Q .

In[121]:= Φ = {#〚1〛, #〚2〛, #〚1〛^ 2} &;

Θ = Take[#, 2] &;

134     SpaceCurveBook_v2c.nb



where  Θ is actually  the  projection  on  the  first  2 coordinates.

In[130]:= cpf = criticalPoints2D[f, x, y]

Out[130]= {{0.24284, 1.30181}, {0.24284, -1.30181}}

Then  note  that  as claimed  q is a point  on  Q .

In[132]:= q = Φ[cpf〚1〛]
Q / . Thread[{x, y, z} → q]

Out[132]= {0.24284, 1.30181, 0.0589711}

Out[133]= 5.05151× 10-15, 0.

So we  can  now  use

In[134]:= {h, Ω, ℧} = nsQSIC3D[Q, q, {x, y, z}];

We  get  a cubic  

In[135]:= h

Out[135]= -1.01523+ 3.51199 x- 0.395834 x2
- 0.451825 x3

+ 0.960383 y-

1.54767 x y+ 0.825717 x2 y- 0.639259 y2
+ 1.8056 x y2

- 0.154608 y3

Let  p2  be the  point  on  h given  by

In[145]:= q2 = Φ[cpf〚2〛]
p2 = Ω[q2]

h / . Thread[{x, y} → p2]

Out[145]= {0.24284, -1.30181, 0.0589711}

Out[146]= {2.70196, 0.619418}

Out[147]= 1.77636× 10-15

Putting  this  cubic  in Weierstrass  form  

In[137]:= afl = allInflectionPoints2D[h, x, y]

Out[137]= {{0.327046, 1.79307}, {0.235602, -2.95013}, {0.293491, 0.052556}}

In[138]:= {wh, Awh} = weierstrassNormalForm2D[h, afl〚1〛, x, y]

Out[138]= -0.776489- 2.00209 x+ 1. x3
- 1. y2, {{-0.899271, -0.305709, 0.842261},

{0.0938218, 0.814567, 0.587697}, {0.986819, -0.156009, -0.0430005}}

Note   a we  get   point  of wh which  is in the  image  of our  combined  map  

fltMD[Ω[Φ[{x,y}]]
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In[154]:= wp2 = fltMD[p2, Awh]

wh / . Thread[{x, y} → wp2]

fltMD[Ω[Φ[cpf〚2〛]], Awh]

Out[154]= {-0.703244, 0.532612}

Out[155]= -3.59712× 10-14

Out[156]= {-0.703244, 0.532612}

This  combined  map  can  be simplified  to

In[162]:= α = Simplify[fltMD[Ω[Φ[{x, y}]], Awh]]

Out[162]=  -1.27575+ 1.68777 x- 0.851591 x2 + 0.703722 y

1.23811+ 0.0231189 x+ 1. x2 - 1.00068 y
,

0.723771+ 0.276694 x- 1.6471 x2 - 0.532974 y

1.23811+ 0.0231189 x+ 1. x2 - 1.00068 y


which  is a rational  algebraic  function.

Going  the  other  way  we  get  a rational  algebraic  function

In[169]:= β = Simplify[Θ[℧[fltMD[{x, y}, Inverse[Awh]]]]]

Out[169]=  421.658+ 250.845 x- 326.455 x2 + 37.0921 y- 22.2616 x y+ 2.99488 y2

181.37- 74.9655 x+ 1. x2 + 426.963 y- 5.93584 x y+ 0.266356 y2
,

-359.535- 45.8446 x2 + 206.315 y+ 34.05 y2 + x (357.182+ 241.8 y)

181.37- 74.9655 x+ 1. x2 + 426.963 y- 5.93584 x y+ 0.266356 y2


In[165]:= p3 = β / . Thread[{x, y} → wp2]

f / . Thread[{x, y} → p3]

Out[165]= {0.24284, -1.30181}

Out[166]= 0.

Thus  we  have  a birational  equivalence   between  the  quartic  curve  f  and  the  

cubic  curve  wh.

In the  plane  curve  book  we  noted  the  non-singular  cubic  curve  was  of genus  

1, because  of this  we  claim  the  quartic  curve  is also  of genus  1.

We  end  this  discussion  with  a little  geometry.   
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In[168]:= ContourPlot[{f ⩵ 0, wh ⩵ 0}, {x, -5, 5}, {y, -5, 5}, ImageSize → Small]

Out[168]=
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In the  affine  plane  both  f  and  wh have  two  components.   In fact  further  

experimentation  with  these   birational  maps  the  reader  can  check  that  the  

smaller  component  of wh maps  by β to the  negative  component  of f  while  

the  large  component  of wh maps  to the  positive  component  of f .

However  in the  projective  plane  there  is a difference,  f  is connected  as 

these  two  affine  components  share  the  same  infinite  point  {0,1,0}.   Using  

ip2z  in the  plane  curve  book  we  get  a plot  near  this  infinite  point  which  is a 

non-ordinary  singularity  of f .  

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

In fact  from  the  Clebsh-Noether  formula  f  must  have  Clebsh number  2 in 

order  to arrive  at genus  1. So the  birational  map  α actually  breaks  this  singu -

larity  into  two  pieces.   Birational  maps  have  denominators  so are  not  

defined  everywhere  and  α cannot  be defined  at this  singularity  because  wh 

is non-singular.

For  the  convenience  of the  reader  who  wants  to experiment  with  these  maps  

here  are  the  full  precision  expressions  for  wh, α and  β.
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wh = -0.7764892315302467`-2.0020871428383487`x+1.0000000000000004`x3 -1.` y2;

α = {(-1.2757508990903774`+1.6877669409285232`x-

0.8515908479957427`x2 +0.7037222750771311`y) / (1.2381110937061424`+

0.023118907708649807`x+1.` x2 -1.0006802451169017`y),

(0.7237711271825419`+0.27669402085278955`x-1.6471028507460224`x2 -

0.5329744284257336`y) / (1.2381110937061424`+

0.023118907708649807`x+1.` x2 -1.0006802451169017`y)};

β = {(421.65792029050067`+250.8446741231946`x-326.45452844178726`x2 +

37.0921077782662`y-22.26157450698797`x y+2.994881185534921`y2) /

(181.37021636228292`-74.96553026772098`x+1.` x2 +426.9632597935131`y-

5.935844588204833`x y+0.26635570919983936`y2),

(-359.53452326731184`-45.84457497214858`x2 +206.31534505924515`y+

34.05004604309161`y2 +x (357.1822933061392`+241.80005157723164`y)) /

(181.37021636228292`-74.96553026772098`x+1.` x2 +426.9632597935131`y-

5.935844588204833`x y+0.26635570919983936`y2)};

3.3.2 Blowing Up plane curves without exceptional curves

This  is an important  classical  idea  used  to remove  singularities  by  going  up  

a dimension.   Because  of the  limiting   classical  techniques,  eg. no  numerics,  

this  becomes  quite  hard  and  the  blown  up  curve  has  an extra  component  

called  the  exceptional  curve .  Classical  algebraic  geometers  leave  this  in and  

are  able  to make  good  use  of it.    However  we  can  remove  this  exceptional  

curve  which  makes  things  cleaner  and  more  understandable.

Given  a plane  curve  f (x,y)  with  singularities  at various  points  p1, …, pk  we  

construct  a  rational  function  g(x,y)  in x , y  with  denominator  vanishing  at  

the  singular  points  and  set zi = gi(x , y ), a different  variable  for  each  singular  

point.   We  get  a curve  F = {f , z1 - g1, …, zk - gk}.  In general  the  inverse  

image,  fiber,  of a particular  singular  point  is itself  a  curve.  We  get  a rational  

map  Φ : f ⟶F  with  projection  on  the  x,y  plane  a left  inverse.  We  use   dual  

interpolation  to remove  these  exceptional  curves  and  make  ϕ a birational  

isomorphism.   Note  below  that  dual  interpolation  works  best  with  only  a 

few  random  points  and  the  lowest  m possible.   Randomness  of the  points  is 

important  and  we  can  get  a good  random  set  by using  randomRealRegular -

Points2D  from  the  plane  curve  book  (see  Global  Functions  71).

