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This  note  is  an  exposition  of  Theorem  1.18  in  Joe  Harris’  Algebraic  Geometry  book  which  says  that  given

d + 3 points  in  general  position  in  projective  d-space  there  is  a  unique  degree  d  rational  normal  curve

passing  through  these  points.  A  rational  normal  curve  (RNC)  is  a  curve  projectively  equivalent  to  the

projective  closure  of  the  parametric  rational  normal  curve  td , td-1 , …, t.   Harris’  exposition  is  a  bit

sparse  on  implementation  details  and  does  not  adequately  address  the  uniqueness.  I  will  be  able  to

explain  uniqueness  heuristically,  although  will  not  give  a formal  proof  except  for  d = 2.  In  addition  I will  be

able  to  explain  why  the  hypotheses  on  general  position  is  necessary  and  sufficient  for  a  set  of  d + 3 points

to  be  on  a  RNC.   I  will  also  give  insight  as  to  why  d+3  is  the  correct  number.  This  is  presumably  a  classical

result  but  other  expositions  I  have  seen  seem  to  follow  Harris.  As  always  I  will  use  a  numerical  approach

using  Mathematica.

 In my  Mathematica-Journal  article  [2]  I identify  three  numbers,   d, n, r  for  a rationally  parameterized  

curve  with  common  denominator.   n  is the  affine  dimension  of the  space,  i.e.  the  number  of affine  

components.   d  is the  maximal  degree  of the  parameter  t in the  numerator  or common  denominator  

and  r  is the  dimension  of the  space  of polynomials  in the  numerator  or common  denominator.   A affine  

parametric  curve  is a rational  normal  curve  if d = n = r - 1.  In this  note  we  will  work  in the  real  or  com -

plex  setting.   A set  of points  is  in general  position   if no  k + 1 of these  points  line  in the  same  k-dimen-

sional   subset  of projective n-space.

In this  note  I will  give   Mathematica  functions  to check  the  general  position  hypotheses  and  to con -

struct  a parametric  rational  normal  curve  through  a given  general  position  subset  of d + 3 points.      I 

will  start  with  the  two  dimensional  case  where  both  existence  and  uniqueness  follow  easily  from  [3],  

give  an algorithm  to test  general  position,   then  give  a not  so simple  description  of my  simple  version  of 

Harris’  existence  construction  with  code  and  finally  address,  but  not  give  a formal  proof,  of the  unique -

ness  construction.

One  main  tool  I will  use  are  projective  linear  transformations  which  I call  in [3,4]  fractional  linear  

transformations  in the  affine  case,  FLT.   On  a point  basis  these  are  given  by Mathematica  as transforma-

tion  Functions   or  just  Geometric  Transforms.   Specifically  transformationfunctions are   defined   from  m-

space  to n-space   by  transformation  matrices  M which  are  any  (m+1)  × (n+1)  matrix.   The  matrix  M  is 

viewed  in the  form   
A b

c e
 ,  A is a m×n  matrix,  b a m×1  matrix,  c a 1×m  matrix  and  e a scalar.   Then  

TransformationMatrix[M][x]  gives  
Ax+b

cx+e
 where  the  denominator  divides  each  coordinate  of the  numera -

tor.   In my  books  I use  the  shorthand



flt[x, A ] = TransformationMatrix[M][x]  

Where  I digress  from  Mathematica  is that  I have   companion  functions  FLT  which  take  not  the  points  to 

points  but  curves  to curves  equation  wise.   Loosely,  if C2 = FLT [C1, M] then  each  point  p in C1 goes  to 

the  point  flt[p,M]  in C2, the  actual  syntax  depends  on  the  context,  see  [3,4].   When  the  transformation  

matrix  is not  a square  invertible  matrix  FLT  is a complicated  function  whose  definition  takes  up  much  

of my  Space  Curve  book  [4].

2. Two dimensional  Case

We  must  show  that  given  5 plane  points  in general  position  there  is a unique  rational  normal  quadratic  

curve  through  these  points.   We  start  with  the  function  aCurve  in section  2.4  of my  plane  curve  book  [3]  

which  gives  a unique  algebraic  curve   f = 0 through  these  points.   We  noticed  already  in Chapter  1 of 

that  book  that  a singular  quadric  curve  consists  of two,  not  necessarily  distinct,  lines.   But  to place  5 

points  on  2 lines  one  of the  lines  must  contain  at least  3 points  which  is not  allowed  since  the  points  are  

in general  position.   So  we  have  a conic.   In Section  7.3  of my  Plane  Curve  book  I show  how  to transform  

any  conic  to the  parabola  y = x2.  This  is easily  parameterized  by {t,t^2}.   Using  the  inverse  transforms  

we get  a parameterization  of the  curve  f = 0 which  is our  RNC  (rational  normal  curve).

Here  is an example  using  functions  from  my  Appendix  2 from  the  Plane  Curves  Book  [3].  

In[  ]:= S2 = {{-1, 1}, {2, 0}, {1, 1}, {-1, -1}, {1, -1}};

We  first  find  the  unique  quadratic  plane  curve  through  these  points.

In[  ]:= f2eq = Chop [aCurve [S2, x, y]]

Out[  ]= 1.30742 - 0.326855 x2 - 0.980565 y2

This  is an ellipse.   Choosing  our  first  point  we  use  the  transformation  cTransform  to place  this  point  at 

the  infinite  point  {0,1,0}  with  the  infinite  line  as the  tangent  line  at this  point.

In[  ]:= A1 = cTransform [f2eq, S2〚1〛, x, y];

A1 // MatrixForm

Out[  ]//MatrixForm=

-0.792594 -0.566139 -0.226455

-0.57735 0.57735 0.57735

0.196116 -0.588348 0.784465

We  apply  this  transform  to our  curve.

In[  ]:= f2eq2 = FLT[f2eq, A1, x, y]

Out[  ]= 0.452568 - 1.01613 x - 0.452568 x2 + 1.92447 y

We  see  this  is a parabola  with  vertical  axis.   We  use  the  function  tangentRealPoints  to find  the  vertex.

