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In the  In the  1965-66  school  year  I took  an upper  level  abstract  algebra  course  from  Paul  Yale,  a profes -

sor  at Pomona  College.   His  motivation  for  teaching  the  course  is that  he was  writing  a book  Geometry  

and  Symmetry  which  was  published  by Holden-Day  in 1968.   Yale  wanted  to learn  more  group  theory  for  

his  book  so he chose  the  brand  new  textbook  Topics  in Algebra  by  I.N  Herstein.   This  was  a mistake  for  

two  reasons.   First,  it was  much  too  hard  for  most  of his  students,  a fact  that  Herstein  later  rectified  by 

writing  a later  version.   Second,  Herstein  used  the  functional  notation  xf  instead  of the  f (x) that  most  of 

us are  more  familiar.   But  Yale  then  used  this  notation  in his  book  which  makes  it unreadable  for  mod -

ern  readers.  

There  was  another  problem  with  Yale'  s book  which  was  unavoidable  at that  time,  the  lack  of a good  

overall   group  of transformations  to cover  all  the  situations  Yale  studied  .  Mathematica  has  now  pro -

vided  this  group,  invertible  transformation  functions,  and  they  can  be easily  calculated  .  Now  it is 

possible  to go into  much  more  detail  .

My plan  is to revisit  the  material  in Yale'  s book  using  Mathematica  and  Transformation  Functions  .  As  I 

write  material  I will  post  it .  I will  keep  going  as long  as I can  given  my  age,  hopefully  I will  ultimately  

cover  much  of the  book  .  The  book  will  be  published  in two  formats,  as text,  HTML  or PDF,  and  as a 

Mathematica  notebook  so those  with  Mathematica  can  use  my  functions  .  The  functions  themselves  

will  also  be offered  in a separate  notebook  .



1. Matrix Groups
I will  discuss  some  elementary  matrix  theory  here  mostly  to show  Mathematica  usage  for  those  unfamil -

iar  with  it.   In Mathematica  a matrix  is a 2 - dimensional  array  .  A typical  3×3 matrix  look  like

In[  ]:= A = {{1, 2, 3}, {4, 5, 6}, {7, 8, 9}};

We  can  make  it display  like  a usual  matrix

In[  ]:= A // MatrixForm

Out[  ]//MatrixForm=

1 2 3

4 5 6

7 8 9

The  element  in the  second  row,  third  column  can  be recovered  by 

In[  ]:= A〚2, 3〛
Out[  ]= 6

To multiply  a matrix  by  a vector  we  use  the  dot

In[  ]:= A.{1, 2, 3}

Out[  ]= {14, 32, 50}

Note  Mathematica automatically  converts  the  row  vector  to column  vector  form.   So  this  could  be 

written

In[  ]:= A.{{1}, {2}, {3}}

Out[  ]= {{14}, {32}, {50}}

where  now  the  output  is a column.

Matrix  multiplication  is given  by the  same  . function  where  the  first  matrix  is multiplied  by each  column  

of the  second,  but  as above  giving  columns.   If B is the  matrix

In[  ]:= B = {{1, -1, 3}, {2, 1, 2}, {3, -1, 5}};

B // MatrixForm

Out[  ]//MatrixForm=

1 -1 3

2 1 2

3 -1 5

Then

In[  ]:= A.B // MatrixForm

Out[  ]//MatrixForm=

14 -2 22

32 -5 52

50 -8 82
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Note  the  matrix  form  matrices  are  not  Mathematica  variables  but  if you  cut  and  paste  Mathematica  

can  still  understand.

In[  ]:=

1 2 3

4 5 6

7 8 9

.

1 -1 3

2 1 2

3 -1 5

Out[  ]= {{14, -2, 22}, {32, -5, 52}, {50, -8, 82}}

or

In[  ]:=

1 2 3

4 5 6

7 8 9

.

1 -1 3

2 1 2

3 -1 5

// MatrixForm

Out[  ]//MatrixForm=

14 -2 22

32 -5 52

50 -8 82

The  identity  matrix  ℑn is the  n×n   matrix  with  diagonal  entries  1 and  other  entries  0.

In[  ]:= ℑ3 = IdentityMatrix [3] // MatrixForm

Out[  ]//MatrixForm=

1 0 0

0 1 0

0 0 1

A matrix  A is invertible if there  is a matrix  B so that   A.B = B.A = ℑn for  suitable  n.   It can  be shown  that  

for  this  to happen  both  matrices  must  be  n×n   for  the  same  n.  Although,  in general,  matrix  multiplica -

tion  is not  commutative  in this  case  given  A is a square  matrix  it is known  that  one  of  A.B = ℑn or 

B.A = ℑn already  implies  they  are  inverses,  that  is invertible.  Almost  all  square  matrices  in this  book  are  

assumed  invertible.

Notice  that  for  the  matrix  B above

In[  ]:= B

Out[  ]= {{1, -1, 3}, {2, 1, 2}, {3, -1, 5}}

that  

In[  ]:= B-1

Out[  ]= 1, -1,
1

3
, 

1

2
, 1,

1

2
, 

1

3
, -1,

1

5


not  the  actual  

In[  ]:= Inverse [B]

Out[  ]= -
7

4
, -

1

2
,
5

4
, {1, 1, -1}, 

5

4
,
1

2
, -

3

4


Thus  we  must  be  careful  to not  use  the  superscript  - 1 in the  matrix  context.   More  generally,  to get  the  

power  of a matrix,  say  A.A.A  use  
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In[  ]:= MatrixPower [A, 3]

Out[  ]= {{468, 576, 684}, {1062, 1305, 1548 }, {1656, 2034, 2412 }}

not  

In[  ]:= A^3

Out[  ]= {{1, 8, 27}, {64, 125, 216}, {343, 512, 729}}

So,  unfortunately  we  must  use  the  term  Inverse [B]  or  MatrixPower [B, -1] for  the  inverse  of a matrix  in 

Mathematica.

Incidentally  the  matrix  A above  is not  invertible

In[  ]:= MatrixPower [A, -1]

MatrixPower : Matrix {{1, 2, 3}, {4, 5, 6}, {7, 8, 9}} is singular .

Out[  ]= MatrixPower [{{1, 2, 3}, {4, 5, 6}, {7, 8, 9}}, -1]

an error  message  is given  when  trying  to invert  it , non-invertible  matrices  are  called  singular.   See  a 

linear  algebra  book  or my  Appendix  1 of my  Plane  Curve  book  for  a full  discussion  of invertibility,  

particularly  in the  difficult  case  of numerical  matrices.

Given  this,  I define  a  matrix  group   to be  a set  of  invertible  matrices  of the  same  size  so that  if A, B 

are  in the  group  so is A.B, Inverse [A] and  Inverse [B].

Two  trivial  examples  are  the  zero  group  {ℑ} and  the  full  set  of all  invertible  n×n  matrices.  In the  latter

case  this  is because  the  inverse  of an invertible  matrix  is by  definition  and  the  product  of invertible  

matrices  is invertible  because  Inverse [A.B] = Inverse [B].Inverse[A].

Matrix  groups  may  be finite  or infinite.   For  simple  example  of a finite  Matrix  group,  let   k be  a fixed  odd  

integer

In[  ]:= A = N[{{Cos[2 Pi / k], -Sin[2 Pi / k]}, {Sin[2 Pi / k], Cos[2 Pi / k]}}]

Out[  ]= Cos
6.28319

k
, -1. Sin

6.28319

k
, Sin

6.28319

k
, Cos

6.28319

k


where  k is a positive  odd  integer  .  We  will  show  the  powers  of A forms   a group  with  k  elements.   