Before  starting  we  mention  that  one  measure  of a plane  singularity  that  we  

can  easily  deal  with  is the  multiplicity.   This  concept  has  been  recently  

clarified  by  Araceli  Bonifant and  John  Milnor  in a long  article  on  plane  

curve  theory  (mostly  complex)  in the  AMS  Bulletin,  Volume  57,  Number  2, 

April  2020  page  235.   They  define  the  multiplicity  of a plane  singularity  at p  

to be the  intersection  multiplicity  at p  of  the  curve  and  a generic   line  
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through  p .  For  us a generic  line  is a random  line.   Here  is some  code  to do 

this  calculation  in the  plane  case.   Here  f = 0 is a plane  curve  and  p is a 

point,  possibly  complex  but  not  infinite,  on  f . 

singPointMult2D[f_, p_, x_, y_, tol_] := Module[{l},

l = line2D[p, p+RandomReal[{-.2, .2}, 2], x, y];

multiplicityMD[{f, l}, p, {x, y}, tol]]

Here  is our  first  example.

3.3.2.1  The  node

Consider  the basic plane nodal cubic.   It has a double point at the origin.

In[115]:= f1 = y ^ 2 - x ^ 3 - x ^ 2;

We add a new variable  z and set it equal to z =
y

x
 getting the new equation  y - x z.  We now consider  the curve in 

ℝ3

In[116]:= F1 = {f1, y - x z};

 We note that the entire z - axis is contained  in F, in fact it is a double line which is invisible  in a contour  plot.  This 

is our exceptional  curve.

In[117]:= showProjection3D [F1, fprd3D, 6, {x, y, z}, {x, y}, 2]

» projection Function 1. x2
- 2.37355 x3

+ 0.0574214 x4
+ 0.000243617 x5

-

2.18663 x2 y + 0.955595 x3 y + 0.0153028 x4 y - 1.02271 x2 y2
+ 0.320413 x3 y2

+ 2.2363 x2 y3

Out[117]=
x= 1x= 1

y=1y=1

z=1z=1

We see the equation  of our pseudo - random  projection  is divisible  by x2 which is what makes it double and 

invisible.

An important  thing for us is the rational  maps between  f and F.

In[118]:= Φ := Append [#, #〚2〛 / #〚1〛] &

Θ := Take[#, 2] &

At this point we have Θ  as a left inverse of Φ .  We need to remove the exceptional  curve to get the birational  

equivalence.

In[120]:= Θ[Φ[{x, y}]]

Out[120]= {x, y}

We now, somewhat  by trial and error choose a small number  of points on f  and lift those to the curve F by Φ .
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In[121]:= L = randomRealRegularPoints2D [f1, {{-2, 5}, {-5, 5}}, x, y, 5]

P =Φ /@ L

F1 /. Thread [{x, y, z}→#] & /@ P

Out[121]= {{1.10454 , -1.60237 }, {1.72728 , 2.85251 }, {-0.477635 , -0.34521 }, {1.36756, -2.10425 }, {1.71515, -2.82616 }}

Out[122]= {{1.10454 , -1.60237, -1.4507}, {1.72728, 2.85251, 1.65145 },

{-0.477635 , -0.34521 , 0.722748 }, {1.36756, -2.10425, -1.53869 }, {1.71515, -2.82616, -1.64777 }}

Out[123]= 1.59872 × 10-14, 0., 3.55271 × 10-15, 0., -8.32667 × 10-17, 5.55112 × 10-17,

-1.24345 × 10-14, 0., -1.45661 × 10-13, 4.44089 × 10-16

B1 = dualInterpolationMD [F, P, 4, {x, y, z}, 1.*^-7 ]

» Initial Hilbert Function {1, 3, 3, 3, 3}

» Final Hilbert Function {1, 3, 3, 3, 3}

Out[149]= -1. y + 1. x z, -1. x - 1. x2
+ 1. y z, -1. - 1. x + 1. z2

Note G contains  the image of Φ  even though the original  equation  f  is not present.

In[126]:= p = randomRealRegularPoints2D [f1, {{-2, 5}, {-5, 5}}, x, y, 1]〚1〛
B1 /. Thread [{x, y, z}→Φ[p]]

Out[126]= {-0.554447 , 0.370092 }

Out[127]= -1.22125 × 10-15, -4.00863 × 10-12, 8.18939 × 10-12

However  a typical  point on the exceptional  curve is not in G so, with a little more effort we see that Φ ,Θ are inverse 

functions  from f, away from {0,0} and G.

In[128]:= B /. Thread [{x, y, z}→ {0, 0, 3.13}]

Out[128]= {0., 0., 8.7969}

Finally we can plot B, the blowup of f  using 2 dimensional  path tracing and lifting by Φ .

In[134]:= pth1 = Drop[pathFinder2D [f1, {-1, 0}, {0, 0}, .1, x, y], -1];

pth2 = Drop[Reverse [pathFinder2D [-f1, {-1, 0}, {0, 0}, .1, x, y]], 1];

pth3 = Drop[pathFinder2D [f1, {2, N[Sqrt[2 ^ 2 + 2 ^ 3]]}, {0, 0}, .25, x, y], -1];

pth4 = Drop[pathFinder2D [-f1, {2, -N[Sqrt[2 ^ 2 + 2 ^ 3]]}, {0, 0}, .25, x, y], -1];

ListLinePlot [{pth2, pth1, pth3, pth4}]

Out[138]=
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In[139]:= Pth1 =Φ /@ pth1;

Pth2 =Φ /@ pth2;

Pth3 = Reverse [Φ /@ pth3];

Pth4 =Φ /@ pth4;

Before  plotting  we  want  to add  in our  exceptional  line.   We  can  find  out  

where  it intersects  B1

In[143]:= excpt1 = fFiberMD[B1, {{1, 0, 0}, {0, 1, 0}}, {0, 0}, {x, y, z}, dTol]

» multiple fiber points {0, 0}

Out[143]= {{0., 0., 1.}, {0., 0., -1.}}

In[144]:= Graphics3D [{{Blue, Thick, Line[Join[Pth4, Pth2]]}, {Blue, Thick, Line[Join[Pth1, Pth3]]},

{Blue, PointSize [Large], Point[excpt1 ]}, {Red, Thick, Dashed, Line[excpt1 ]}}, ImageSize → Small]

Out[144]=

Comment:   We could  handle  the node   y 2 - x3  similarly  but this  curve  only  goes  through  the 

singularity  {0,0}  once  (eg: as the parametric  curve   {t 2, t 3}) so there  is only  one point  in the blow  up 

over the singularity.   In this  case  the blow-up  is tangent  to the exceptional  line.   We leave  it for the 

reader   to plot  this.

3.3.2.2  A lemniscate

Consider  the  lemniscate  

In[143]:= f2 = x ^ 4+4 x y+y ^ 4;

In[144]:= ContourPlot[f2 ⩵ 0, {x, -2, 2}, {y, -2, 2}, ImageSize → Small]

Out[144]=
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0

1

2

This  is similar  to the  node  above  but  brings  up  several  issues  not  present  in 

the  node  since  this  is a bounded  curve  and  should  have  a bounded  blow-up.   

