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Plane Tessellations

Chapter 4: Plane Tessellations
In this  chapter  I will  return  to plane  isometries  and  tessellations.   We  will  see  that  this  is actually  harder  

than  working  on  the  sphere  which  is compact.   Not  only  will  we  need  to use  infinite  symmetry  groups  

but  we  will  be  working  with  all  4 isometry  types.   Our  symmetry  groups  will  be  generated  by actual  

isometries  which  makes  our  discussion  different  than  than  the  classical  discussion.   There   are  two  uses  

for   symmetry  groups  the  construction  groups  and  full  symmetry  groups.

In this  book  I will  use  stone  pavers  and  floor  tiles  rather  than  wallpaper  patterns  to avoid  problems  

caused  by the  artistry.   The  pavers  and  tiles  will  assumed  to be polygons  for  simplicity  but  may  have  

many  sides  to approximate  smooth  curves  as in the  graphic  above.

I expect  the  reader  to review  Chapter  2 of my  Transformation  and  Symmetry  book.   A pdf  version  is 

available  on  my  website,  a Mathematica  notebook  is available  from  my  page  in the  Wolfram  Commu -

nity.   In particular  the  reader  should  be familiar  with  Transformation  Functions  as a data  type  in 

Mathematica.   

To review,  the  4 isometry  types  are  Translations  and  Rotations  which  are  given  by Mathematica’s  built-

in functions,  Reflections  and  Glide  reflections  also  have  built-in  functions  but  I prefer  my  own  func -

tions.   First  a hidden  subroutine  getTF2D from  Chapter  2.

In[  ]:= reflectionTF2D [{v_, w_}] := Module [{p, pp},

p = N[v - w];

pp = {p〚2〛, -p〚1〛};
getTF2D [{v, w, v + pp}, {v, w, v - pp}]]



In[  ]:= glideReflectionTF2D [{v_, w_}] := reflectionTF2D [{v, w}]@* TranslationTransform [w - v]

I also  note  that  to invert  TransformationFunctions  one  should  use  my  function  because  Mathematica’s  

Inverse[]  does  not  work  well  for  transformation  functions.

In[  ]:= InverseTF [λ_] := TransformationFunction [Inverse [TransformationMatrix [λ]]]

In this  chapter  we  will  name  translations  starting  with  τ , reflections  with  ρ,  glide  reflections  with  γ and  

rotations  with  σ except  for  half  turns,  rotations  in π (180 ∘) will  be  considered  a special  category  and  

denoted  by names  beginning  in η.

4.1 An Example

I will  start  with  an example:  the  square  tiling.   This  is one  of the  most  common  paving  or tiling  you  will  

see  and  in one  sense  the  simplest.   On  the  the  other  hand  we  will  see  its  symmetry  group  is one  of the  

largest.    This  tessellation  theoretically  tiles  the  entire  real  plane,  a small  piece  looks  like.

In[  ]:=

Our  base  or home  tile  is given  by the  square

In[  ]:= S = {{1, 1}, {1, -1}, {-1, -1}, {-1, 1}}

Out[  ]= {{1, 1}, {1, -1}, {-1, -1}, {-1, 1}}
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In[  ]:= Graphics [{{LightOrange , Polygon [S]},

{Black, Text ["{1,1}", {1, 1}], Text ["{1,-1}", {1, -1}], Text ["{-1,-1}", {-1, -1}],

Text ["{-1,1}", {-1, 1}]}, {Red, PointSize [.1], Point [{0, 0}]}}, ImageSize → Tiny ]

Out[  ]=

{1,1}

{1,-1}{-1,-1}

{-1,1}

The  centroid  is the  origin  {0,  0} .

The  simplest  symmetries  are  the  translations  we  will  call

In[  ]:= τv2 = TranslationTransform [{2, 0}]

τh2 = TranslationTransform [{0, 2}]

Out[  ]= TransformationFunction 
1 0 2

0 1 0

0 0 1



Out[  ]= TransformationFunction 
1 0 0

0 1 2

0 0 1



To see  how  this  works,  here  are  6 transforms  of our  base  polygon  in the  center.

Graphics [{EdgeForm [{Gray, Thickness [.015 ]}], {Cyan, Polygon [S]}, {Orange, Polygon [τv2@ S]},

{Green, Polygon [τh2@ S]}, {Yellow, Polygon [InverseTF [τv2]@S]},

{Pink, Polygon [InverseTF [τh2]@S]}, {Brown, Polygon [τv2@* τh2@ S]},

{Purple, Polygon [τv2@* InverseTF [τh2]@S]}}, ImageSize → Small ]

Out[  ]=

Continuing  this  way   it is easy  to see  that  each  tile  can  be constructed  by applying  a element  of the  

group  generated  by {τv2, τh2}  we  can  get  any  tile  in the  tessellation.

Even  though  we  will  not  get  a finite  group  of transformations  we  can  still  use  our  finite  transformation  

group  code  in Chapter  2 to approximate  the  infinite  groups.   Later  in this  chapter  I will  give  a better  

alternative.
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In[  ]:= G1 =

finiteTransGroup [1 → τv2, 2 → InverseTF [τv2], 3 → τh2, 4 → InverseTF [τh2], {0, 0}, 4]

» number of group elements calculated 41

Out[  ]= {{1}, {2}, {3}, {4}, {1, 1}, {1, 2}, {1, 3}, {1, 4}, {2, 2}, {2, 3}, {2, 4}, {3, 3}, {4, 4}, {1, 1, 1},

{1, 1, 3}, {1, 1, 4}, {1, 3, 3}, {1, 4, 4}, {2, 2, 2}, {2, 2, 3}, {2, 2, 4}, {2, 3, 3},

{2, 4, 4}, {3, 3, 3}, {4, 4, 4}, {1, 1, 1, 1}, {1, 1, 1, 3}, {1, 1, 1, 4}, {1, 1, 3, 3},

{1, 1, 4, 4}, {1, 3, 3, 3}, {1, 4, 4, 4}, {2, 2, 2, 2}, {2, 2, 2, 3}, {2, 2, 2, 4},

{2, 2, 3, 3}, {2, 2, 4, 4}, {2, 3, 3, 3}, {2, 4, 4, 4}, {3, 3, 3, 3}, {4, 4, 4, 4}}

A technical  comment  is that  since  translations  and  glide  reflections  have  infinite  order  this  procedure  

will  not  find  the  inverses,  therefore  we  have  to add  the  inverses  as generators.   We  will  see  later  that  

o�en  if half  turns  or reflections  are  also  generators  then  the  inverses  of translations  and  glide  reflec -

tions  will  be  compositions  of the   generators  so specifically  adding  the  inverses  may  not  be necessary.

A second  technical  comment  is that  the  second  argument  of the  finiteTransGroup  function  is a test  

point.   Using  one  such  as {0,0}  above  only  gets  that  part  of the  group  that  is in the  orbit  of {0,0}.   To  get  

all  elements  of the  group  use  a pseudo  random  test  point,  one  such  as {.2152 , .1483 } is sufficiently  

random  in our  context.

In this  chapter  a useful  routine  for  constructing  tessellations  is

In[  ]:= groupTessellate [G_, tas_, P_, col_, bcol_ ] := Module [{tab},

tab = Table [TasTF [g, tas]@P, {g, G}];

Graphics [{col, EdgeForm [{Thickness [.005 ], bcol}], Polygon [tab]}]]
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In[  ]:= groupTessellate [

G1, 1 → τv2, 2 → InverseTF [τv2], 3 → τh2, 4 → InverseTF [τh2], S, Brown, Gray ]

Out[  ]=

So I say  group  G1  is a construction  group  for  the  square  tessellation.

But  there  are  other  symmetries  . We  note  the  entire  section  above  has  rotation  symmetries,  in particu -

lar  a 4 fold  rotation  about  the  center,  {0,0}.   If we  look  more  closely  we  see  that  the  point  {1,0},  on  the  

base  square  is the  center  of a half  turn.  

In[  ]:= σ4 := RotationTransform [Pi / 2, {0, 0}]

η1 := RotationTransform [Pi, {1, 0}]

In[  ]:= Graphics [{EdgeForm [{Gray, Thickness [.015 ]}], {Cyan, Polygon [S]},

{Orange, Polygon [η1@ S]}, {Green, Polygon [σ4@* η1@ S]}}, ImageSize → Small ]

Out[  ]=

We  could  guess  that  these  two  transformations  could  also  construct  the  group.
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In[  ]:= G2 = finiteTransGroup [1 → σ4, 2 → η1, {2.3214, 3.571 }, 6]

» number of group elements calculated 38

Out[  ]= {{1}, {2}, {1, 1}, {1, 2}, {2, 1}, {2, 2}, {1, 1, 1}, {1, 1, 2}, {1, 2, 1}, {2, 1, 1}, {2, 1, 2},

{1, 1, 1, 2}, {1, 1, 2, 1}, {1, 2, 1, 1}, {1, 2, 1, 2}, {2, 1, 1, 1}, {2, 1, 1, 2}, {2, 1, 2, 1},

{1, 1, 1, 2, 1}, {1, 1, 2, 1, 1}, {1, 1, 2, 1, 2}, {1, 2, 1, 1, 1}, {1, 2, 1, 1, 2},

{1, 2, 1, 2, 1}, {2, 1, 1, 2, 1}, {2, 1, 2, 1, 1}, {2, 1, 2, 1, 2}, {1, 1, 1, 2, 1, 1},

{1, 1, 1, 2, 1, 2}, {1, 1, 2, 1, 1, 1}, {1, 1, 2, 1, 1, 2}, {1, 1, 2, 1, 2, 1}, {1, 2, 1, 1, 2, 1},

{1, 2, 1, 2, 1, 1}, {2, 1, 1, 2, 1, 1}, {2, 1, 1, 2, 1, 2}, {2, 1, 2, 1, 1, 1}, {2, 1, 2, 1, 1, 2}}

In[  ]:= groupTessellate [G2, 1 → σ4, 2 → η1 , S, Orange, Gray ]

Out[  ]=

Again  we  construct  a square  tessellation,  but  the  squares  shown  are  somewhat  different  from  our  first  

attempt.

Both  of these  construction  groups  contain  only  direct isometries,  that  is,  isometries  which  are  orienta -

tion  preserving  or alternatively,  have  the  upper  le�  2×2 block  in the  transformation  matrix  with  determi -

nant  1.  But  we  can  see  that  this  tessellation  also  has  reflection  symmetry.    Three  obvious  reflections  

are  

In[  ]:= ρh := reflectionTF2D [{{-1, 0}, {1, 0}}]

ρv := reflectionTF2D [{{0, -1}, {0, 1}}]

ρd := reflectionTF2D [{{-1, -1}, {1, 1}}]

These  are  all  reflections  of the  square.   Note  that  
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In[  ]:= ρd@* ρh

Out[  ]= TransformationFunction 
0. -1. 0.

1. 0. 0.

0. 0. 1.



while  

In[  ]:= σ4 = RotationTransform [Pi / 2]

Out[  ]= TransformationFunction 
0 -1 0

1 0 0

0 0 1



so σ4 will  be  contained  in any  group  containing  ρh and  ρd

Also  note  

In[  ]:= σ4@* ρh@* InverseTF [σ4]

Out[  ]= TransformationFunction 
-1. 0. 0.

0. 1. 0.

0. 0. 1.



is the  same  as

In[  ]:= ρv

Out[  ]= TransformationFunction 
-1. 0. 0.

0. 1. 0.

0. 0. 1.



so if ρh and  ρd are  in a group  then  so is ρv .

Unfortunately  all  these  transformations  leave  {0,0}  fixed  so we  will  only  get  a finite  group.   So  we  need  

another  reflection

In[  ]:= ρ1 = reflectionTF2D [{{1, -1}, {1, 1}}]

Out[  ]= TransformationFunction 
-1. 0. 2.

0. 1. 0.

0. 0. 1.



Now  consider  

In[  ]:= G3 = finiteTransGroup [1 → ρv, 2 → ρd, 3 → ρ1, {2.3214, 3.571 }, 5]

» number of group elements calculated 41

Out[  ]= {{1}, {2}, {3}, {1, 1}, {1, 2}, {1, 3}, {2, 1}, {2, 3}, {3, 2}, {1, 2, 1}, {1, 2, 3}, {1, 3, 2},

{2, 1, 2}, {2, 1, 3}, {2, 3, 2}, {3, 2, 1}, {3, 2, 3}, {1, 2, 1, 2}, {1, 2, 1, 3},

{1, 2, 3, 2}, {1, 3, 2, 1}, {1, 3, 2, 3}, {2, 1, 2, 3}, {2, 1, 3, 2}, {2, 3, 2, 1},

{2, 3, 2, 3}, {3, 2, 1, 2}, {3, 2, 1, 3}, {1, 2, 1, 2, 3}, {1, 2, 1, 3, 2}, {1, 2, 3, 2, 1},

{1, 2, 3, 2, 3}, {1, 3, 2, 1, 2}, {1, 3, 2, 1, 3}, {2, 1, 2, 3, 2}, {2, 1, 3, 2, 1},

{2, 1, 3, 2, 3}, {2, 3, 2, 1, 2}, {2, 3, 2, 1, 3}, {3, 2, 1, 2, 3}, {3, 2, 1, 3, 2}}
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In[  ]:= groupTessellate [G3, 1 → ρv, 2 → ρd, 3 → ρ1, S, Orange, Gray ]

Out[  ]=

which  appears  to be  an additional  square  tessellation  of the  plane  .  These  groups  are  different,   cer -

tainly  G2,  G3  are  bigger  than  G1  but  since  G3  contains  reflections  it is different  from  G2   which  only  has  

direct  isometries.   We  will  see  G2  is contained  in G3  which  we  will  find  is the  complete  group  of of 

symmetries  of the  square  tessellation.   In particular  it will  contain  translations  and  glide  reflections,  

rotations   of order  4 around  all  vertices  and  half  turns  about  all  edge  midpoints.

Given  this  example  we  can  now  look  at the  theory  .

Section 4.2 The Theory

In this  long  section  I give  the  basic  theory  of symmetry  of plane  tessellations

4.2.1   Discrete  and complete  plane  tessellations

 Following  Yale,  a group  of plane  transformations  G is  discrete  if given  any  bounded  set   W of the  plane  

and  any  point  p in the  plane  the  G-orbit   of  p contains  only  finitely  many  points  in W.  

 In practice,  working  with  isometries,  we  can  use  any  circular  disc  about  the  origin  for  W and  any  conve -

nient  point  p to demonstrate  this.   In particular  all  construction  groups  of isometries   will  be  discrete,  a 

non-discrete  group  would  just  give  a mess.

A complete  plane  tessellation  group  is one  in which  the  tessellation,  if continued  would  fill  up  the  whole   

plane.   Groups  G1,G2  and  G3  in section  4.1  will  be  discrete  complete  tessellation  groups  if we  just  

follow  one  point  of the  square.   The  group  association  routine  can  be used  to demonstrate.   For  

example
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In[  ]:= G2A = groupAssoc [G2, 1 → σ4, 2 → η1, {0, 0}]

Out[  ]= {1} → {0, 0}, {2} → {2, 0}, {1, 2} → {0, 2}, {1, 1, 2} → {-2, 0},

{2, 1, 2} → {2, -2}, {1, 1, 1, 2} → {0, -2}, {1, 2, 1, 2} → {2, 2}, {2, 1, 1, 2} → {4, 0},

{1, 1, 2, 1, 2} → {-2, 2}, {1, 2, 1, 1, 2} → {0, 4}, {1, 1, 1, 2, 1, 2} → {-2, -2},

{1, 1, 2, 1, 1, 2} → {-4, 0}, {2, 1, 1, 2, 1, 2} → {4, -2}, {2, 1, 2, 1, 1, 2} → {2, -4}

In[  ]:= Graphics [{Blue, PointSize [.03], Point [Values [G2A]]}, ImageSize → Small ]

Out[  ]=

This  plot  shows  no  clustering  and  a definite  2 dimensional  picture  which  if continued   would  fill  up  the  

plane.