In[  ]:= p1 = tangentRealPoints [f2eq2, y, x, y]〚1〛
Out[  ]= {-1.12263, -0.531541 }

We  translate  this  point  to the  origin.
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In[  ]:= A2 = {{1, 0, -p1〚1〛}, {0, 1, -p1〚2〛}, {0, 0, 1}};

f2eq3 = FLT[f2eq2, A2, x, y]

Out[  ]= -0.452568 x2 + 1.92447 y

We  clean  up  the  coefficients

In[  ]:= A3 = {{-Sqrt [Abs[Coefficient [f2eq3, x^2]]], 0, 0}, {0, Coefficient [f2eq3, y], 0}, {0, 0, 1}};

A3 // MatrixForm

f2eq4 = FLT[f2eq3, A3, x, y]

Out[  ]//MatrixForm=

-0.672732 0 0

0 1.92447 0

0 0 1

Out[  ]= -1. x2 + 1. y

This  is parameterized  by

In[  ]:= f2a = {t^2, t};

So we  reverse  our  steps

In[  ]:= A4 = Inverse [A3.A2.A1];

A4 // MatrixForm

Out[  ]//MatrixForm=

1.17817 -0.300005 1.39279

0.841551 0.300005 -0.259672

0.33662 0.300005 0.731804

In[  ]:= f2p = TransformationFunction [A4][{t, t^2}]

Out[  ]= 
1.39279 + 1.17817 t - 0.300005 t2

0.731804 + 0.33662 t + 0.300005 t2
,

-0.259672 + 0.841551 t + 0.300005 t2

0.731804 + 0.33662 t + 0.300005 t2


In[  ]:= Show [ContourPlot [f2eq ⩵ 0, {x, -2, 2}, {y, -1.5, 1.5}, ContourStyle → Orange ],

ParametricPlot [f2, {t, -30, 30}, PlotStyle → Directive [Dashed, Black ]],

Graphics [{Blue, PointSize [Medium ], Point [S2]}]]

Out[  ]=

-2 -1 0 1 2

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

Our  desired  parameterization  is f2p.

Here  is the  general  function.   Initialize  Appendix2:  GlobalFunctions.nb  from  the  Plane  Curve  page  

before  running.
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In[  ]:= nrc2 [S_] := Module [{l, SS3, tst, i, acurve, ct, T, g1, g2, a, p, par, f},

SS3 = Subsets [S, {3}];

tst = False;

i = 1;

While [i ≤ 10 && tst ⩵ False,

tst = Abs[(line [SS3〚i, 1〛, SS3〚i, 2〛, x, y] /. Thread [{x, y} → SS3〚i, 3〛])] < .001;

i++];

If[i < 11, Echo ["Not General Position "]; Abort []];

acurve = aCurve [S, x, y];

ct = cTransform [acurve, S〚1〛, x, y];

g1 = FLT[acurve, ct, x, y];

g1 = Expand [g1 / Coefficient [-g1, y]];

p = tangentRealPoints [g1, y, x, y]〚1〛;
T = {{1, 0, -p〚1〛}, {0, 1, -p〚2〛}, {0, 0, 1}};

g2 = FLT[g1, T, x, y];

a = Coefficient [g2, x^2];

par = {t, a t^2};

f = flts [{t, a t^2}, Inverse [T.ct]];

{Chop [acurve ], f}]

Using  S2 above

In[  ]:= g, f = nrc2 [S2 ]

Out[  ]= 1.9649 - 0.491226 x2 - 1.47368 y2,


1.39279 - 0.792594 t - 0.135773 t2

0.731804 - 0.226455 t + 0.135773 t2
,

- 0.259672 - 0.566139 t + 0.135773 t2

0.731804 - 0.226455 t + 0.135773 t2


This  looks  different  from  the  above  but

Show ContourPlot [g ⩵ 0, {x, - 3, 3}, {y, - 3, 3}, ContourStyle → Orange ],

ParametricPlot f, {t, - 20, 20}, PlotStyle → Directive [Dashed , Blue ],
Graphics Black , PointSize Medium , Point [S2 ]

Out[  ]=

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

The  reader  may  note  that  the  first  part  of this  function  is devoted  to testing  for  general  position,  if this  

fails  then  the  remainder  of the  function  may  fail  or  create  errors,  possibly  an infinite  loop.

The  main  take-a-way  from  this  discussion   is that  it puts  into  focus  the  meaning  of unique.  Here  there  is 

a curve  with  implicit  equation  totally  independent  of the  particular  5 points  and  independent  of the  
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parametric  function.   In this  case  the  5 points  already  determine  an algebraic  curve  for  d = 2, something  

that  does  not  happen  for  higher  d.  In general  rational  curves  of degree  d  are  only  a small  subset  of all  

curves  of degree  d, in particular  rational  curves  have  genus  0 whereas  most  non-singular  curves  of 

degree  greater  than  2 have  positive  genus.   And  it takes  far  more  than  d + 3 points  to determine  a curve.   

So in general  uniqueness  will  be  more  difficult  but  as  in this  case  it will  mean  that  the  algebraic  curve  

produced  will  be  independent  of  which  d + 3  points  on  a RNC  are  used  and  independent  of the  algorithm  

we develop  for  finding  this  curve.

3. General  Position

For  higher  dimensions  checking  general  positions  will  be  more  difficult  and  time  consuming  so I will  

give  a stand  alone  algorithm  for  checking  this.  But  it will  still  be  important  to run  that  before  running  

our  algorithm  for  finding  the  RNC.

General  position  for  S means  that  no  k + 1 of  points  in S lie  in a k - 1 dimensional  algebraic  set.   For  

example  one  point  gives  a 0-dimensional  set,  two  points  determine  a line,  1 dimensional,  3 points  

determine  a plane-3  dimensional.   But  when  we  apply  this  in d-space  we  will  be  considering  d + 3 

points  and  any  such  set  must  lie  in at most  a d dimensional  set.   So  the  requirement  on  k above  is 

limited  to k ≤ d. 

But  t it is enough  to test  the  largest  subsets,  either  those  of length  d + 1 or S itself  if S has  fewer  than  

d+1  points.   That  is because  if our  requirement  fails  for  a subset  T⊂ S then  it fails  for  each  subset  contain -

ing  T including  S.

Here  is a case  where  it is easier  to work  projectively  rather  than  affinely  since  in projective  space  a 

linear  set  with  the  irrelevant  point  0 added  is a sub-vector  space.   The  dimension  of the  linear  set  is one  

less  than  the  vector  dimension  of this  space.   So  we  can  simply  use  a matrix  rank  calculation.   Addition -

ally  we  can  now  easily  allow  infinite  points.

In my  Space  Curve  GlobalFunctionsMD  [4]  I have  a numerical  rank  finder   matrixrankMD  which  takes  a 

matrix,  that  is in Mathematica,  a list  of vectors  of the  same  size,  and  a tolerance  and  calculates  the  rank  

to this  tolerance  via  singular  values.   For  this  purpose  we  use  a very  loose  tolerance,  such  as (0.0003)  to 

eliminate  sets  that  are  “almost”  not  in general  position,  in other  words  we  are  checking   numerical  

general  position.