Our  method  calls  for  a rational  function  with  the  denominator  vanishing  at 
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the  singular  point  {0,0}.   In particular  the  denominator  and  curve  intersect  

in a multiple  point  of multiplicity  greater  than  1 because  of the  singularity  of 

f .  We  should  choose  this  denominator  so that  the  multiplicity  of the  inter -

section  of the  denominator  is the  multiplicity  of the  singularity  In the  case  of 

the  node  the  multiplicity  is calculated  by

In[284]:= singPointMult2D[f2, {0, 0}, x, y, dTol]

Out[284]= 2

But  if we  attempt  to use  the  rational  function  z =
y

x
 here

In[149]:= multiplicityMD[{f2, x}, {0, 0}, {x, y}, dTol]

Out[149]= 4

This  could  introduce  infinite  points  above  the  singularity.  Therefore  we  use,  

instead,  the  rational  function  z =
x+y

x-y
.  Then  we  are  back  to

In[150]:= multiplicityMD[{f2, x-y}, {0, 0}, {x, y}, dTol]

Out[150]= 2

Another  consideration  in this  bounded  case  is that  to avoid  infinite  points  in 

the  blow-up  then  the  curve  of the  denominator  should  not  intersect  our  

curve  f  in a real  point  other  than  the  singularity.   This  is not  a problem:

NSolve[{f2, x-y}]

Out[129]= {{x → 0. - 1.41421 ⅈ, y → 0. - 1.41421 ⅈ},
{x → 0. + 1.41421 ⅈ, y → 0. + 1.41421 ⅈ}, {x → 0., y → 0.}, {x → 0., y → 0.}}

So we  proceed

In[151]:= F2 = {f2, z (x-y) - (x+y)};

Φ = Append[#, (#〚1〛+#〚2〛) / (#〚1〛-#〚2〛)] &

Θ = Take[#, 2] &

Out[152]= Append#1,
#1〚1〛 +#1〚2〛
#1〚1〛 -#1〚2〛

 &

Out[153]= Take[#1, 2] &

We  may  need  several  attempts  before  finding  a suitable  system  eliminating  

the  exceptional  component.
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In[160]:= L = randomRealRegularPoints2D[f2, {{-2, 2}, {-2, 2}}, x, y , 5];

P = Φ /@ L

F2 / . Thread[{x, y, z} → #] & /@ P

Out[161]= {{-0.81389, 0.134885, 0.715664},

{0.963838, -0.224506, 0.622153}, {0.784433, -0.12074, 0.733222},

{-1.43947, 0.826858, 0.270311}, {-0.900132, 0.182639, 0.662645}}

Out[162]= 9.01348× 10-14, 0., -9.0847× 10-14, 0., 3.3185× 10-15, 0.,
-1.249× 10-14, 0., -1.02562× 10-12, 1.11022× 10-16

B2 = Chop[dualInterpolationMD[F, P, 4, {x, y, z}, 1.*^-7], 1.*^-8]

» Initial Hilbert Function {1, 3, 5, 7, 6}

» Final Hilbert Function {1, 3, 5, 7, 6}

Out[144]= 1. x+ 1. y- 1. x z+ 1. y z, -2. x- 1. x2 y- 1. x y2
- 1. y3

+ 2. x z+ 1. x3 z,

-2.+ 3. x2
+ 4. x y+ 2. y2

- 2. x2 z+ 2. z2
+ 1. x2 z2, 1. x4

+ 4. x y+ 1. y4

Testing  at random  points  is sufficient  as above

In[164]:= p = randomRealRegularPoints2D[f2, {{-2, 2}, {-2, 2}}, x, y , 1]〚1〛
B2 / . Thread[{x, y, z} → Φ[p]]

B2 / . Thread[{x, y, z} → {0, 0, RandomReal[{-4, 4}]}]

Out[164]= {0.911205, -0.189496}

Out[165]= -2.62457× 10-13, 4.54738× 10-10, 4.12434× 10-9, 6.21173× 10-12

Out[166]= {0., 0., 12.3511, 0.}

Thus  the  blowup  contains  the  image  of Φ but  not  other  points  on  the  excep -

tional  line.   We  can  plot  our  blow-up  B.

In[168]:= cpf2 = criticalPoints2D[f2, x, y]

Out[168]= {1.41421, -1.41421}, {-1.41421, 1.41421},

1.90519× 10-175, 1.24893× 10-175, {0., 0.}, {0., 0.}, {0., 0.}
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In[169]:= pth1 = Drop[pathFinder2D[f2, cpf2〚1〛, {0, 0}, .15, x, y], -1];

pth2 = Reverse[Drop[pathFinder2D[-f2, cpf2〚1〛, {0, 0}, .15, x, y], -1]];

pth3 = Reverse[Drop[pathFinder2D[f2, cpf2〚2〛, {0, 0}, .15, x, y], -1]];

pth4 = Drop[pathFinder2D[-f2, cpf2〚2〛, {0, 0}, .15, x, y], -1];

ListLinePlot[{Join[pth1, pth3, pth4, pth2]}, ImageSize → Small]

Out[173]=

-1.5 -1.0 -0.5 0.5 1.0 1.5

-1.5

-1.0

-0.5

0.5

1.0

1.5

Again  we  look  at our  exceptional  line

In[174]:= excpt2 = fFiberMD[B2, {{1, 0, 0}, {0, 1, 0}}, {0, 0}, {x, y, z}, dTol]

» multiple fiber points {0, 0}

Out[174]= {{0., 0., -1.}, {0., 0., 1.}}

In[175]:= Pth = Φ /@ Join[pth1, pth3, pth4, pth2];

Graphics3D[{{Blue, Thick , Line[Pth]},

{Blue, PointSize[Large], Point[excpt2]}, {Red, Thick, Dashed, Line[excpt2]}}]

Out[176]=

3.3.2.3 The Bow Curve

In[178]:= f3 = x ^ 4-x ^ 2 y+y ^ 3;

In[187]:= cpf3 = DeleteDuplicates[Chop[criticalPoints2D[f3, x, y]]]

pts3 = {x, y} / . NSolve[{f3, y+ .4}, {x, y}, Reals]

Out[187]= {{0.380892, 0.237985}, {-0.380892, 0.237985}, {0, 0}}

Out[188]= {{-0.349986, -0.4}, {0.349986, -0.4}}
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In[192]:= ContourPlot[{f3 ⩵ 0, x ⩵ 0}, {x, -.5, .5}, {y, -.5, .5}, MaxRecursion→ 6,

Epilog → {Red, PointSize[Medium], Point[Join[cpf3, pts3]]}, ImageSize → Small]

Out[192]=
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In[191]:= multiplicityMD[{f3, x}, {0, 0}, {x, y}, dTol]

Out[191]= 3

So x  is a good  denominator.

F3 = {f3, z x-y};

In[196]:= Φ := Append[#,
#〚2〛
#〚1〛 ] &

Θ := Take[#, 2] &

In[223]:= L = randomRealRegularPoints2D[f3, {{-.5, .5}, {-.5, .5}}, x, y, 6]

P3 = Φ /@ L

Out[223]= {{-0.303216, -0.341592}, {0.226936, -0.249278}, {0.288911, 0.093154},

{-0.252178, -0.279407}, {-0.380898, 0.237976}, {0.312038, 0.111669}}

Out[224]= {{-0.303216, -0.341592, 1.12657}, {0.226936, -0.249278, -1.09845},

{0.288911, 0.093154, 0.322432}, {-0.252178, -0.279407, 1.10797},

{-0.380898, 0.237976, -0.624776}, {0.312038, 0.111669, 0.357871}}

In[225]:= B3 = dualInterpolationMD[F3, P3, 6, {x, y, z}, 1.*^-8]

» Initial Hilbert Function {1, 3, 5, 4, 4, 4, 4}

» Final Hilbert Function {1, 3, 5, 4, 4, 4, 4}

Out[225]= -1. y+ 1. x z, 1. x3
- 1. x y+ 1. y2 z, 1. x2

- 1. y+ 1. y z2, 1. x- 1. z+ 1. z3,

1. x y- 1. y z+ 1. y z3, 1. y- 1. z2
+ 1. z4, 1. x2

- 1. y+ 1. y2
+ 1. y z4,

1. x- 1. z+ 1. y z+ 1. z5, -1. x3
+ 2. x y- 1. y z+ 1. y z5, -1. x2

+ 2. y- 1. z2
+ 1. z6

In[226]:= p = randomRealRegularPoints2D[f3, {{-10, 20}, {-20, 10}}, x, y, 1]〚1〛
B3 / . Thread[{x, y, z} → Φ[p]]