For  now  let   k = 5.

In[  ]:= A5 = A /. {k → 5}

Out[  ]= {{0.309017 , -0.951057 }, {0.951057 , 0.309017 }}

The  powers  are  given  by 

In[  ]:= RecurrenceTable [{P[i + 1] ⩵ A5.P[i], P[1] ⩵ A5}, P, {i, k}]

Out[  ]= RecurrenceTable [{P[1 + i] ⩵ {{0.309017 , -0.951057 }, {0.951057 , 0.309017 }}.P[i],

P[1] ⩵ {{0.309017 , -0.951057 }, {0.951057 , 0.309017 }}}, P, {i, k}]

Note  the  last  matrix  is the  identity  matrix  so this  will  repeat  .  The  reader  with  Mathematica should  try  

some  more  of these.
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Many  important  matrix  groups  are  important  .  Geometrically  matrices  with  positive  determinants  are  

orientation  preserving.   Historically  when  most  math  problems  came  with  integer  coefficients  determi -

nants  were  useful  for  calculation  since  one  could  avoid  fractions  or decimals.   Nowadays  we  are  

allowed  to use  decimals  so determinants  are  an inefficient  way  to calculate.   Mathematica  can  calcu -

late  the  determinant  of a square  matrix  for  you  if you  need  it.

The  important  point  is that  determinants  satisfy  

A is invertible if and only if Det[A] ≠ 0 (1)

Det[A.B] = Det[A] × Det[B] (2)

Det[Inverse[A]] = 1 / Det[A] (3)

The  possible  problem  with  (1)   is that  with  numerical  matrices  not  being  zero  is a tricky  concept  so (1)  

should  just  be  used  in theory,   again  see  my  Appendix  1 in my  Plane  Curve  Book.

But  (1),   (2),  (3)  together  imply  that  the  set  of matrices  with  positive  determinant   form  a matrix  group  

as does  the  set  of matrices  with  determinant  1.

Another  important  matrix  group  is the  group  of orthogonal  matrices.   A square  matrix  is orthogonal if 

either  one  of the  following  are  true

Norm[A.v] = Norm[v] for every vector v (4)

Inverse[A] = Transpose[A] (5)

There  actually  are  many  more  characterizations  of orthogonality  .  In (4)  Norm[v]  is also  known  as the  

length  of v or |v|.   For  (5)  the  transpose  changes  rows  to columns.   Transpose[A]  is also  given  by A^T

In[  ]:= Transpose [{{1, 2, 3}, {4, 5, 6}, {7, 8, 9}}] // MatrixForm

Out[  ]//MatrixForm=

1 4 7

2 5 8

3 6 9

The  reader  can  check  using  random  matrices  that  transpose  anti-commutes  with  multiplication  and  

commutes  with  inverses  so

Transpose[A.B] = Transpose[B].Transpose[A] (6)

Inverse[Transpose[A]] = Transpose[Inverse[A]] (7)

Then  one  can  show  the  set  of orthogonal  matrices  form  a group   using  (5).

Finally  one  can  show  that  all  invertible  matrices  of the  forms

In[  ]:= {{a, b, c}, {e, f, g}, {0, 0, 1}} // MatrixForm

Out[  ]//MatrixForm=

a b c

e f g

0 0 1

form  a group  and  in fact  a matrix  of this  form  is invertible  if and  only  if
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In[  ]:= {{a, b}, {e, f}} // MatrixForm

Out[  ]//MatrixForm=

a b

e f

is invertible.   Moreover  if this  latter  matrix  is orthogonal.  A similar  thing  holds  for  4×4  or  larger  matrices.

2. Transformation Functions

2.1 Definition  and general  properties

While  matrix  groups  are  interesting  and  have  been  thoroughly  studied  by  mathematicians  they  are  are  

not  geometric  transformation  groups.   First  of all  they  are  not  transformations  although  given  a matrix  

A there  is an associated  linear  transformation  given  by A.#& in Mathematica.  As  an example

In[  ]:= A = {{2, 1}, {1, 4}};

A // MatrixForm

TA = A.# &

Out[  ]//MatrixForm=

2 1

1 4

Out[  ]= A.#1 &

In[  ]:= TA[{x, y}]

Out[  ]= {2 x + y, x + 4 y}

This  fixes  one  problem,  but  there  is a bigger  problem,  as geometrical  transformations  linear  transforma -

tions  only  give   rotations  about  the  origin  and  reflections  in lines  through  the  origin.   We  need  general  

rotations  about  any  point,  reflections  about  any  line,  also  translations.    So  we  need  to extend  our  set  of 

transformations.   These  were  originally  used  in Algebraic  Geometry  for  transforming  the  projective  line.   

The  first  general  discussion  that  I am  aware  of is in Shreeram S. Abhyankar’s  book  Algebraic  geometry  

for  Scientists  and  Engineers  where  he has  an entire  chapter  titled   fractional  linear  Transformations.  He 

is particularly  interested  in using  these  for  transformations  of projective  spaces  which  he defines  in this  

chapter.    In  But  the  authors  of Mathematica,  and  I have  used  them  for  general  transformations  of 

Euclidean  space.   The  observation  here  is that  a translation  of the  Euclidean  plane  or space  is a linear  

transformation  of  projective  space.   Later  chapters  of this  book  may   get  to projective  transformations,  

but  I have  discussed  fractional  linear  transformations  (FLT)  in the  context  of projective  transformations  

in my  three  geometry  books  on  plane  curves,  space  curves  and  surfaces.

Transformation  functions  are  built  in objects  in Mathematica  .  They  are  defined  by using  matrices,  but  

for  the  plane  we  use  a 3×3 matrix  and  for  space  a 4×4 matrix.   We  get  rational  functions,  that  is the  

coordinates  are  given  by fractions.  The  definition  in the  plane  case  is  given
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In[  ]:= A = {{a[1, 1], a[1, 2], a[1, 3]}, {a[2, 1], a[2, 2], a[2, 3]}, {a[3, 1], a[3, 2], a[3, 3]}};

A // MatrixForm

Out[  ]//MatrixForm=

a[1, 1] a[1, 2] a[1, 3]

a[2, 1] a[2, 2] a[2, 3]

a[3, 1] a[3, 2] a[3, 3]

In[  ]:= TransformationFunction [A][{x, y}]

Out[  ]= 
x a[1, 1] + y a[1, 2] + a[1, 3]

x a[3, 1] + y a[3, 2] + a[3, 3]
,
x a[2, 1] + y a[2, 2] + a[2, 3]

x a[3, 1] + y a[3, 2] + a[3, 3]


There  is a similar  definition  in the  space  case  .  Notice  the  two  coordinates  have  the  same  denominator.   

An important  thing  to notice  is that  even  though  we  used  a 3×3 matrix  the  argument  is a 2 dimensional  

vector.   As  another  example   

In[  ]:= B = {{1, 2, 3}, {4, 5, 6}, {7, 8, 9}};

In[  ]:= TransformationFunction [B][{11, 12}]

Out[  ]= 
19

91
,
55

91


Linear  functions  are  a special  case,  for  example  the  linear  transformation  T  defined  above  is given  by 

In[  ]:= TFA = TransformationFunction [{{2, 1, 0}, {1, 4, 0}, {0, 0, 1}}]

Out[  ]= TransformationFunction 
2 1 0

1 4 0

0 0 1



In[  ]:= TFA[{x, y}]

Out[  ]= {2 x + y, x + 4 y}

Note  the  last  row  and  column  are  {0,0,1}.   

