
Complex Projective solution set of circle x2 + y2 = 1

We  show  that  the  solution  set  of the  circle  x2 + y2 = 1  is topologically  equivalent  to the  unit  sphere.   It 

then  follows  that  the  complex  projective  solution  space  of any  non-singular  conic  is also  a sphere.

Parabola

In fact  our  first  step  is to show  that  the  complex  projective  solution  set  of the  parabola  y = x2 is topologi -

cally  equivalent  to the  complex  projective  paraboloid  z = x2 + y2 which  we  know  is topologically  a 

sphere  from  Chapter  2 of my  Surface  Story.

We  use  the  simple  fact  that  for  any  complex  number  w then  y = w2 gives  the  solution   {w,w^2}  for  y=x^2.   

In Mathematica

w = RandomComplex [{-10 - 10 I, 10 + 10 I}]

(y - x^2) /. Thread [{x, y} → {w, w^2}]

Out[  ]= -3.70333 - 1.25708 ⅈ
Out[  ]= 0. + 0. ⅈ

Conversely  given  y then  the  two  complex  square  roots  give  two  solutions  for  y-x^2.

In[  ]:= w = RandomComplex [{-10 - 10 I, 10 + 10 I}]

u = Sqrt [w]

v = -Sqrt [w]

(y - x^2) /. Thread [{x, y} → {u, w}]

(y - x^2) /. Thread [{x, y} → {v, w}]

Out[  ]= 9.03471 - 3.923 ⅈ
Out[  ]= 3.07281 - 0.638339 ⅈ
Out[  ]= -3.07281 + 0.638339 ⅈ
Out[  ]= 0. + 4.44089 × 10-16 ⅈ
Out[  ]= 0. + 4.44089 × 10-16 ⅈ

Thus  using  the  built  in Mathematica  functions  ReIm  and  Abs we  can  write  down  continuous  mutually  

inverse  functions Pdown from  the  solution  space  to the  unit  sphere  and Pup from  the  unit  sphere  back

to the  solution  space.

In[  ]:= Pdown [{u_, v_}] := Append [ReIm [u], Abs[v]]

Pup[{x_, y_, z_}] := {x + I y, (x + I y)^2}

Thus  for  the  u,v,w   immediately  above



In[  ]:= a = Pdown [{u, w}]

b = Pdown [{v, w}]

Out[  ]= {3.07281, -0.638339 , 9.84966 }

Out[  ]= {-3.07281, 0.638339 , 9.84966 }

Note  inverses

In[  ]:= {u, w}

Pup[a]

{v, w}

Pup[b]

Out[  ]= {3.07281 - 0.638339 ⅈ, 9.03471 - 3.923 ⅈ}
Out[  ]= {3.07281 - 0.638339 ⅈ, 9.03471 - 3.923 ⅈ}
Out[  ]= {-3.07281 + 0.638339 ⅈ, 9.03471 - 3.923 ⅈ}
Out[  ]= {-3.07281 + 0.638339 ⅈ, 9.03471 - 3.923 ⅈ}

More  generally

In[  ]:= {r, s} = RandomReal [{-10, 10}, 2];

{r, s, r^2 + s^2}

c = Pup[{r, s, r^2 + s^2}]

(y - x^2) /. Thread [{x, y} → c]

Pdown [c]

Out[  ]= {8.54435, -3.68288, 86.5696 }

Out[  ]= {8.54435 - 3.68288 ⅈ, 59.4423 - 62.9357 ⅈ}
Out[  ]= 0. + 0. ⅈ
Out[  ]= {8.54435, -3.68288, 86.5696 }

illustrating  that  Pdown, Pup go  to the  right  places  and  are  inverses  for  finite  solutions  of y - x2 and  

finite  points  on  z = x2 + y2.

The  projective  equation  for  the  parabola  is  y w - x ^ 2 = 0, setting  w=0  give  simply  x2 = 0  so x=0.   

Hence  the  only  complex  projective  infinite  point  on  the  parabola  is {0,1,0}.   Likewise  the  only  projective  

infinite  point  on  the  paraboloid  is {0,0,1,0}.   Our  transformations  do  not  allow  for  infinite  points  but  we  

can  see  we  are  on  the  right  track  by

In[  ]:= Pup[{100, 0, 10 000 }]

Out[  ]= {100, 10 000 }

As a number  in projective  space  this  is

(100, 10 000, 1}

which  is equivalent  by homogeneity   to
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In[  ]:= N[{100, 10 000, 1} / 10 000 ]

Out[  ]= {0.01, 1., 0.0001 }

Summarizing,  some  points  in the  complex  projective  space  visualized  by the  paraboloid  with  their  

complex  coordinates  on  the  right.