Out[226]= {6.99065, -14.5823}

Out[227]= 1.06581× 10-14, -1.49726× 10-10, 5.4257× 10-11, -4.44835× 10-11, 1.28503× 10-9,

3.63109× 10-10, -6.06094× 10-9, -1.29319× 10-9, 1.39917× 10-8, 5.40972× 10-9
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In[229]:= excp3 = fFiberMD[B3, {{1, 0, 0}, {0, 1, 0}}, {0, 0}, {x, y, z}, 1.*^-9]

» multiple fiber points {0, 0}

Out[229]= {{0., 0., 1.}, {0., 0., 0.}, {0., 0., -1.}}

So now  we  plot

In[242]:= pth1 = pathFinder2D[f3, cpf3〚2〛, {0, 0}, .05, x, y];

pth2 = pathFinder2D[-f3, cpf3〚2〛, {0, 0}, .05, x, y];

pth3 = pathFinder2D[f3, cpf3〚1〛, {0, 0}, .05, x, y];

pth4 = pathFinder2D[-f3, cpf3〚1〛, {0, 0}, .05, x, y];

pth5 = pathFinder2D[-f3, pts3〚1〛, {0, 0}, .05, x, y];

pth6 = pathFinder2D[f3, pts3〚2〛, {0, 0}, .05, x, y];

ListLinePlot[Join[Drop[pth5, -1], Drop[Reverse[pth3], 1], Drop[pth4, -1],

Drop[Reverse[pth1], 1], Drop[ pth2, -1], Drop[Reverse[pth6], 1]], ImageSize → Small]
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In[248]:= Pth = Φ /@ Join[Drop[pth5, -1], Drop[Reverse[pth3], 1], Drop[pth4, -1],

Drop[Reverse[pth1], 1], Drop[ pth2, -1], Drop[Reverse[pth6], 1]];

In[251]:= Graphics3D[{{Blue, Thick, Line[Pth]}, {Red, Thick, Dashed, Line[excp3]},

{Blue, PointSize[Large], Point[excp3]}}, ImageSize → Small]

Out[251]=

3.3.2.4  The Bicuspid

The  bicuspid  will  present  new  challenges.

In[152]:= f4 = 16 x-4 x3 +x4 -8 y2 +y4;
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In[118]:= ContourPlot[f4 ⩵ 0, {x, -3, 3}, {y, -3.5, 3.5}, ImageSize → Tiny]

Out[118]=
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There  are  two  cusps  as singularities  at {2, 2} and  {2, -2}.  Our  strategy  will  be  

to handle  the  two  singularities  simultaneously  but  separately  in two  new  

dimensions.   To  have  denominators  meet  the  singularity  in a low  multiplic -

ity and  miss  the  real  part  of the  curve  we  construct  the  following  lines

In[162]:= l1 = line2D[{2, 2}, {3, 0}, x, y];

l1 = Expand[l1 /Coefficient[l1, y]]

Out[163]= -6.+ 2. x+ 1. y

In[164]:= l2 = line2D[{2, -2}, {3, 0}, x, y];

l2 = Expand[l2 /Coefficient[l2, y]]

Out[165]= 6. - 2. x+ 1. y

The  critical  points  of the  bicuspid  are

In[144]:= cpf4 = DeleteDuplicates[criticalPoints2D[f4, x, y]]

Out[144]= {{-1.55139, -2.9125}, {2., 2.}, {1.12457, 2.33407},

{-1.55139, 2.9125}, {1.12457, -2.33407}, {-1.67857, 0.}, {2., -2.}, {0., 0.}}

In[126]:= ContourPlot[{f4 ⩵ 0, l1 ⩵ 0, l2 ⩵ 0}, {x, -3, 3.5}, {y, -3.5, 3.5},

Epilog → {Red, PointSize[Medium], Point[cpf4]}, ImageSize → Small]

Out[126]=

-3 -2 -1 0 1 2 3
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We  now  define  our  blowup  and  rational  functions

In[168]:= F4 = {f4, z l1- (x-y), w l2- (x+y)}

Out[168]= 16 x- 4 x3
+ x4

- 8 y2
+ y4, -x+ y+ (-6.+ 2. x+ 1. y) z, -x- y+ w (6. - 2. x+ 1. y)
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In[142]:= Φ := Join[#, {
#〚1〛-#〚2〛

2#〚1〛+#〚2〛-6
,

#〚1〛+#〚2〛
-2#〚1〛+#〚2〛+6

}] &

Θ := Take[#, 2] &

To check  compatibility

In[166]:= p = randomRealRegularPoints2D[f4, {{-4, 4}, {4, 4}}, x, y, 1]〚1〛
F4 / . Thread[{x, y, z, w} → Φ[p]]

Out[166]= {-1.5978, 2.88581}

Out[167]= -8.52814× 10-9, 0., 2.22045× 10-16

We  can  calculate  the  exceptional  curve  by 

In[141]:= Chop[F4 / . Thread[{x, y, z, w} → {2, 2, z, w}]]

F4 / . Thread[{x, y, z, w} → {2, -2, z, w}]

Out[141]= {0, 0, -4+ 4. w}

Out[142]= {0, -4- 4. z, 0.}

Since  these  evaluations  should  give  0 on  the  curve  the  exceptional  curve  is 

the  union  of two  lines  in ℝ4 given  by {2, 2, z , 1},and  {2, -2, -1, w } for  param -

eters  z, w.   Since  we  have  cusps  the  actual  blow-up  without  exceptional  lines

will  meet  the  exceptional  lines  tangentially  at one  double  point.   We  need  to 

calculate  these  points  but  this  will  be  hard  as the  equation  of the  exception  

free  blow-up  B4 will  be  a system  of degree  6 in 4 variables  which  is beyond  

the  capability  of our  dualInterpolation function.

But  using  our  standard  plotting  method  which  involves  path  tracing  f4 and  

lifting  by Φ we  can  “plot”  B4  in ℝ4 by giving  a large  list  of points.   We  can  

actually  see  the  plot  by projecting  down  on  ℝ3.
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In[145]:= pth1 = pathFinder2D[f4, {0, 0}, {2, 2}, .1, x, y, maxit → 40];

pth2 = pathFinder2D[-f4, {0, 0}, {2, -2}, .1, x, y, maxit → 40];

pth3 = pathFinder2D[-f4, cpf4〚3〛, {2, 2}, .03, x, y, maxit → 40];

pth4 = pathFinder2D[f4, cpf4〚3〛, cpf4〚6〛, .3, x, y];

pth5 = pathFinder2D[f4, cpf4〚6〛, cpf4〚5〛, .4, x, y];

pth6 = pathFinder2D[f4, cpf4〚5〛, {2, -2}, .07, x, y];

ListLinePlot[{Join[Drop[pth1, -1], Reverse[Drop[pth3, -1]], pth4,

pth5, Drop[pth6, -1], Reverse[Drop[pth2, -1]]]}, ImageSize → Small]

Out[151]=

-2 -1 1 2

-3

-2

-1

1

2

3

In[152]:= pth = Join[Drop[pth1, -1], Reverse[Drop[pth3, -1]],

pth4, pth5, Drop[pth6, -1], Reverse[Drop[pth2, -1]]];

Pth =

Φ /@

pth;

In[154]:= Length[Pth]

Out[154]= 138

To get  an idea  of what  this  looks  like  we  can  project  down  to  ℝ3.  We  can  

include  the  exceptional  lines.