On the  other  hand,  consider,  again  using  the  transformation  functions  defined  in 4.1  the  group

In[  ]:= H1 = finiteTransGroup [1 → τv, 2 → ρh, {0, 0}, 4]

» number of group elements calculated 8

Out[  ]= {{1}, {2}, {1, 1}, {2, 1}, {1, 1, 1}, {2, 1, 1}, {1, 1, 1, 1}, {2, 1, 1, 1}}

In[  ]:= H1A = groupAssoc [H1, 1 → τv, 2 → ρh, {0, 0}]

Out[  ]= {1} → {2, 0}, {2} → {0., 0.}, {1, 1} → {4, 0}, {2, 1} → {-2., 0.}, {1, 1, 1} → {6, 0},

{2, 1, 1} → {-4., 0.}, {1, 1, 1, 1} → {8, 0}, {2, 1, 1, 1} → {-6., 0.}

In[  ]:= Graphics [{Blue, PointSize [.03], Point [Values [H1A]]}, ImageSize → Small ]

Out[  ]=

Here  the  points  give  a 1 dimension  set  so we  will  not  get  a complete  tessellation  group  .

On the  other  hand  consider  

In[  ]:= σ3 := N[RotationTransform [2 Pi / 3, {1, 0}]]

In[  ]:= H2 = finiteTransGroup [1 → σ4, 2 → σ3, {0, 0}, 6];

» number of group elements calculated 37
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In[  ]:= H2A = groupAssoc [H2, 1 → σ4, 2 → σ3, {0, 0}];

Graphics [{Blue, PointSize [.03], Point [Values [H2A]]}, ImageSize → Small ]

Out[  ]=

We  are  getting  a  jumble  .  This  group  is not  discrete.   It would  be complete  as a 2-dimensional  set  but  

we will  not  get  a symmetric  tessellation  out  of this.   

4.2.2   An algorithm  for discrete  groups

So far  we  have  taken  the  view  that  if we  use  our  finiteTransGroup procedure  then  the  we  will  get  our  

group  elements  but  unlike  the  the  finite  case  this  will  not  stabilize  as n gets  large,  but  continue  to grow.   

This  is actually  the  correct  idea.   But  in this  Chapter  we  will  use  an enhanced  procedure,  based  on 

finiteTransGroup,  which  gives  us more  information  and  options.  

In[  ]:= Options [discreteTransGroup ] =

{plot → True, returnGroup → False, returnAssoc → False };

discreteTransGroup [tas_, tp_, r_, n_, OptionsPattern []] := Module [{G, A, B, ncpts },

G = finiteTransGroup [tas, tp, n];

If[OptionValue [returnGroup ], Return [G]];

A = groupAssoc [G, tas, tp];

If[OptionValue [returnAssoc ], Return [A]];

B = Reap [Do[If[Norm [Values [A]〚i〛] < r, Sow[Values [A]〚i〛]], {i, Length [Values [A]]}]]〚2, 1〛;
If[Length [B ] ⩵ 0, Echo ["No c-points"],

Echo [Length [B], "number c-points"]];

If[OptionValue [plot ], Graphics [{{Orange, Circle [{0, 0}, r]},

{Blue, PointSize [.03], Point [Values [A]]}}, Axes → True, ImageSize → Small ]]]

Without  specifying   a group  name  or options  it returns  the  pictures  in 4.2.1

In[  ]:= discreteTransGroup [1 → σ4, 2 → η1, {0, 0}, 2.5, 3]
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» number of group elements calculated 5

» number c-points 4

Out[  ]=

-2 -1 1 2

-2

-1

1

2

This  shows  a circle  of radius  2.5  about  the  origin  with  4 points  inside  and  one  outside  .

In[  ]:= discreteTransGroup [1 → σ4, 2 → η1, {0, 0}, 2.5, 4]

» number of group elements calculated 8

» number c-points 5

Out[  ]=

-2 -1 1 2 3 4

-2

-1

1

2

Now  there  are  5 points  inside,  c points  .  But  if we  increase  n to 7 

In[  ]:= discreteTransGroup [1 → σ4, 2 → η1, {0, 0}, 2.5, 7]

» number of group elements calculated 18

» number c-points 5

Out[  ]=

-4 -2 2 4 6

-4

-2

2

4

there  are  still  only  5 points  inside  the  circle,  now  with  a larger  number  of points  outside  the  circle.   Thus  

the  number  or elements  calculated  does  not  stabilize,  the  number  of c-points  does  so this  graphic  

shows  that  we  have  a complete  discrete  group.   Notice  also  that  the  points  show  a nice  lattice  so could  

get  nice  tessellations  .

If instead  we  use  a random  test  point  we  will  get  more  points
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In[  ]:= discreteTransGroup [1 → σ4, 2 → η1, {2.321, 3.576 }, 1.5, 7]

» number of group elements calculated 50

» number c-points 2

Out[  ]=

-6 -4 -2 2 4 6

-6

-4

-2

2

4

6

In[  ]:= discreteTransGroup [1 → σ4, 2 → η1, {2.321, 3.576 }, 1.5, 9]

» number of group elements calculated 81

» number c-points 4

Out[  ]=

-5 5

-5

5

In[  ]:= discreteTransGroup [1 → σ4, 2 → η1, {2.321, 3.576 }, 1.5, 10]

» number of group elements calculated 98

» number c-points 4

Out[  ]=

-5 5

-5

5

We  get  a messier  picture  but  the  c-points  are  stabilizing  at 4.  This  is a better  approximation  of the  

actual  group  defined  with  these  generators.

In the  next  subsection  we  will  be  using  the  group  Association  of a group  . This  can  be found  by using  

discreteTransGroup using  option  returnAssoc->True .  If you  also  set  returnGroup->True  then  that  
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will  override  the  return  association.   If you  want  both   use  return  Association->True  as the  group  can  be 

recovered  as the  Keys  of the  association.   With  either  or both  options  chosen  you  will  not  get  the  plot.   

However  this  can  be also  be recovered  as the  values  of the  association.   Here  is an example

In[  ]:= G2A = discreteTransGroup [1 → σ4, 2 → η1, {0, 0}, 1.5, 4, returnAssoc → True ]

» number of group elements calculated 8

Out[  ]= {1} → {0, 0}, {2} → {2, 0}, {1, 2} → {0, 2}, {1, 1, 2} → {-2, 0},

{2, 1, 2} → {2, -2}, {1, 1, 1, 2} → {0, -2}, {1, 2, 1, 2} → {2, 2}, {2, 1, 1, 2} → {4, 0}

In[  ]:= G2 = Keys [G2A]

Out[  ]= {{1}, {2}, {1, 2}, {1, 1, 2}, {2, 1, 2}, {1, 1, 1, 2}, {1, 2, 1, 2}, {2, 1, 1, 2}}

In[  ]:= Graphics [{{Orange, Circle [{0, 0}, 2]}, {Blue, PointSize [.03], Point [Values [G2A]]}},

Axes → True, ImageSize → Small ]

Out[  ]=

-2 -1 1 2 3 4

-2

-1

1

2

4.2.3  Subgroups  and equality  of groups

Since  we  are  working  with  actual  transformations  the  term  subgroup  will  only  apply  when  the  actual  

transformations  of the  smaller  group  are  members  of the  larger  group.   Since  we  are  defining  groups  by 

non-unique  generators  it is enough  to show  that  the  generators  of the  smaller  group  are  members  of 

the  larger  group.

It will  not  be  necessary  to actually  compute  part  of the  smaller  group  .  But  it will  be  necessary  to 

compute  a group  association  for  the  larger  group  at possibly  a large  size  n using  a random  test  point  tp.  

Here  random  is important  is that  we  want  to associate  all  elements  with  a test  value,  not  just  elements  

in the  smaller  orbit  belonging  to a non-random  test  point.   See  the  last  few  examples  to see  the  differ -

ence.   We  use  the  following  algorithm.

In[  ]:= Clear [α]

In[  ]:= Options [AFindKeys ] = {tol → 1.*^-5 };

AFindKeys [A_, α_, tp_, OptionsPattern []] := Module [{S, R},

v = α@ tp;

S = Normal [A];

R = Reap [Do[If[Norm [s〚2〛 - v] < OptionValue [tol], Sow[s〚1〛]], {s, S}]];

If[ Length [R〚2〛] > 0, Return [R〚2, 1〛], Return ["Key not found"]]]

Given  a transformation  function  α and  a group  G to show  α is an  element  of G do  the  following
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1.  Calculate  the  group  association  GA  for  G with  a reasonably  large  n with  random  test  point  tp.  

2. Execute  AFindKeys  with  the  same  test  point  tp.  If it gives  an error  message  α is not  found.

Example  :  Check  if the  vertical  translation  of length  2 is contained  in the  group  G2  above  and  in Section  

2.1

In[  ]:= τh

Out[  ]= TransformationFunction 
1 0 0

0 1 2

0 0 1



In[  ]:= G2A =

discreteTransGroup [1 → σ4, 2 → η1, {1.7655, 2.0243 }, 1.5, 4, returnAssoc → True ];

» number of group elements calculated 18

In[  ]:= AFindKeys [GA, τh, {1.7655, 2.0243 }]

Do : Iterator {s, S$21091 } does not have appropriate bounds .

Out[  ]= Key not found

Lets  test  to see  if the  inverse  to τh is in this  group.

In[  ]:= AFindKeys [G2A, InverseTF [τh], {1.7655, 2.0243 }]

Out[  ]= Key not found

This  does  not  mean  InverseTF[ th] is not  in the  group.   Perhaps  we  need  a larger  n.

In[  ]:= G2A =

discreteTransGroup [1 → σ4, 2 → η1, {1.7655, 2.0243 }, 1.5, 6, returnAssoc → True ];

» number of group elements calculated 38

In[  ]:= AFindKeys [G2A, InverseTF [τh], {1.7655, 2.0243 }]

Out[  ]= {{2, 1, 2, 1, 2}}

Of course,  by  definition  of group  if τv is in the  group  so is its  inverse,  but  the  key  may  be much  longer.

Note  also  τv is in the  group.

In[  ]:= AFindKeys [G2A, τv, {1.7655, 2.0243 }]

Out[  ]= {{2, 1, 1}}

Therefore  we  conclude  that  the  group  G1  generated  by τv,τh and  their  inverses  is a subgroup  of G2.

Of course  G2  is not  a subgroup  of G1  which  contains  only  translations.   Suppose  we  augment  G1  by 

adding  the  rotation  σ4 but  not  the  half  turn  η1.  We  call  this  G11.   This  will  also  be contained  in G2.

In[  ]:= G11A = discreteTransGroup [1 → τv, 2 → τh, 3 → σ4,

{1.7655, 2.0243 }, 2, 4, returnAssoc → True ];

» number of group elements calculated 49
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In[  ]:= AFindKeys [G11A, η1, {1.7655, 2.0243 }]

Out[  ]= {{1, 3, 3}}

So η1 and  σ4 are  in G11  so G2  is contained  in G11  .  Hence  G11  = G2   since  containment  goes  both  ways.

4.2.5   Conjugation  in transformation  groups   

If we  take  a different  square  we  expect  to get  essentially  the  same  symmetry  group.  So  suppose

In[  ]:= ζ = TransformationFunction [{{1, -1, 8}, {1, 1, 8}, {0, 0, 4.}}]

Out[  ]= TransformationFunction 
1. -1. 8.

1. 1. 8.

0. 0. 4.



In[  ]:= ζ S = ζ @ S

Out[  ]= {{2., 2.5}, {2.5, 2.}, {2., 1.5}, {1.5, 2.}}

In[  ]:= Graphics [{{Orange, Polygon [S]}, {Cyan, Polygon [ζ S]}}, ImageSize → Small ]

Out[  ]=

This  will  also  give  a tessellation,  but  with  different  transformation  functions.

We  want  to compare  the  groups   but  they  are  clearly  not  equal.

In group  theory  there  is the  concept  of  isomorphic  groups.   These  are  groups  with  different  elements  

but  the  same  group  structure.   So  to a group  theorist  isomorphic  groups  are  the  “same”.  Technically  an  

isomorphism  is a function  f  of  any  sort  which  has  an inverse  and  preserves  group  structure,  that  is 

f [a*b] = f [a]* f [b] for  all  a,b  in the  domain.   If an  isomorphism  exists  the  groups  are  isomorphic.   But  

this  is too  weak  for  us  since  the  function  could  be any  strange  thing,  we  want  the  geometry  preserved.

Within  the  set  of all  invertible   transformation  functions,  there  is a special  type  of function  called  an 

inner  isomorphism,   which  is invertible  and  multiplication  preserving.   We  pick  a particular  invertible  

transformation  function,  say  κ, and  define  

In[  ]:= Clear [α, β, κ]
In[  ]:= Ω[α_] := κ@*α@*InverseTF[κ]

It is an  easy  exercise  in algebra  to show  that  Ω preserves  multiplication  and  has  inverse

In[  ]:= ℧[α_] := InverseTF[κ]@*α@* κ
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where  α is any  transformation  function.   So  any  group  G of invertible  transformation  functions  is 

isomorphic  to its  image  Ω[G].   This  operation  is called  conjugation and  the  images  would  form  conju -

gate  groups.

The  problem  that  arises  is that  if α is an isometry  in general  Ω[α]  may  not  be.   A simple  example  is 

In[  ]:= κ = TransformationFunction [RandomInteger [{-9, 9}, {3, 3}] / 10.]

Out[  ]= TransformationFunction 
-0.3 -0.7 0.1

-0.4 0.4 -0.2

0.9 -0.5 0.3



In[  ]:= κ@* τv@* InverseTF [κ]

Out[  ]= TransformationFunction 
5.8 23.4 12.

6.4 32.2 16.

-14.4 -70.2 -35.



This  is neither  a translation  or even  an isometry  .  For  our  purposes  we  will  stick  to similarity  transforms  

of the  form

In[  ]:= {{a, b, c}, {d, e, f}, {0, 0, s}} // MatrixForm

Out[  ]//MatrixForm=

a b c

d e f

0 0 s

where  the  upper  le�  2×2 matrix  is orthogonal  and s > 0.  The  only  difference  from  our  isometries  is that  

the  lower  right  entry  is s instead  of 1. Then  polygons  are  sent  to similar  polygons,  not  necessarily  

congruent.   For  example  in the  graphic  above  the  orange  square  is sent  to the  cyan  square  by

In[  ]:= ζ

Out[  ]= TransformationFunction 
1. -1. 8.

1. 1. 8.

0. 0. 4.



Note  if 0 < s < 1 then  the  image  will  be  larger  but  if s > 1 then  the  image  will  be  smaller.

Let  

In[  ]:= ζ i = InverseTF [ζ ]

Out[  ]= TransformationFunction 
0.5 0.5 -2.

-0.5 0.5 0.

0. 0. 0.25



Our  symmetries  in the  example  of §4.1  then  are  mapped  to 

τv ↦ τζ v, τh ↦ τζ hwhere
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In[  ]:= τζ v = ζ @* τv@* ζ i

Out[  ]= TransformationFunction 
1. 0. 0.5

0. 1. 0.5

0. 0. 1.



In[  ]:= τζ h = ζ @* τh@* ζ i

Out[  ]= TransformationFunction 
1. 0. -0.5

0. 1. 0.5

0. 0. 1.



Notice  that  translations  stay  as translations  .

Our  reflections  ρv, ρh,ρ1 are  mapped  

In[  ]:= ρζ v = ζ @* ρv@* ζ i

Out[  ]= TransformationFunction 
0. 1. 0.

1. 0. 0.

0. 0. 1.



Note  that  this  is a reflection,  in fact  ρd.

In[  ]:= ρζ d = ζ @* ρd@* ζ i

Out[  ]= TransformationFunction 
-1. 0. 4.

0. 1. 0.

0. 0. 1.