Here  is our  Mathematica  code.   It is available  in our  GlobalFunctionsMD.nb  [4].

In this  function  S is a finite  list  of points  either  of length  d, considered  affine,  or of length  d + 1 for  

infinite  points.   Note  that  no  more  than  d infinite  points  are  allowed  in a general  position  set.   Unlike  

some  other  functions  the  first  element  may  be affine  or projective,  this  is why  the  user  must  enter  d.  A 

typical  tolerance  here  is .003
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In[  ]:= matrixrank [M_, tol_] := Module {s, k, l},

s = SingularValueList [N[M], Tolerance → 0];

If[s〚1〛 < tol, Return [0]]; l = Length [s]; s = s  s〚1〛;
k = 1;

While [k ≤ l, If[s〚k〛 < tol, Return [k - 1], k++]];

k - 1;

gpTestMD [S_, d_, tol_] := Module [{PS, SS, tst, i, k, n},

PS = Table [Switch [Length [s], d, Append [s, 1], d + 1, s, _, {}], {s, S}];

Do[If[Length [s] ⩵ 0, Echo ["Bad Point"]; Abort []], {s, PS}];

tst = True;

n = Min[d, Length [S] - 1];

SS = Subsets [PS, {n + 1}];

k = Length [SS];

i = 1;

While [i ≤ k && tst,

tst = (matrixrank [SS〚i〛, tol] ⩵ n + 1);

i++];

If[tst ⩵ False, Echo [SS〚i - 1〛, "Test Fails at "];

Return [False ], Return [True ]];

]

Examples:   Note  combination  of affine  and  projective  points.

S1 = {{1, 0, 0, 0}, {0, 1, 0, 0}, {0, 0, 1, 0}, {0, 0, 0}, {1, 2, 3}, {2, 3, 4, 1}};

gpTestMD [S1, 3, .003 ]

Out[  ]= True

In[  ]:= S2 = {{1, 0, 0, 0}, {0, 1, 0, 0}, {0, 0, 1, 0}, {0, 0, 0}, {1, 2, 3}, {2, 3, 4, 0}};

gpTestMD [S2, 3, .003 ]

» Test Fails at {{1, 0, 0, 0}, {0, 1, 0, 0}, {0, 0, 1, 0}, {2, 3, 4, 0}}

Out[  ]= False

In the  second  case  it fails  because  there  are  4 infinite  points  for d = 3.

Here  is an interesting  application  to RNC.   Consider  the RNC  with  polynomial  parameterization   

{t ^ 4, t ^ 3, t ^ 2, t} with  d=4.

In[  ]:= S7 = ({t^4, t^3, t^2, t} /. {t → #}) & /@ RandomReal [{-5, 5}, 7]

Out[  ]= {{109.44, 33.8363, 10.4614, 3.2344 },

{9.06345, -5.2236, 3.01056, -1.7351 }, {6.44303, -4.04406, 2.53831, -1.59321 },

{569.586, -116.592, 23.866, -4.88528 }, {84.0456, 27.7579, 9.16764, 3.02781 },

{239.172, 60.8181, 15.4652, 3.93258 }, {1.83751, 1.57824, 1.35555, 1.16428 }}
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In[  ]:= gpTestMD [S7, 4, dTol ]

Out[  ]= True

In[  ]:= S10 = ({t^4, t^3, t^2, t} /. {t → #}) & /@ RandomReal [{-5, 5}, 10];

gpTestMD [S10, 4, dTol ]

Out[  ]= True

These  are  examples  of the  known   fact  that  any  finite  set  of  points  on  a RNC  is in,  theoretically,  general  

position.   Of  course  if we  try

In[  ]:= gpTestMD [S7, 4, .0003 ]

» gpTest Fails at {{109.44 , 33.8363 , 10.4614 , 3.2344 , 1},

{9.06345 , - 5.2236 , 3.01056 , - 1.7351 , 1}, {6.44303 , - 4.04406 , 2.53831 , - 1.59321 , 1},

{569.586 , - 116.592 , 23.866 , - 4.88528 , 1}, {84.0456 , 27.7579 , 9.16764 , 3.02781 , 1}}

Out[  ]= False

it is not  numerically  true!

4. Constructing RNC from d+3 points.

In this  section  I give  my  algorithm  for  finding  a parametric  RNC  of degree  d from  d + 3 points.   This  is 

based  on  Harris’  argument  but  not  completely  the  same.   We  could  just  give  the  simple  code  but  it does  

require  some  explanation.

Harris  looks  at a special  easy  case  where  one  can  essentially  write  down  the  function  with  almost  no  

computation,  in particular  there  are  no  equations  to solve.   He  then  argues  that  up  to transformation  

this  is typical.   

So for  the  special  case  we  assume  that  the  the  d + 3 points  consist  of the  d + 1 coordinate  points  in the  

projective  d -plane,  that  is projective  points  with  all  zeros  except  for  one  1.  We  put  the  coordinate  point  

with  the  1 in the  last  place  last  on  our  list,  this  is actually  the  affine  origin.   We  then  have  two  additional  

points  we  call  p, q.

For d = 3 the  six  points  look  like

{1, 0, 0, 0}, {0, 1, 0, 0}, {0, 0, 1, 0}, {0, 0, 0}, p, q

For  this  to be  in general  position p, q  must  be affine  with  no  zero  coordinates.   Moreover  p, q must  be 

independent  as d-vectors.   I claim  the  following  rational  function,  where  k is an arbitrary  non-zero  

constant,   passes  through  all  these  points.

F0 =  p〚1〛 t
k

p〚1〛-q〚1〛
q〚1〛 + t

, ⋯,
p〚i〛 t

k
p〚i〛-q〚i〛

q〚i〛 + t
, ⋯,

p〚d〛 t
k

p〚d〛-q〚d〛
q〚d〛 + t



The  fact  that  p, q are  not  scalar  multiples  of each  other   and  have  no  zero  coordinates  guarantee  that  

the  first  terms  in each  denominator,   τ j = -k
p〚i〛-q〚i〛

q〚i〛  are  different.   The  jth coordinate  becomes  infinite  

at  τ j but  the  other  coordinates  are  non-zero  at τ j.  But  what  this  means  is that,  given  the  rules  for  
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working  with  projective  points,  at τ j  F0  takes  the  value  {0,…,0,1,0,…,0}  where  the  1 is in the  jth place.   

This  was  Harris’  idea.    

