Soccer Balls
Non-technical version
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In 1997 Julie Foudy, then a USA woman’s national soccer team midfielder and former member of the
1966 USA Olympic championship team, currently a soccer announcer and commentator, went to
Pakistan to check out reports that soccer balls were produced by child labor. As part of her report she
noted that she learned that the soccer ball used at that time, called here the “traditional soccer ball”
always had 32 panels, 12 pentagons and 20 hexagons that were to be sewn together by hand. [Michael
Lewis, Soccer Magazine, 1997]

There is a simple explanation of Foudy’s observation which | was then motivated to show my elemen -
tary mathematics classes, and which | give below. However the early Greek mathematicians knew
about the the Platonic solids of which the icosahedron has 20 faces and 12 vertices while the dodecahe -
dron has 12 faces, 20 vertices, both have 30 edges. The main thrust of this article is the connection

between the platonic solids and paneling of soccer balls.

As part of my preparation of this article | stopped at my local soccer store to obtain a real traditional
ball to check that the pentagons and hexagons where really regular, unlike in many inexpensive balls. |
was surprised to find out that traditional balls were no longer sold. Now each vendor, each league and
even each tournament has a different ball. Nico Colamussi, the clerk on duty at the Soccer and Rugby
Imports in Branchville Connecticut, kindly tidied up the display of some of the many balls sold by his
store so | could take a picture.
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Nowadays basketballs and volleyballs also come in varying color balls but generally on the same
panel base unlike soccer where the balls have different paneling. Still the traditional soccer ball is
often used as a paneling as well as the dodecahedron. 1did buy two balls for comparison, one with

traditional paneling by Adidas and a dodecahedral paneled ball by Nike.

Motivated by this | will view polyhedral solids as polygonal panelings of a sphere, rather than polyhe -
dral solids. It turns out that it is not only the topology that is important but that most of these balls,
like the traditional one, together with the icosahedron and dodecahedron have the same rotational
symmetries. In this paper a soccer ball will denote a polygonal paneling of the sphere with this group
of rotational symmetries. The main tool here will be a fixed set of 62 points which are intersections of
axes of rotational symmetry with the sphere. |will end with the construction of recent ball, the Puma
official ball of the 2024 Copa America tournament and a replica 2024 Olympic ball by Adidas which

clearly illustrates these points.

In a future article | will give details and algorithms on actually producing the graphics shown here as
well as the polyhedral equivalents using computer algebra system Mathematica. My constructions in
this article will avoid computer technicalities, but will mention some mathematical ideas including

Euler’s Polyhedral Theorem.
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1. The traditional ball and Euler’s Theorem.

A ball polygonal paneling is what is known mathematically as a spherical polyhedron. The 18" century
mathematician Leonhard Euler had a theorem about these. It said F-E+ V =2. Here F is the number
of faces, or as we will say, panels. The Edges give the outline of the panels, in this case what makes a
paneling polygonal is that they are portions of great circles on the ball. Each panel will have at least 3
edges. Generally in soccer ball construction they are the stitching between panels. Finally the vertices
are end points of edges where they meet other edges. Each edge will have two vertices. A simple
discussion of why Euler’s theorem works is given in my website [barryhdayton.space/NEIUarchives/so-
ccerBall.pdf] which gives my original classroom discussion of this. In my notation the formula above
will be written P — E +V =2 where P is the number of panels, E the number of edges and V the number

of vertices.

Since each panel of the traditional soccer ball is a pentagon or hexagon,we will let h denote the num-

ber of hexagons and p the number of pentagons. So P = p +h.

But each hexagon has 6 edges and each pentagon has 5, but each edge is an edge of two panels. So
5p+6h

the number of edges is

We notice that each vertex occurs only once as a vertex of a pentagon so V =5 p, on the other hand each

vertex is a vertex of 2 hexagons so V=6 h/2=3h. Combining these 2 equations gives 5p=3horh= 5—3”
so we can write P — E + V/ entirely in terms of p. We get the somewhat complicated equation
(p+(5 p/3))-(6%(5 p/3)+5 p)2+5 p =2
Doing the algebra the common denominator on the left is 6 and we get simply
p/6 =2
or p = 12. But using our formula h= 5?,7 above we get also h=20. So we have 12 pentagons and 20

hexagons for the 32 panels that Julie Foudy counted. There are 30 edges from the formula above or
Euler’s formula 12 —-30 +20 =2. These numbers 12, 20 and 30 will play an important role in this paper.
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2. Symmetry

There are many panelings of the sphere and all obey Euler’s Polyhedral Theorem. One additional
property shard by most soccer ball panelings is that the panelings are symmetric. That is if placed at
rest they always look about the same. Some modern balls do have writing or graphics on them but
most have symmetric paneling so they will roll smoothly. The surprise is that most of these panelings
have the same rotational symmetries that Plato discovered on the icosahedron and dodecahedron.