In[  ]:= ρζ 1 = ζ @* ρ1@* ζ i

Out[  ]= TransformationFunction 
0. -1. 4.5

-1. 0. 4.5

0. 0. 1.



which  are  also  easily  seen  as reflections.   Here  is a picture  of the  mirror  lines

In[  ]:= Graphics [{{Orange, Polygon [S]}, {Cyan, Polygon [ζ S]},
{Blue, Thickness [.005 ], Line [{{-1.1, 0}, {1.1, 0}}], Line [{{-1.1, -1.1}, {1.1, 1.1}}],

Line [{{1, -1.1}, {1, 1.1}}]}, {Red, Thickness [.005 ], Line [ζ @{{-1.1, 0}, {1.1, 0}}],

Line [ζ @{{-1.1, -1.1}, {1.1, 1.1}}], Line [ζ @{{1, -1.1}, {1, 1.1}}]}}, ImageSize → Small ]

Out[  ]=

Finally  note  our  rotations
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In[  ]:= ηζ 1 = ζ @* η1@* ζ i

Out[  ]= TransformationFunction 
-1. 0. 4.5

0. -1. 4.5

0. 0. 1.



is clearly  a half  turn   while.

In[  ]:= σζ 4 = ζ @* σ4@* ζ i

Out[  ]= TransformationFunction 
0. -1. 4.

1. 0. 0.

0. 0. 1.



Note  this  last  symmetry  preserves  ζ S.

In[  ]:= ζ S
Out[  ]= {{2., 2.5}, {2.5, 2.}, {2., 1.5}, {1.5, 2.}}

in fact

In[  ]:= σζ 4@ ζ S
Out[  ]= {{1.5, 2.}, {2., 2.5}, {2.5, 2.}, {2., 1.5}}

is a π/2 (90 ∘) rotation  of ζ S.

Note  also

In[  ]:= Gζ 2 = discreteTransGroup [1 → σζ 4, 2 → ηζ 1, {2.3214, 3.571 }, 2, 6, returnGroup → True ]

» number of group elements calculated 38

Out[  ]= {{1}, {2}, {1, 1}, {1, 2}, {2, 1}, {2, 2}, {1, 1, 1}, {1, 1, 2}, {1, 2, 1}, {2, 1, 1}, {2, 1, 2},

{1, 1, 1, 2}, {1, 1, 2, 1}, {1, 2, 1, 1}, {1, 2, 1, 2}, {2, 1, 1, 1}, {2, 1, 1, 2}, {2, 1, 2, 1},

{1, 1, 1, 2, 1}, {1, 1, 2, 1, 1}, {1, 1, 2, 1, 2}, {1, 2, 1, 1, 1}, {1, 2, 1, 1, 2},

{1, 2, 1, 2, 1}, {2, 1, 1, 2, 1}, {2, 1, 2, 1, 1}, {2, 1, 2, 1, 2}, {1, 1, 1, 2, 1, 1},

{1, 1, 1, 2, 1, 2}, {1, 1, 2, 1, 1, 1}, {1, 1, 2, 1, 1, 2}, {1, 1, 2, 1, 2, 1}, {1, 2, 1, 1, 2, 1},

{1, 2, 1, 2, 1, 1}, {2, 1, 1, 2, 1, 1}, {2, 1, 1, 2, 1, 2}, {2, 1, 2, 1, 1, 1}, {2, 1, 2, 1, 1, 2}}

Compare  with  

In[  ]:= G2 = finiteTransGroup [1 → σ4, 2 → η1, {2.3214, 3.571 }, 6]

» number of group elements calculated 38

Out[  ]= {{1}, {2}, {1, 1}, {1, 2}, {2, 1}, {2, 2}, {1, 1, 1}, {1, 1, 2}, {1, 2, 1}, {2, 1, 1}, {2, 1, 2},

{1, 1, 1, 2}, {1, 1, 2, 1}, {1, 2, 1, 1}, {1, 2, 1, 2}, {2, 1, 1, 1}, {2, 1, 1, 2}, {2, 1, 2, 1},

{1, 1, 1, 2, 1}, {1, 1, 2, 1, 1}, {1, 1, 2, 1, 2}, {1, 2, 1, 1, 1}, {1, 2, 1, 1, 2},

{1, 2, 1, 2, 1}, {2, 1, 1, 2, 1}, {2, 1, 2, 1, 1}, {2, 1, 2, 1, 2}, {1, 1, 1, 2, 1, 1},

{1, 1, 1, 2, 1, 2}, {1, 1, 2, 1, 1, 1}, {1, 1, 2, 1, 1, 2}, {1, 1, 2, 1, 2, 1}, {1, 2, 1, 1, 2, 1},

{1, 2, 1, 2, 1, 1}, {2, 1, 1, 2, 1, 1}, {2, 1, 1, 2, 1, 2}, {2, 1, 2, 1, 1, 1}, {2, 1, 2, 1, 1, 2}}

We  see  that  this  transformation  is actually  compatible  with  our  group  algorithms.
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In[  ]:= groupTessellate [Gζ 2, 1 → σζ 4, 2 → ηζ 1, ζ S, Brown, Gray ]

Out[  ]=

Important  Notation:   For  the  rest  of this  chapter  we  will  use  the  term  isometry  of groups,   or  just  

isometry,  to mean  an  isometry  given  by  conjugation  of a similarity  transformation.

4.2.6  Finding  the type  of an isometry

Unfortunately  this  is too  restrictive  for  mathematicians  studying  symmetry.   For  example  consider  

parallelograms

In[  ]:= PG1 = {{0, 0}, {1, 1}, {2, 1}, {1, 0}};

PG2 = {{3, 0}, {5, 1}, {7, 1}, {5, 0}};

In[  ]:= Graphics [{{Orange, Polygon [PG1]}, {Cyan, Polygon [PG2]}}]

Out[  ]=

The  tiling  they  would  determine  would  both  have  translations  and  half  turns  but  no  reflections.   The  

difference  is the  angles  so these  are  not  similar  but  would  give  essentially  the  same  groups.   But  they  

would  not  be  conjugate  by a similarity  transform.   So  as to not  have  an infinite  number  of types  of 

tilings  then  mathematicians  rely  on  describing  the  types  of symmetries,  not  the  actual  symmetries.

It is easy  to decide  the  type  of an isometry  α.  If the  upper  le�  2×2 square  is the  identity,  we  have  a 

translation.   If the  determinant  of the  upper  le�  hand  square  is -1 we  have  a reflection  if α@*α is the  

identity  otherwise  a glide  reflection.   The  remaining  case  where  the  upper  le�  hand  square  has  determi -

nant  1 but  is not  the  identity  we  have  a rotation,  the  order  will  be  2,3,4  or 6 for  a full  paneling.   We  can  

find  this  with  orderTF,  note  we  don’t  need  to know  the  center.   Here  is an algorithm,  it is meant  to 

construct  an association  so in the  rare  case  it doesn’t  work  it sends  answer  “O”  for  “other”  rather  than  

an error  message.   If it works  the  possible  results  are  “T”  for  translation,  note  the  identity  is classified  as 
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a translation,   “R”  for  reflection,  “G”  for  glide  reflection,  H for  half  turn  and  ”R3”,”R4”,”R6”  for  rotations  

of higher  order  than  2, the  number  giving  the  order.   Here  is the  algorithm

In[  ]:= IsoClassifierTF2D [α_] := Module [{M, M2, ι, n},

M = Chop [N[TransformationMatrix [α]]];

If[M〚3, 1〛 ≠ 0 || M〚3, 2〛 ≠ 0 || M〚3, 3〛 ≠ 1., Return ["O"]];

M2 = Take [M, 2, 2];

ι = {{1., 0}, {0, 1.}};

If[Chop [M2.Transpose [M2]] ≠ {{1., 0}, {0, 1.}}, Return ["0"]];

If[M2 ⩵ ι, Return ["T"]];

If[Det[M2] ⩵ -1.,

If[Chop [M.M] ⩵ {{1., 0, 0}, {0, 1., 0}, {0, 0, 1.}}, Return ["RF"], Return ["G"]]];

n = orderTF [α, RandomReal [{-1, 1}, 2], 7];

Which [n ⩵ 2, Return ["H"], n ⩵ 3, Return ["R3"],

n ⩵ 4, Return ["R4"], n ⩵ 6, Return ["R6"], True, Return ["0"]];

Return [

"0"]]

If the  algorithm  returns  “O”  the  user  should  look  at that  case  by hand.   What  we  are  really  a�er  is

In[  ]:= isoClassifierA [G_, tas_] := Table [k → IsoClassifierTF2D [TasTF [k, tas]], {k, G}]

Here  is an example

In[  ]:= G3 = discreteTransGroup [1 → ρv, 2 → σ4, 3 → γh,

{.3214, .5713 }, 1, 4, returnGroup → True ];

» number of group elements calculated 64

In[  ]:= G3TA = isoClassifierA [G3, 1 → ρv, 2 → σ4, 3 → γh]

Out[  ]= {1} → RF, {2} → R4, {3} → G, {1, 1} → T, {1, 2} → RF, {1, 3} → H, {2, 1} → RF,

{2, 2} → H, {2, 3} → G, {3, 1} → H, {3, 2} → G, {3, 3} → T, {1, 2, 1} → R4, {1, 2, 2} → RF,

{1, 2, 3} → R4, {1, 3, 1} → G, {1, 3, 2} → R4, {1, 3, 3} → RF, {2, 1, 3} → R4,

{2, 2, 3} → RF, {2, 3, 1} → R4, {2, 3, 2} → RF, {2, 3, 3} → R4, {3, 1, 2} → R4,

{3, 2, 1} → R4, {3, 2, 2} → RF, {3, 2, 3} → R4, {3, 3, 1} → RF, {3, 3, 2} → R4,

{3, 3, 3} → G, {1, 2, 1, 3} → G, {1, 2, 2, 3} → T, {1, 2, 3, 1} → G, {1, 2, 3, 2} → H,

{1, 2, 3, 3} → G, {1, 3, 1, 2} → G, {1, 3, 2, 1} → G, {1, 3, 2, 2} → T, {1, 3, 2, 3} → RF,

{1, 3, 3, 1} → T, {1, 3, 3, 2} → G, {1, 3, 3, 3} → H, {2, 1, 3, 1} → G, {2, 1, 3, 2} → T,

{2, 1, 3, 3} → G, {2, 2, 3, 3} → H, {2, 3, 1, 2} → T, {2, 3, 2, 3} → T, {2, 3, 3, 1} → G,

{2, 3, 3, 2} → H, {2, 3, 3, 3} → G, {3, 1, 2, 1} → G, {3, 1, 2, 3} → G, {3, 2, 1, 3} → G,

{3, 2, 3, 1} → RF, {3, 2, 3, 2} → T, {3, 2, 3, 3} → G, {3, 3, 1, 2} → G, {3, 3, 2, 1} → G,

{3, 3, 2, 2} → H, {3, 3, 2, 3} → G, {3, 3, 3, 1} → H, {3, 3, 3, 2} → G, {3, 3, 3, 3} → T

So this  group  contains  every  type  except  rotation  of order  3 or 6.

One  thing  we  can  do  is select  the  translation  Transforms  in this  group  and  find  their  translation  vector.
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In[  ]:= SG3TA = Select [G3TA, # ⩵ "T" &]

Out[  ]= {1, 1} → T, {3, 3} → T, {1, 2, 2, 3} → T, {1, 3, 2, 2} → T, {1, 3, 3, 1} → T,

{2, 1, 3, 2} → T, {2, 3, 1, 2} → T, {2, 3, 2, 3} → T, {3, 2, 3, 2} → T, {3, 3, 3, 3} → T

In[  ]:= Table [TasTF [k, 1 → ρv, 2 → σ4, 3 → γh]@ {0, 0}, {k, Keys [SG3TA ]}]

Out[  ]= {{0., 0.}, {2., 0.}, {1., 0.}, {-1., 0.},

{-2., 0.}, {0., -1.}, {0., 1.}, {1., 1.}, {1., -1.}, {4., 0.}}

This  will  be  useful  information  for  the  classification  of groups.   The  translations  of vector  {1,0}  and  {0,1}  

appear  to generate  the  translation  subgroup.

Likewise  we  can  find  the  locations  of the  half  turns  .

In[  ]:= SG3R2A = Select [G3TA, # ⩵ "H" &]

Out[  ]= {1, 3} → H, {2, 2} → H, {3, 1} → H, {1, 2, 3, 2} → H, {1, 3, 3, 3} → H,

{2, 2, 3, 3} → H, {2, 3, 3, 2} → H, {3, 3, 2, 2} → H, {3, 3, 3, 1} → H

In[  ]:= η = TasTF [{1, 3, 3, 3}, 1 → ρv, 2 → σ4, 3 → γh]

Out[  ]= TransformationFunction 
-1. 0. -3.

0. -1. 0.

0. 0. 1.



In[  ]:= SolveValues [η@{x, y} ⩵ {x, y}, {x, y}]〚1〛
Out[  ]= {-1.5, 0.}

In[  ]:= Table [SolveValues [TasTF [k, 1 → ρv, 2 → σ4, 3 → γh]@ {x, y} ⩵ {x, y}, {x, y}]〚1〛,
{k, Keys [SG3R2A ]}]

Out[  ]= {{-0.5, 0.}, {0, 0}, {0.5, 0.}, {0., 0.5}, {-1.5, 0.}, {-1., 0.}, {0., 1.}, {1., 0.}, {1.5, 0.}}
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4.3 Symmetry  groups  of symmetric  strip  patterns

This  is the  one  dimensional  case.  I don’t  know  what  the  proper  definition  of a strip  pattern  is,  but  

Mathematicians  are  sure  that  there  are  7 of them.   In practice  there  are  probably  infinitely  many.   

Unlike  the  two  dimensional  case  it is not  clear  how  group  theory  is helpful  here  but  there  are  seven  

groups  of transformations  that  have  been  identified.   Essentially  these  are  the  subgroups  of the  finite  

rectangle  group  with  a translation  and  maybe  glide  reflection  added.  The  generators  follow

1. Horizontal  translation  only

2. Horizontal  translation  and   horizontal  glide  reflection,  no  horizontal  reflection

3. Horizontal  translation  and  horizontal  reflection  with  x-axis  mirror

4. Horizontal  translation  and  vertical  reflection  with   y-axis  mirror

5. Horizontal  translation  and  half  turn.

6. Horizontal  translation,  half  turn,  vertical  reflection,  horizontal  glide  reflection

7. Horizontal  translation,  half  turn,  vertical  reflection,  horizontal  reflection.

or,  less  boring
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4.4 Groups of symmetry  groups of tilings.

Here  we  classify  only  by types  of isometries  present.   In later  sections  we  will  go  into  more  details  and  

examples.      Note  however  that  certain  choices  allow  additional  symmetries  present,  for  example  every  

plane  tessellation  group  contains  2 independent  translations,  or a translation  and  glide  reflection.   

Remember,  different  generator  systems  o�en  give  the  same  group  and,  even  if not  the  same  group  the  

same  kinds  of isometries.   For  example  the  full  triangle  group  gives  rotations  of order  6 due  to rotations  

of order  2 and  3, since  powers  of the  rotation  of order  6 give  rotations  of orders  2 and  3 we  see  that  

assuming  a generator  of order  6 gives  no  further  examples  than  we  had  with  rotations  of orders  2and  3.  

We  also  not  distinguish  the  types  of “cell”  giving  tessellations.  Another  distinction  made  by the

crystallographers  is whether  there  is only  one  family  of reflections  or more  than  one.   But  the  composi -

tion  of two  non-parallel  reflections  is a rotation  so that  is not  a distinct  case.  

This  will  be  discussed  in further  subsections.  Thus  we  have  only  11 types  of groups  instead  of the  usual  

17 crystallographic  types.

It is important  to note  that  our  isometries  by  similarities   preserve  type  so any  group  isometric  to one  of 

our  11 groups  is in that  class  of groups.   In particular  if P1,  P2  are  similar  polygons  then  their  symmetry  

groups  will  be  of the  same  class.