Since  the  constants  in the  denominator  are  not  zero  it is immediate  that  at t = 0 then F0 = 0.

Taking  the  limit  as t → ∞ the  constant  terms  in the  denominator  become  insignificant  so the  t’s cancel  

giving  p[[i]].   Hence  Limit t→∞  F0  = p, so p is in the  closure  of F0,  i.e.  in the  projective  curve  determined  by 

F0.   This  is my  idea.

Finally  we  observe  by simple  algebra

In[  ]:= Clear [p, q, t, q]

Simplify [p t / (k (p - q) / q + t) /. {t → k}]

Out[  ]= q

So with t = k then F0=q.

It appears  that  we  have  one  free  variable,  k, here,  but  all  k does  is speed  up  or slow  down  the  parame -

ter  so we  get  the  same  point  set.   For  theoretical  use  k can  be taken  to be 1 but  we  will  find  out  later  

that  choice  of k , which  gives  a simple  change  of parameterization,  may  affect  the  numerical  condition -

ing   of F0.   Along  this  parameterized  curve  the  point  q could  be far  from  the  origin  so parameter  1 is very  

constraining.

Here  is a simple  example  for  d=3.   Let

In[  ]:= S = {{1, 0, 0, 0}, {0, 1, 0, 0}, {0, 0, 0, 1, 0}, {0, 0, 0}, {2, 1, 3}, {-4, -3, 2}};

In[  ]:= F0 = 
2 t

(k (2 + 4) / -4) + t
,

1 t

(k (1 + 3) / -3) + t
,

3 t

(k (3 - 2) / 2) + t


Out[  ]= 
2 t

-
3 k

2
+ t

,
t

-
4 k

3
+ t

,
3 t

k

2
+ t



We  plot

In[  ]:= F1 = F0 /. {k → 1}

Out[  ]= 
2 t

-
3

2
+ t

,
t

-
4

3
+ t

,
3 t

1

2
+ t


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In[  ]:= Show [ParametricPlot3D [F1, {t, -3, 3}, PlotRange → 30],

Graphics3D [{Black, PointSize [Large ], Point [{{0, 0, 0}, {2, 1, 3}, {-4, -3, 2}}]}]]

Out[  ]=

Note  that  passing  through  infinite  points  {1, 0, 0, 0}, {0, 1, 0, 0}, {0, 0, 1, 0} means  the  asymptotes  are  

parallel  to the  axes.

Now  we  consider  the  general  case.   Suppose  S is a  set  of d + 3 points  in affine/projective  d space,  in the  

Mathematica  setting   a set  of lists  of d  or  d + 1 real  or complex  numbers,  possibly  mixed.   Our  first  step  

is to invertibly transform  to the  special  case.   So  we  first  write  them  all  projectively,  that  is with  d + 1 

components,   but  now  points  need  to be column  vectors  rather  than  rows.   So  we  set

SP = Transpose [Table [Switch [Length [s], d, Append [s, 1], d + 1, s, _, {}], {s, S}]]

with

Asp = Transpose [Take [SP, All, d + 1]]

which,  because  of the  general  position  hypothesis  will  be  an invertible  d + 1 matrix.

The  projective  linear  transformation  now  is simply  matrix  multiplication.   Clearly,  multiplying  the  first  

d+1  columns  will  give  by Asp  give  columns  representing  the  coordinate  points  and  by general  position  

the  last  2 columns  are  affine,  that  is have  non  zero  bottom  term.   Since  our  F0 will  be  affine  we  divide  

the  columns  by this  bottom  term  and  then  drop  that  bottom  1 to get  our  p, q.

Now  we  are  in the  special  case  so we  can  simply  write  down  our  RNC  F0.

Finally  we  reverse  our  transformation  and  recover  our  desired  RNC  F using  TransformationFunction[As -

p][F0].

Here  is an example

d = 3;

S = {{-1, -5, -9, 1}, {8, -3, 7, -7}, {1, 1, 7}, {-7, 0, -2, 0}, {-5, 4, -3}, {5, 8, 9, 7}}

In[  ]:= gpTestMD [S, 3, .003 ]

Out[  ]= True
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In[  ]:= SP = Transpose [Table [Switch [Length [s], d, Append [s, 1], d + 1, s, _, {}], {s, S}]]

Out[  ]= {{-1, 8, 1, -7, -5, 5}, {-5, -3, 1, 0, 4, 8}, {-9, 7, 7, -2, -3, 9}, {1, -7, 1, 0, 1, 7}}

In[  ]:= Asp = Take [N[SP], All, 4]

Out[  ]= {{-1., 8., 1., -7.}, {-5., -3., 1., 0.}, {-9., 7., 7., -2.}, {1., -7., 1., 0.}}

In[  ]:= S1 = Chop [Transpose [Inverse [Asp].SP]]

Out[  ]= {{1., 0, 0, 0}, {0, 1., 0, 0}, {0, 0, 1., 0},

{0, 0, 0, 1.}, {-0.757471 , -0.386207 , -0.945977 , 0.245977 },

{-0.842529 , -1.01379, 0.745977 , -1.64598 }}

This  last  step  sends  SP  to our  special  case  form  where,  because  of general  position,  we  see  the  last  

components  are  affine,  their  last  components  are  non-zero.   We  prefer  them  in affine  form.

In[  ]:= p = Take S1〚5〛  S1〚5, 4〛, 3
q = Take S1〚6〛  S1〚6, 4〛, 3

Out[  ]= {-3.07944, -1.57009, -3.84579 }

Out[  ]= {0.511872 , 0.615922 , -0.453212 }

Now  we  can  write  down  our  special  case  rational  function,  we  will  use  two  steps;

In[  ]:= τ = Table - (p〚i〛 - q〚i〛)  q〚i〛, {i, 3}
Out[  ]= {7.01604, 3.54918, -7.48564 }

We  note  in passing  that  these  are  distinct  and  non-zero.   We  are  using k = 1 here.   These  will  be  the  

parameter  values  of the  coordinate  points.

In[  ]:= F0 = Table p〚i〛 t  (τ〚i〛 + t), {i, 3}

Out[  ]= -
3.07944 t

-7.01604 + t
, -

1.57009 t

-3.54918 + t
, -

3.84579 t

7.48564 + t


Now  apply  the  inverse  transformation  function.