Another  example  is  

In[  ]:= L = {{1, 0, 5}, {0, 1, -6}, {0, 0, 1}}

Out[  ]= {{1, 0, 5}, {0, 1, -6}, {0, 0, 1}}

In[  ]:= TL = TransformationFunction [L]

Out[  ]= TransformationFunction 
1 0 5

0 1 -6

0 0 1



In[  ]:= Then

In[  ]:= TL[{3, 5}]

Out[  ]= {8, -1}

which  is just  a translation  of the  point  {x,y}  by  the  vector  {5,-6}.   Combining  these  examples  
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In[  ]:= TL[TFA[{x, y}]]

Out[  ]= {5 + 2 x + y, -6 + x + 4 y}

Note  also  

In[  ]:= TLA = TransformationFunction [{{2, 1, 5}, {1, 4, -6}, {0, 0, 1}}]

Out[  ]= TransformationFunction 
2 1 5

1 4 -6

0 0 1



In[  ]:= TLA[{x, y}]

Out[  ]= {5 + 2 x + y, -6 + x + 4 y}

A very  important  fact  about   fractional  linear  transformations  is the  composition  formula  for  matrices  

K, L

TransformationFunction [K][TransformationFunction [L]] =

TransformationFunction [K.L]
(8)

In my  three  geometry  books,  Plane  Curves,  Space  Curves,  Surfaces  I use  fractional  linear  transforma -

tions  with  notation  flt[p,A]  , and  variations,   interchangeably  as transformation  functions.   At  some  

points  TransformationFunctions  are  used  to generate   flt.   Transformation  functions  as functions  give  

the  same  values  flt  functions.   But  Mathematica  treats  them  differently.   In Mathematica  Transformation -

Functions  are  a different  data  type  than  functions.   This  will  be  particularly  important  working  with  

groups  of TransformationFunctions  where  composition  of functions  is heavily  used.   While  (8)   is not  

true  for  TransformationFunctions  it does  define  composition.   The  matrix  multiplication  is easy  for  

Mathematica  but  composition  of functions  is difficult  if it is wanted  in the  simplified  form  of a Transfor -

mationFunction.   Mathematica  will  o�en  leave  function  composition  unevaluated  unless  actual  numeri -

cal  values  are  used.   The  correct  method  for  composing  Transformation  Functions  is using  the  operator  

@*   Consider  the  example  above

In[  ]:= TL[TFA]

Out[  ]= TransformationFunction 
1 0 5

0 1 -6

0 0 1

TransformationFunction 
2 1 0

1 4 0

0 0 1



In[  ]:= TL@* TFA

Out[  ]= TransformationFunction 
2 1 5

1 4 -6

0 0 1



In the  first  case  we  just  get  an unevaluated  composition,  in the  second  we  get  an actual  Transformation -

Function  .

Mathematica  should  have  a test  for  a function  being  a TransformationFunction,   here  is one
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In[  ]:= TransformationFunctionQ [f_] :=

If[Length [Dimensions [TransformationMatrix [f]]] ⩵ 2, True, False ]

Another  function  that  is be  useful  for  invertible  transformations

In[  ]:= InverseTF [α_] := TransformationFunction [Inverse [TransformationMatrix [α]]]

For  example  

In[  ]:= InverseTF [TL]

Out[  ]= TransformationFunction 
1 0 -5

0 1 6

0 0 1



Note  Mathematica'  s InverseFunction  will  also  work

In[  ]:= InverseFunction [TL]

Out[  ]= TransformationFunction 
1 0 -5

0 1 6

0 0 1



2.2 Fundamental  theorems  on TransformationFunctions

The  fundamental  theorems  say   that,  as a function,  a TransformationFunction  defined  by a n×n  matrix  

is determined  by its  action  on  n+1  general  position  points.   General  position  is slightly  more  general  

than  linearly  independent.   Rather  than  give  a definition  I will  give  test  for  general  position  in our  

present  context.   Suppose  one  has  n+1  points  in ℝn, Euclidean  n-space.   Write  these  points  as column  

vectors  v[1],v[2],…,v[n+1],  append  the  number  1 to the  bottom  of each  and  construct  the   (n+1)×(n+1)  

matrix  with  these  new  columns.   If this  matrix  is invertible  then  the  original  points  were  in general  

position.

The  main  example  in 2 space  is the  example  {0,0},  {1,0},{0,1},  our  matrix  is 

In[  ]:= gpm = {{0, 1, 0}, {0, 0, 1}, {1, 1, 1}};

gpm // MatrixForm

Out[  ]//MatrixForm=

0 1 0

0 0 1

1 1 1

In[  ]:= Inverse [gpm]

Out[  ]= {{-1, -1, 1}, {1, 0, 0}, {0, 1, 0}}

Since  A has  an inverse,  the  set  {0,0},  {1,0},{0,1}  is in  general  position.   In the  algorithms  below  we  will  

use  the  test  for  invertibility  that  Det[A]  is not  zero,   theoretically  this  is right  but  there  are  possible  

numerical  issues  we  will  ignore.   If the  absolute  value  of the  determinant  is bigger  than  .0001  we  will  

accept  the  matrix  as invertible  below.   For  this  example  there  is no  problem
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In[  ]:= Det[gpm]

Out[  ]= 1

With  this  understanding  we  give  our  fundamental  theorems  for  dimensions  2, 3 as algorithms  

In[  ]:= Options [getTF2D ] = {returnMatrix → False };

getTF2D [P_, Q_, OptionsPattern []] := Module [{A, B, M},

A = {{P〚1, 1〛, P〚2, 1〛, P〚3, 1〛}, {P〚1, 2〛, P〚2, 2〛, P〚3, 2〛}, {1, 1, 1}};

B = {{Q〚1, 1〛, Q〚2, 1〛, Q〚3, 1〛}, {Q〚1, 2〛, Q〚2, 2〛, Q〚3, 2〛}, {1, 1, 1}};

If[Abs[Det[A]] < 1.*^-4, Echo ["P not in general position "]; Abort []];

If[Abs[Det[B]] < 1.*^-4, Echo ["Q not in general position "]; Abort []];

M = B.Inverse [A];

If[OptionValue [returnMatrix ], Return [M]];

TransformationFunction [M]

]

In[  ]:= Options [getTF3D ] = {returnMatrix → False };

getTF3D [P_, Q_, OptionsPattern []] := Module [{A, B, M},

A = {{P〚1, 1〛, P〚2, 1〛, P〚3, 1〛, P〚4, 1〛}, {P〚1, 2〛, P〚2, 2〛, P〚3, 2〛, P〚4, 2〛},
{P〚1, 3〛, P〚2, 3〛, P〚3, 3〛, P〚4, 3〛}, {1, 1, 1, 1}};

B = {{Q〚1, 1〛, Q〚2, 1〛, Q〚3, 1〛, Q〚4, 1〛}, {Q〚1, 2〛, Q〚2, 2〛, Q〚3, 2〛, Q〚4, 2〛},
{Q〚1, 3〛, Q〚2, 3〛, Q〚3, 3〛, Q〚4, 3〛}, {1, 1, 1, 1}};