 The  following  explicit  transformations  will  be  standard,  others  will  be  defined  as needed.   The  types  

are  {RF,  G,  H,  R3,  R4,  R6}

In[  ]:= ι2 := TransformationFunction [IdentityMatrix [3]]

τh := TranslationTransform [{1, 0}]

τv := TranslationTransform [{0, 1}]

τd := τh@* τv
ρh := reflectionTF2D [{{-1, 0}, {1, 0}}]

ρv := reflectionTF2D [{{0, -1}, {0, 1}}]

γh := glideReflectionTF2D [{{0, 0}, {1, 0}}]

η0 := RotationTransform [Pi]

η1 := RotationTransform [Pi, {1, 0}]

σ3 := RotationTransform [2 Pi / 3]

σ4 := RotationTransform [Pi / 2]

σ6 := RotationTransform [Pi / 3]
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I. Independent  translations  

1 → τh, 2 → InverseTF [τh], 3 → τv, 4 → InverseTF [τv .  

T

II. Translations  and  Glide  Reflection

In[  ]:= γ2 = glideReflectionTF2D [{{0, 0}, {1, .7}}];

1 → τh, 2 → InverseTF [τh], 3 → γ2, 4 → InverseTF [γ2]
T, G

III  .Translations,   reflections  and   glide  reflections  .  

1 → τd, 2 → InverseTF [τd], 3 → ρh
Types  T, RF,  G

IV. Translations  and   half  turns  only.

1 → τh, 2 → τv, 3 → η0 
Types   T, H 

V. Translations,  and  reflections  , glide  reflections,  half  turns  

1 → τh, 2 → τv, 3 → ρh, 4 → ρv
Alternate

γh2 = glideReflectionTF2D [{{.5, 1}, {1.5, 1}}];

τv2 = τv@* τv;

1 → γh2, 2 → τv2, 3 → ρh, 4 → ρv
Types  T, G,  RF,  H

VI. Orthogonal  Translations  and  order  2, 4 rotations  only

1 → τh, 2 → σ4
Types  T, G,  RF,  H,  R4

VII. Orthogonal  Translations  and  order  2, 4, rotations  and  selected  reflections,  glide  reflections.  

(Full  Square  Group).

1 → τv, 2 → σ4, 3 → ρv
Types  T, RF,  G,  H,  R4

VIII. Translations  and  rotations  of order  3 only  .

1 → τh, 2 → σ3
Types  T, R3
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IX. Translations,  reflections,  glide  reflections,  rotations  of order  3 only  .

1 → τh, 2 → σ3, 3 → ρh
Types  T, RF,G,  R3,

X.Translations,  half  turns,  rotations  of order  2, 3, and  6.

1 → τh, 2 → σ3, 3 → η0
Types  T, H,  R3,  R6

XI.Translations,  reflections  and  rotations  order  2,3,6  and  glide  reflections.   (full  Triangle  group)

1 → τh, 2 → σ3, 3 → η0, 4 → ρv
T, RF,  G,  H,  R3,  R6

4.4.1  Notes  on calculation

We  assume,  with  no  loss  of generality  that  the  translation  τh  is in every  tessellation  group.   By  conjuga -

tion  and  other  compositions  there  will  be  many  translations.   Enumerating  this  does  not  seem  to add  

information,  there  will  be  some  mention  in the  discussion  in 4.5.

We  then  have  6 other  types  of isometries  which  may  be in a  tessellation  symmetry  group  of a tiling,

abbreviated  RF,  G,  H,  R3,  R4,  R6,  recall  H is the  half-turn  otherwise  known  as R2.   We  classify  these  

groups  by which  of these  are  present.   There  are  26 = 64 possible  combinations  and  I have  checked  

each  to see  if they  give  a discrete  group  different  from  others.  There  are  two  basic  rules  which  allow  me  

to discard  possible  groups  quickly.  

The  inclusionary  rule,  “inclusion”  , has  the  following

If there  is an R4   there  must  be  an H,   its  square.

If there  is an R6  there  must  be  an H and  an R3  the  square  and  cube.

If there  is an H and  a R3  there  is an R6,  even  with  different  centers.

The  exclusionary  rule,  “exclusion”  says

There  cannot  be  both  an R3 and  R4  in the  same  group.

There  cannot  be  both  an R6 and  R4  in the  same   group.

The  reason  for  these  is that  the  upper  le�  hand  2×2  matrix  in a rotation  transform  is an orthogonal  

matrix  of determinant  1.  The  2×2 rotations  commute.   Therefore  the  order  of the  composition  of two  

rotations  is the   product  of the  orders.

One  thing  we  will  notice  is that  group  II contains  glide  reflections  but  not  reflections,  whereas  group  

III which  contains  reflections  also  has  glide  reflections.   If one  has  a reflection  then  conjugation  will  
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generally  give  a translation  in the  same  direction  so there  will  be  a glide  reflection.   But  to make  a 

reflection  from  a given  glide  reflection  requires  not  only   a translation  in the  same  direction  but  of  the  

same  length.   This  may  not  happen.

4.5 Examples  and properties  of the groups

4.5.1  Group  I, two independent  translations

This  is the  most  general  and  perhaps  then  the  most  useful  group,  especially  when  used  as a construc -

tion  group  rather  than  a full  symmetry  group.

The  group  is always  uncomplicated,  group  theoretically  it is simply  the  product  of two  copies  of the  

integers.   So  if p, q are  two  points,  viewed  as 2- vectors  they  define  two  translations  

τp = TranslationTransform [p]

τq = TranslationTransform [q]

Then  the,  necessarily  discrete,   group  they  define  consists  simply  of  translations

TranslationTransform [m p + n q]

The  parallelogram

par = {{0, 0}, p, p + q, q}

is a cell  for  a tessellation.

as a random  example  

In[  ]:= {p, q} = {{-1.8337165994212103` , 2.736646713237377` },

{1.7521455008048097` , 0.2910803142189895` }}

Out[  ]= {{-1.83372, 2.73665 }, {1.75215, 0.29108 }}

In[  ]:= par = {{0, 0}, p, p + q, q}

Out[  ]= {{0, 0}, {-1.83372, 2.73665 }, {-0.0815711 , 3.02773 }, {1.75215, 0.29108 }}

In[  ]:= c = pcentroid [par]

Out[  ]= {-0.0407855 , 1.51386 }

In[  ]:= Graphics [{{Cyan, Polygon [par]}, {Black, Text ["{0,0}", {0, 0}], Text ["p", p],

Text ["p+q", p + q], Text ["q", q], Text ["c", c]}}, BaseStyle → {FontSize → 12}]

Out[  ]=

{0,0}

p

p+q

q

c

26     Chapter4Final.nb



The  centroid  is shown

In[  ]:= τp = TranslationTransform [p]

τq = TranslationTransform [q]

Out[  ]= TransformationFunction 
1. 0. -1.83372

0. 1. 2.73665

0. 0. 1.



Out[  ]= TransformationFunction 
1. 0. 1.75215

0. 1. 0.29108

0. 0. 1.



One  special  concern  is with  translations  and  glide  reflection  the  inverses  are  not  products.   But  groups  

should  be closed  under  inverses,  so they  must  be  given.   Without  inverses  we  have

In[  ]:= discreteTransGroup [1 → τp, 2 → τq, c, 2, 5]

» number of group elements calculated 20

Part : Part 1 of {} does not exist .

» number c points 3

Out[  ]=

-5 5

5

10

15

we should  have  gotten  

In[  ]:= discreteTransGroup [1 → τp, 2 → InverseTF [τq], 3 → τq, 4 → InverseTF [τq], c, 2, 5]

» number of group elements calculated 36

» number c points 1

Out[  ]=

-5 5

5

10

15

When  half  turns,  or  certain  reflections  or rotations,  are  available  the  inverses  are  come  from  composi -

tions  so don’t  need  to be listed  as generators,  but  here  they  must  be.

For  the  full  group  we  should  use  a random  test  point,  but  in this  case  it does  not  matter,  for  tessella -

tions  the  centroid  of the  cell  is what  we  should  use.
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In[  ]:= G1a = discreteTransGroup [1 → τp, 2 → InverseTF [τp], 3 → τq, 4 → InverseTF [τq],

{.1376, .2107 }, 2, 4, returnGroup → True ]

» number of group elements calculated 41

Out[  ]= {{1}, {2}, {3}, {4}, {1, 1}, {1, 2}, {1, 3}, {1, 4}, {2, 2}, {2, 3}, {2, 4}, {3, 3}, {4, 4}, {1, 1, 1},

{1, 1, 3}, {1, 1, 4}, {1, 3, 3}, {1, 4, 4}, {2, 2, 2}, {2, 2, 3}, {2, 2, 4}, {2, 3, 3},

{2, 4, 4}, {3, 3, 3}, {4, 4, 4}, {1, 1, 1, 1}, {1, 1, 1, 3}, {1, 1, 1, 4}, {1, 1, 3, 3},

{1, 1, 4, 4}, {1, 3, 3, 3}, {1, 4, 4, 4}, {2, 2, 2, 2}, {2, 2, 2, 3}, {2, 2, 2, 4},

{2, 2, 3, 3}, {2, 2, 4, 4}, {2, 3, 3, 3}, {2, 4, 4, 4}, {3, 3, 3, 3}, {4, 4, 4, 4}}

Notice  we  get  all  combinations  of the  indices  1,2,3,4

Our  tessellation  is then

In[  ]:= groupTessellate [

G1a, 1 → τp, 2 → InverseTF [τp], 3 → τq, 4 → InverseTF [τq], par, Orange, Gray ]

Out[  ]=

Now  for  this  example,  the  half  turn  about  the  centroid  is also  a symmetry  of the  tessellation.   So  this  

group  is not  the  full  symmetry  group  but  is the  best  construction  group  which  will  be  group  IV.

We  can  find  a cell  which  has  this  group  as a symmetry  group  by a little  surgery  .
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par2 = {{0, -0}, p, .95 p + .2 q, .93 p + .4 q, .93 p + .6 q,

.95 p + .8 q, p + q, q, {1.7521455008048097` , 0.2910803142189895` },

{1.4934022306149084` , 0.09603191571332276` },

{1.1796474624423705` , -0.016917081395222716` },

{0.8292183622814087` , -0.0751331442390206` },

{0.44211493013202247` , -0.07861627281807096` }, {0, 0}}

Out[  ]= {{0, 0}, {-1.83372, 2.73665 }, {-1.3916, 2.65803 }, {-1.0045, 2.66151 },

{-0.654069 , 2.71973 }, {-0.340314 , 2.83268 }, {-0.0815711 , 3.02773 },

{1.75215, 0.29108 }, {1.75215, 0.29108 }, {1.4934, 0.0960319 },

{1.17965, -0.0169171 }, {0.829218 , -0.0751331 }, {0.442115 , -0.0786163 }, {0, 0}}

In[  ]:= ηc = RotationTransform [Pi, c];

ρ1 = reflectionTF2D [{p + q / 2, q / 2}];

ρ2 = reflectionTF2D [{p / 2, p / 2 + q}];

In[  ]:= Graphics [{{Orange, Polygon [par2 ]}, {Blue, Thickness [.01], Line [ηc@ par2 ]},

{Red, Thickness [.01], Line [ρ1@ par2 ]},

{Green, Thickness [.01], Line [ρ2@ par2 ]}, {Black, Thickness [.005 ], Dashed,

InfiniteLine [{p + q / 2, q / 2}], InfiniteLine [{p / 2, p / 2 + q}]}}, ImageSize → Small ]

Out[  ]=

The  graphic  shows  this  plane  figure  has  no  symmetry.  Then  the  tessellation  
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In[  ]:= groupTessellate [

G1a, 1 → τp, 2 → InverseTF [τp], 3 → τq, 4 → InverseTF [τq], par2, Orange, Gray ]

Out[  ]=

has  only  translation  symmetry  . These  graphics  may  be somewhat  misleading  but  because  your  eyes

may  see  these  as a 3D  pattern  but  they  are  only  2D  so the  tessellation  has  no  reflection  symmetry  there  

are  no  glide  reflections.

4.5.2  Group  II Translations  and Glide  Reflections

It is possible  in a tessellation  group  to have  glide  reflections  and  not  reflections.   In our  discussion  on  

Group  III  we  will  note  that  it is not  possible  to have  reflections  and  no  glide  reflections.

Our  example  is the  group  generated  by 1 → τh, 2 → InverseTF [τh], 3 →γ2, 4 → InverseTF [γ2] where

γ2 = glideReflectionTF2D [{{0, 0}, {1, .7}}]

Calculating  the  discrete  group  at a random  test  point  we  get

In[  ]:= discreteTransGroup [1 → τh, 2 → γ2, 3 → InverseTF [τh], 4 → InverseTF [γ2],

{.2387, .1943 }, 1.01, 5]
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» number of group elements calculated 199

» number c points 15

Out[  ]=

-4 -2 2 4

-4

-2

2

4

shows  not  a jumble  but  a well  organized  set  of points  .  Further  levels  show  this  to be a discrete  group  .

In[  ]:= G2 = discreteTransGroup [1 → τh, 2 → γ2, 3 → InverseTF [τh], 4 → InverseTF [γ2],

{.2387, .1943 }, 1.01, 4, returnGroup → True ];

» number of group elements calculated 105

In[  ]:= isoClassifierA [G2, 1 → τh, 2 → γ2, 3 → InverseTF [τh], 4 → InverseTF [γ2]]

Out[  ]= {1} → T, {2} → G, {3} → T, {4} → G, {1, 1} → T, {1, 2} → G, {1, 3} → T, {1, 4} → G,

{2, 1} → G, {2, 2} → T, {2, 3} → G, {3, 2} → G, {3, 3} → T, {3, 4} → G, {4, 1} → G,

{4, 3} → G, {4, 4} → T, {1, 1, 1} → T, {1, 1, 2} → G, {1, 1, 4} → G, {1, 2, 1} → G,

{1, 2, 2} → T, {1, 2, 3} → G, {1, 4, 1} → G, {1, 4, 3} → G, {1, 4, 4} → T, {2, 1, 1} → G,

{2, 1, 2} → T, {2, 1, 4} → T, {2, 2, 2} → G, {2, 2, 3} → T, {2, 3, 2} → T, {2, 3, 3} → G,

{2, 3, 4} → T, {3, 2, 1} → G, {3, 2, 3} → G, {3, 3, 2} → G, {3, 3, 3} → T, {3, 3, 4} → G,

{3, 4, 1} → G, {3, 4, 3} → G, {3, 4, 4} → T, {4, 1, 1} → G, {4, 1, 4} → T, {4, 3, 3} → G,

{4, 3, 4} → T, {4, 4, 4} → G, {1, 1, 1, 1} → T, {1, 1, 1, 2} → G, {1, 1, 1, 4} → G,

{1, 1, 2, 1} → G, {1, 1, 2, 2} → T, {1, 1, 2, 3} → G, {1, 1, 4, 1} → G, {1, 1, 4, 3} → G,

{1, 1, 4, 4} → T, {1, 2, 1, 1} → G, {1, 2, 1, 2} → T, {1, 2, 1, 4} → T, {1, 2, 2, 2} → G,

{1, 2, 3, 2} → T, {1, 2, 3, 3} → G, {1, 2, 3, 4} → T, {1, 4, 1, 1} → G, {1, 4, 1, 4} → T,

{1, 4, 3, 3} → G, {1, 4, 3, 4} → T, {1, 4, 4, 4} → G, {2, 1, 1, 1} → G, {2, 1, 1, 2} → T,

{2, 1, 1, 4} → T, {2, 1, 2, 2} → G, {2, 1, 2, 3} → T, {2, 1, 4, 3} → T, {2, 2, 2, 2} → T,

{2, 2, 2, 3} → G, {2, 2, 3, 2} → G, {2, 2, 3, 3} → T, {2, 3, 2, 3} → T, {2, 3, 3, 2} → T,

{2, 3, 3, 3} → G, {2, 3, 3, 4} → T, {2, 3, 4, 3} → T, {3, 2, 1, 1} → G, {3, 2, 3, 3} → G,

{3, 3, 2, 1} → G, {3, 3, 2, 3} → G, {3, 3, 3, 2} → G, {3, 3, 3, 3} → T, {3, 3, 3, 4} → G,

{3, 3, 4, 1} → G, {3, 3, 4, 3} → G, {3, 3, 4, 4} → T, {3, 4, 1, 1} → G, {3, 4, 1, 4} → T,

{3, 4, 3, 3} → G, {3, 4, 3, 4} → T, {3, 4, 4, 4} → G, {4, 1, 1, 1} → G, {4, 1, 1, 4} → T,

{4, 1, 4, 4} → G, {4, 3, 3, 3} → G, {4, 3, 3, 4} → T, {4, 3, 4, 4} → G, {4, 4, 4, 4} → T

shows  we  get  only  translations  and  glide  reflections,  no  reflections  or rotations  .

