
Real Orthogonal Transformations of 3 - space via Mathematica

Barry H Dayton https : // www .barryhdayton . space

The word "transformations" in the title implies that I am looking at orthogonal matrices geometrically.
Loosely people refer to these linear transformations as rotations and reflections. An orthogonal trans-
formation is even (direct) or odd (opposite) according to whether the matrix of the transformation has
determinant 1 or -1. In this note I show by means of a Mathematica procedure that even orthogonal
transformations are rotations and give the angle and axis of the rotation. Odd orthogonal transforma-
tions are rotary reflections, that is the composition of a reflection and a rotation in an axis perpendicu-
lar to the mirror of the reflection. Again I give a procedure finding the axis and angle of rotation. As
usual for me, I work numerically.

For even orthogonal transformations I have the following procedure with argument the even orthogo-
nal matrix and returning the angle and axis.

In [310] :=

EvenOrth2Rotation[U1_] := Module[{U, eigs, v1, v2, b, c, M, R, w},

U = Orthogonalize[U1 + RandomReal[{-1*^-5, 1*^-5}, {3, 3}]];

If[Det[U] ≠ 1, Echo["Not even, use OddOrth2RR"]; Abort[]];

eigs = Eigensystem[U];

If[eigs〚1, 1〛  1., v1 = Chop[eigs〚2, 1〛],

If[eigs〚1, 2〛  1., v1 = Chop[eigs〚2, 2〛],

If[eigs〚1, 3〛  1., v1 = Chop[eigs〚2, 3〛], Return["Fail"]]]];

b = Normalize[RandomReal[{-1, 1}, 3]];

v2 = Normalize[b - (v1.b) v1];

w = U.v2;

c = ArcCos[v2.w];

R = Chop[RotationMatrix[c, v1]];

If[Norm[R - U] > .01, c = -c];

R = Chop[RotationMatrix[c, v1]];

If[Norm[R - U] < .01, {c, v1}, Fail]]

As a random example let

In [3] := M1 = {{0.7737717265350375`, -0.6296380711474817`, 0.06952132461817584`},

{-0.10395959774273329`, -0.01795896138416882`, 0.9944193671400267`},

{-0.624875761453552`, -0.7766809995536654`, -0.07935305715700698`}};

I n [] : = M1 // MatrixForm

Ou t [] / /Ma t r i x F o rm=

0.773772 -0.629638 0.0695213

-0.10396 -0.017959 0.994419

-0.624876 -0.776681 -0.0793531

Note that M is orthogonal of determinant 1.

https://www.barryhdayton.space

I n [] : = M1.Transpose[M1]

Det[M1]

Ou t [] =

1., 2.08167× 10-16, -1.56125× 10-17,

2.08167× 10-16, 1., 9.71445× 10-17, -1.56125× 10-17, 9.71445× 10-17, 1.

Ou t [] =

1.

In [9] := M1data = EvenOrth2Rotation[M1]

Ou t [] =

{-1.73328, {0.89737, -0.351833, -0.266347}}

To check, I recover my matrix M1 by

I n [] : = rot1 = RotationMatrix[M1data〚1〛, M1data〚2〛]

Ou t [] =

{{0.773772, -0.629638, 0.0695213},

{-0.10396, -0.017959, 0.994419}, {-0.624876, -0.776681, -0.0793531}}

I n [] : = Norm[M1 - rot1]

Ou t [] =

9.68783× 10-16

For odd orthogonal transformations one exception is the inversion

-1 0 0

0 -1 0

0 0 -1

which is a rotary reflection but can be represented by the composition of any reflection and a half turn
in its perpendicular. So the next procedure simply returns “inflection” in this case. Otherwise it returns
the angle and axis of the rotation which will match the perpendicular of the reflection.

OddOrth2RR[U_] := Module[{eigs, v1, v2, b, w, ρ, σ},

If[Det[U] ≠ -1, Echo["Not odd, use EvenOrth2Rotation"]; Abort[]];

eigs = Eigensystem[U];

If[eigs〚1, 1〛  -1. && eigs〚1, 2〛  -1. && eigs〚1, 3〛  -1., Return["Inversion"]];

If[eigs〚1, 1〛  -1.`, v1 = Chop[eigs〚2, 1〛], If[eigs〚1, 2〛  -1.`,

v1 = Chop[eigs〚2, 2〛], If[eigs〚1, 3〛  -1.`, v1 = Chop[eigs〚2, 3〛], Return["Fail"]]]];

b = Normalize[RandomReal[{-1, 1}, 3]];

v2 = Normalize[b - (v1.b) v1];

w = U.v2;

If[Norm[w - v2] < .001, Return[{0, v1}]];

ρ = ReflectionMatrix[v1];

c = ArcCos[v2.w];

σ = RotationMatrix[c, v1];

If[Norm[σ.ρ - U] > 0.01`, c = -c];

σ = RotationMatrix[c, v1];

If[Norm[σ.ρ - U] < 0.01, {c, v1}, Fail]]

2 RealOrthogonal3Dtransformations.nb

Here an example is

In [305] :=

M2 = {{0.670820393249937`, -0.16245984811645334`, -0.7236067977499789`},

{-0.6881909602355871`, -0.5000000000000001`, -0.5257311121191336`},

{0.27639320225002084`, -0.85065080835204`, 0.4472135954999581`}};