On the picture in the introduction we see that the pentagon in the middle is regular, all sides are the
same length. This forces it to be symmetric about its centroid, in this case by a 1/5th turn, that is a 72°
turn either clockwise or counter clockwise. Note that if we rotate the ball in the axis through the
centroid and center of the ball then the pentagons connected to this ball by an edge rotate to an
adjoining pentagon as do the the hexagons next to this pentagon. In both cases there are 5 of them.

It is not so easy to see that the hexagons are regular and symmetric due to the coloring on the
hexagons. In fact, in many inexpensive traditional balls the hexagons are not regular. Below is a
picture an Adidas ball with traditional paneling but irregular marking where it is easier to see that the
hexagon of the front center is seen to be quite regular. A 1/6th turn, 60" takes the hexagon to itself, but
not the marking. There are only 3 pentagons surrounding this hexagon and a symmetric rotation of the
entire ball must take these pentagons to pentagons. So the marking on this hexagon shows that we

only have 1/3 turn symmetry, 120°, of the traditional ball about the centroid of the hexagon.

It is harder to see but these traditional balls also have a half turn, 180°, about the midpoint of the edges
between two pentagons. On the Adidas ball the markings point to the axes of this rotations, in our
earlier picture the blue dot on the edge going from the middle panel to the lower left panel shows
where the axis is. These same symmetries are found on every hexagon or pentagon and edge between
two pentagons but are the only possible rotations that preserve the paneling. It can be shown that
there are 60 such rotations noting that in addition to the two 72°rotations of the pentagons there are
also two 144° rotations and we count not rotating the ball at all as one of the rotations. There are only

the 3 rotations of the hexagon, counting the non-rotation, and two half turns about each half turn axis.

Following are graphics showing the centers of the possible rotation symmetries and the centers super -
imposed on the traditional ball . The orange dots are centers of 5-fold rotation, the green dots are the
3-fold centers and the magenta dots are for the half turns. This set of 62 points is unique only up to

rotation of the entire ball but the relative positions are unique. This set will be used throughout this
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paper.

These rotations can be combined . So suppose, in the graphic below , that we first do a half turn in the
axes with end “M”, then the pentagon vertex marked “a” gets sent to the point marked “b”. Now we
rotate 1/3 turn clockwise on the axes marked N which ends in the center of a hexagon. That moves the

veertex “b” to the vertex “c” of that hexagon.

But "c" is on the original pentagon with centroid “O”and could have been rotated there just by a 1/5
turn counterclockwise about “O”. In fact it can be shown that the combined rotation of a half turn
about M followed by a 1/3 turn clockwise around N is just the rotation given by rotation of 1/5 turn
counterclockwise about “O” for all points on the ball. This might seem bizarre to someone who knows
plane transformation geometry, but it works on the surface of a ball and explains why pentagons are
such common figures in paneling a soccer ball. More generally we will see later that actually it is figures
with a symmetry preserved by a 1/5 turn that are important.

. The icosahedron and dodecahedron balls

The icosahedron and dodecahedron balls can be constructed directly from this set of rotation centers.
Since the icosahedron is known to have 12 vertices we can use the 1/5 turn axes. Here are graphics of
the icosahedron ball without and with the rotation centers.
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This might make a nice soccer ball with a small number of panels, perhaps with graphics or text in the
panels and different color panels. However, the 5 panels coming together at a vertex could be a sewing
problem.

For the dodecahedron there are 20 vertices so we can use the 1/3 turn axes as vertices.

; : ‘
This is actuated by many Nike balls such as the one in the picture above of two balls.
With these two well known geometrical shapes we add another ball with a less well known shape, the
icosidodecahedron . Here there are 12 pentagons, 20 triangles but 30 vertices, so we can use the 1/2

turn axes as vertexes. It is a bit more complicated ,so | color the panels on the left to make it easier to
understand. The right hand picture again shows the axes points.

3. Constructing the traditional ball and variations.

Constructing a perfect traditional soccer ball, one with regular hexagons, is difficult, especially starting
from a pentagon. Later we will show how to construct a perfect ball from a hexagon. However our

general method has an added advantage. We can construct a continuum of paneling with limiting
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figures the icosahedron and icosidodecahedron and the traditional soccer ball somewhere in the
middle.

Step 1: Pick a point on a circular arc strictly between a 1/5 turn, marked ¢, and a nearby 1/2 turn axis,
itb. The point we pick will be called a.

Step 2: Rotate a 1/5, 2/5, 3/5 and 4/5 turn about ¢ to get a pentagon, We will call this pentagonl.
Note the vertex at a.

Step 3 : Now execute 1/2 turn about b of pentagonl to get pentagon2. Note that the centroid of
pentagon2 is another 1/5 turn axis point and b is the midpoint between that axis point and c. Also note
that vertices of these two pentagons are facing each other.
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Step 4 . Rotate pentagon2 around c by 1/5, 2/5, 3/5, 4/5 turns to get 4 new pentagons.

Step 5: We next add in the stitching, that is edges between nearby pentagons.

When we measure the lengths of the edges of the hexagons we find that the edges that are on one
pentagon compared to the edges that go between pentagons are 12% shorter. So we needed to start
with a larger pentagonl to get a perfect traditional soccer ball. Later we will use a different method to
get a perfect ball.