Rather  than  demonstrate  a tessellation  with  this  group  we  claim  that  there  is a general  family  of tessella -

tions,  isosceles  triangles.   We  give  a pseudo  random  example
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In[  ]:= stri = {{1, 2}, {3, 6}, {5, 2}}

Out[  ]= {{1, 2}, {3, 6}, {5, 2}}

We  use  one  side  to be the  base  of a glide  reflection

In[  ]:= γs = Chop [glideReflectionTF2D [{{1, 2}, {3, 2}}]]

Out[  ]= TransformationFunction 
1. 0. 2.

0. -1. 4.

0. 0. 1.



In[  ]:= τs = TranslationTransform [{0, 4}]

Out[  ]= TransformationFunction 
1 0 0

0 1 4

0 0 1



In[  ]:= Graphics [{{Cyan, Polygon [stri ]},

{Blue, Thickness [.01], Arrowheads [.06], Arrow [{{1, 2}, {3, 2}}], Arrow [{{3, 2}, {3, 6}}]},

{Black, Text ["{1,2}", {.9, 1.8}], Text ["{5,2}", {5.1, 1.8}], Text ["{3,6}", {2.9, 6.2}],

Text ["γs", {2, 1.8}], Text ["τs", {3.2, 4}]}}, ImageSize → Small ]

Out[  ]=

{1,2} {5,2}

{3,6}

γ s

τs

In[  ]:= Gs = finiteTransGroup [1 → τs, 2 → InverseTF [τs], 3 → γs, 4 → InverseTF [γs], {1, 2}, 5];

» number of group elements calculated 61
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In[  ]:= groupTessellate [

Gs, 1 → τs, 2 → InverseTF [τs], 3 → γs, 4 → InverseTF [γs], stri, Orange, Gray ]

Out[  ]=

In section  4.6  .1 we  will  see  that  this  group  is useful  for  checkerboards.

4.5.3  Group  III Translation  and reflection

As mentioned  above,   when  there  is a reflection  one  can  expect  glide  reflections  also.   This  is true  of our  

standard  example

τd := TranslationTransform [{1, 1}]

In[  ]:= discreteTransGroup [1 → τd, 2 → InverseTF [τd], 3 → ρh, {0, -0}, 2, 4]

» number of group elements calculated 27

» number c points 5

Out[  ]=

-4 -2 2 4

-4

-2

2

4
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In[  ]:= G3 = discreteTransGroup [1 → τd, 2 → InverseTF [τd], 3 → ρh,

{0, -0}, 2, 4, returnGroup → True ]

» number of group elements calculated 27

Out[  ]= {{1}, {2}, {3}, {1, 1}, {2, 2}, {3, 1}, {3, 2}, {1, 1, 1}, {1, 3, 1}, {1, 3, 2}, {2, 2, 2}, {2, 3, 1},

{2, 3, 2}, {3, 1, 1}, {3, 2, 2}, {1, 1, 1, 1}, {1, 1, 3, 1}, {1, 1, 3, 2}, {1, 3, 1, 1}, {1, 3, 2, 2},

{2, 2, 2, 2}, {2, 2, 3, 1}, {2, 2, 3, 2}, {2, 3, 1, 1}, {2, 3, 2, 2}, {3, 1, 1, 1}, {3, 2, 2, 2}}

In[  ]:= isoClassifierA [G3, 1 → τd, 2 → InverseTF [τd], 3 → ρh]

Out[  ]= {1} → T, {2} → T, {3} → RF, {1, 1} → T, {2, 2} → T, {3, 1} → G, {3, 2} → G,

{1, 1, 1} → T, {1, 3, 1} → G, {1, 3, 2} → RF, {2, 2, 2} → T, {2, 3, 1} → RF,

{2, 3, 2} → G, {3, 1, 1} → G, {3, 2, 2} → G, {1, 1, 1, 1} → T, {1, 1, 3, 1} → G,

{1, 1, 3, 2} → G, {1, 3, 1, 1} → G, {1, 3, 2, 2} → G, {2, 2, 2, 2} → T, {2, 2, 3, 1} → G,

{2, 2, 3, 2} → G, {2, 3, 1, 1} → G, {2, 3, 2, 2} → G, {3, 1, 1, 1} → G, {3, 2, 2, 2} → G

It is not  surprising  that  there  are  glide  reflections  even  though  the  defining  reflection  does  not  have  a 

mirror  parallel  to the  translation.

As our  example  we  use  for  our  cell  paver3  which  consists  of an octagon  with  a square  attached  to one

side.

Out[  ]= {{0.707107 , -0.292893 }, {1.29289, -0.292893 },

{1.29289, 0.292893 }, {0.707107 , 0.292893 }, {0.292893 , 0.707107 },

{-0.292893 , 0.707107 }, {-0.707107 , 0.292893 }, {-0.707107 , -0.292893 },

{-0.292893 , -0.707107 }, {0.292893 , -0.707107 }, {0.707107 , -0.292893 }}

In[  ]:= Graphics [{Cyan, Polygon [paver3 ]}, ImageSize → Tiny ]

Out[  ]=

This  is commercially  available,  for  example
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Our  tessellation  gives

In[  ]:= groupTessellate [G3, 1 → τd, 2 → InverseTF [τd], 3 → ρh, paver3, Brown, Black ]

Out[  ]=

This  is somewhat  different  from  the  commercial  picture  .  In practice  the  square  added  to the  octagon  

is separated  from  the  octagon  by a false  joint.   This  is evident  in the  photo  if you  look  for  it.   We  will  see  

this  again  and  in the  next  section  where  we  consider  compound  cells.

4.5.4  Translations  and half  turns

This  is a group  known  for   for  parallelogram  and  scalene  triangles  tessellations.

In[  ]:= discreteTransGroup [1 → τh, 2 → τd, 3 → η0 , {1, .5}, 2, 5]

» number of group elements calculated 56

» number c points 12

Out[  ]=

-4 -2 2 4 6

-4

-2

2

4
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In[  ]:= G4 = discreteTransGroup [1 → τh, 2 → τd, 3 → η0 , {1, .5}, 2, 4, returnGroup → True ]

» number of group elements calculated 37

Out[  ]= {{1}, {2}, {3}, {1, 1}, {1, 2}, {1, 3}, {2, 2}, {2, 3}, {3, 1}, {3, 2}, {3, 3},

{1, 1, 1}, {1, 1, 2}, {1, 1, 3}, {1, 2, 2}, {1, 3, 2}, {2, 2, 2}, {2, 2, 3},

{2, 3, 1}, {3, 1, 1}, {3, 1, 2}, {3, 2, 2}, {1, 1, 1, 1}, {1, 1, 1, 2}, {1, 1, 1, 3},

{1, 1, 2, 2}, {1, 1, 3, 2}, {1, 2, 2, 2}, {1, 3, 2, 2}, {2, 2, 2, 2}, {2, 2, 2, 3},

{2, 2, 3, 1}, {2, 3, 1, 1}, {3, 1, 1, 1}, {3, 1, 1, 2}, {3, 1, 2, 2}, {3, 2, 2, 2}}

In[  ]:= isoClassifierA [G4, 1 → τh, 2 → τd, 3 → η0 ]

Out[  ]= {1} → T, {2} → T, {3} → H, {1, 1} → T, {1, 2} → T, {1, 3} → H, {2, 2} → T, {2, 3} → H, {3, 1} → H,

{3, 2} → H, {3, 3} → T, {1, 1, 1} → T, {1, 1, 2} → T, {1, 1, 3} → H, {1, 2, 2} → T, {1, 3, 2} → H,

{2, 2, 2} → T, {2, 2, 3} → H, {2, 3, 1} → H, {3, 1, 1} → H, {3, 1, 2} → H, {3, 2, 2} → H,

{1, 1, 1, 1} → T, {1, 1, 1, 2} → T, {1, 1, 1, 3} → H, {1, 1, 2, 2} → T, {1, 1, 3, 2} → H,

{1, 2, 2, 2} → T, {1, 3, 2, 2} → H, {2, 2, 2, 2} → T, {2, 2, 2, 3} → H, {2, 2, 3, 1} → H,

{2, 3, 1, 1} → H, {3, 1, 1, 1} → H, {3, 1, 1, 2} → H, {3, 1, 2, 2} → H, {3, 2, 2, 2} → H

So we  just  have  translations  and  half  turns,  but  many  half  turns.

Our  example  of a tessellation  is the  parallelogram  with  centroid  {0,0}

In[  ]:= par4 = {{0, .5}, {1, .5}, {0, -.5}, {-1, -.5}}

Out[  ]= {{0, 0.5}, {1, 0.5}, {0, -0.5}, {-1, -0.5}}

In[  ]:= Graphics [{Cyan, Polygon [par4 ]}, ImageSize → Tiny ]

Out[  ]=

In[  ]:= groupTessellate [G4, 1 → τh, 2 → τd, 3 → η0 , par4, Orange, Gray ]

Out[  ]=
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On the  other  hand,  given  a scalene  triangle  we  can  define  this  group  using  just   half  turns.   Consider  half  

the  rectangle   where  the  midpoints  of the  sides,

In[  ]:= tri4 = {{0, 0.5`}, {1, 0.5`}, {0, -0.5`}}

Out[  ]= {{0, 0.5}, {1, 0.5}, {0, -0.5}}

In[  ]:= mid12 = Midpoint [{{0, .5}, {1, .5}}]

mid13 = Midpoint [{{0, .5}, {0, -.5}}]

mid23 = Midpoint [{{1, .5}, {0, -.5}}]

Out[  ]= 
1

2
, 0.5

Out[  ]= {0, 0.}

Out[  ]= 
1

2
, 0.

In[  ]:= Graphics [{{Cyan, Polygon [par4 ]}, {Magenta, Polygon [tri4 ]},

{Blue, PointSize [.03], Point [{mid12, mid13, mid23 }]}}, ImageSize → Small ]

Out[  ]=

In[  ]:= η12 = RotationTransform [Pi, mid12 ];

η23 = RotationTransform [Pi, mid23 ];

In[  ]:= G4a = discreteTransGroup [1 → η0, 2 → η12, 3 → η23, {1, .5}, 1, 4, returnGroup → True ]

» number of group elements calculated 21

Out[  ]= {{1}, {2}, {3}, {1, 1}, {2, 1}, {2, 3}, {3, 1}, {3, 2}, {1, 2, 1},

{1, 2, 3}, {1, 3, 1}, {1, 3, 2}, {2, 3, 2}, {3, 2, 3}, {2, 1, 2, 1}, {2, 1, 2, 3},

{2, 1, 3, 1}, {2, 3, 2, 3}, {3, 1, 3, 1}, {3, 1, 3, 2}, {3, 2, 3, 2}}

In[  ]:= isoClassifierA [G4a, 1 → η0, 2 → η12, 3 → η23]

Out[  ]= {1} → H, {2} → H, {3} → H, {1, 1} → T, {2, 1} → T, {2, 3} → T, {3, 1} → T,

{3, 2} → T, {1, 2, 1} → H, {1, 2, 3} → H, {1, 3, 1} → H, {1, 3, 2} → H,

{2, 3, 2} → H, {3, 2, 3} → H, {2, 1, 2, 1} → T, {2, 1, 2, 3} → T, {2, 1, 3, 1} → T,

{2, 3, 2, 3} → T, {3, 1, 3, 1} → T, {3, 1, 3, 2} → T, {3, 2, 3, 2} → T

Once  again  we  get  translations  and  half  turns.   Recall  from  elementary  transformational  geometry  that  

the  composition  of 2 half  turns  is a translation  which  is shown  by the  5 translations,  {1,1}  being  the  

identity,  given  above  by a doubleton.

The  following  computation  shows  that  G4a  is contained  in G4.
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In[  ]:= G4A = discreteTransGroup [1 → τh, 2 → τd, 3 → η0 ,

{.2135, .1057 }, 3, 4, returnAssoc → True ];

AFindKeys [G4A, η12, {.2135, .1057 }]

AFindKeys [G4A, η23, {.2135, .1057 }]

» number of group elements calculated 47

Out[  ]= {{{2, 3}}}

Out[  ]= {{{1, 3}}}

Conversely  

In[  ]:= G4aA = discreteTransGroup [1 → η0, 2 → η12, 3 → η23,

{.2135, .1057 }, 1, 4, returnAssoc → True ];

AFindKeys [G4aA, τh, {.2135, .1057 }]

AFindKeys [G4aA, τd, {.2135, .1057 }]

» number of group elements calculated 31

Out[  ]= {{{3, 1}}}

Out[  ]= {{{2, 1}}}

shows  that  G4  is contained  in G4a  .  Thus  these   two  infinite   discrete  groups  are  equal  because  they  

contain  each  others  generators.   Hence   Group  IV is also  a group  defined  by 3 half  turns.

4.5.5:   Translations,  Reflections,  half  Turns

Here  we  don'  t need  to explicitly  give  the  inverses  of the  translations  as generators  because  the  half  

turn  is a generator  and  the  inverse  of any  isometry  is its  conjugate  by the  half  turn.   Note  also  that  ρh is 

just  η0@*ρv so that  is also  included.

In[  ]:= discreteTransGroup [1 → τh, 2 → τv, 3 → ρv, 4 → η0, {0, 0}, 2, 5]

» number of group elements calculated 47

» number c points 9

Out[  ]=

-4 -2 2 4

-4

-2

2

4

G5 =

discreteTransGroup [1 → τh, 2 → τv, 3 → ρv, 4 → η0, {0, 0}, 2, 5, returnGroup → True ];

» number of group elements calculated 47
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In[  ]:= isoClassifierA [G5, 1 → τh, 2 → τv, 3 → ρv, 4 → η0]

Out[  ]= {1} → T, {2} → T, {3} → RF, {1, 1} → T, {1, 2} → T, {2, 2} → T, {3, 1} → RF,

{4, 2} → H, {1, 1, 1} → T, {1, 1, 2} → T, {1, 2, 2} → T, {1, 4, 2} → H, {2, 2, 2} → T,

{2, 3, 1} → G, {3, 1, 1} → RF, {4, 1, 2} → H, {4, 2, 2} → H, {1, 1, 1, 1} → T,

{1, 1, 1, 2} → T, {1, 1, 2, 2} → T, {1, 1, 4, 2} → H, {1, 2, 2, 2} → T, {1, 4, 2, 2} → H,

{2, 2, 2, 2} → T, {2, 2, 3, 1} → G, {2, 3, 1, 1} → G, {3, 1, 1, 1} → RF,

{4, 1, 1, 2} → H, {4, 1, 2, 2} → H, {4, 2, 2, 2} → H, {1, 1, 1, 1, 1} → T,

{1, 1, 1, 1, 2} → T, {1, 1, 1, 2, 2} → T, {1, 1, 1, 4, 2} → H, {1, 1, 2, 2, 2} → T,

{1, 1, 4, 2, 2} → H, {1, 2, 2, 2, 2} → T, {1, 4, 2, 2, 2} → H, {2, 2, 2, 2, 2} → T,

{2, 2, 2, 3, 1} → G, {2, 2, 3, 1, 1} → G, {2, 3, 1, 1, 1} → G, {3, 1, 1, 1, 1} → RF,

{4, 1, 1, 1, 2} → H, {4, 1, 1, 2, 2} → H, {4, 1, 2, 2, 2} → H, {4, 2, 2, 2, 2} → H

In addition  to the  listed  translations,  reflections  and  half  turns  we  see  another  example  of the  glide  

reflections  created  by reflections  and  translations.  

For  our  example  we  modify  this  a tiny  bit.  Let

In[  ]:= τd1 = TranslationTransform [{1., .5}]

Out[  ]= TransformationFunction 
1. 0. 1.

0. 1. 0.5

0. 0. 1.