If[Abs[Det[A]] < 1.*^-4, Echo ["P not in general position "]; Abort []];

If[Abs[Det[B]] < 1.*^-4, Echo ["Q not in general position "]; Abort []];

M = B.Inverse [A];

If[OptionValue [returnMatrix ], Return [M]];

TransformationFunction [M]

]

For  example  if we  wish  to find  a Transformation  Function  taking  the  plane  triangle  Δ1 with  vertices  

{{1,1},  {2,1},{2,3}}  to the  triangle  Δ2 with  vertices  {{-1,0},{0,1},{1,0}}  then  

In[  ]:= τ = getTF2D [{{1, 1}, {2, 1}, {2, 3}}, {{3, 0}, {4, 1}, {5, 0}}]

Out[  ]= TransformationFunction 
1

1

2

3

2

1 -
1

2
-

1

2

0 0 1


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Out[  ]=

{1, 1} {2, 1}

{2, 3}

{3, 0}

{4, 1}

{5, 0}

Δ1

Δ2

We  can  use  these  algorithms  to change  my  fractional  linear  transformation  is my  previous  books  to 

transformationFunctions   we  have

In[  ]:= flt2TF2D [α_] := Module [{a0, a1, a2},

a0 = α@{0, 0};

a1 = α@{1, 0};

a2 = α@{0, 1};

getTF2D [{{0, 0}, {1, 0}, {0, 1}}, {a0, a1, a2}]]

For  instance  if I apply  this  to a linear  function  defined  by a matrix

In[  ]:= Lf1 = {{1, 3}, {2, -1}}.# &

Out[  ]= {{1, 3}, {2, -1}}.#1 &

In[  ]:= σ = flt2TF2D [Lf1]

Out[  ]= TransformationFunction 
1 3 0

2 -1 0

0 0 1



In 3 dimensions  we  have

In[  ]:= flt2TF3D [α_] := Module [{a0, a1, a2, a3},

a0 = α@{0, 0, 0};

a1 = α@{1, 0, 0};

a2 = α@{0, 1, 0};

a3 = α@{0, 0, 1};

getTF3D [{{0, 0, 0}, {1, 0, 0}, {0, 1, 0}, {0, 0, 1}}, {a0, a1, a2, a3}]]

The  theoretical  implications  of the  Fundamental  Theorems  are  perhaps  more  important  than  the  

practical  ones.   Since  the  action  on  any  3 general  position  points  on  the  plane,   4 points  in 3 space,  the  

action  of each  point  is important.   Heuristically  this  implies  that  different  Transformation  Functions  will  

send  a random   point  to a different  place.   This  is confirmed  in practice,  in fact  the  point  doesn’t  need  

to be very  random,  a pseudo  random  point  with  decimal  components  of 3  digits  is o�en  random  

enough  in a given  situation.   In what  follows  we  will  o�en  call  such  a point  a test  point  and  we  will  infer  

that  two  Transformation  Functions  that  send  a test  point  to sufficiently  close  points,  by  default  the  

allowable  error  is .001,   are  considered  equal.   I’m  sure  there  will  be  objections  from  the  math  purists  

but  in practice  this  works  well  and  quickly.
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It should  be noted,  however,  that  this  single  test  point  test  works  only  in the  general  case  when  we  are  

working  with  a large  family  of Transformation  Functions  independent  of a geometrical  object.   Later  

when  we  work  inside  a group  of Transformation  Functions  and  test  points,  such  as vertices,  midpoints  

and  centroids,  come  from  a geometric  object  then  it is expected  that  the  “test  points”  we  use  will  be  

sent  to the  same  value  by different  group  elements.

2.3 Types of Transformation  Functions

If for  no  other  reason  Transformation  Functions  are  important  with  Mathematica  because  there  are  

built-in  constructions  of important  transformations.   For  example  in Chapter  3 we  will  consider  rota -

tions   of the  sphere,  these  are  all  orthogonal  linear  transformations,  but  because  Mathematica has  a 

general  construction  of rotations  with  different  axis  we  will  view  them  as Transformation  Functions.

The  Transformation  Functions  in this  section  are  all  isometries, also  known  as rigid  motions,  they  

preserve  Euclidean  distance  and  hence  Euclidean  geometry.   The  common  feature  is that  the  upper  le�  

square  in the  Transformation  Matrix  is an orthogonal  matrix.    All  Transformation  Matrices  that  give   

isometries  will  be  one  of these  types.   In 2D  we  will  do  this  classification.

2.3.1  Rotation  Transforms

Although  Mathematica  has  many  variations  the  most  useful  format  for   us  is 

In[  ]:= RotationTransform [θ, v]

Out[  ]= RotationTransform [θ, v]

where  θ is an  angle  in radians  and  ax is the  axis,  a point,  center,  in two  dimensions  or a direction  vector  

vector  in 3 dimensions.   If the  axis  does  not  go through  the  origin,  it always  will  in Chapter  3, then  the  

syntax  is 

In[  ]:= RotationTransform[θ, v, p]

Out[  ]= RotationTransform [θ, v, p]

where  p is a point  on  the  axis  and  v is a direction  vector  .  Mathematica  will  automatically  determine  

whether  it is 2D  or 3D  by the  number  of components  of v.   If v is missing  it will  be  assumed  that  we  are  

in the  2 dimension  case  with  center  the  origin.

A RotationTransform  with  θ =   (Pi)  is called  a half  turn.   It will  be  its  own  inverse.   Although  we  have  an 

inversion  function  note  that  in general  the  inverse  of a rotation  transform  of angle  θ is the  transform  

with  same  axis  and  angle  -θ  For  example

In[  ]:= RotationTransform [Pi / 5 ]@* RotationTransform [-Pi / 5]

Out[  ]= TransformationFunction 
1 0 0

0 1 0

0 0 1



Note  that  when  defining  a rotation  transform  the  TransformationMatrix  is returned  rather  than  the  
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angle.

In[  ]:= RotationTransform [Pi / 5]

Out[  ]= TransformationFunction 

1

4
× 1 + 5  -

1

2

1

2
× 5 - 5  0

1

2

1

2
× 5 - 5  1

4
× 1 + 5  0

0 0 1



If Mathematica  know  an exact  Transformation  Matrix  it will  give  it as in this  case.   I will  usually  bypass  

this  with  

In[  ]:= N[RotationTransform [Pi / 5]]

Out[  ]= TransformationFunction 
0.809017 -0.587785 0.

0.587785 0.809017 0.

0. 0. 1.



or just  

In[  ]:= ζ = RotationTransform [2 Pi / 5.]

Out[  ]= TransformationFunction 
0.309017 -0.951057 0.

0.951057 0.309017 0.

0. 0. 1.



Notice  

In[  ]:= Cos[2 Pi / 5.]

Sin[2 Pi / 5.]

Out[  ]= 0.309017

Out[  ]= 0.951057

so one  may  deduce  the  rotation  angle  from  this  RotationTransform  

In[  ]:= ArcCos [TransformationMatrix [ζ ]〚1, 1〛]
Out[  ]= 1.25664

where

In[  ]:= N[2 Pi / 5]

Out[  ]= 1.25664

although  we  have  to treat  the  values  of ArcCos with  care  .

More  generally  we  have

In[  ]:= RotationTransform [θ]@*RotationTransform [ϕ] = RotationTransform [θ + ϕ]
but,  again  this  is only  valid  up  to an integer  multiple  of 2 .