In[  ]:= F = Together [TransformationFunction [Asp][F0]]

Out[  ]= -
5. × 64.1905 - 42.3774 t - 3.36557 t2 + 1. t3

-145.415 t + 8.28223 t2 + 1. t3
,

4. × -46.257 + 6.36183 t + 1. t2
-145.415 + 8.28223 t + 1. t2

, -
3. × 30.5669 + 59.1233 t - 32.3475 t2 + 1. t3

-145.415 t + 8.28223 t2 + 1. t3


We  should  be able  to recover  our  original  points  by

In[  ]:= F /. {t → τ〚1〛}
Out[  ]= {-1., -5., -9.}

In[  ]:= F /. {t → τ〚2〛}
Out[  ]= {-1.14286, 0.428571 , -1.}
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Here  S[[2]]  was  given  projectively,  as affine  it is

In[  ]:= NTake S〚2〛  S〚2, 4〛, 3
Out[  ]= {-1.14286, 0.428571 , -1.}

In[  ]:= F /. {t → τ〚3〛}
Out[  ]= {1., 1., 7.}

In[  ]:= Limit [F, {t → ∞}]

Out[  ]= {-5., 4., -3.}

In[  ]:= F /. {t → 1}

Out[  ]= {0.714286 , 1.14286, 1.28571 }

Again  S[[6]]  as affine  point

In[  ]:= NTake S〚6〛  S〚6, 4〛, 3
Out[  ]= {0.714286 , 1.14286, 1.28571 }

Now  point  4 was  an infinite  point.   This  is unfortunate  in the  sense  that   F can  not  be  evaluated  directly  

at that  parameter  value.   In addition  infinite  points  do  not  have  unique  representations  which  gives  a 

further  difficulty.   We  will  address  this  situation  at the  end  of this  section.

If we  put  the  steps  in the  above  example  together  we  have  a simple  procedure  which  works  for  general  

position  affine  set.   It is assumed  this  set  has  already  been  checked  for  general  position,  k is the  parame -

ter  value  for  the  last  point.

In[  ]:= rncIshort [S_, k_] := Module {d, f0, p, q},

d = Length [S〚1〛];
A = Transpose [Table [Append [S〚i〛, 1], {i, d + 1}]];

p = TransformationFunction [Inverse [A]][S〚d + 2〛];
q = TransformationFunction [Inverse [A]][S〚d + 3〛];
f0 = Table Np〚i〛 t  k (p〚i〛 - q〚i〛)  q〚i〛 + t, {i, d};
Simplify [TransformationFunction [A][f0]]

Here  is a nice  example:

In[  ]:= S = {{-0.661499199020156` , -5.919953297244803` , -6.510244424264634` },

{0.044324937771346384` , 0.8641488397762416` , 2.9343887135856512` },

{5.171989530669297` , -4.566836546940028` , -4.195178551692724` },

{-6.09980134268519` , 0.029250389432121437` , -5.148186154557898` },

{6.05865662573202` , -7.047040772208991` , -0.35961378453643533` },

{6.212000809929034` , -2.145705675747042` , 3.439006676843963` }}

Out[  ]= {{-0.661499 , -5.91995, -6.51024 }, {0.0443249 , 0.864149 , 2.93439 },

{5.17199, -4.56684, -4.19518 }, {-6.0998, 0.0292504 , -5.14819 },

{6.05866, -7.04704, -0.359614 }, {6.212, -2.14571, 3.43901 }}
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We  first  note  the  difference  k makes

In[  ]:= F1 = rncIshort [S, 3]

Out[  ]= 
345.962 - 302.948 t + 45.6657 t2 + 6.05866 t3

-56.7169 + 29.4017 t - 6.28951 t2 + 1. t3
,
1.65899 + 55.8847 t - 39.5049 t2 + 7.04704 t3

56.7169 - 29.4017 t + 6.28951 t2 - 1. t3
,

291.989 - 363.243 t + 90.4359 t2 - 0.359614 t3

-56.7169 + 29.4017 t - 6.28951 t2 + 1. t3


In[  ]:= F1 = rncIshort [S, 1]

Out[  ]= 
12.8134 - 33.6608 t + 15.2219 t2 + 6.05866 t3

-2.10063 + 3.26685 t - 2.0965 t2 + 1. t3
,

0.0614442 + 6.20941 t - 13.1683 t2 + 7.04704 t3

2.10063 - 3.26685 t + 2.0965 t2 - 1. t3
,

10.8144 - 40.3603 t + 30.1453 t2 - 0.359614 t3

-2.10063 + 3.26685 t - 2.0965 t2 + 1. t3


This  does  not  give  the  parameter  values  for  testing  but  since  it is in 3-space  we  can  plot.

In[  ]:= Show [ParametricPlot3D [F1, {t, -20, 20}, PlotRange → 15],

Graphics3D [{Red, PointSize [Large ], Point [S]}]]

Out[  ]=

We  also  notice  that  the  answer  is not  quite  given  in standard  form,  that  is the  denominator  for  the  

second  coordinate  is the  negative  of the  others.   With  more  work  we  can  create  a function  which  can  

take  infinite  as well  as affine  input  and  gives  more  complete  and  desirable  output.

4.1 The case  of infinite  points  in the interpolation  set.

The  algorithm  works  correctly  with  up  to  d  infinite  points,  as long  as all  points  are  in general  position.   

Unfortunately  it takes  a bit  of extra  work  to check  that  the  curve  goes  through  these  infinite  points.   The  

obvious  problem  is that  this  affine  function  has  only  d coordinates  while  infinite  points  have d + 1. We  

also  need  to remember  that  projective  points  have  non-unique  representation.  Here  is the  extended  

algorithm  now  S can  contain  affine  points  of length  d, or  projective  points  of length  d+1,  the  latter  may  

be affine  or infinite.   This  function  checks  general  position.   Also  note  that  we  do  not  use  

TransformationFunction to convert  back  but  rather  a special  version  that  forces  our  standard  form  with  
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common  denominator.