4. A continuum of imperfect balls and other like balls.

If, in Step 1 of the construction above we adjust point a we can get other panelings. Here is a

continuum

COOe®

starting from the icosahedron on the, our imperfect ball of section 3 in the middle and the icosidodeca -
hedron on the right. Note the 5 triangular panels showing on both the right and left. In the middle
these become hexagons.

The important thing about pentagons is that they have 1/5 turn rotational symmetry. We could replace
our pentagon above by a differently oriented pentagon or a different shape as long as this symmetry
holds. The Copa America ball below will be a good example. For now we turn our pentagon upside
down with surprising results. Step 3 in our earlier construction now gives
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where the vertices are pointing away from point b . Continuing on with step 4 gives the picture

N\

But now the stitching is different, we get rectangles and triangles instead of hexagons. In fact each
panel corresponds to one axis point at its centroid for 62 panels.

This gives us a continuum from the icosahedron to the dodecahedron.

COPe@ L

5. The perfect traditional ball

In the last two sections we started with a pentagon of varying sizes and orientations and came up with
a paneling. However we had to estimate the proper size pentagon and did not quite get the perfect ball
with regular hexagons as well as pentagons. The problem is that the symmetry we are requiring on the
hexagon was only 1/3 turn symmetry but to get a regular pentagon we need 1/6 turn symmetry. So the

trick is to start with a regular hexagon. Since we are still requiring the same symmetry the pentagon
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still has the 1/5 turn symmetry and so our construction will require it to be regular also.

Unfortunately drawing a regular hexagon on a ball with the same spherical lengths of the sides is a
much harder problem than in the plane case. Specifically the Pythagorean theorem fails on the sphere.
So the only method | know to give the right answer requires algebra and the solution of non-linear
equations. So | will leave this for my more technical paper. The answer is that the common edge length
is precisely, not approximately or exactly, 0.406337892071491x(radius of ball) . This gives the following
two hexagons where the green dots which are centroids of these hexagons are our 1/3 turn axes points.
The line between two orange 1/5 turn axes coincides with common side and a magenta half turn axis is
the midpoint of the common side, in fact three of the sides of each have a 1/2 turn axis point as a
midpoint.

If we propagate these hexagons along the half turn axis midpoints we get the picture:

Notice here we have 5 regular hexagons bounding a pentagon, something you won’t see in the plane.
Also important is that 1/5 turn symmetry was not used to get this graphic.

So here is our perfect traditional soccer ball, shown without coloring so as not to obscure the edges.
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6. The Copa America 2024 Ball

As mentioned in the Introduction, Puma designed and manufactured a ball for the recently completed
2024 Copa America tournament. This is a good example of our methods as we can easily describe the
paneling.

Start by picking a 1/5 turn axis point for the center of a panel, somewhere near the point o above. We
see two obvious 1/3 axis points near a,b to use. The edge stitching between these points is not straight
but does seem to have half turn symmetry about a point near c so that point should be the 1/2 turn axis
between a,b. Thus we need to set the point d where this edge turns, unfortunately d is not an axis point
and is somewhat arbitrary. Then rotating about c will give the whole edge. Once we are satisfied we

can rotate 5 times around the 1/5 turn axis near o which will be the centroid of the panel.

Once we are satisfied we can rotate 5 times around the 1/5 turn axis at o, the centroid of the panel. We
apply our 1/5 turn about o four times to the segment between a and b to get our panel outlined in
green on the left. Finally we populate the this panel as we did with steps 3,4 to get approximation of
the paneling of the Copa American Ball on the right.
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7. The Adidas Olympic Replica Ball

The actual ball used in the 2024 Olympics,on the left, is complicated and the panels are not polygonal,
so they do not fit this article. However Adidas has marketed several less expensive replica balls such as
the one on the right. It is this ball that I will discuss here. There are 12 polygonal panels one of which is
shown above, although is is a bit hard to see that the top of this pentagon is in the white circular region.
But if you look at the identical white circular region at the bottom of the picture you will see the white
tops of two identical horizontally located pentagons. Unfortunately these pentagons do not have a
rotational symmetry so we do not have a dodecahedral ball. But Adidas clearly identifies two 1/3
symmetries at the sides of the panel with solid colored blue regions, the left one light and the right
darker. Also the center of the white circle is clearly an axis point of a 1/2 turn. If we place these points
on our ball of axis points in section 2 a similar relative position of 1/3 and 1/2 turns. If we assume these
point then we can find the two bottom points,marked 4,5 below left, and the top point, marked 2,
where the top sides and bottom sides intersect. These are not axis points and as with our perfect
traditional ball require some heavy math to get precisely. The green point at the bottom is one of our

half turn points and the side points, marked 1 and 3, are our 1/3 turns.

Above right is our completed paneling of this ball, the known half turns are marked in green while the
1/3 turns are in pink. We do not have 1/5 turn symmetry for this ball so our full group of rotational
symmetries is considerably smaller than for our traditional ball.