M2 // MatrixForm

Out[306]//Matr ixForm=

0.67082 -0.16246 -0.723607

-0.688191 -0.5 -0.525731

0.276393 -0.850651 0.447214

In [309] :=

M2data = OddOrth2RR[M2]

Out[309]=

{-0.628319, {0.276393, 0.850651, 0.447214}}

I n [] : = rot2 = RotationMatrix[M2data〚1〛, M2data〚2〛]

Ou t [] =

{{0.823607, 0.307768, -0.476393},

{-0.217963, 0.947214, 0.235114}, {0.523607, -0.0898056, 0.847214}}

I n [] : = ref2 = ReflectionMatrix[M2data〚2〛]

Ou t [] =

{{0.847214, -0.470228, -0.247214},

{-0.470228, -0.447214, -0.760845}, {-0.247214, -0.760845, 0.6}}

I n [] : = rr = rot2.ref2;

rr // MatrixForm

Ou t [] / /Ma t r i x F o rm=

0.67082 -0.16246 -0.723607

-0.688191 -0.5 -0.525731

0.276393 -0.850651 0.447214

I n [] : = Norm[M2 - rr]

Ou t [] =

4.87461× 10-16

If we apply the algorithm to the reflection above

I n [] : = OddOrth2RR[ref2]

Ou t [] =

{0, {-0.276393, -0.850651, -0.447214}}

we get a rotation of angle 0, that is the identity. Reflections are here just a special case of rotary reflec-
tions with angle 0.

Here is an interesting phenomena, if a rotation matrix has finite even order n then the rotary reflection
with same axis also has order n, but if the order is odd then the rotary reflection has order 2 n. Here are
some examples.

I n [] : = rot3 = RotationMatrix[2 Pi/ 3,

{0.30353099910334314`, 0.9341723589627159`, -0.18759247408507984`}];

RealOrthogonal3Dtransformations.nb 3

I n [] : = rot3.rot3.rot3

Ou t [] =

1., -6.86156× 10-17, 5.55112× 10-17,

-1.05162× 10-16, 1., 3.06858× 10-17, -5.55112× 10-17, 4.89589× 10-17, 1.

So the rotation matrix has order 3. The reflection with the same axis is

I n [] : = ref3 = ReflectionMatrix[{0.30353099910334314`, 0.9341723589627159`, -0.18759247408507984`}]

Ou t [] =

{{0.815738, -0.567101, 0.11388},

{-0.567101, -0.745356, 0.350487}, {0.11388, 0.350487, 0.929618}}

We can construct the rotary reflection

I n [] : = rr3 = rot3.ref3

Ou t [] =

{{-0.546066, 0.0206847, 0.837487},

{-0.304235, -0.936339, -0.175244}, {-0.780547, 0.350487, -0.517595}}

I n [] : = rr3cube = rr3.rr3.rr3

Ou t [] =

{{0.815738, -0.567101, 0.11388},

{-0.567101, -0.745356, 0.350487}, {0.11388, 0.350487, 0.929618}}

Thus this does not have order 3, but

I n [] : = rr3cube.rr3cube

Ou t [] =

1., -1.48858× 10-16, -1.46519× 10-17,

-1.00709× 10-16, 1., 7.40833× 10-17, 2.29288× 10-16, -2.52181× 10-17, 1.

The rotary reflection rr3 has order 6. However if

I n [] : = rot4 = RotationMatrix[Pi/ 2,

{0.20910145332310015`, -0.609341288974087`, 0.7648397059316191`}]

Ou t [] =

{{0.0437234, -0.892254, -0.449412},

{0.637426, 0.371297, -0.67515}, {0.76927, -0.256947, 0.58498}}

I n [] : = rot4.rot4.rot4.rot4

Ou t [] =

1., -2.77556× 10-17, 2.22045× 10-16,

-1.11022× 10-16, 1., -2.77556× 10-16, 1.11022× 10-16, -2.77556× 10-16, 1.

This has order 4. The rotary reflection associated with this is

I n [] : = ref4 = ReflectionMatrix[{0.20910145332310015`, -0.609341288974087`, 0.7648397059316191`}]

Ou t [] =

{{0.912553, 0.254828, -0.319858},

{0.254828, 0.257406, 0.932097}, {-0.319858, 0.932097, -0.16996}}

4 RealOrthogonal3Dtransformations.nb

I n [] : = rr4 = rot4.ref4

Ou t [] =

{{-0.0437234, -0.637426, -0.76927},

{0.892254, -0.371297, 0.256947}, {0.449412, 0.67515, -0.58498}}

I n [] : = rr4.rr4.rr4.rr4

Ou t [] =

1., -5.78916× 10-18, 8.89495× 10-17,

-8.49495× 10-17, 1., -2.6744× 10-16, 1.17604× 10-16, -2.77451× 10-16, 1.

So the rotary reflection still has order 4. In the odd case the problem is that a point gets caught on the
wrong side of the mirror after one full rotation.

RealOrthogonal3Dtransformations.nb 5