2.3.2    TranslationTransforms

As a function  a translation  in v can  be defined  easily  by  
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In[  ]:= T = (# + v) &

Out[  ]= #1 + v &

In[  ]:= If 

In[  ]:= v = {2, 3};

In[  ]:= T@{1, -2}

Out[  ]= {3, 1}

But  this  is not  a Transformation  Function.   We  could  use  flt2TF2D above  or better  use   

In[  ]:= TranslationTransform [v]

Out[  ]= TransformationFunction 
1 0 2

0 1 3

0 0 1



v could  be a 2 or 3 dimensional  vector  .

In[  ]:= τ = TranslationTransform [{2, 3}]

Out[  ]= TransformationFunction 
1 0 2

0 1 3

0 0 1



The  inverse  is given  by vector  -v

In[  ]:= InverseTF [τ]

Out[  ]= TransformationFunction 
1 0 -2

0 1 -3

0 0 1



and  composition  is given  by addition  of vectors  .

2.3.3  Reflection  Transforms

Mathematica has  a ReflectionTransform  however  I prefer  my  own.   Here  I give  2 points  on  the  line  v,w  

of reflection

In[  ]:= reflectionTF2D [{v_,w_}]:=Module [{p,pp},

p=N[v-w];

pp={p〚2〛,-p〚1〛};
getTF2D [{v,w,v+pp},{v,w,v-pp}]]

In 3 space  I use  3 general  position  points  on  the  reflecting  plane
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In[  ]:= reflectionTF3D [{p_, q_, r_}] := Module [{u, v, w, P, Q},

u = q - p;

v = r - p;

w = Cross [u, v];

P = {p, q, r, p + w};

Q = {p, q, r, p - w};

getTF3D [P, Q]]

This  code  shows  how  powerful  the  fundamental  theorem  is,   normally  one  would  have  to use  the  linear  

algebra  of projections  to define  this  transformation  function.   But  all  this  requires  is one  cross  product!

Perhaps  one  wants  to find  the  reflection  in a plane  defined  by an equation.   Here  is an example  of  how  

to do  it.   Start  with  the  plane

In[  ]:= x + y - z ⩵ 5.

Out[  ]= x + y - z ⩵ 5.

Note  I make  it numeric  by the  last  decimal  point  .   I can  have  Mathematica  find  my  3 points

In[  ]:= W = {x, y, z} /. FindInstance [x + y - z ⩵ 5., {x, y, z}, Reals, 3]

Out[  ]= -
67

5
, -

11

2
, -23.9, -

19

5
, -

53

5
, -19.4, 

62

5
, -

131

10
, -5.7

Then  

In[  ]:= σ = reflectionTF3D [W]

Out[  ]= TransformationFunction 
0.333333 -0.666667 0.666667 3.33333

-0.666667 0.333333 0.666667 3.33333

0.666667 0.666667 0.333333 -3.33333

1.64799 × 10-17 -1.12757 × 10-17 -2.1684 × 10-17 1.



Here  is a picture,  note

In[  ]:= σ@{0, 0, 0}

Out[  ]= {3.33333, 3.33333, -3.33333 }
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In[  ]:= Show [ContourPlot3D [x + y - z ⩵ 5, {x, -5, 5}, {y, -5, 5}, {z, -5, 5}, Mesh → None ],

Graphics3D [{PointSize [.04], {Blue, Point [{0, 0, 0}]}, {Red, Point [σ@{0, 0, 0}]},

{Green, Dashed, Thickness [.005 ], Line [{{0, 0, 0}, 10 / 3 {1, 1, -1}}]}}], ImageSize → Small ]

Out[  ]=

2.3.4  Glide  Reflections  and Screw  Displacements

A glide  reflection  is the  composition  of a translation  and  reflection  in the  direction  of the  translation.    

These  are  not  built-in  functions  but  we  give  these  for  convenience  in classification  in both  2D  and  3D.

In[  ]:= glideReflectionTF2D [{v_, w_}] := reflectionTF2D [{v, w}]@* TranslationTransform [w - v]

For  3D  there  are  many  planes  containing  a line  in the  translation  so we  need  to also  specify  a point  on  a 

plane  containing  the  line.

In[  ]:= glideReflectionTF3D [{p_, q_}, r_] :=

reflectionTF3D [{p, q, r}]@* TranslationTransform [q - p]

In[  ]:= r = 
5

3
,
5

3
, -

5

3
;

c = {1, 4, 0};

d = {4, 0, -1};

γ = glideReflectionTF3D [{c, d}, r];

γ@{0, 0, 0}

Out[  ]= 
19

3
, -

2

3
, -

13

3

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In[  ]:= Show [ContourPlot3D [x + y - z ⩵ 5, {x, -7, 7}, {y, -5, 5}, {z, -5, 5}, Mesh → None ],

Graphics3D [{PointSize [.04], {Blue, Point [{0, 0, 0}]}, {Red, Point [σ@{0, 0, 0}]},

{Magenta, Point [γ@{0, 0, 0}]}, {Black, Point [{r, c, d}]}, {Green, Thickness [.005 ],

Arrow [{c, d}], Arrow [{σ@{0, 0, 0}, γ@{0, 0, 0}}]}}], ImageSize → 150]

Out[  ]=

In 3 dimensions  a screw  displacement  is the  composition  of a rotation  and  a translation  in the  axis  of 

the  rotation.   We  use  the  translation  and  angle  to define  it.   In two  dimensions  a composition  of a 

translation  and  rotation  is generally  a rotation.   In the  function  p,q  are  points  in 3 coordinates.

In[  ]:= screwDisplacement3DTF [θ_, {p_, q_}] :=

TranslationTransform [q - p]@* RotationTransform [θ, q - p, p]

For  an example,   let  

In[  ]:= ξ = N[screwDisplacement3DTF [Pi / 2, {{-.25, 0, -.25}, {.25, 0, .25}}]]

Out[  ]= TransformationFunction 
0.5 -0.707107 0.5 0.5

0.707107 0. -0.707107 0.

0.5 0.707107 0.5 0.5

0. 0. 0. 1.



In the  illustration  we  apply  this  to the  point  p = {0, -.25, 0} which  is the  red  point.   The  blue  solid  arrow  

is the  translation  which  is on  the  black  line  l=InfiniteLine[{{-.25,  0, -.25},  {.25,  0, .25}}].   The  dashed  arrow  

is the  application  of this  translation  to p which  is sent  to the  green  point.   The  green  circle  through  the  

green  point  with  center  on  l  perpendicular  to the  line  l .  The  magenta  point  is the  the  result  of ξ on  p,

In[  ]:= ξ@{-.25, 0, .25}

Out[  ]= {0.5, -0.353553 , 0.5}

Paul  Yale,  in his  Chapter  2, shows  that  these  rigid  motions  or isometries  are  the  only  ones  possible  in 2D

and  3D.     

I mention  that  rotations,  translations  and  screw  displacements  have  TransformationMatrices  with  

determinant  1 while  reflections  and  glide  reflections  have  Transformations  with  determinant  -1.    This  

is a first  step  in classifying  isometries.    

In the  2D  case  I will  prove  this  well  known  but  rarely  proven  classification  theorem  by giving  an algo -

rithm  that  performs  the  classification.   This  will  be  in Chapter  3.  In a later  chapter  I may  attempt  the  3D  

case  which  is much  harder.  
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2.4 Groups of Transformation  Function  Isometries.

2.4 .1 Equality  of transformation  functions.