We  use  the  group

In[  ]:= G5M = discreteTransGroup [1 → τd1, 2 → ρh, 3 → η0, {0, 0}, 2, 4, returnGroup → True ]

» number of group elements calculated 18

Out[  ]= {{1}, {2}, {1, 1}, {2, 1}, {3, 1}, {1, 1, 1}, {1, 2, 1}, {2, 1, 1}, {2, 3, 1}, {3, 1, 1}, {1, 1, 1, 1},

{1, 1, 2, 1}, {1, 2, 1, 1}, {1, 2, 3, 1}, {2, 1, 1, 1}, {2, 3, 1, 1}, {3, 1, 1, 1}, {3, 1, 2, 1}}

Our  cell  is the  diamond

diamond = {{-1, 0}, {0, .5}, {1, 0}, {0, -.5}}

Then  we  get  the  tessellation

In[  ]:= groupTessellate [G5M, 1 → τd1, 2 → ρh, 3 → η0, diamond, Orange, Gray ]

Out[  ]=

We  note  that  this  group  is also  the  group  of symmetries  of a rectangle  .  Whereas  in the  diamond  the  
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mirrors  are  the  diagonal  lines  between  opposite  vertices,  in a rectangle  the  mirrors  are  between  oppo -

site  midpoints.   Here  is an example

In[  ]:= rect5 = {{-.5, .25}, {.5, .25}, {.5, -.25}, {-.5, -.25}};

τvr = TranslationTransform [{0, .5}];

In[  ]:= G5M2 = discreteTransGroup [1 → τh, 2 → τvr, 3 → ρv, 4 → η0,

{0, 0}, 2, 4, returnGroup → True ];

» number of group elements calculated 30

In[  ]:= groupTessellate [G5M2, 1 → τh, 2 → τvr, 3 → ρv, 4 → η0, rect5, Orange, Gray ]

Out[  ]=

Because  of this  tessellation  I may  later  call  this  group  the  rectangle  group.

So far  we  have  not  used  rotations  other  than  half  turns,  the  next  group  will  have  rotations  of order  3, 4, 

and  6.

Later,  when  we  consider  compound  cells  we  use  an alternate  version  of Group  V .  Probably  group  

theorists  would  classify  this  as a different  type  because  it is probably  not  isomorphic  to our  standard  

example   but  since  we  are  classifying  by the  types  in the  actual  group  rather  than  generators  this  still  

has  T, G,  RF  ,H.    The  original  group  is generated  by translations  and  reflections  with  glide  reflections  a 

consequence  of these.   This  variation  has  a different  glide  reflection  which  is given  as a generator.

γh2 = glideReflectionTF2D [{{.5, 1}, {1.5, 1}}];

τvr =

1 → γh2, 2 → τv2, 3 → ρh, 4 → ρv.

G5a = discreteTransGroup [1 → γh2, 2 → τv2, 3 → ρh, 4 → ρv,

{.2135, .33132 }, 2, 6, returnGroup → True ];

We  get  a different  tessellation  with  our  cell   rect5.
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In[  ]:= groupTessellate [G5a, 1 → γh2, 2 → τvr, 3 → ρh, 4 → ρv, rect5, Orange, Gray ]

Out[  ]=

See  section  4.6  for  more  details

4.5.6  Translations  and order  4 rotations

This  is not  a particularly  useful  group  but  must  be included  for  completeness  .  

In[  ]:= discreteTransGroup [1 → τh, 2 → σ4, {0, 0}, 2, 5]

» number of group elements calculated 26

» number c points 9

Out[  ]=

-2 2 4

-2

-1

1

2

3

4

In[  ]:= G6 = discreteTransGroup [1 → τh, 2 → σ4, {.2136, .1948 }, 2, 5, returnGroup → True ];

» number of group elements calculated 53

In[  ]:= isoClassifierA [G6, 1 → τh, 2 → σ4]

Out[  ]= {1} → T, {2} → R4, {1, 1} → T, {1, 2} → R4, {2, 1} → R4, {2, 2} → H, {1, 1, 1} → T, {1, 1, 2} → R4,

{1, 2, 1} → R4, {1, 2, 2} → H, {2, 1, 1} → R4, {2, 1, 2} → H, {2, 2, 1} → H, {2, 2, 2} → R4,

{1, 1, 1, 1} → T, {1, 1, 1, 2} → R4, {1, 1, 2, 1} → R4, {1, 1, 2, 2} → H, {1, 2, 1, 1} → R4,

{1, 2, 1, 2} → H, {1, 2, 2, 2} → R4, {2, 1, 1, 1} → R4, {2, 1, 1, 2} → H, {2, 1, 2, 1} → H,

{2, 1, 2, 2} → R4, {2, 2, 1, 1} → H, {2, 2, 1, 2} → R4, {2, 2, 2, 1} → R4, {2, 2, 2, 2} → T,

{1, 1, 1, 1, 1} → T, {1, 1, 1, 1, 2} → R4, {1, 1, 1, 2, 1} → R4, {1, 1, 1, 2, 2} → H,

{1, 1, 2, 1, 1} → R4, {1, 1, 2, 1, 2} → H, {1, 1, 2, 2, 2} → R4, {1, 2, 1, 1, 1} → R4,

{1, 2, 1, 1, 2} → H, {1, 2, 1, 2, 2} → R4, {1, 2, 2, 2, 1} → R4, {2, 1, 1, 1, 1} → R4,

{2, 1, 1, 1, 2} → H, {2, 1, 1, 2, 1} → H, {2, 1, 1, 2, 2} → R4, {2, 1, 2, 1, 1} → H,

{2, 1, 2, 1, 2} → R4, {2, 1, 2, 2, 2} → T, {2, 2, 1, 1, 1} → H, {2, 2, 1, 1, 2} → R4,

{2, 2, 1, 2, 1} → R4, {2, 2, 1, 2, 2} → T, {2, 2, 2, 1, 1} → R4, {2, 2, 2, 1, 2} → T

We  see  beside  the  generator  types  we  also  get  half  turns   η0 = σ4@*σ4 and  others.   Given  half  turns  

we get  the  inverse  of τh so we  don’t  need  to include  that  as a generator.    But  there  are  no  reflections  or 
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glide  reflections.   On  the  other  hand  all  the  translations  are  parallel  to or orthogonal  to τh.  We  get  τv by

In[  ]:= TasTF [{2, 1, 2, 2, 2}, 1 → τh, 2 → σ4]

Out[  ]= TransformationFunction 
1 0 0

0 1 1

0 0 1



or

In[  ]:= σ4@* τh@* η0@* σ4

Out[  ]= TransformationFunction 
1 0 0

0 1 1

0 0 1



To get  a tessellation  without  introducing  reflections  we  use

In[  ]:= τh2 = τh@* τh;
In[  ]:= Q6 = {{1, 1}, {0.75`, 1}, {0.5`, 0.8`}, {0.2`, 0.8`}, {0.`, 1.`}, {-0.2`, 1.2`}, {-0.5`, 1.2`},

{-0.75`, 1.`}, {-1.`, 1.`}, {-1.`, 1.`}, {-1.`, 0.75` }, {-0.8`, 0.5`}, {-0.8`, 0.2`},

{-1.`, 0.`}, {-1.2`, -0.2`}, {-1.2`, -0.5`}, {-1.`, -0.75` }, {-1.`, -1.`}, {-1.`, -1.`},

{-0.75`, -1.`}, {-0.5`, -0.8`}, {-0.2`, -0.8`}, {0.`, -1.`}, {0.2`, -1.2`},

{0.5`, -1.2`}, {0.75`, -1.`}, {1.`, -1.`}, {1.`, -1.`}, {1.`, -0.75` }, {0.8`, -0.5`},

{0.8`, -0.2`}, {1.`, 0.`}, {1.2`, 0.2`}, {1.2`, 0.5`}, {1.`, 0.75` }, {1.`, 1.`}};

We  modify  G6  slightly

In[  ]:= G6M = discreteTransGroup [1 → τh2, 2 → σ4, {0, 0}, 2, 5, returnGroup → True ];

» number of group elements calculated 26

In[  ]:= groupTessellate [G6M, 1 → τh2, 2 → σ4, Q6, Orange, Gray ]

Out[  ]=

Note  that  there  are  no  reflection  symmetries
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In[  ]:= Row[

Graphics [{{Cyan, Polygon [Q6]}, {Black, Thickness [.01], Line [ρv@ Q6]}}, ImageSize → Small ],

Graphics [{{Cyan, Polygon [Q6]}, {Black, Thickness [.01], Line [ρd@ Q6]}}, ImageSize → Small ]]

Out[  ]= Row , 

Thus  G6M  is not  just  a construction  group  but  the  symmetry  group  of the  tessellation  .

4.5.7  Group  VII   Translations,   Rotations  of order  4 and reflections

Our  standard  example  is 

1 → τh, 2 → σ4, 3 → ρv
We  picked  ρv as our  reflection  but  note

In[  ]:= ρv@* σ4

Out[  ]= TransformationFunction 
0. 1. 0.

1. 0. 0.

0. 0. 1.



In[  ]:= ρd

Out[  ]= TransformationFunction 
0. 1. 0.

1. 0. 0.

0. 0. 1.



In[  ]:= σ4@* σ4

Out[  ]= TransformationFunction 
-1 0 0

0 -1 0

0 0 1



In[  ]:= η0

Out[  ]= TransformationFunction 
-1 0 0

0 -1 0

0 0 1


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In[  ]:= η0@* ρv

Out[  ]= TransformationFunction 
1. 0. 0.

0. -1. 0.

0. 0. 1.



In[  ]:= ρh

Out[  ]= TransformationFunction 
1. 0. 0.

0. -1. 0.

0. 0. 1.



So we  also  have  the  half  turn  and  reflections  ρh and  ρd  and  the  other  diagonal  as well.   We  can  also  

construct  horizontal,  vertical  and  diagonal  glide  reflections  also.   We  get  the  other  translation  τv and  

since  we  have  half  turns  we  also  get  their  inverses  so we  do  not  need  to list  these  as generators.

The  following  association  is as expected,  translations,  half  turns,  reflections,  glide  reflections  and,  of 

course  order  4 rotations.

In[  ]:= G7 = discreteTransGroup [1 → τh, 2 → σ4, 3 → ρv,

{.21331, .1592 }, 1, 4, returnGroup → True ];

» number of group elements calculated 64

In[  ]:= isoClassifierA [G7, 1 → τv, 2 → σ4, 3 → ρv]

Out[  ]= {1} → T, {2} → R4, {3} → RF, {1, 1} → T, {1, 2} → R4, {1, 3} → G, {2, 1} → R4, {2, 2} → H,

{2, 3} → RF, {3, 1} → G, {3, 2} → RF, {3, 3} → T, {1, 1, 1} → T, {1, 1, 2} → R4,

{1, 1, 3} → G, {1, 2, 1} → R4, {1, 2, 2} → H, {1, 2, 3} → G, {1, 3, 2} → G,

{2, 1, 1} → R4, {2, 1, 2} → H, {2, 1, 3} → G, {2, 2, 1} → H, {2, 2, 2} → R4,

{2, 2, 3} → RF, {2, 3, 1} → G, {3, 1, 1} → G, {3, 1, 2} → G, {3, 1, 3} → T, {3, 2, 1} → G,

{1, 1, 1, 1} → T, {1, 1, 1, 2} → R4, {1, 1, 1, 3} → G, {1, 1, 2, 1} → R4, {1, 1, 2, 2} → H,

{1, 1, 2, 3} → G, {1, 1, 3, 2} → G, {1, 2, 1, 1} → R4, {1, 2, 1, 2} → H, {1, 2, 1, 3} → G,

{1, 2, 2, 2} → R4, {1, 2, 2, 3} → RF, {1, 2, 3, 1} → G, {1, 3, 2, 1} → G, {2, 1, 1, 1} → R4,

{2, 1, 1, 2} → H, {2, 1, 1, 3} → G, {2, 1, 2, 1} → H, {2, 1, 2, 2} → R4, {2, 1, 2, 3} → G,

{2, 1, 3, 2} → RF, {2, 2, 1, 1} → H, {2, 2, 1, 2} → R4, {2, 2, 1, 3} → RF,

{2, 2, 2, 1} → R4, {2, 3, 1, 1} → G, {2, 3, 1, 2} → RF, {2, 3, 1, 3} → R4, {3, 1, 1, 1} → G,

{3, 1, 1, 2} → G, {3, 1, 1, 3} → T, {3, 1, 2, 1} → G, {3, 1, 3, 2} → R4, {3, 2, 1, 1} → G

In[  ]:= sq = {{-.5, .5}, {.5, .5}, {.5, -.5}, {-.5, -.5}};

As expected  our  tessellation  is 

In[  ]:= G7 = discreteTransGroup [1 → τh, 2 → σ4, 3 → ρv, {0, 0}, 1, 6, returnGroup → True ];

» number of group elements calculated 46
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In[  ]:= Show [groupTessellate [G7, 1 → τh, 2 → σ4, 3 → ρv, sq, Orange, Gray ],

Graphics [{{GrayLevel [.7], Polygon [sq]},

{GrayLevel [.9], Dashed, Thickness [.01], Line [{{.5, 4.5}, {.5, -3.5}}]}}]]

Out[  ]=

Our  original  cell  sq is shown  and  all  the  vertical  and  horizontal  mirrors  of reflections  are  evident,  one  

vertical  mirror  is shown,  it is 

In[  ]:= ρv7 = reflectionTF2D [{{.5, -3.5}, {.5, 4.5}}];

Note  

In[  ]:= ρv7@* ρv

Out[  ]= TransformationFunction 
1. 0. 1.

0. 1. 0.

0. 0. 1.



is the  translation  τh with  inverse

In[  ]:= ρv@* ρv7

Out[  ]= TransformationFunction 
1. 0. -1.

0. 1. 0.

0. 0. 1.



Thus  an alternate  set  of generators  for  G7  is 

1 → ρv, 2 → ρd, 3 → ρv8
We  are  done  with  order  4 rotations,  the  remaining  groups  concern  order  3 and  6 which  may  have  half  

turns  but  no  order  4 rotations  . 
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4.5.8   Group  VIII,  Order  3 rotations  and translations  only.

Our  standard  example  is 

1 → τh, 2 → InverseTF [τh], 2 → σ3
where  we  need  to include  the  inverse  of our  translation  as a generator  .

In[  ]:= discreteTransGroup [1 → τh, 2 → σ3 , {.1238, .2617 }, 1, 6]

» number of group elements calculated 78

» number c points 12

Out[  ]=

-2 2 4 6

-2

2

4

This  does  look  discrete  .  Note  that

In[  ]:= Chop [σ3@* τh@* σ3@* τh@* σ3]

Out[  ]= TransformationFunction 
1. 0. -1.

0. 1. 0.

0. 0. 1.