In[184]:= proj4 = {{1, 0, 0, 0}, {0, 1, 0, 0}, {0, 0, -1, 1}};

Pth3 = Pth.Transpose[proj4];
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In[168]:= Graphics3D[{{Blue, Thick, Line[Pth3]}, {Orange, Thick,

Line[{{2, 2, 1}, {2, 2, 0}}], Line[{{2, -2, 0}, {2, -2, 1}}]}}, ImageSize → Medium]

Out[168]=

Our  problem  with  dualInterpolation is two  fold.   First  it will  take  far  to long  

to run,  the  sizes  of the  matrices  will  be  enormous.   Second  using  only  

machine  numbers  these  calculations  will  have  small  numerical  errors,  but  

using  more  precision  will  take  even  longer.   We  can  somewhat  fix  the  first  

problem  is that  most  of the  time  will  be  used  in the  last  step  of finding  the  H-

basis.   Leaving  out  that  step  will  give  us a much  quicker  algorithm  but  the  

output  will  consist  of a very  large  number  of equations.   But  these  should  all,  

at least  approximately,  contain  our  B4.  We  use  option  hBasis→False

We  choose  8 points

pts = RandomChoice[Pth, 8];

In[173]:= pts

Out[173]= {{1.12457, 2.33407, 0.853685, 0.568394}, {1.17864, 2.30806, 0.846226, 0.585924},

{-1.67853, 2.82846, 0.690347, 0.0943692}, {-0.547515, 2.98335, 0.858741, 0.241689},

{1.50526, -2.15674, -0.711592, -0.782327}, {1.50526, -2.15674, -0.711592, -0.782327},

{0.719194, 1.26876, 0.166895, 0.340965}, {1.3413, 2.23097, 0.818889, 0.64384}}

In[161]:= B4 = dualInterpolationMD[F4, pts, 6, {x, y, z, w}, 1.*^-8, hBasis → False]

Out[161]=

-0.0110519+ ⋯ 323 ⋯ + 0.103655 y z5 + 0.155079 z6,

⋯ 176 ⋯ , ⋯ 324 ⋯ + ⋯ 22 ⋯ ⋯ 1 ⋯ 

large output show less show more show all set size limit ...

There  are  178  equations,  each  of which  have  210  terms!   So we  will  merely  
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 equations,  merely

sample  B4.   Our  goal  is to find  where  B4  intersects  the  exceptional  lines.   We  

are  looking  for  multiple  solutions.   First  we  look  at the  line  through  {2, 2}.

In[189]:= RandomChoice[Table[i, {i, 178}], 3]

Out[189]= {55, 128, 61}

In[190]:= g55 = B4〚55〛 / . {x → 2, y → 2, w → 1}

NSolve[g55]

Out[190]= -0.195394+ 0.957736 z- 1.56741 z2
+ 1.03747 z3

- 0.351087 z4
+ 0.00708735z5

+ 0.0265151 z6

Out[191]= {{z → -5.0055}, {z → 0.500067- 0.00212638 ⅈ}, {z → 0.500067+ 0.00212638 ⅈ},
{z → 0.888658- 1.48755 ⅈ}, {z → 0.888658+ 1.48755 ⅈ}, {z → 1.96075}}

In[192]:= g128 = B〚128〛 / . {x → 2, y → 2, w → 1}

NSolve[g128]

Out[192]= 0.0708331- 0.303968 z+ 0.340114 z2
+ 0.00558316z3

- 0.0424019 z4
- 0.0567799 z5

- 0.00900801z6

Out[193]= {{z → -5.69544}, {z → -1.32082- 1.89438 ⅈ}, {z → -1.32082+ 1.89438 ⅈ},
{z → 0.500703- 0.00700209 ⅈ}, {z → 0.500703+ 0.00700209 ⅈ}, {z → 1.03239}}

In[194]:= g61 = B〚61〛 / . {x → 2, y → 2, w → 1}

NSolve[g61]

Out[194]= -0.0907389+ 0.331602 z- 0.202743 z2
- 0.253104 z3

+ 0.0994685 z4
+ 0.0238999 z5

+ 0.0193771 z6

Out[195]= {{z → -1.31375}, {z → -1.20845- 2.84028 ⅈ},
{z → -1.20845+ 2.84028 ⅈ}, {z → 0.496376}, {z → 0.50328}, {z → 1.49758}}

In each  of these  case  there  are  two  solutions,  possibly  complex,  very  close  to 

z = .5  So we  will  suggest  that z = .5 is at least  a good  approximation  for  the  

intersection  of the  exceptional  line  through  {2, 2} and  B4.   We  do this  again  

for  {2, -2}

In[215]:= RandomChoice[Table[i, {i, 178}], 3]

Out[215]= {130, 73, 50}

In[216]:= g130 = B〚130〛 / . {x → 2, y → -2, z → -1}

NSolve[g130]

Out[216]= -0.589159- 2.18272 w- 1.91965 w2
+ 0.112316 w3

- 0.190499 w4
+ 0.0251769 w5

- 0.0164628 w6

Out[217]= {{w → -1.01985- 3.03538 ⅈ}, {w → -1.01985+ 3.03538 ⅈ}, {w → -0.515133- 0.0412104 ⅈ},
{w → -0.515133+ 0.0412104 ⅈ}, {w → 2.29965- 2.78939 ⅈ}, {w → 2.29965+ 2.78939 ⅈ}}
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In[218]:= g73 = B〚73〛 / . {x → 2, y → -2, z → -1}

NSolve[g73]

Out[218]= 0.507827+ 1.23116 w- 0.252052 w2
- 0.64533 w3

+ 1.52396 w4
- 0.166313 w5

+ 0.0242305 w6

Out[219]= {{w → -0.527983- 0.0480729 ⅈ}, {w → -0.527983+ 0.0480729 ⅈ}, {w → 0.76187- 0.813969 ⅈ},
{w → 0.76187+ 0.813969 ⅈ}, {w → 3.19801- 7.05408 ⅈ}, {w → 3.19801+ 7.05408 ⅈ}}

In[222]:= g50 = B〚50〛 / . {x → 2, y → -2, z → -1}

NSolve[g50]

Out[222]= 0.0140237- 0.256541 w- 0.491441 w2
+

0.0285561 w3
- 0.0145955 w4

+ 0.0403071 w5
+ 0.0151122 w6

Out[223]= {{w → -3.64706}, {w → -0.546267}, {w → -0.287786- 2.11328 ⅈ},
{w → -0.287786+ 2.11328 ⅈ}, {w → 0.049907}, {w → 2.0518}}

 This  is not  so clear  but  it seems  that  we  are  getting  solutions  near  - .5  This  

is somewhat  consistent  with  the  point  

{1.90006,-2.01554,-0.928878,-0.626432}  which  is seeming  closest  to the  line  

{2, -2, -1, w }.

Unfortunately  we  are  close  to the  limits  of what  we  can  do with  our  

methodology.

3.3.2.5  A compound example

We  consider  the  singularity  at {0,  0} of

In[285]:= f5 = Expand[(y ^ 3-x ^ 2) (y+x ^ 2)]

Out[285]= -x4
- x2 y+ x2 y3

+ y4

In[834]:= ContourPlot[{f ⩵ 0, x-y ⩵ 0}, {x, -1, 1}, {y, -1, 1}, MaxRecursion→ 4, ImageSize → Small]

Out[834]=

-1.0 -0.5 0.0 0.5 1.0
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0.0

0.5

1.0

This  is technically  a reducible  curve  and  we  only  discuss  genus  for  irre -

ducible  curves,  however  we  can  still  blow  up.   This  will  be  essentially  the  

singularity  of a higher  degree  irreducible  curve  such  as 

In[849]:= h = f5+x ^ 8+y ^ 8;
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In[850]:= ContourPlot[h ⩵ 0, {x, -2, 2}, {y, -.5, 1}, MaxRecursion→ 4, ImageSize → Small]

Out[850]=
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so  it is worth  studying  this  sort  of singularity.