Options [rncInterpolate ] = {ProjectiveForm → False };

rncInterpolate [S_, k_, d_, OptionsPattern []] :=

Module {A, F0, p, q, p1, q1, τ, PF0, PF1, F},

If[Length [S] ≠ d + 3, Echo ["S must be of length d+3"]; Abort []];

If[gpTestMD [S, d, .0003 ] ≠ True, Echo ["Not General Position "];

Abort [],

A = Transpose [Table [Switch [Length [S〚i〛], d,

Append [N[S〚i〛], 1], d + 1, N[S〚i〛], _, Echo ["Bad Data"];

Abort []], {i, d + 1}]]];

p1 = IfLength [S〚d + 2〛] ⩵ d, N[S〚d + 2〛], Take S〚d + 2〛  S〚d + 2, d + 1〛, d;
p = TransformationFunction [Inverse [A]][p1];

q1 = IfLength [S〚d + 3〛] ⩵ d, N[S〚d + 3〛], Take N[S〚d + 3〛]  S〚d + 3, d + 1〛, d;
q = TransformationFunction [Inverse [A]][q1];

τ = Table -k (p〚i〛 - q〚i〛)  q〚i〛, {i, d};
F0 = Table p〚i〛 t  (τ〚i〛 + t), {i, d}; (*Special case *)

denom = Expand [Product [(t - τ〚i〛), {i, d}]];

num[i_] := nDivideMD [Numerator [F0〚i〛] * denom, (t - τ〚i〛), {t}, 1.*^-10 ];

PF0 = Append [Table [num[i], {i, d}], denom ];

PF1 = Expand [A.PF0];

F = IfOptionValue [ProjectiveForm ], PF1, Table PF1〚i〛  PF1〚d + 1〛, {i, d};
{Join [τ, {0, ∞, k}], F}



In addition  we  have  two  extra  functions  which  will  help  us use  the  option  ProjectiveForm→True

projectiveLimitMD [F_, rule_ ] := Module {a},
a = Limit [Normalize [F], rule ];

IfAbs[a〚-1〛] < .00001, Chop [a], Drop a  a〚-1〛, -1

rncRecoverAffineForm [F_] := With {n = Length [F]}, Table F〚i〛  F〚n〛, {i, n - 1}

First  we  apply  this  to an affine  example  using  the  default  option.
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In[  ]:= S = {{9, 2, 1}, {2, -7, 8}, {-7, -6, 4}, {-6, 5, -2}, {-7, -1, 3}, {5, -9, -8}};

{τ, F} = rncInterpolate [S, 1, 3]

Out[  ]= {0.525573 , 0.451662 , 0.950439 , 0, ∞, 1}, 
1.3537 - 8.05295 t + 15.1509 t2 - 8.46866 t3

-0.225617 + 1.32879 t - 2.31639 t2 + 1.20981 t3
,

-1.12808 + 2.67313 t - 0.304514 t2 - 1.20981 t3

-0.225617 + 1.32879 t - 2.31639 t2 + 1.20981 t3
,

0.451233 + 0.601756 t - 4.65511 t2 + 3.62943 t3

-0.225617 + 1.32879 t - 2.31639 t2 + 1.20981 t3


We  can  check  this  using  

In[  ]:= Table [Limit [F, t → τ〚i〛], {i, 6}]

Out[  ]= {{9., 2., 1.}, {2., -7., 8.}, {-7., -6., 4.}, {-6., 5., -2.}, {-7., -1., 3.}, {5., -9., -8.}}

We  have  to use  the  Limit  to evaluate  because  τ〚5〛 =∞., for  the  others  we  could  have  just  used  regular  

evaluation,  eg

In[  ]:= F /. {t → 0}

Out[  ]= {-6., 5., -2.}

When  there  is an infinite  point  in the  list  S or when  there  is an affine  point  using  projective  coordinates,  

that  is d+1  coordinates,  then  we  will  need  to work  projectively  to check.   Our  trick  is to make  Mathemat -

ica find  the  normalized  limit  using  its  sophisticated  limit  finding  algorithm.   We  need  the  function  given  

projectively  also  with  d+1  coordinates  where  the  last  is the  denominator.   Here  we  use  the  option   

ProjectiveForm→True.   Our  example  is

In[  ]:= S = {{1, 5, 3, 0}, {2, 1, 3}, {5, 2, -3}, {2, 5, 2}, {1, 8, 6, 7}, {8, 7, 9}};

{τ, H} = rncInterpolate [S, 1, 3, ProjectiveForm → True ]

Out[  ]= {0.387092 , 1.03935, 0.33945, 0, ∞, 1},

-0.273136 + 1.02843 t - 0.819326 t2 + 0.11315 t3, -0.68284 + 2.95463 t -

3.13401 t2 + 0.905199 t3, -0.273136 + 1.31735 t - 1.66786 t2 + 0.678899 t3,

-0.136568 + 0.792091 t - 1.44143 t2 + 0.792049 t3

Now  we  check  using

In[  ]:= chk = Table [projectiveLimitMD [H, t → τ〚i〛], {i, 6}]

Out[  ]= {{0.169031 , 0.845154 , 0.507093 , 0}, {2., 1., 3.},

{5., 2., -3.}, {2., 5., 2.}, {0.142857 , 1.14286, 0.857143 }, {8., 7., 9.}}

In the  two  cases  of disagreement  it is because  the  projective  form  of the  input  is not  unique.   For  S[[1]]  

this  is projective  so the  check  is returning  

In[  ]:= Normalize [N[S〚1〛]]
Out[  ]= {0.169031 , 0.845154 , 0.507093 , 0.}

In the  case  of S[[5]]  this  is an affine  point  so the  check  is returning  the  standard  numerical  affine  form
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In[  ]:= Drop [N[{1, 8, 6, 7} / 7], -1]

Out[  ]= {0.142857 , 1.14286, 0.857143 }

Another  use  for  our  ProjectiveLimitMD  function  is that  we  can  also  calculate  the  infinite  points  that  

were  not  part  of our  set  S.

Here  is another  example,  generated  somewhat  randomly,  that  is I did  a number  of random  examples  

but  picked  the  most  visually  appealing  one.   We  use  a choice  of k to control  the  size  of the  coefficients,  

we don’t  want  them  too  large  or two  small.

In[  ]:= S = {{1, 1, 0, 0}, {1.9557125847811783` , -0.4881475780844795` , -2.798797344104713` },

{0.9869763820862296` , -4.785283892173496` , -5.481948119393831` },

{-2.1166897584661726` , -3.992574953820508` , 0.4784362247514622` },

{-6.1540001432381395` , -1.907215841711018` , -6.641385691990251` },

{-3.4592167609678803` , -0.17710172391338475` , 2.410987119680282` }}

Out[  ]= {{1, 1, 0, 0}, {1.95571, -0.488148 , -2.7988 },

{0.986976 , -4.78528, -5.48195 }, {-2.11669, -3.99257, 0.478436 },

{-6.154, -1.90722, -6.64139 }, {-3.45922, -0.177102 , 2.41099 }}

We  first  look  at the  projective  form  to find  our  infinite  points.  