The  set  of transformation  functions  composes  not  as functions  but  by multiplication  of Transformation  

Matrices.   This  is must  faster  and  does  not  require  excessive  simplifications  than  function  composition.   

The  product  is given  by the  operator  @* which  should  always  be used  to insure  that  the  product  

remains  a transformation  function.   If α is a transformation  function  then  evaluation  is by  α@p where  p 

is a point  in two  or three  space.   You  should  never  in our  context  use  α[p]  which  should  give  the  same  

value  but  if p is itself  a value  of a transformation  function  then  proper  evaluation  of α[p]  will  not  be 

done.   Also  never  try  to compose  transformation  functions  with  just  @,  again  α@β  may  give  the  same  

function  as α@*β  but  the  result  is not  a transformation  function.

The  set  of all  invertible  2D  transformation  functions  and  the  set  of all  invertible  3D  transformation  

functions  are  groups.   Essentially  as groups  they  are  the  same  as the  group  of all  3×3,  respectively  4×4 

matrices.   These  groups  are  much  to big  for  us  at this  point.   A smaller  group  is the  group  of invertible  

2D and  3D   affine  transformations.  These  transformation  matrices  are  of the  form,  respectively,   in 

Mathematica’s notation

★ ★ ★
★ ★ ★
0 0 1

★ ★ ★ ★
★ ★ ★ ★
★ ★ ★ ★
0 0 0 1

Where  ★ marks  a position  where  a number  other  than  0  or  1 can  go .

The  isometries  are  those  transformation  functions  where  the  upper  2×2,  respectively  3×3 upper  le�  

squares  are  orthogonal  matrices.   The  built-in  Mathematica function   OrthogonalMatrixQ[]  is the  

easiest  way  to check  that  a square  matrix  is orthogonal.   As  mentioned  the  transformation  functions  in 

section  are  all  isometries  and  isometries  are  all  one  of the  types  considered.

In working  with  Transformation  Function  groups  it is important  to know  when  2 transformation  func -

tions  are  the  same  .  There  are  several  ways  to approach  this  but  a central  problem  is that  we  will  be  

working  with  transformation  matrices  constructed  with  machine  numbers.   Already  deciding  when  two  

machine  numbers  are  equal  is difficult  and  context  dependent.   For  this  we  generally  use  a tolerance,  a 

small  number  that  we  feel  is essentially  0 in the  context.  Two  numbers  are  considered  “equal”  if their  

difference  is less,  in absolute  value,  than  the  tolerance.    We  could  say  two  transformation  functions  are  

equal  if their  transformation  matrices  have  “equal”  entries.   In 2D  we  would  need  to check  at least  the  6 

entries  in the  top  two  rows,  in 3D  the  12 entries  in the  top  3 rows.   Alternatively  we  could  subtract  the  

matrices  and  compare  to the  zero  matrix.  A quicker  way,  at least  in programming,  than  comparing  each  

entry  with  zero  we  can  look  at the  Norm of a matrix,  this  is like  looking  at an absolute  value  of a num -
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ber.   If the  norm  of the  difference  is less  than  the  tolerance  then  we  could  declare  equality.   Since  we  

are  thinking  multiplicatively  and  using  only  invertible  matrices   we  could  decide  if two  transformation  

matrices  A, B are  equal  if A.Inverse[B]  is equal  to the  identity  matrix  using  one  of the  methods  above.   I 

have  given  3 or 4 choices,  it is possible  they  will  not  always  agree.

However  for  most  of the  situations  I will  be  looking  at i prefer  an idea  I discussed  earlier  that  works  

directly  with  the  transformation  function.   Pick  a test  point  v, a 2-vector  for  2D,  a 3-vector   in 3D.   If this  

is sufficiently  random  then  I will  declare  the  the  two  transformation  functions  to be  equal  if the  test  

values  obtained  by applying  the  two  transformation  functions  to the  test  point  if the  values  are  equal  

which  will  be  satisfied  if the  coordinates  are  numerically  “equal”  or the  difference  is numerically  zero  or 

if the  Norm  of the  test  vector  is numerically  zero.     If nothing  else,  this  will  make  coding  simpler.

Here  is a simple  example  .

In[  ]:= λ = N[RotationTransform [2 Pi / 3]]

Out[  ]= TransformationFunction 
-0.5 -0.866025 0.

0.866025 -0.5 0.

0. 0. 1.



We  want  to know  if,  given  tolerance   

In[  ]:= ϵ = .00000001

Out[  ]= 1. × 10-8

In[  ]:= ω = λ@* λ

Out[  ]= TransformationFunction 
-0.5 0.866025 0.

-0.866025 -0.5 0.

0. 0. 1.



In[  ]:= μ = InverseFunction [λ]

Out[  ]= TransformationFunction 
-0.5 0.866025 0.

-0.866025 -0.5 0.

0. 0. 1.



Visually  this  appears  to be true  .  But  we  don’t  see  enough  digits.

In[  ]:= Mω = TransformationMatrix [ω]

Mμ = TransformationMatrix [μ]
Out[  ]= {{-0.5, 0.866025 , 0.}, {-0.866025 , -0.5, 0.}, {0., 0., 1.}}

Out[  ]= {{-0.5, 0.866025 , 0.}, {-0.866025 , -0.5, 0.}, {0., 0., 1.}}

In[  ]:= Mω - Mμ
Out[  ]= 2.22045 × 10-16, -1.11022 × 10-16, 0., 1.11022 × 10-16, 2.22045 × 10-16, 0., {0., 0., 0.}

All  entries  are  below  tolerance
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In[  ]:= Mω.Inverse [Mμ ]
Out[  ]= 1., -1.11022 × 10-16, 0., 1.66533 × 10-16, 1., 0., {0., 0., 1.}

All  entries  here  differ  from  the  Identity  matrix  by  less  than  our  tolerance  .

In[  ]:= Norm [Mω - Mμ ]
Out[  ]= 2.48253 × 10-16

In[  ]:= Norm [IdentityMatrix [3] - Mω.Inverse [Mμ ]]
Out[  ]= 2.89601 × 10-16

These  are  also  below  tolerance  .

The  other  alternative  is to pick  test  point  

In[  ]:= tp = RandomReal [{-1, 1}, 2]

Out[  ]= {-0.359828 , -0.312882 }

In[  ]:= q1 = ω@ tp

Out[  ]= {-0.09105, 0.468061 }

In[  ]:= q2 = μ@ tp

Out[  ]= {-0.09105, 0.468061 }

In[  ]:= q1 - q2

Out[  ]= 0., -1.11022 × 10-16 

In[  ]:= Norm [q1 - q2]

Out[  ]= 1.11022 × 10-16

This  is easier  .

2.4.2  Finite  Groups  of Transformation  Functions

I first  discuss  the  order of  a Transformation  Function.   We  have  observed  earlier  that  a rotation  of angle  

2  / n  has  the  property  that  rasing  it to the  nth power  gives  the  identity  transformation.   More  gener -

ally  any  transformation  with  that  property  has  order n.  Many  transformations  such  as translations  do  

not  have  a finite  order,  raising  them  to any  finite  power  does  not  give  the  identity.   Here  is an easy  

routine  to find  the  order.