In[  ]:= Row[{Show [ContourPlot3D [x^2 + y^2 ⩵ z, {x, -4, 4}, {y, -4, 4}, {z, 0, 11},

Mesh → None, ContourStyle → Opacity [.8], Axes → False, Boxed → False ],

ParametricPlot3D [{t, 0, t^2}, {t, -3.3, 3.3}, PlotStyle → Blue ],

Graphics3D [{{Red, Ball [Passoc [#], .2] & /@ Keys [Passoc ]},

{Black, Text ["a", {0.3`, -0.3`, 0.4`}], Text ["b", {1.3`, -0.3`, 1.4`}],

Text ["c", {2.3`, -0.3`, 4.4`}], Text [Style ["d", 14], Passoc ["d"] + {.3, -.3, .3}],

Text ["e", {3.372813982557639` , -0.9383394620391801` , 10.249663040198211` }],

Text ["g", {1.3`, 1.7`, 5.4`}], Text ["h", {-0.7`, 2.2`, 7.8`}],

Text ["k", {2.4, 2.2, 9.3}]}}], ViewPoint → {4, 2, 0}, ImageSize → 200],

Column [{Row[{"a = ", ap}], Row[{"b = ", bp}], Row[{"c = ", cp}],

Row[{"d =", dp}], Row[{"e = ", ep}], Row[{"f = ", fp}],

Row[{"g = ", gp}], Row[{"h = ", hp}], Row[{"k = ", kp}]}]}]

Out[  ]=

a = {0, 0}

b = {1, 1}

c = {2, 4}

d ={2.2 + 1.2 ⅈ, 3.4 + 5.28 ⅈ}
e = {3.07281 - 0.638339 ⅈ, 9.03471 - 3.923 ⅈ}
f = {-3.07281 + 0.638339 ⅈ, 9.03471 - 3.923 ⅈ}
g = {1 + 2 ⅈ, -3 + 4 ⅈ}
h = {-1. + 2.5 ⅈ, -5.25 - 5. ⅈ}
k = {2.5 + 1.7 ⅈ, 3.36 + 8.5 ⅈ}

Note  that  the  blue  curve  is the  real  parabola.

Circle

This  follows  immediately  since  the  circle  is projectively  equivalent  to the  parabola.   However  we  give  

explicit  transformations  for  the  convenience  of the  reader.

We  recall  from  my  Plane  Curve  Book  that  there  is an invertible  projective  linear  transformation,  that  is 

FLT,  from  the  parabola  to the  circle  with  matrix

In[  ]:= P2C = {{1, 0, 0}, {0, -0.5`, 0.5`}, {0, -0.5`, -0.5`}}

Out[  ]= {{1, 0, 0}, {0, -0.5, 0.5}, {0, -0.5, -0.5}}
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and,  from  my  Surface  Story   an  invertible  projective  linear  transformation  from  the  paraboloid  to the  

sphere  given  by matrix

In[  ]:= PB2SP = 0, 0,
1
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Out[  ]= 0, 0,
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We  can  then  write  down  our  transformations

In[  ]:= Cdown [{x_, y_}] :=

TransformationFunction [PB2SP ][Pdown [TransformationFunction [Inverse [P2C]][{-y, x}]]]

Cup[{x_, y_, z_}] := TransformationFunction [P2C][

Pup[TransformationFunction [Inverse [PB2SP ]][{y, -x, z}]]]

The  unexpected  coordinates  are  because  of a slight  inconsistency  of the  two  previously  given  transfor -

mations  .

In[  ]:= Clear [a, b, c]

To illustrate

In[  ]:= a = N[{Cos[Pi / 3], Sin[Pi / 3]}]

ad = N[Cdown [{Cos[Pi / 3], Sin[Pi / 3] }]]

Out[  ]= {0.5, 0.866025 }

Out[  ]= {0.5, 0.866025 , 0.}

This  suggests  the  fact  that  Cdown embeds  the  circle  as the  equator  of the  unit  sphere.   In fact  it is easy  

to construct  complex  solutions  just  by  using  complex  arguments  for  Cos  and  Sin.

In[  ]:= b = N[{Cos[.2 - .3 ⅈ], Sin[.2 - .3 ⅈ]}]
Out[  ]= {1.0245 + 0.0604988 ⅈ, 0.207677 - 0.29845 ⅈ}

In[  ]:= Simplify [(x^2 + y^2 - 1) /. Thread [{x, y} → b]]

Out[  ]= -2.22045 × 10-16
- 1.38778 × 10-17 ⅈ

In[  ]:= bd = Cdown [b]

(x^2 + y^2 + z^2 - 1) /. Thread [{x, y, z} → bd]

Out[  ]= {0.937559 , 0.190053 , 0.291313 }

Out[  ]= 1.11022 × 10-16

One  observation  is that  although  the  real  circle  is bounded,  the  complex  circle  is not.   For  example  let
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In[  ]:= c = {15 ⅈ, Sqrt [1 + 15^2]}