In[  ]:= {tau, H2} = rncInterpolate [S, 2, 3, ProjectiveForm → True ]

Out[  ]= {2.49742, 2.35583, 2.19614, 0, ∞, 2}, 27.3498 - 15.0653 t - 2.91933 t2 + 1.87853 t3,

51.5882 - 44.7229 t + 8.30731 t2 + 0.582183 t3, -6.18189 + 14.6947 t -

9.95584 t2 + 2.0273 t3, -12.921 + 9.69581 t - 1.04835 t2 - 0.305253 t3

We  know  the  first  entry  of τ corresponds  to the  infinite  point  {1,1,0,0}  but  the  others  came  from  our  

projective  transform  from  the  special  case  to the  specific  case.   This  is recorded  in our  denominator,  

that  is the  last  member  of H2  which  changed  in this  transform.

In[  ]:= sol2 = NSolve [H2〚4〛]
Out[  ]= {{t → -8.0399 }, {t → 2.10812 }, {t → 2.49742 }}

So the  first  two  are  new  while  the  third  was  forced  by our  data.   Specifically  we  will  use  the  following  

representations  of these  points

In[  ]:= tab = Table [projectiveLimitMD [H2, sol2〚i〛], {i, 3}]

Out[  ]= {{-0.465533 , 0.295661 , -0.834185 , 0},

{0.361907 , -0.535191 , -0.763279 , 0}, {0.707107 , 0.707107 , 0, 0}}

For  convenience  we  give  this  infinite  points  names
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In[  ]:= a = Take [tab〚1〛, 3]

b = Take [tab〚2〛, 3]

c = Take [tab〚3〛, 3]

Out[  ]= {-0.465533 , 0.295661 , -0.834185 }

Out[  ]= {0.361907 , -0.535191 , -0.763279 }

Out[  ]= {0.707107 , 0.707107 , 0}

Now  we  will  plot,  using  arrows  to indicate  the  infinite  points  which  from  an affine  point  of view  are  now  

directions.   But  first  we  convert  our  projective  H2  to an affine  F2

In[  ]:= F1 = rncRecoverAffineForm [H2]

Out[  ]= 
27.3498 - 15.0653 t - 2.91933 t2 + 1.87853 t3

-12.921 + 9.69581 t - 1.04835 t2 - 0.305253 t3
,

51.5882 - 44.7229 t + 8.30731 t2 + 0.582183 t3

-12.921 + 9.69581 t - 1.04835 t2 - 0.305253 t3
,

-6.18189 + 14.6947 t - 9.95584 t2 + 2.0273 t3

-12.921 + 9.69581 t - 1.04835 t2 - 0.305253 t3


In[  ]:= Show [ParametricPlot3D [F1, {t, -40, 40}, PlotRange → 25],

Graphics3D [{{Black, PointSize [Large ], Point [Drop [S, 1]]}, {Orange, Arrow [{-30 a, -20 a}],

Arrow [{15 a, 30 a}]}, {Magenta, Arrow [{-10 b, -20 b}], Arrow [{25 b, 15 b}]},

{Green, Arrow [{15 c, 25 c}], Arrow [{-30 c, -20 c}]}}], Boxed → False, Axes → False ]

Out[  ]=

These  arrows  also  give  instructions  on  traversing  this  simple  closed  curve  in projective  3-space.   This  

curve  is typical  of degree  3 RNC  as we  expect  3 distinct  infinite  points  in general.
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5. Constructing  and Implicitizing parametric  rational  normal  curves.

I review  some  of the  material  in [2],  [4].

It is well  known,  eg. [1],  that  every  rational  curve  is a projective  linear  transform  of the rational  normal  

curve  tn, tn-1, …, t.  In particular  each  transformation  matrix  of size  (n + 1)× (d + 1) defines  a rational  

curve  in n variables  of degree  no  larger  than  d. But  to get  all  rational  normal  curves  of dimension  and  

degree  d we  use  transformation  matrices  which  are  invertible  square  d + 1 matrices.

Example  : Let  d = 3,  then  construct  a matrix,  say

In[  ]:= Mf = RandomReal [{-9, 9}, {4, 4}];

Mf // MatrixForm

Out[  ]//MatrixForm=

1.81843 1.67439 -1.86985 1.73284

6.04049 8.52234 7.34568 -1.16999

4.27965 -8.82913 2.92833 -2.36913

4.09386 -8.05956 4.40576 8.93662

We  test  its  rank  using  a loose  tolerance  to avoid  near-singular  matrices

In[  ]:= matrixrank [Mf, .0003 ]

Out[  ]= 4

This  is OK  so our  rational  normal  curve  will  be

In[  ]:= f = TransformationFunction [Mf]t3, t2, t

Out[  ]= 
1.73284 - 1.86985 t + 1.67439 t2 + 1.81843 t3

8.93662 + 4.40576 t - 8.05956 t2 + 4.09386 t3
,

-1.16999 + 7.34568 t + 8.52234 t2 + 6.04049 t3

8.93662 + 4.40576 t - 8.05956 t2 + 4.09386 t3
,

-2.36913 + 2.92833 t - 8.82913 t2 + 4.27965 t3

8.93662 + 4.40576 t - 8.05956 t2 + 4.09386 t3


Now  if we  want  to find  an implicit  system  of equations  for  this  curve  we  can  use  the  function  FLTMD  in 

my  Space  Curve  Global  Functions  [4]  and  a basis  for  the RNC  which,  while  described  in [1]  is calculated  

in [4].   This  will  contain   
d

2
 such  polynomials.   For  d = 3 I give  this  as

In[  ]:= tBasis3

Out[  ]= x22 - x1 x3, x1 x2 - x3, x12 - x2

So the  implicit  equation  is

In[  ]:= B = FLTMD [tBasis3, Mf, 3, {x3, x2, x1}, {x, y, z}, dTol ]
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» Initial Hilbert Function {1, 4, 7, 10 }

» Final Hilbert Function {1, 4, 7, 10 }

Out[  ]= -1.62609 x + 12.988 x2 - 0.420577 y + 1.26435 x y -

0.595578 y2 + 3.46883 x z - 2.24009 y z + 1. z2, -0.579616 x + 13.5337 x2 -

0.132874 y + 1.05077 x y - 0.669521 y2 + 1. z + 0.881133 x z - 1.88158 y z,

1. - 8.54915 x + 26.6566 x2 + 0.200252 y - 7.47293 x y + 0.689995 y2 + 8.63689 x z - 2.18636 y z

In[  ]:= Length [B]

Out[  ]= 3

Note  that  we  do  get  3 equations.