In[  ]:= Options [orderTF ] = {tol → 1.*^-4 };

orderTF [α_, tp_, omax_, OptionsPattern []] := Module [{n, p},

n = 1;

p = α@ tp;

While [n ≤ omax && Norm [p - tp] > OptionValue [tol], p = α@ p; n++];

n]
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This  function  takes  a transformation  function  α, a test  point  tp and  attempts  to find  a power  giving  the  

identity.   There  is also  an input  omax which  puts  a limit  on  the  powers.   Realistically  if one  hasn’t  

reached  the  order  by power  10 the  order  is probably  infinite.   The  context  may  give  some  reason  why  

not.   In a finite  group  the  order  of an element  is always  less  than  the  order  of the  group.   A theorem  in 

finite  group  theory  says  that  the  order  of any  element  in the  group  divides  the  number  of elements  in

the  group.   The  number  of elements  of a finite  group  is also  known  as the  order of  the  group.

An example

In[  ]:= κ = N[RotationTransform [Pi / 4]]

Out[  ]= TransformationFunction 
0.707107 -0.707107 0.

0.707107 0.707107 0.

0. 0. 1.



In[  ]:= orderTF [κ, {2.315, 3.426 }, 11]

Out[  ]= 8

another

In[  ]:= γ = glideReflectionTF2D [{{2, 3}, {4, -1}}]

Out[  ]= TransformationFunction 
-0.6 -0.8 7.6

-0.8 0.6 -1.2

0. 0. 1.



In[  ]:= orderTF [γ, {2.315, 3.426 }, 11]

Out[  ]= 12

This  means  we  have  not  found  the  order  .

In[  ]:= orderTF [γ, {2.315, 3.426 }, 21]

Out[  ]= 22

We  conclude  that  the  order  is probably  infinite,  which  is true.   Note  that  we  picked  a pseudo-random  

test  point.   It is random  enough  for  our  purposes.

2.4.3  Generators  of transformation  Groups

By definition  of transformation  group  if α, β are  in the  group  so is α@*β  , in general  so is any  power  of 

α, that  is product  of α with  itself  any  number  of times.  If α  has  finite  order  n then  the  n-1  power  of α is 

Inverse[α].   In general  it is not  true  that  if α, β have  finite  order  that  α@*β  does,  for  example  the  prod -

uct   of  two  plane  reflections  with  parallel  axis  is  a translation.   But  if we  know  that  our  group  of transfor -

mations  is finite  then  given  several  transformations,  α 1, α2 , …, αk   in the  the  finite  group  the  set  of 

products  of of these  transformations  will  be  a subgroup  of the  group,  known  as the  subgroup  generated  

by the  set  {α 1 , α2 , …, αk}.  Remember  that  transformations  may  not  commute  so we  allow  products  in 

any  order,   so for  example  given  α, β we  need  α@*β , β@α, α@*α,  α@*α@*β ,  α@*β@*β , α@*β@*α,  

β@*α@*β ,… which  may  all  be  different.   So  even  if α,β  have  small  order  this  subgroup  generated  by 2 

transformations  can  be very  large.
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To efficiently  work  with  all  these  combinations  we  use  the  association   data  type  in Mathematica.   The  

reader  not  familiar  with  associations  may  wish  to read  the  help  page  on  this  now.   Essentially  an associa -

tion  is a generalized  function  where  we  have  two  sets  called  instead  of domain  and  range  called  the  

keys  and  values.  A set  of arrows  from  a key  to a value  associates  the  key  to the  value.    Unlike  a function  

a key  can  have  several  values.   Like  a function  a value  can  have  many  keys.   Unlike  sets,  associations  

are  demarcated  by brackets  <|  and  |>.  

So discuss  the  subgroup  generated  by certain  elements  of a finite  group  we  use  a tas, a transformation  

association  which  is an association  which  has  keys  from  1,…,k  with  values  the  generators.   It is impor -

tant  that  the  keys  form  a consecutive  sequence  from  1 to k, no  duplicates  or missing  numbers.   

Then  each  ordered  list  of integers  from  1 to k will  denote  a specific,  but  not  necessarily  unique,  element  

of the  group  by taking  the  order  product.   

For  example  given  transformations  α, β then  the  tas is,  say  

In[  ]:= tas1 = 1 → α, 2 → β
Out[  ]= 1 → α, 2 → β

So now  group  elements  are  denoted  by ordered  lists  such  as 

In[  ]:= {1}, {1, 1}, {1, 2}, {1, 2, 1}

where  {1}  is α, {2}  is β , {1,1}  is α@*α,    {1,2}  is α@*β , {1,2,1}  is α@*β@*α  and  so on.   These  transforma -

tions  need  not  be unique.  In fact  one  of  our  goals  is to find  a unique  set  of these  transformations.

The  code  for  converting  these  ordered  lists  of integers  to transformations  is simply

In[  ]:= TasTF [S_, tas_] := Module [{len, t, i}, len = Length [S];

t = tas[S〚1〛];
i = 2;

While [i ≤ len, t = t@* tas[S〚i〛]; i++];

t]

Example  :

In[  ]:= σ = RotationTransform [Pi, {0, 0}]

ρ = reflectionTF2D [{{-1, 0}, {1, 0}}]

Out[  ]= TransformationFunction 
-1 0 0

0 -1 0

0 0 1



Out[  ]= TransformationFunction 
1. 0. 0.

0. -1. 0.

0. 0. 1.


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In[  ]:= TasTF [{1, 2}, 1 → σ, 2 → ρ]

Out[  ]= TransformationFunction 
-1. 0. 0.

0. 1. 0.

0. 0. 1.



In[  ]:= TasTF [{1, 1}, 1 → σ, 2 → ρ]

Out[  ]= TransformationFunction 
1 0 0

0 1 0

0 0 1



In[  ]:= TasTF [{2, 1, 2}, 1 → σ, 2 → ρ]

Out[  ]= TransformationFunction 
-1. 0. 0.

0. -1. 0.

0. 0. 1.



We  are  now  almost  done  finding  the  finite  transformation  group  generated  by a tas association.   The  

idea  is to generate  all  ordered,  possibly  repeating,  lists  of the  integers  1 to k.  We  can  evaluate  each  

transformation  at a fixed  test  point.   By  deleting  duplicates  we  have  a distinct  list  of points,  each  

associated  with  a group  element.   We  can  go back  searching  for  an appropriate  key,  that  is,  ordered  list  

to construct  that  transformation.    Here  is the  code,  a subroutine  first

In[  ]:= Options [nFindKeys ] = {tol → 1.*^-5 };

nFindKeys [A_, v_, OptionsPattern []] := Module [{S},

S = Normal [A];

Reap [Do[If[Norm [s〚2〛 - v] < OptionValue [tol], Sow[s〚1〛]], {s, S}]]]〚2, 1〛;

In[  ]:= Options [finiteTransGroup ] = {tol → .001};

finiteTransGroup [tas_, tp_, n_, OptionsPattern []] := Module [{k, A, An, V, K},

k = Length [tas];

A = ({#} → tas[#]@ tp) & /@ Range [k];

Do[An = (# → TasTF [#, tas]@tp) & /@ Tuples [Range [k], j];

A = Join [A, An], {j, 2, n}];

V = DeleteDuplicates [Values [A], Norm [#1 - #2] < OptionValue [tol] &];

K = Table [First [nFindKeys [A, V〚i〛]], {i, Length [V]}];

Echo [Length [V], "number of group elements calculated "];

K]

To use  this  we  need  to enter  a fixed  pseudorandom   test  point  and  an integer  n bounding  the  length  of 

a key.   Here  are  some  examples,  the  first  using  the  transformations  ρ, σ above

In[  ]:= finiteTransGroup [1 → σ, 2 → ρ, {2.316, -1.347 }, 3]

» number of group elements calculated 4

Out[  ]= {{1}, {2}, {1, 1}, {1, 2}}

We  have  already  seen  the  transformations  given  by these  .
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For  a more  interesting  group  let  ρ be  as above  and

In[  ]:= κ = N[RotationTransform [Pi / 3, {0, 0}]]

Out[  ]= TransformationFunction 
0.5 -0.866025 0.