The  multiplicity  of our  singularity  of f5 is

In[851]:= singPointMult2D[f5, {0, 0}, x, y, dTol]

From  the  first  contour  plot  above  we  see  the  line  x - y  is as good  a choice  as 

any  but  we  we  restrict  our  blow  up  to the  region  -1 < x , y < 1 because  there  

will  be  infinite  points  above  {-1, 1} and  {1, 1}.  This  has  the  right  multiplicity.

In[853]:= multiplicityMD[{f5, x-y}, {0, 0}, {x, y}, dTol]

Out[853]= 3

We  obtain  the  equation  of the  blow-up

In[6]:= F5 = {f5, z (x-y) - (x+y)}

Out[6]= -x4
- x2 y+ x2 y3

+ y4, -x- y+ (x- y) z

dualInterpolation will  work  in default  mode  and  degree  5 but  needs  a large  

set  of random  points  not  near  the  origin.   But  it returns  a large  system  even  

after  reducing  to something  like  a H-basis.   We  throw  out  most  of the  equa -

tions  to get  a reasonable  basis  for  the  blow-up.

In[18]:= B5 = {-x4 -x2 y+x2 y3 +y4, -x-y+ (x-y) z,

1-8 x-x2 -8 y+ z+8 x z+3 x2 z- z2 -8 x z2 -3 x2 z2 - z3 +x2 z3,

1-8 x+4 x2 -8 y+6 x y+y2 + z+8 x z-5 x2 z- z2 -8 x z2 +x2 z2 - z3 +y2 z3};

We  then  calculate  where  the   blow-up  hits  the  exceptional  line  for  F  .

In[863]:= Bo = B5 / . {x → 0, y → 0}

NSolve[Bo]

Out[863]= 0, 0, 1+ z- z2
- z3, 1+ z- z2

- z3

Out[864]= {{z → -1.}, {z → -1.}, {z → 1.}}

These  intersections  are  at {0, 0 , ±1}.  Note  these  points  are  regular.
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In[865]:= tangentVectorMD[B5, {0, 0, 1}, {x, y, z}]

» Hilbert Function {1, 1, 1, 1, 1}

Out[865]= {0.447214, 0., -0.894427}

This  is otherwise  known  as {1,0,-2}.

In[135]:= tangentVectorMD[B5, {0, 0, -1}, {x, y, z}]

» Hilbert Function {1, 1, 1, 1, 1}

Out[135]= {0., 0., 1.}

We  plot  the  blow  up  using  our  rational  function  and  the  fact  that  both  

components  are  parametric  curves:

In[2]:= Φ := Append[#, (#〚1〛+#〚2〛) / (#〚1〛-#〚2〛)] &

Note  that

In[14]:= F5 / . Thread[{x, y, z} → Φ[{t ^ 3, t ^ 2}]]

F5 / . Thread[{x, y, z} → Φ[{t, -t ^ 2}]]

Out[14]= {0, 0}

Out[15]= {0, 0}

In[16]:= ParametricPlot3D[{Φ[{t ^ 3, t ^ 2}], Φ[{t, -t ^ 2}], {0, 0, t}}, {t, -.9, .9}]

3.3.2.5  A harder compound example

Our  final  example  is

In[125]:= f6 = y ^ 2-x ^ 6;
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In[204]:= ContourPlot[f6 ⩵ 0, {x, -1, 1}, {y, -1, 1}, MaxRecursion→ 4, ImageSize → Small]

Out[204]=
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We  see  the  multiplicity  is smaller

l = RandomReal[{-2, 2}, 2].{x, y}

In[205]:= multiplicityMD[{f6, l}, {0, 0}, {x, y}, dTol]

Out[205]= 2

We  will  not  actually  try  to find  the  blow-up  but  just  look  at the  plots.  First

In[126]:= F6 = {f6, z x-y};

Φ := Append[#, #〚2〛 /#〚1〛] &;

Note  that

In[208]:= F6 / . Thread[{x, y, z} → Φ[{t, t ^ 3}]]

F6 / . Thread[{x, y, z} → Φ[{t, -t ^ 3}]]

Out[208]= {0, 0}

Out[209]= {0, 0}

In[210]:= ParametricPlot3D[{Φ[{t, t ^ 3}], Φ[{t, -t ^ 3}]}, {t, -1, 1}]

Out[210]=

We  see  that  we  still  have  a singularity  at {0, 0, 0} over  {0, 0}.  In fact  we  can  

generalize  the  multiplicity  of a singularity  to higher  dimension
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In[211]:= pl = RandomReal[{-1, 1}, 3].{x, y, z}

Out[211]= 0.385291 x+ 0.571885 y- 0.097667 z

In[212]:= multiplicityMD[Append[F, pl], {0, 0, 0}, {x, y, z}, 1.*^-10]

Out[212]= 4

So our  singularity  is actually  worse  in some  sense.   So we  blow  this  up.

In[128]:= G6 = Append[F6, w x- (x-y+ z)]

Λ := Append[#, (#〚1〛-#〚2〛+#〚3〛) / (#〚1〛)] &

Out[128]= -x6
+ y2, -y+ x z, -x+ w x+ y- z

In[130]:= G6 / . Thread[{x, y, z, w} → Λ[Φ[{t, t ^ 3}]]]

G6 / . Thread[{x, y, z, w} → Λ[Φ[{t, -t ^ 3}]]]

Out[130]= {0, 0, 0}

Out[131]= {0, 0, 0}

To plot  we  project  back  to ℝ3

In[118]:= Λ3 := (Λ[Φ[#]].{{1, 0, 0}, {0, 1, 0}, {0, 0, 0}, {0, 0, 1}}) &

In[226]:= ParametricPlot3D[{Λ3[{t, t ^ 3}], Λ3[{t, -t ^ 3}]}, {t, -1, 1}]

Out[226]=

Our  singularity  looks  better  but  is still  there  over  {0, 0}. In fact  looking  at the  

vertical  scale  in this  plot  we  can  guess  correctly  that  the  singularity  is actu -

ally  at {0, 0, 0, 1} in ℝ4.
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In[243]:= hp4 = RandomReal[{-1, 1}, 4].{x, y, z, w-1}

multiplicityMD[Append[G, hp4], {0, 0, 0, 1}, {x, y, z, w}, 1.*^-9]

Out[243]= -0.628167× (-1+ w) - 0.441975 x+ 0.453086 y- 0.545897 z

Out[244]= 6

So we  blow  up  once  more

In[132]:= H6 = Append[G, u (w-1) -x]

Γ := Append[#, #〚1〛 / (#〚4〛-1)] &

Out[132]= -x6
+ y2, -y+ x z, -x+ w x+ y- z, u (-1+ w) - x

In[134]:= H6 / . Thread[{x, y, z, w, u} → Γ[Λ[Φ[{t, t ^ 3}]]]]

H6 / . Thread[{x, y, z, w, u} → Γ[Λ[Φ[{t, -t ^ 3}]]]]

Out[134]= {0, 0, 0, 0}

Out[135]= {0, 0, 0, 0}

So H6  is compatible  with  the  composition  Γ[Λ[Φ[#]]].   Now  project

In[137]:= Γ3 := (Γ[Λ[Φ[#]]].{{1, 0, 0}, {0, 1, 0}, {0, 0, 0}, {0, 0, 0}, {0, 0, 1}}) &

In[294]:= ParametricPlot3D[{Γ3[{t, t ^ 3}], Γ3[{t, -t ^ 3}], {0, 0, t}}, {t, -1, 1}]

Out[294]=

Where  the  green  segment  is again  the  exceptional  line  over  {0, 0}.

So this  takes  3 blow-ups  to accomplish  the  job.