In[  ]:= G8 = discreteTransGroup [1 → τh, 2 → σ3 , {.1238, .2617 }, 1, 5, returnGroup → True ];

» number of group elements calculated 48
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In[  ]:= isoClassifierA [G8, 1 → τh, 2 → InverseTF [τh], 3 → σ3 ]

Out[  ]= {1} → T, {2} → T, {3} → R3, {1, 1} → T, {1, 2} → T, {1, 3} → R3, {2, 2} → T, {2, 3} → R3,

{3, 1} → R3, {3, 2} → R3, {3, 3} → R3, {1, 1, 1} → T, {1, 1, 3} → R3, {1, 3, 1} → R3,

{1, 3, 2} → R3, {1, 3, 3} → R3, {2, 2, 2} → T, {2, 2, 3} → R3, {2, 3, 1} → R3, {2, 3, 2} → R3,

{2, 3, 3} → R3, {3, 1, 1} → R3, {3, 1, 3} → R3, {3, 2, 2} → R3, {3, 2, 3} → R3,

{3, 3, 1} → R3, {3, 3, 2} → R3, {1, 1, 1, 1} → T, {1, 1, 1, 3} → R3, {1, 1, 3, 1} → R3,

{1, 1, 3, 2} → R3, {1, 1, 3, 3} → R3, {1, 3, 1, 1} → R3, {1, 3, 2, 2} → R3, {1, 3, 2, 3} → R3,

{1, 3, 3, 2} → R3, {2, 2, 2, 2} → T, {2, 2, 2, 3} → R3, {2, 2, 3, 1} → R3, {2, 2, 3, 2} → R3,

{2, 2, 3, 3} → R3, {2, 3, 1, 1} → R3, {2, 3, 1, 3} → R3, {2, 3, 2, 2} → R3, {2, 3, 3, 1} → R3,

{3, 1, 1, 1} → R3, {3, 1, 1, 3} → R3, {3, 1, 3, 2} → R3, {3, 1, 3, 3} → T, {3, 2, 2, 2} → R3,

{3, 2, 2, 3} → R3, {3, 2, 3, 1} → R3, {3, 2, 3, 3} → T, {3, 3, 1, 1} → R3, {3, 3, 1, 3} → T,

{3, 3, 2, 2} → R3, {3, 3, 2, 3} → T, {1, 1, 1, 1, 1} → T, {1, 1, 1, 1, 3} → R3,

{1, 1, 1, 3, 1} → R3, {1, 1, 1, 3, 2} → R3, {1, 1, 1, 3, 3} → R3, {1, 1, 3, 1, 1} → R3,

{1, 1, 3, 2, 2} → R3, {1, 1, 3, 2, 3} → R3, {1, 1, 3, 3, 2} → R3, {1, 3, 1, 1, 1} → R3,

{1, 3, 2, 2, 2} → R3, {1, 3, 2, 2, 3} → R3, {1, 3, 2, 3, 3} → T, {1, 3, 3, 2, 2} → R3,

{1, 3, 3, 2, 3} → T, {2, 2, 2, 2, 2} → T, {2, 2, 2, 2, 3} → R3, {2, 2, 2, 3, 1} → R3,

{2, 2, 2, 3, 2} → R3, {2, 2, 2, 3, 3} → R3, {2, 2, 3, 1, 1} → R3, {2, 2, 3, 1, 3} → R3,

{2, 2, 3, 2, 2} → R3, {2, 2, 3, 3, 1} → R3, {2, 3, 1, 1, 1} → R3, {2, 3, 1, 1, 3} → R3,

{2, 3, 1, 3, 3} → T, {2, 3, 2, 2, 2} → R3, {2, 3, 3, 1, 1} → R3, {2, 3, 3, 1, 3} → T,

{3, 1, 1, 1, 1} → R3, {3, 1, 1, 1, 3} → R3, {3, 1, 1, 3, 2} → R3, {3, 1, 1, 3, 3} → T,

{3, 1, 3, 2, 2} → R3, {3, 1, 3, 2, 3} → T, {3, 2, 2, 2, 2} → R3, {3, 2, 2, 2, 3} → R3,

{3, 2, 2, 3, 1} → R3, {3, 2, 2, 3, 3} → T, {3, 2, 3, 1, 1} → R3, {3, 2, 3, 1, 3} → T,

{3, 3, 1, 1, 1} → R3, {3, 3, 1, 1, 3} → T, {3, 3, 2, 2, 2} → R3, {3, 3, 2, 2, 3} → T

We  see  no  other  types  appear  to be present  .  Our  tessellation  example  is given  in the  closed  cell

In[  ]:= tri8

Out[  ]= -2.94668 × 10-16, -0.57735 , {0.4, -0.23094 }, {0.5, -0.288675 }, {0.5, -0.288675 },

{0.6, -0.23094 }, {0.5, 0.288675 }, {0.5, 0.288675 }, 1.01581 × 10-16, 0.46188 ,
3.72924 × 10-16, 0.57735 , 4.68608 × 10-17, 0.57735 , {-0.1, 0.635085 },

{-0.5, 0.288675 }, {-0.5, 0.288675 }, {-0.4, -0.23094 }, {-0.5, -0.288675 },

{-0.5, -0.288675 }, {-0.5, -0.404145 }, -1.25117 × 10-16, -0.57735 
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In[  ]:= Graphics [{Cyan, Polygon [tri8 ]}, ImageSize → Small ]

Out[  ]=

This  has  no  symmetries  other  than  an order  3 rotation  .  Its  tessellation  is

In[  ]:= groupTessellate [G8, 1 → τh, 2 → InverseTF [τh], 3 → σ3, tri8, Orange, Gray ]

Out[  ]=

4.5.9  Group  IX Translations,  reflections  and order  3 rotations

What  makes  this  different  from   VIII and  X is that  it has  a reflection  but  no  half  turn.   Our  example  is 

1 → τh, 2 → σ3, 3 → ρh
In[  ]:= discreteTransGroup [1 → τh, 2 → σ3, 3 → ρh, {0, 0}, .5, 6]
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» number of group elements calculated 38

» number c points 1

Out[  ]=

-2 2 4 6

-2

2

4

We  see  this  is an organized  set  of points  so our  group  is discrete  .  As  in Group  VIII  the  inverse  of of τh 

will  appear  so it is not  necessary  to include  this  as a generator.

In[  ]:= G9 = discreteTransGroup [1 → τh, 2 → σ3, 3 → ρh,

{.2143, .1592 }, .5, 4, returnGroup → True ];

» number of group elements calculated 46

In[  ]:= isoClassifierA [G9, 1 → τh, 2 → σ3, 3 → ρh]

Out[  ]= {1} → T, {2} → R3, {3} → RF, {1, 1} → T, {1, 2} → R3, {1, 3} → G, {2, 1} → R3, {2, 2} → R3,

{2, 3} → RF, {3, 2} → RF, {3, 3} → T, {1, 1, 1} → T, {1, 1, 2} → R3, {1, 1, 3} → G, {1, 2, 1} → R3,

{1, 2, 2} → R3, {1, 2, 3} → G, {1, 3, 2} → G, {2, 1, 1} → R3, {2, 1, 2} → R3, {2, 1, 3} → G,

{2, 2, 1} → R3, {3, 2, 1} → G, {1, 1, 1, 1} → T, {1, 1, 1, 2} → R3, {1, 1, 1, 3} → G,

{1, 1, 2, 1} → R3, {1, 1, 2, 2} → R3, {1, 1, 2, 3} → G, {1, 1, 3, 2} → G, {1, 2, 1, 1} → R3,

{1, 2, 1, 2} → R3, {1, 2, 1, 3} → G, {1, 2, 2, 1} → R3, {1, 3, 2, 1} → G, {2, 1, 1, 1} → R3,

{2, 1, 1, 2} → R3, {2, 1, 1, 3} → G, {2, 1, 2, 1} → R3, {2, 1, 2, 2} → T, {2, 1, 2, 3} → G,

{2, 1, 3, 2} → G, {2, 2, 1, 1} → R3, {2, 2, 1, 2} → T, {3, 2, 1, 1} → G, {3, 2, 1, 2} → G

Other  than  the  generators  of types  T, R3,RF  we  have  only  G which  is expected  to appear  when  there  is 

an RF.   In particular  there  is no  H.

A nice  example  of a tessellation  with  just  these  symmetries  follows.

In[  ]:= Chop [panel9 ]

Out[  ]= {{0, -0.57735 }, {0, -0.46188 }, {0.4, -0.23094 }, {0.5, -0.288675 }, {0.6, -0.23094 },

{0.6, 0.23094 }, {0.5, 0.288675 }, {0.4, 0.23094 }, {0, 0.46188 }, {0, 0.57735 }, {0, 0.57735 },

{-0.1, 0.635085 }, {-0.5, 0.404145 }, {-0.5, 0.288675 }, {-0.4, 0.23094 }, {-0.4, -0.23094 },

{-0.5, -0.288675 }, {-0.5, -0.288675 }, {-0.5, -0.404145 }, {-0.1, -0.635085 }, {0, -0.57735 }}
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In[  ]:= Graphics [{{Cyan, Polygon [panel9 ]}, {Red, Dashed, Thickness [.005 ],

InfiniteLine [{{-1, 0}, {1, 0}}], InfiniteLine [σ3@{{-1, 0}, {1, 0}}],

InfiniteLine [σ3@* σ3@{{-1, 0}, {1, 0}}]}}, ImageSize → Small ]

Out[  ]=

It is seen  to have  an order  3 rotation  about  its  centroid   {0,0}  and  three  reflections  one  being  ρh.  More -

over  there  is a nice  tessellation  using  this  cell.

In[  ]:= G9 = discreteTransGroup [1 → τh, 2 → σ3, 3 → ρh, {0, 0}, .5, 6, returnGroup → True ];

» number of group elements calculated 38

In[  ]:= groupTessellate [G9, 1 → τh, 2 → σ3, 3 → ρh, panel9, Orange, Gray ]

Out[  ]=

4.5.10   Group  X Translations,  rotations  of order  2,3,6.

This  group  will  be  called  the  direct  hexagon  group , it is the  group  of direct  isometries  of the  hexagon  .

Our  basic  example  is 
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1 → τh, 2 → σ6
 Note  that  an alternate  generating  set  is  

1 → τh, 2 → σ3, 3 → η0
In the  second  case  the  second  two  generators  are  powers  of σ6  while  in the  first   η0@*σ3@*σ3 = σ6
Also  note  that  the  inverse  of τh is also  a consequence  of these  generators  as seen  by the  points  {-2,0},  

{-1,0}  are  in the  orbit  of {0,0}.

In[  ]:= discreteTransGroup [1 → τh, 2 → σ6, {0, 0}, 1.5, 6]

» number of group elements calculated 42

» number c points 7

Out[  ]=

-2 2 4 6

-1

1

2

3

4

also  we  see  the   points  of norm  1 in the  orbit  of {0,0}  form  a hexagon

In[  ]:= hex1 = RecurrenceTable [{p[i + 1] ⩵ σ6@ p[i], p[1] ⩵ {1, 0}}, p, {i, 6}]

Out[  ]= {1, 0}, 
1

2
,

3

2
, -

1

2
,

3

2
, {-1, 0}, -

1

2
, -

3

2
, 

1

2
, -

3

2


In[  ]:= G10 = discreteTransGroup [1 → τv, 2 → σ6, {.2138, .1392 }, 1.5, 4, returnGroup → True ];

» number of group elements calculated 29

In[  ]:= isoClassifierA [G10, 1 → τh, 2 → σ6]

Out[  ]= {1} → T, {2} → R6, {1, 1} → T, {1, 2} → R6, {2, 1} → R6, {2, 2} → R3, {1, 1, 1} → T, {1, 1, 2} → R6,

{1, 2, 1} → R6, {1, 2, 2} → R3, {2, 1, 1} → R6, {2, 1, 2} → R3, {2, 2, 1} → R3, {2, 2, 2} → H,

{1, 1, 1, 1} → T, {1, 1, 1, 2} → R6, {1, 1, 2, 1} → R6, {1, 1, 2, 2} → R3, {1, 2, 1, 1} → R6,

{1, 2, 1, 2} → R3, {1, 2, 2, 2} → H, {2, 1, 1, 1} → R6, {2, 1, 1, 2} → R3, {2, 1, 2, 1} → R3,

{2, 1, 2, 2} → H, {2, 2, 1, 1} → R3, {2, 2, 1, 2} → H, {2, 2, 2, 1} → H, {2, 2, 2, 2} → R3

So we  just  get  translations  and  rotations  of order  2, 3, 6.

The   well  known  hexagon  tessellation  is  not  
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In[  ]:= groupTessellate [G10, 1 → τh, 2 → σ6, hex1, Orange, Gray ]

Out[  ]=

Rather  we  let  

τhex := TranslationTransform 0, 3. 

In[  ]:= G10v = discreteTransGroup [1 → τhex, 2 → σ3, 3 → η0, {1, 0}, 2, 4, returnGroup → True ];

» number of group elements calculated 40

Then

In[  ]:= groupTessellate [G10v, 1 → τhex, 2 → σ3, 3 → η0, hex1, Orange, Gray ]

Out[  ]=
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is the  well  known  hexagonal  tessellation   of the  plane.

This  tessellation  has  reflections  also  so G10v  is not  the  symmetry  group.   We  can  modify  our  cell  in the  

usual  way.   We  give  the  graphic  only,  the  actual  coordinates  are  in the  hidden  cell.   Note  this  is fixed  by 

σ6, but  not  by reflections  ρv, ρh.

In[  ]:= Row[{Graphics [{{Cyan, Polygon [newHex ]},

{Black, Thickness [.01], Line [newHex ], Line [σ6@ newHex ]}}, ImageSize → 150],

Graphics [{{Cyan, Polygon [newHex ]}, {Black, Thickness [.01], Line [ρv@ newHex ]}},

ImageSize → 150], Graphics [

{{Cyan, Polygon [newHex ]}, {Black, Thickness [.01], Line [ρh@ newHex ]}}, ImageSize → 140]}]

Out[  ]=

In[  ]:= groupTessellate [G10v, 1 → τhex, 2 → σ3, 3 → η0, newHex, Orange, Gray ]

Out[  ]=
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4.5.11  Group  XI reflections,  and rotations  of order  2,3,  6.

This  is known  as the  full  equilateral  triangle  group   giving  all  the  symmetries  of the  triangle  tessellation  

below.   It also  gives  all  symmetries  of the  hexagon  tessellation  above  with  reflections.   In fact  this  group  

includes  all  isometry  types  except  for  order  4 rotations.   The  group  of all  isometries  is not  a discrete  

group.

Our  standard  example  of the  group  is 

1 → τh, 2 → σ3, 3 → η0, 4 → ρv
In[  ]:= discreteTransGroup [1 → τh, 2 → σ3, 3 → η0, 4 → ρv, {0, 0}, 2, 5]

» number of group elements calculated 34

» number c points 13

Out[  ]=

-4 -2 2 4

-2

-1

1

2

3

In[  ]:= G11 = discreteTransGroup [1 → τh, 2 → σ3, 3 → η0, 4 → ρv,

{.2137, .1987 }, 2, 3, returnGroup → True ];

» number of group elements calculated 44

In[  ]:= isoClassifierA [G11, 1 → τh, 2 → σ3, 3 → η0, 4 → ρv]

Out[  ]= {1} → T, {2} → R3, {3} → H, {4} → RF, {1, 1} → T, {1, 2} → R3, {1, 3} → H, {1, 4} → RF,

{2, 1} → R3, {2, 2} → R3, {2, 3} → R6, {2, 4} → RF, {3, 1} → H, {3, 3} → T, {3, 4} → RF,

{4, 1} → RF, {4, 2} → RF, {1, 1, 1} → T, {1, 1, 2} → R3, {1, 1, 3} → H, {1, 1, 4} → RF,

{1, 2, 1} → R3, {1, 2, 2} → R3, {1, 2, 3} → R6, {1, 2, 4} → G, {1, 3, 4} → G, {1, 4, 2} → G,

{2, 1, 1} → R3, {2, 1, 2} → R3, {2, 1, 3} → R6, {2, 1, 4} → G, {2, 2, 1} → R3,

{2, 2, 3} → R6, {2, 3, 1} → R6, {2, 3, 4} → RF, {2, 4, 1} → G, {3, 1, 1} → H, {3, 1, 2} → R6,

{3, 1, 3} → T, {3, 1, 4} → G, {3, 4, 2} → RF, {4, 1, 1} → RF, {4, 1, 2} → G, {4, 2, 1} → G

In[  ]:= etri = {{0, 0}, {1, 0}, {.5, Sqrt [3.] / 2}, {0, 0}}

Out[  ]= {{0, 0}, {1, 0}, {0.5, 0.866025 }, {0, 0}}
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In[  ]:= {{0, 0}, {1, 0}, {0.5`, 0.8660254037844386` },}

Out[  ]= {{0, 0}, {1, 0}, {0.5, 0.866025 }, Null }

In[  ]:= G11 = discreteTransGroup [1 → τh, 2 → σ3, 3 → η0, 4 → ρh,

{.2213, .3124 }, 2, 5, returnGroup → True ];

» number of group elements calculated 179

In[  ]:= groupTessellate [G11, 1 → τh, 2 → σ3, 3 → η0, 4 → ρh, etri, Orange, Gray ]

Out[  ]=

4.6 Examples  of  Compound  Tessellations

One  can  use  our  tessellation  groups  to tessellate  the  plane  using  more  than  one  cell.   Generally  one  

should  use  a group  that  provides  symmetry  of all  the  cells  and  the  union,  however  in most  cases  if there  

is no  reason  to use  a bigger  group  one  may  use  group  I, translations.   I illustrate  with  a number  of my  

favorite  examples.