0.866025 0.5 0.

0. 0. 1.



In[  ]:=

In[  ]:= finiteTransGroup [1 → κ, 2 → ρ, {2.316, -1.347 }, 3]

» number of group elements calculated 10

Out[  ]= {{1}, {2}, {1, 1}, {1, 2}, {2, 1}, {2, 2}, {1, 1, 1}, {1, 1, 2}, {2, 1, 1}, {2, 1, 2}}

We  can  check  that  all  elements   have  been  found  by running  again

In[  ]:= G2 = finiteTransGroup [1 → κ, 2 → ρ, {2.316, -1.347 }, 4]

» number of group elements calculated 12

Out[  ]= {{1}, {2}, {1, 1}, {1, 2}, {2, 1}, {2, 2}, {1, 1, 1},

{1, 1, 2}, {2, 1, 1}, {2, 1, 2}, {1, 1, 1, 1}, {1, 1, 1, 2}}

We  find  two  new  elements,  again  

In[  ]:= finiteTransGroup [1 → κ, 2 → ρ, {2.316, -1.347 }, 5]

» number of group elements calculated 12

Out[  ]= {{1}, {2}, {1, 1}, {1, 2}, {2, 1}, {2, 2}, {1, 1, 1},

{1, 1, 2}, {2, 1, 1}, {2, 1, 2}, {1, 1, 1, 1}, {1, 1, 1, 2}}

So we  probably  have  them  all.   What  is interesting  is that  if we  pick  a non-random  test  point  which  is a 

vertex  of a polygon  which  has  this  isometry  transformation  group  then  several  group  elements  have  

the  same  test  value.  

In[  ]:= finiteTransGroup [1 → κ, 2 → ρ, {0, 1}, 5]

» number of group elements calculated 6

Out[  ]= {{1}, {2}, {1, 1}, {1, 2}, {2, 2}, {1, 1, 2}}

We  can  recover  a polygon  with  this  transformation  group  using  the  the  group  association

In[  ]:= groupAssoc [G_, tas_, tp_] := Module [{A},

A = Table [k → TasTF [k, tas]@tp, {k, G}];

V = DeleteDuplicates [Values [A], Norm [#1 - #2] < .001 &];

K = Table [First [nFindKeys [A, V〚i〛]], {i, Length [V]}];

Table [k → A[k], {k, K}]]

In[  ]:= G2A = groupAssoc [G2, 1 → κ, 2 → ρ, {0, 1}]

Out[  ]= {1} → {-0.866025 , 0.5}, {2} → {0., -1.}, {1, 1} → {-0.866025 , -0.5},

{1, 2} → {0.866025 , -0.5}, {2, 2} → {0., 1.}, {1, 1, 2} → {0.866025 , 0.5}

24     GSChapters1-2.nb



We  can  plot  them

In[  ]:= gpAssocGraph2D [gpAs_ ] :=

Graphics [{{Blue, PointSize [.02], Point [Values [gpAs ]]},

{Black, Table [Text [k, 1.15 gpAs [k]], {k, Keys [gpAs ]}]}}, ImageSize → 250]

In[  ]:= gpAssocGraph2D [G2A]

Out[  ]=

{1}

{2}

{1, 1} {1, 2}

{2, 2}

{1, 1, 2}

We  have  a regular  hexagon  .  Using  the  results  of the  last  two  outputs  we  can  draw  the  polygon

In[  ]:= P6 = {G2A[{1}], G2A[{2, 2}], G2A[{1, 1, 2}], G2A[{1, 2}], G2A[{2}], G2A[{1, 1}], G2A[{1}]}

Out[  ]= {{-0.866025 , 0.5}, {0., 1.}, {0.866025 , 0.5},

{0.866025 , -0.5}, {0., -1.}, {-0.866025 , -0.5}, {-0.866025 , 0.5}}

In[  ]:= Graphics [{Blue, Thickness [.01], Line [P6]}, ImageSize → Tiny ]

Out[  ]=

Unfortunately  we  need  human  or artificial  intelligence  to find  the  adjacencies.   We  will  discuss  these  

ideas  further  in the  next  two  chapters  .

We  end  this  chapter  by noting  that  even  if we  stick  to transformations  of finite  order  we  may  not  get  a 

finite  group.   Recall

In[  ]:= κ

Out[  ]= TransformationFunction 
0.5 -0.866025 0.

0.866025 0.5 0.

0. 0. 1.



Now  let
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In[  ]:= λ = N[RotationTransform [Pi / 3, {1, 1}]]

Out[  ]= TransformationFunction 
0.5 -0.866025 1.36603

0.866025 0.5 -0.366025

0. 0. 1.



In[  ]:= finiteTransGroup [1 → κ, 2 → λ, {2.316, -1.347 }, 3];

finiteTransGroup [1 → κ, 2 → λ, {2.316, -1.347 }, 4];

finiteTransGroup [1 → κ, 2 → λ, {2.316, -1.347 }, 5];

finiteTransGroup [1 → κ, 2 → λ, {2.316, -1.347 }, 6];

finiteTransGroup [1 → κ, 2 → λ, {2.316, -1.347 }, 7];

» number of group elements calculated 13

» number of group elements calculated 23

» number of group elements calculated 37

» number of group elements calculated 56

» number of group elements calculated 78

The  number  of elements   appears  to be  growing  quickly,  the  sign  of an infinite  group.

One  explanation  of this  is the  well  known  theorem

Theorem[Yale,  3.6]  A finite  group  of isometries  has  at least  one  point  le�  fixed  by all  elements  of the  group.   

In 2D  except  for  the  group  consisting  of the  identity  and  one  reflection  that  fixed  point  is unique.  

The  proof  of the  first  statement  is easy,  if there  are  n elements  take  one  random  test  point  and  apply  

each  transformation  in the  group  to this  test  point.   The  (sum  of the  test  values)/n  is the  centroid  of the  

test  values  and  a fixed  point.   Example,  take  G2  above.

In[  ]:= G2A2 = groupAssoc [G2, 1 → κ, 2 → ρ, {2.316, -1.347 }]

Out[  ]= {1} → {2.32454, 1.33221 }, {2} → {2.316, 1.347 }, {1, 1} → {0.00853622 , 2.67921 },

{1, 2} → {-0.00853622 , 2.67921 }, {2, 1} → {2.32454, -1.33221 },

{2, 2} → {2.316, -1.347 }, {1, 1, 1} → {-2.316, 1.347 }, {1, 1, 2} → {-2.32454, 1.33221 },

{2, 1, 1} → {0.00853622 , -2.67921 }, {2, 1, 2} → {-0.00853622 , -2.67921 },

{1, 1, 1, 1} → {-2.32454, -1.33221 }, {1, 1, 1, 2} → {-2.316, -1.347 }

In[  ]:= Total [Values [G2A2 ]] / 12

Out[  ]= 2.22045 × 10-16, -1.85037 × 10-17 

The  origin  is the  unique  fixed  point  .
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