3.3.3  Conclusion on blowing-up

We  have  seen  that   given  a square  free  algebraic  plane  curve  f with  only  

affine  singularities  we  can  find,  by a sequence  of blowing  up,  a non-singular  

algebraic  curve  F  in ℝn for  some  n that  projects  to f  using  the  projection  

taking  a point  {x1, x2, …, xn} to {x1, x2}.

We  should  compare  this  with  Abhyankar’s  Theorem  of resolution  of singulari -

ties  of plane  curves  in Lecture  18 of his  book.   Our  theorem  is a little  more  

explicit  than  his  as it actually  produces  such  a curve  with  no  exceptional  

lines  and  projecting  on  the  first  two  coordinates.   We  also  explicitly  give  the  
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 projecting  explicitly  give

equation  of this  plane  curve,  at least  in theory,   and  the  rational  function  

from  f  to F .

Of course  we  already  saw  in Chapter  6 of the  Plane  Curve  Book  that  given  

any  plane  curve  we  can  move  all  the  projective  singularities  to the  affine  

plane  so the  requirement  that  all  singularities  be  affine  is not  really  a 

restriction.

An important  point  about  blowing-up  is that  it is numerically  stable.   We  

saw  in the  examples  of this  subsection  that  choice  of the  linear  function  in 

the  denominator  has  few  restrictions,  only  that  the  multiplicity  at the  point  

of the  intersection  of the  denominator  with  the  curve  is the  multiplicity  of 

the  singularity.   Since  this  multiplicity  is numerically  stable  under  small  

perturbations  even  a slight  error  in identifying  the  singularity  will  not  materi -

ally  effect  the  blow-up.   

3.3.4 Genus of curves

Barry  Mazur,  in his  famous  1986  paper  Arithmetic  on Curves  (Reprinted  in 

the  AMS  Bulletin,  Vol  55,  No.3,  July  2018)  states  on  page  219

[A  non-singular  space  curve]  under  a  generic  projection  to  a  2-dimensional

projective  space  yields  a plane  curve  with  at  worst  nodal  (or  ordinary  double

point)  singularities.

This  is not  quite  right  when  working  numerically.   I give  the   numerical  

version  in section  1.2.1  and  2.7.2:  

 For  random  numerical  projections,  with  high  probability,  the  only  artifac -

tual  singularities  will  be normal  crossings  (nodes),  cusps  or isolated  points.   

Recall  that  artifactual  singularities  are  those  that  do not  come  from  singulari -

ties  of the  original  space  curve,  so for  a non-singular  space  curve  all  singulari -

ties  of the  projection  are  artifactual.   In the  generic  case  artifactual  singular  

points  are  double  points,  they  have  multiplicity  2.  Nodes  are  ordinary,  in 

the  sense  of Section  3.4  of my  Plane  Curve  Book,  cusps  and  isolated  points  

(which  arise  only  in the  real  case)  are  not.  But  these  do still  have  Clebsch  

number  1, the  same  as ordinary  double  points,  so Mazur’s  formula  below  

still  works.   Note  that  Example  3.3.2.6  is a double  point  but  not  a node  or 

cusp.

 Mazur’s  Formula:   [Mazur  page  220]  Let  ν be  the  number  of singular  points  

of a generic  (random)  projection  of a non-singular  space  curve.   Then  the  

genus  ℊ of  the  space  curve  and  its  plane  projection  of degree  d  is given  by

ℊ =
(d- 1) (d- 2)

2
- ν
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We  can  use  this  formula  to calculate  the  genus.   But  note  that  this  should  

not  be taken  as a definition  of genus   but  the  consequence  of the  formal  

study  of genus  by algebraic  geometers.

Example  3.3.4.1:  A nice  example  is the bow curve  3.3.2.3.   We found  the non-singular  blow-up  to 

be curve  

In[188]:= B3 = {-1. y+ 1. x z, 1. x ^ 3- 1. x y+ 1. y ^ 2 z, 1. x ^ 2- 1. y+ 1. y z ^ 2, 1. x- 1. z+ 1. z ^ 3,

1. x y- 1. y z+ 1. y z ^ 3, 1. y- 1. z ^ 2+ 1. z ^ 4, 1. x ^ 2- 1. y+ 1. y ^ 2+ 1. y z ^ 4,

1. x- 1. z+ 1. y z+ 1. z ^ 5, -1. x ^ 3+ 2. x y- 1. y z+ 1. y z ^ 5, -1. x ^ 2+ 2. y- 1. z ^ 2+ 1. z ^ 6};

In[123]:= bbc = FLTMD [B3, A, 6, {x, y, z}, {x, y}, 1.*^-9 ]〚1〛
Out[123]= 1. - 7.64881 x- 14.4732 x2

- 9.41023 x3
- 2.81002 x4

+ 11.0999 y+ 4.72927 x y- 0.912787 x2 y+

1.42335 x3 y+ 12.5987 y2
+ 10.9587 x y2

+ 3.71029 x2 y2
+ 0.216945 y3

- 0.478956 x y3
+ 0.0523491 y4

In[138]:= csp = complexProjectiveSingularPoints2D [bbc, x, y, 1.*^-9 ]

Out[138]= {{-1.98573 , -11.9106 }, {-0.617785 , -0.546592 }, {-0.860395 , -0.497789 }}

Take a generic  projection  from  ℙ3  to ℙ1

In[121]:= A = Orthogonalize [RandomReal [{-1, 1}, {3, 4}]]

Out[121]= {{0.084272 , 0.846137 , 0.364511 , 0.379582 },

{-0.591153 , 0.464949 , -0.517101 , -0.408617 }, {-0.632973 , -0.163991 , 0.730846 , -0.195745 }}

In[146]:= bbc = FLTMD [B3, A, 6, {x, y, z}, {x, y}, 1.*^-9 ]〚1〛
Out[146]= 1. - 7.64881 x- 14.4732 x2

- 9.41023 x3
- 2.81002 x4

+ 11.0999 y+ 4.72927 x y- 0.912787 x2 y+

1.42335 x3 y+ 12.5987 y2
+ 10.9587 x y2

+ 3.71029 x2 y2
+ 0.216945 y3

- 0.478956 x y3
+ 0.0523491 y4

In[143]:= csp = complexProjectiveSingularPoints2D [bbc, x, y, 1.*^-8 ]

Out[143]= {{-0.860395 , -0.497789 }, {-0.617785 , -0.546592 }, {-1.98573 , -11.9106 }}

In[151]:= ContourPlot [bbc ⩵ 0, {x, -2, 0}, {y, -1, 0}, MaxRecursion → 5,

Epilog → {Red, PointSize [Medium ], Point [Take [csp, 2]]}, ImageSize → Small ]

Out[151]=

-2.0 -1.5 -1.0 -0.5 0.0

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

The third  singular  point   {-1.98573,  -11.9106}  is an isolated  singularity.   Since  ν = 3 and d = 4 then  

ℊ = 0 which  is what  we expect  given  this  is a parameterized  curve.