Working  numerically  it is always  a good  idea  to check  results.   We  evaluate  B at f

In[  ]:= fB = Simplify [B /. Thread [{x, y, z} → f]]

Out[  ]= 1.77636 × 10-15
+ 1.05471 × 10-14 t + 4.04121 × 10-14 t2 - 2.84217 × 10-14 t3 + 2.22045 × 10-16 t4 -

7.54952 × 10-14 t5 + 2.84217 × 10-14 t6  2.18293 + 1.07619 t - 1.96869 t2 + 1. t32,
4.66294 × 10-15

+ 7.66054 × 10-15 t + 5.01821 × 10-14 t2 - 2.84217 × 10-14 t3 - 2.13163 × 10-14 t4 -

8.03801 × 10-14 t5 + 2.17604 × 10-14 t6  2.18293 + 1.07619 t - 1.96869 t2 + 1. t32,
-4.4853 × 10-14

+ 5.86198 × 10-14 t + 4.21885 × 10-14 t2 - 7.10543 × 10-14 t3 + 3.73035 × 10-14 t4 -

1.63425 × 10-13 t5 + 1.02141 × 10-13 t6  2.18293 + 1.07619 t - 1.96869 t2 + 1. t32

In[  ]:= Chop [fB, 1.*^-12 ]

Out[  ]= {0, 0, 0}

We  may  also  want  to check  that  B defines  a curve.   An  easy,  but  not  always  accurate,  way  is to use  my  

function  tangentVectorJMD  from  [4].   If a random  point  on  f has  a tangent  vector  then  it likely  is a curve.   

One  may  want  to check  several  times  if one  is not  comfortable  with  the  statistical  significance  of one  

point  samples.

tangentVectorJMD [F_, p_, X_] := Module [{J, ns},

J = D[F, {X}] /. Thread [X → p];

ns = NullSpace [J];

If[Length [ns] ⩵ 1, Return [ns〚1〛], Echo [p, "no unique tangent vector at"]];

Table [0, {Length [X]}]]

r = RandomReal [{-5, 5}]

p = f /. {t → r}

tangentVectorJMD [B, p, {x, y, z}]

Out[  ]= 3.68233

Out[  ]= {0.90075, 3.68328, 0.851149 }

Out[  ]= {-0.164034 , -0.971042 , 0.173695 }
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If the  results  are  troublesome  one  may  use  tangentVectorMD  from  my  GlobalFunctionsMD .nb

in [4]  which  works  better  but  requires  subroutines.

6. Uniqueness

Unlike  the  case  d = 2 a set  S of d + 3 points  does  not  determine  a unique  curve.   One  might  want  to get  

an handle  on  the  fact  that  of all  curves  in d-space  through  S only  one  is an RNC.  Instead  I formulate  

uniqueness  as follows:

Start  with  a rational  normal  curve  with  both  parametric  equation  F and  implicit  equation  ℭ .   Take  a 

random  collection  S of   d + 3  numerically  general  position  points  from  F, i.e.  pick  d + 3  random  parameter  

values.   Apply  our  algorithm  rncInterpolate to get  a RNC  parameterized  G curve  through  S and  check  

that  it lies  in ℭ .

The  idea  is that  if there  are  several,  more  likely  many,  RNC  curves  through  a given  set  of d + 3 points  our  

algorithm,  which  takes  only  the  points  as data,  would  not  have  enough  information  to pick  the  original  

curve  ℭ.

As our  first  example  we  use  the  curve  f, B in the  previous  section.

In[  ]:= S = (f /. {t → #}) & /@ RandomReal [{-3, 3}, 6]

Out[  ]= {{-0.426214 , 0.759864 , 2.33167 }, {0.0855332 , 0.505055 , 1.14394 },

{0.0158313 , 0.45386, 1.22803 }, {0.506805 , 3.0605, -0.432657 },

{1.08119, 5.06439, 0.40951 }, {0.536624 , 3.21782, -0.427656 }}

In[  ]:= {tau, G} = rncInterpolate [S, .1, 3]

Out[  ]= {-2.20539, -2.54293, -2.44453, 0, ∞, 0.1}, 
6.94792 + 10.9696 t + 6.05548 t2 + 1.11889 t3

13.7093 + 13.418 t + 5.44826 t2 + 1.03487 t3
,

41.9572 + 63.3212 t + 31.5682 t2 + 5.24096 t3

13.7093 + 13.418 t + 5.44826 t2 + 1.03487 t3
,

-5.93141 - 5.24852 t - 0.457859 t2 + 0.423788 t3

13.7093 + 13.418 t + 5.44826 t2 + 1.03487 t3


In[  ]:= simp = Simplify [B /. Thread [{x, y, z} → G]]

Out[  ]= -2.50111 × 10-12
+ 3.87672 × 10-11 t + 8.81073 × 10-11 t2 + 7.25322 × 10-11 t3 + 2.83933 × 10-11 t4 +

5.31486 × 10-12 t5 + 4.03677 × 10-13 t6  13.2474 + 12.966 t + 5.2647 t2 + 1. t32,
-4.49063 × 10-12

+ 1.50635 × 10-11 t + 4.95106 × 10-11 t2 + 4.57305 × 10-11 t3 + 1.99378 × 10-11 t4 +

4.04654 × 10-12 t5 + 3.51164 × 10-13 t6  13.2474 + 12.966 t + 5.2647 t2 + 1. t32,
-1.7053 × 10-12

+ 2.29647 × 10-11 t + 5.8435 × 10-11 t2 + 5.17275 × 10-11 t3 + 2.09752 × 10-11 t4 +

4.02167 × 10-12 t5 + 3.28626 × 10-13 t6  13.2474 + 12.966 t + 5.2647 t2 + 1. t32

In[  ]:= Chop [simp, 1.*^-10 ]

Out[  ]= {0, 0, 0}
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Again,  if Mathematica's  random  numbers  are  not  random  enough  for  you,  run  this  again  several  or  

many  times,  using  different  d, to be convinced.

References:

1. Joe  Harris,  Algebraic  Geometry,  a first  course , Graduate  Texts  in Mathematics,  Springer,  1992.

2. Barry  H Dayton,  Degree  vs.  Dimension  for  Rational  Parametric  Curves,   Mathematica-Journal  22,  2020.

3. Barry  H Dayton,  A Numerical  Approach  to Real  Algebraic  Plane  Curves,  Wolfram  Media,  2018.   Updates  

and  code  at https://barryhdayton.space

4. Barry  H Dayton,  Space  Curve  Book,   also  code,  http://barryhdayton.space

Mathematica  is  a trademark  of Wolfram  Research.   Creative  Commons  licence  /by-nc-sa/3.0/”

20     IRNC.nb