N[Norm [c]]

(x^2 + y^2 - 1) /. Thread [{x, y} → c]

Out[  ]= 15 ⅈ, 226 

Out[  ]= 21.2368

Out[  ]= 0

But  Cdown[c] is still  on  the  unit  sphere,  but  close  to the  north  pole

In[  ]:= cd = Cdown [c]

Out[  ]= {0., 0.066519 , 0.997785 }

In fact,  using  homogenous  projective  coordinates   x ^ 2 + y ^ 2 = w ^ 2  for  the  circle   the  infinite  part  of 

the  complex  unit  circle  is found  by setting  w = 0  and  noticing

In[  ]:= Expand [(x + ⅈ y) (x - ⅈ y)]
Out[  ]= x2 + y2

So x + ⅈ y  = 0 or x - ⅈ y = 0.  By  homogeneity  we  can  divide  by x or y getting  the  two  homogeneous  

solutions  {ⅈ, 1, 0} or  (-ⅈ, 1, 0}.   Note  that  

In[  ]:= (x^2 + y^2 - 1) /. Thread [{x, y} → {t ⅈ, Sqrt [1 - (t ⅈ)^2]}]
Out[  ]= 0

so gives  point  in our  solution  set  for  arbitrary  large  t, t positive  or negative

In[  ]:= Limit [ Cdown [{t ⅈ, Sqrt [1 - (t ⅈ)^2]}], t → ∞]

Limit [ Cdown [{t ⅈ, Sqrt [1 - (t ⅈ)^2]}], t → -∞]

Out[  ]= {0., 0., 1.}

Out[  ]= {0., 0., -1.}

and  infer  that  {ⅈ , 1} goes  to the  north  pole  and  {1, ⅈ} goes  to the  south  pole  of the  sphere.   Our  picture  

here  is

In[  ]:= a = {0.5`, 0.8660254037844386` };

b = {1.0245013402279206` + 0.06049884291265947` ⅈ,
0.20767670305628436` - 0.29845016188195167` ⅈ};

c = {0.` + 15.` ⅈ, 15.033296378372908` };

d = {0.49999999999999956` + 1.1618950038622249` ⅈ, 1.5` - 0.38729833462074126` ⅈ};
e = {0.8988764044943819` - 0.1863272354132246` ⅈ,

0.5617977528089886` + 0.2981235766611593` ⅈ};
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In[  ]:= ad = Cdown [a]

bd = Cdown [b]

cd = Cdown [c]

dd = Cdown [d]

ed = Cdown [e]

Out[  ]= {0.5, 0.866025 , 0.}

Out[  ]= {0.937559 , 0.190053 , 0.291313 }

Out[  ]= {0., 0.066519 , 0.997785 }

Out[  ]= {0.2, 0.6, 0.774597 }

Out[  ]= {0.8, 0.5, -0.331662 }

In[  ]:= RowShow ContourPlot3D [x^2 + y^2 + z^2 ⩵ 1, {x, -1.01, 1.01}, {y, -1.01, 1.01},

{z, -1.01, 1.01}, Mesh → None, ContourStyle → Opacity [.8], Axes → False,

Boxed → False ], ParametricPlot3D [{Cos[t], Sin[t], 0}, {t, -Pi, Pi}, PlotStyle → Blue ],

Graphics3D {White, Ball [{0, 0, 1}, .05], Ball [{0, 0, -1}, .05]},

{Red, Ball [ad, .05], Ball [bd, .05], Ball [cd, .05], Ball [dd, .05], Ball [ed, .05]},

Black, Text ["a", ad + {0.1`, -0.1`, 0.1`}], Text ["b", bd + {0`, -0.1`, 0.1`}],

Text ["c", cd + {-0.05`, 0.1`, -0.05` }], Text [Style ["d", 14], dd + {.15, .2, .2}], Text [

Style ["e", 14], ed + {.04, .03, .22}], Text "i", {0, 0, 1} + {0`, -0.1`, -0.03` },
ViewPoint → {2, 1, 1.5}, ImageSize → 200, Column [{Row[{"a = ", a}], Row[{"b = ", b}],

Row[{"c = ", c}], Row[{"d =", d}], Row[{"e = ", e}], "i (infinite point )" }]

Out[  ]=

a = {0.5, 0.866025 }

b = {1.0245 + 0.0604988 ⅈ, 0.207677 - 0.29845 ⅈ}
c = {0. + 15. ⅈ, 15.0333 }

d ={0.5 + 1.1619 ⅈ, 1.5 - 0.387298 ⅈ}
e = {0.898876 - 0.186327 ⅈ, 0.561798 + 0.298124 ⅈ}
i (infinite point )

In[  ]:= d = Cup[dd]

Out[  ]= {0.5 + 1.1619 ⅈ, 1.5 - 0.387298 ⅈ}
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