Example  3.3.4.2:   The  lemniscate.
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We calculated  the blow-up  of the lemniscate  as

In[292]:= B2 = {1. x+ 1. y- 1. x z+ 1. y z, -2. x- 1. x ^ 2 y- 1. x y ^ 2- 1. y ^ 3+ 2. x z+ 1. x ^ 3 z,

-2. + 3. x ^ 2+ 4. x y+ 2. y ^ 2- 2. x ^ 2 z+ 2. z ^ 2+ 1. x ^ 2 z ^ 2, 1. x ^ 4+ 4. x y+ 1. y ^ 4};

Since  the lemniscate  is a bounded  we  let the random  projection  be

In[312]:= A2 = Append [Orthogonalize [RandomReal [{-1, 1}, {2, 4}]], {0, 0, 0, 1}]

h2 = FLTMD [B2, A2, 6, {x, y, z}, {x, y}, 1.*^-7 ]〚1〛
Out[312]= {{0.0648747 , -0.730778 , 0.479363 , 0.481628 },

{-0.844846 , 0.0847465 , -0.232867 , 0.474159 }, {0, 0, 0, 1}}

Out[313]= 1. + 0.809265 x- 1.59889 x2
- 2.62573 x3

+ 2.89494 x4
- 0.69337 x5

+

0.169007 x6
- 0.662574 y- 1.32448 x y+ 1.10846 x2 y+ 1.91681 x3 y- 1.61182 x4 y+

0.748308 x5 y- 0.00606811 y2
- 0.0856423 x y2

- 1.72749 x2 y2
+ 0.734084 x3 y2

+

0.945916 x4 y2
- 2.06329 y3

- 1.4528 x y3
+ 2.94894 x2 y3

+ 0.322685 x3 y3
+

0.925493 y4
+ 1.1306 x y4

+ 0.334215 x2 y4
- 0.452467 y5

+ 0.576751 x y5
+ 0.400899 y6

In[316]:= ContourPlot[h2 ⩵ 0, {x, -1.5, 2}, {y, -1.5, 2}]

Out[316]=

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

For finding  all singular  points  we find a very  large  tolerance  works  best,  although  it is recom -

mended  that  this  be checked  carefully.
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In[317]:= csp = complexProjectiveSingularPoints2D [h2, x, y, .01]

Out[317]= {{-0.432648 + 0.415856 ⅈ, -0.643362 + 0.829752 ⅈ},
{-0.432648 - 0.415856 ⅈ, -0.643362 - 0.829752 ⅈ}, {-1.23861 - 0.922593 ⅈ, 1.04178 + 1.87947 ⅈ},
{-1.23861 + 0.922593 ⅈ, 1.04178 - 1.87947 ⅈ}, {2.41939 + 1.30732 ⅈ, -0.394761 - 2.28109 ⅈ},
{2.41939 - 1.30732 ⅈ, -0.394761 + 2.28109 ⅈ}, {0.954581 , 0.306315 }, {1., -0.485784 , 0}}

In[318]:= Length [csp]

Out[318]= 8

So we have  6 complex  singular  points,  one real  affine  singular  point  and one affine  infinite  

singular  points.   Since  the degree  of the projection  is 6 Mazur’s  formula  gives  ℊ = 10 - 8 = 2.  Note  

that it is impossible  for a non-singular  plane  curve  to have  genus  2.

3.3.4.3  Example.   This  example  is different  in that  we  start  with  a non-singu -

lar space  curve  and  don’t  blow  up.   The  example  is a case  of Exercise  IV 5.2.2  

from  Hartshorne’s  Algebraic  Geometry  book.  

We   take  a naive  intersection  of a quadric  and  cubic  surface  in ℝ3.

In[288]:= f1 = x ^ 2+y ^ 2+ z ^ 2-25;

f2 = -51+3 x-3 x2 +x3 -3 y-3 y2 -y3 +14 z- z2;

We  will  use  a random  affine   projection

In[291]:= A = {{-0.163999, 0.250186, -0.294883, -0.138623},

{-0.609386, 0.427477, -0.396493, -0.530766}, {0, 0, 0, 1}};

In[292]:= g4 = FLTMD[{f1, f2}, A, 6, {x, y, z}, {x, y}, 1.*^-10]〚1〛
Out[292]= 1. + 1.73533 x+ 1.55993 x2

- 0.656023 x3
- 2.60795 x4

- 2.7081 x5
+ 2.70678 x6

-

0.00233382y- 1.17272 x y+ 0.266015 x2 y+ 4.17205 x3 y+ 7.69862 x4 y-

8.26483 x5 y+ 0.365579 y2
- 0.122065 x y2

- 2.71565 x2 y2
- 8.65234 x3 y2

+

10.9325 x4 y2
+ 0.0466165 y3

+ 0.792389 x y3
+ 4.87301 x2 y3

- 7.91459 x3 y3
-

0.0857802 y4
- 1.37971 x y4

+ 3.2871 x2 y4
+ 0.156806 y5

- 0.739525 x y5
+ 0.0701592 y6

As usual  we  need  to fiddle  with  complexProjectiveSingularPoints  to get  a 

reliable  answer  but  we  come  up  with  one  answer  we  can  verify

{{1.289, 0.0206694}, {3.56225, 7.6008}, {-1.54168+0.346882 I, -2.16869+0.495606 I},

{-1.54168-0.346882 I, -2.16869-0.495606 I},

{-1.74148, -3.95367}, {-2.04685, -4.49551}}

Since  g4 is of degree  6 Mazur’s  formula  shows  the  genus  ℊ = 10 - 6 = 4 agree-

ing  with  Hartshorne’s  claim.   Note  that  the  first  two  real  singular  points  are  

actually  isolated  points  from  the  projection.

3.3.5  Examples of non-singular Curves of genus 0 - 6

Now  that  we  have  developed  our  software  and  theory  I end  by plotting  an 

example  of a curve  of each  genus  from  0 to 6.  We  don’t  show  work  but  we  
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example  genus

use  the  methods  we  have  developed.   Some  of these  examples  have  

appeared  before  in this  book  or my  plane  curve  book.   We  give  a plane  

model  on  the  left  and,  where  the  plane  model  is singular,  a non-singular  

model  in ℝ3 on  the  right.  

Genus  0, Rational  curve,  parabola   y = x 2

In[128]:= ContourPlot[y ⩵ x ^ 2, {x, -2, 2}, {y, -.2, 3.5}, ImageSize → Small]

Out[128]=

-2 -1 0 1 2

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Genus  1, Elliptic  curve    y 2 = x ^ 3 - 5 x + 2

In[126]:= ContourPlot[y ^ 2 ⩵ x ^ 3-5 x+2, {x, -4, 5}, {y, -9, 9}, ImageSize → Small]

Out[126]=

-4 -2 0 2 4

-5

0

5

Genus 2, Lemniscate  x4 + x y + y4

In[175]:= ContourPlot[x ^ 4+ x y+y ^ 4 ⩵ 0, {x, -1, 1}, {y, -1, 1}, ImageSize → Small]

(Red  dashed  line  is exceptional  line  over  {0,0})

Out[175]= {

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

, }
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Genus 3,   Klein Curve  x2 +  
y 2

4
- 1  x 2

4
+ y2 = -.04

In[122]:= ContourPlot[(x ^ 2+y ^ 2 /4-1) (x ^ 2 /4+y ^ 2-1) ⩵ -.04,

{x, -3, 3}, {y, -3, 3}, ImageSize → Small]

Out[122]=

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

Genus  4 (See  Example  3.3.4.3)   g4 on the  le�,  {f1, f2}  plotted  on f1 on the  right.   In addition  

to the  singular  points  shown  in the  plot  of g4 there  are  two  isolated  real  singular  points  and  

2 complex  singular  points.

{

-2.5 -2.0 -1.5 -1.0 -0.5

-5.0

-4.5

-4.0

-3.5

-3.0

-2.5

-2.0

, }
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Genus  5: Gauss’  curve  g5 = -5 x2 +9 x3 -5 x4 + x5 +5 y2 -27 x y2 +30 x2 y2 -10 x3 y2 -5 y4 +5 x y4

(Dashed  red  line  is blowing-up  denominator,  A,B,C,D,E,0  infinite  points.  )

{

E

B

B

C

D

E

C

D

O

A

A

, }

Genus  6 

In[173]:= g6 = 1-10 x2 +5 x4 -3 y+18 x2 y-3 x4 y-5 y2 +15 x2 y2 +15 y3 -15 x2 y3 +4 y4 -12 y5;

In[174]:= ContourPlot[g6 ⩵ 0, {x, -5, 5}, {y, -2, 3}, ImageSize → Small]

Out[174]=

-4 -2 0 2 4

-2

-1

0

1

2

3
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