4.6.1  Checkerboards

Our  first  example  is the  standard  checker  board  .

In[  ]:= S1 = {{0, 0}, {0, 1}, {1, 1}, {1, 0}};

S2 = {{1, 0}, {2, 0}, {2, 1}, {1, 1}};

The  union  is 

In[  ]:= Graphics [{{Blue, Polygon [S1]}, {Yellow, Polygon [S2]}}, ImageSize → Tiny ]

Out[  ]=

We  use  group  II, we  will  define  specific  translation  and  glide  reflection.
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In[  ]:= τv2 = τv@* τv
γh2 = glideReflectionTF2D [{{.5, 1}, {1.5, 1}}]

Out[  ]= TransformationFunction 
1 0 0

0 1 2

0 0 1



Out[  ]= TransformationFunction 
1. 0. 1.

0. -1. 2.

0. 0. 1.



In[  ]:= G2A = discreteTransGroup [1 → γh2, 2 → τv2, 3 → InverseTF [τv2], 4 → InverseTF [γh2],

{0, 0}, 2, 4, returnGroup → True ];

» number of group elements calculated 41

It is easily  checked  that  as in the  specific  example  there  are  translations  and  glide  transformations  only.   

We  get  our  tessellation.

In[  ]:= Show [groupTessellate [G2A, 1 → γh2, 2 → τv2, 3 → InverseTF [τv2], 4 → InverseTF [γh2],

S1, Blue, Black ], groupTessellate [

G2A, 1 → γh2, 2 → τv2, 3 → InverseTF [τv2], 4 → InverseTF [γh2], S2, Yellow, Black ]]

Out[  ]=

Since  we  are  using  group  tessellation   then  we  are  using  group  elements  at level  4.  If we  wanted  just  a 

standard  8 × 8 checker  board  we  would  use  a higher  level  and  just  choose  the  group  elements  to use.   

This  will  be  discussed  in the  next  Section.
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Here  is my  version  of part  of  an  actual  pavement

In[  ]:=

It is sort  of a checkerboard.    The  basic  shape  is 

In[  ]:= σ2 = RotationTransform [-Pi / 2, {1, 1}];

In[  ]:= bCheck1 = {{0.`, 1.`}, {0.2`, 0.75` }, {0.25`, 0.5`}, {0.2`, 0.25` }, {0.`, 0.`},

{0.25`, -0.2`}, {0.5`, -0.25` }, {0.75`, -0.2`}, {1.`, 0.`}, {0.8`, 0.25` },

{0.75`, 0.5`}, {0.8`, 0.75` }, {1.`, 1.`}, {0.75`, 1.2`}, {0.5`, 1.25` }, {0.25`, 1.2`}};

In[  ]:= bCheck2 = {{1.`, 2.`}, {0.75`, 1.8`}, {0.5`, 1.75` }, {0.25`, 1.8`}, {0.`, 2.`},

{-0.2`, 1.75` }, {-0.25`, 1.5`}, {-0.2`, 1.25` }, {0.`, 1.`}, {0.25`, 1.2`},

{0.5`, 1.25` }, {0.75`, 1.2`}, {1.`, 1.`}, {1.2`, 1.25` }, {1.25`, 1.5`}, {1.2`, 1.75` }};

In[  ]:= Graphics [{{Cyan, Polygon [σ2@ bCheck1 ]}, {Yellow, Polygon [σ2@ bCheck2 ]},

{Black, Thickness [.005 ], Dashed, Line [{{0, 2}, {1, 2}, {1, 1}, {0, 1}, {0, 2}}],

Line [{{0, 2}, {2, 2}, {2, 1}, {1, 1}}]}}, ImageSize → Small ]

Out[  ]=

We  see  this  is basically  our  checkerboard  above  .  So  using  the  same  group
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In[  ]:= Show [groupTessellate [

G2A, 1 → γh2, 2 → τv2, 3 → InverseTF [τv2], 4 → InverseTF [γh2], bCheck2, Cyan, Gray ],

groupTessellate [G2A, 1 → γh2, 2 → τv2, 3 → InverseTF [τv2], 4 → InverseTF [γh2],

bCheck1, LightYellow , Gray ]]

Out[  ]=

Again  we  get  our  original  picture  by using  a large  enough  level  and  picking  cells  .

We  notice  in both  of these  checkerboards  that  we  have  vertical  and  horizontal  reflections  through  the   

centers  of the  cells.   These  in turn  compose  to form  half  turns  about  the  midpoints  of the  cells.   So  the  

actual  symmetry  of these  compound  tessellations  is Group  V.

In[  ]:= ρh5 = reflectionTF2D [{{-1, .5}, {1, .5}}];

ρv5 = reflectionTF2D [{{.5, -1}, {.5, 1}}];

In[  ]:= G5a = discreteTransGroup [1 → γh2, 2 → τv2, 3 → ρh5, 4 → ρv5, 5 → InverseTF [τv2],

{.1394, .2015 }, 3, 3, returnGroup → True ];

» number of group elements calculated 48
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In[  ]:= isoClassifierA [G5a, 1 → γh2, 2 → τv2, 3 → ρh5, 4 → ρv5, 5 → InverseTF [τv2]]

Out[  ]= {1} → G, {2} → T, {3} → RF, {4} → RF, {5} → T, {1, 1} → T, {1, 2} → G, {1, 3} → T, {1, 4} → H,

{1, 5} → G, {2, 2} → T, {2, 3} → RF, {2, 4} → G, {2, 5} → T, {3, 1} → T, {3, 2} → RF, {3, 4} → H,

{4, 1} → H, {4, 5} → G, {5, 5} → T, {1, 1, 1} → G, {1, 1, 2} → T, {1, 1, 3} → G, {1, 1, 4} → RF,

{1, 1, 5} → T, {1, 2, 2} → G, {1, 2, 4} → H, {1, 3, 1} → G, {1, 3, 2} → T, {1, 3, 4} → G,

{1, 4, 5} → H, {1, 5, 5} → G, {2, 2, 2} → T, {2, 2, 3} → RF, {2, 2, 4} → G, {2, 3, 4} → H,

{2, 4, 1} → H, {3, 1, 4} → G, {3, 1, 5} → T, {3, 2, 2} → RF, {3, 2, 4} → H, {3, 4, 1} → G,

{4, 1, 1} → RF, {4, 1, 2} → H, {4, 1, 3} → G, {4, 1, 4} → G, {4, 5, 5} → G, {5, 5, 5} → T

In[  ]:= Show [groupTessellate [G5a, 1 → γh2, 2 → τv2, 3 → ρh5, 4 → ρv5, 5 → InverseTF [τv2],

bCheck1, LightYellow , Gray ],

groupTessellate [G5a, 1 → γh2, 2 → τv2, 3 → ρh5, 4 → ρv5, 5 → InverseTF [τv2],

bCheck2, Cyan, Gray ], Graphics [{Red, Thickness [.005 ], Dashed,

InfiniteLine [{{0, .5}, {1, .5}}], InfiniteLine [{{.5, 0}, {.5, 1}}]}]]

Out[  ]=

4.6.2  Bricks

Without  alternating  color  or orientation  we  can  make  a brick  wall   by  Groups  IV or  V. 

In[  ]:= G5b = discreteTransGroup [1 → τh2, 2 → τv, 3 → ρh, 4 → ρv,

{.1252, .2212 }, 3, 4, returnGroup → True ];

» number of group elements calculated 68
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In[  ]:= brick1 = {{-1, -.5}, {1, -.5}, {1, .5}, {-1, .5}};

brick2 = {{0, .5}, {2, .5}, {2, 1.5}, {0, 1.5}};

In[  ]:= Show [groupTessellate [G5b, 1 → τh2, 2 → τv2, 3 → ρh, 4 → ρv,

brick1, LightRed , GrayLevel [.7]], groupTessellate [

G5b, 1 → τh2, 2 → τv2, 3 → ρh, 4 → ρv, brick2, LightRed , GrayLevel [.7]]]

Out[  ]=

We  saw  above  if we  did  not  alternate  we  had  

In[  ]:= G5c = discreteTransGroup [1 → τh2, 2 → τv, 3 → ρv, 4 → η0,

{.1249, .2137 }, 2, 5, returnGroup → True ];

» number of group elements calculated 546

In[  ]:= groupTessellate [G5c, 1 → τh2, 2 → τv, 3 → ρv, 4 → η0, brick1, Orange, Gray ]

Out[  ]=

We  can  use  this  with  a more  complicated  brick  .
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In[  ]:= R0 = .5 {{-1.5, 0}, {-1.55, .35}, {-1.6, .5},

{-1.75, .75}, {-2, 1}, {-1.5, .8}, {-1, .7}, {-.5, .65}, {0, .6}}

Out[  ]= {{-0.75, 0.}, {-0.775, 0.175 }, {-0.8, 0.25 }, {-0.875, 0.375 },

{-1., 0.5}, {-0.75, 0.4}, {-0.5, 0.35 }, {-0.25, 0.325 }, {0., 0.3}}

In[  ]:= Graphics [{{LightYellow , Polygon [brick1 ]}, {Blue, Polygon [R0]}}]

Out[  ]=

In[  ]:= groupTessellate [G5c, 1 → τh2, 2 → τv, 3 → ρv, 4 → η0, R0, Blue, Blue ]

Out[  ]=

This  gives  us some  ideas.   For  this  we  prefer  not  to have  the  border  so we  use

groupTessellateNB [G_, tas_, P_, col_] := Module [{tab},

tab = Table [TasTF [g, tas]@P, {g, G}];

Graphics [{col, Polygon [tab]}]]

R0a = {{-1.`, 0.5`}, {-0.75`, 0.4`}, {-0.5`, 0.35` }, {-0.25`, 0.325` }, {0.`, 0.3`}}

R2 = Append [Join [R0a, Reverse [ρv@ R0a]], {-1, .5}]

R3a = Append [{{-0.75`, 0.`}, {-0.775`, 0.175` }, {-0.8`, 0.25` }, {-0.875`, 0.375` }}, {-1, .5}]

R3 = Append [Join [Reverse [R3a], ρh@ R3a], {-1, .5}]

R4 = {{-.75, 0}, {0, .3}, {.75, 0}, {0, -.3}}
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In[  ]:= Show [groupTessellateNB [G5c, 1 → τh2, 2 → τv, 3 → ρv, 4 → η0, R0, Blue ],

groupTessellateNB [G5c, 1 → τh2, 2 → τv, 3 → ρv, 4 → η0, R2, Green ],

groupTessellateNB [G5c, 1 → τh2, 2 → τv, 3 → ρv, 4 → η0, R3, Green ],

groupTessellateNB [G5c, 1 → τh2, 2 → τv, 3 → ρv, 4 → η0, R4, Orange ],

ImageSize → Large ]

Out[  ]=

4.6.4  More  Bricks

A very  popular  use  of rectangular  paving  stones  sometimes  goes  by the  name  Holland.    Your  author  

had  this  on  a section  of his  driveway.   It is a nice  example  of Group  IV.  

In[  ]:= Brick1 = {{-2, 1}, {2, 1}, {2, -1}, {-2, -1}};

Brick2 = {{-2, 1}, {-2, 5}, {0, 5}, {0, 1}};

Let

In[  ]:= τd2 := TranslationTransform [{2, 2}]

τdm4 := TranslationTransform [{-4, 4}]

Again,  to do  a tessellation  one  needs  a version  of the  group  with  a random  test  point.   Also  conjugating  

any  translation  by a half  turn  gives  its  inverse  so the  main  importance  of the  half  turns  to get  inverses  

for  the  translations.   But  it also  shows  our  tessellations  have  half  turn  symmetry.

In[  ]:= G4B = discreteTransGroup [1 → τd2, 2 → τdm4, 3 → η0,

{.2187, .1326 }, 2, 5, returnGroup → True ];

» number of group elements calculated 77
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In[  ]:= Show [groupTessellate [G4B, 1 → τd2, 2 → τdm4, 3 → η0, Brick1, Brown, Black ],

groupTessellate [G4B, 1 → τd2, 2 → τdm4, 3 → η0, Brick2, Gray, Black ]]

Out[  ]=

O�en  this  is seen  diagonally

In[  ]:= Brick1D = σ6@ Brick1;

Brick2D = σ6@ Brick2;

τD2 = σ6@* τd2@* InverseTF [σ6];
τDm4 = σ6@* τdm4@* InverseTF [σ6];

In[  ]:= Show [groupTessellate [G4B, 1 → τD2, 2 → τDm4, 3 → η0, Brick1D, Brown, Black ],

groupTessellate [G4B, 1 → τD2, 2 → τDm4, 3 → η0, Brick2D, Brown, Black ]]

Out[  ]=

Note  we  did  not  need  to recalculate  the  group  since  we  are  just  conjugating.   I changed  the  color  of 

Chapter4Final.nb    63



brick  2 so all  bricks  are  the  same  as on  my  old  driveway

4.6.5  Octagonal  paver

This  is commercially  available,   for  example   and  similar  to group  III.

But  here  we  regard  the  octogons and  the  squares  separately  .

In[  ]:= oct = {{0.7071067811865475` , -0.2928932188134522` },

{0.7071067811865475` , 0.2928932188134525` },

{0.2928932188134524` , 0.7071067811865475` }, {-0.2928932188134526` ,

0.7071067811865475` }, {-0.7071067811865477` , 0.29289321881345237` },

{-0.7071067811865475` , -0.2928932188134526` }, {-0.29289321881345226` ,

-0.7071067811865477` }, {0.29289321881345276` , -0.7071067811865475` },

{0.7071067811865475` , -0.2928932188134522` }};

In[  ]:= sqr = {{0.7071067811865475` , -0.2928932188134522` },

{1.2928932188134525` , -0.2928932188134522` }, {1.2928932188134525` ,

0.2928932188134525` }, {0.7071067811865475` , 0.2928932188134525` }};

Recall

In[  ]:= τd = TranslationTransform [{1, 1}];

In[  ]:= G3 = discreteTransGroup [1 → τd, 2 → InverseTF [τd], 3 → ρh,

{0, -0}, 2, 4, returnGroup → True ];

» number of group elements calculated 27
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In[  ]:= Show [groupTessellate [G3, 1 → τd, 2 → InverseTF [τd], 3 → ρh,

oct, GrayLevel [.7], GrayLevel [.3]], groupTessellate [

G3, 1 → τd, 2 → InverseTF [τd], 3 → ρh, sqr, GrayLevel [.5], GrayLevel [.3]]]

Out[  ]=

4.7 Further  comments  on plane tessellations

This  last  section  concerns  practical  considerations  on  actually  working  on  tessellations  so many  read -

ers  may  end  here.   Our  group  tessellation  algorithm  gives  cells  as they  are  generated  in the  group,  this  

can  depend  on  the  generators.   But  they  most  likely  do  not  give  a nice  display.   So  our  first  section  

below  shows  how  to plot  a  user  defined  portion  of a tessellation.

Our  second  section  concerns  the  case  when  a practical  tiling  method  does  not  give  good  borders,  

unlike  as in the  graphic  above  where  borders  define  adjacent  octagonal  cells.   We  can  distinguish  cells  

by color  with  adjacent  cells  a different  color.   There  is some  mathematics  here,  specifically  the  four  

color  theorem  which  says  that  4 colors  will  suffice  for  any  polygonal  tessellation.   We  will  see  that  

unless  triangles  are  involved  3 colors  should  be enough.

4.7.1   Choosing  cells  in a tessellation

The  following  algorithm  will  tessellate  with  a number  at the  centroid  of each  cell  .
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Options [groupATessL ] = {returnAssoc → False };

groupATessL [G_, tas_, P_, OptionsPattern []] := Module [{tabA, n},

n = Length [G];

tabA = Table [i → {TasTF [G〚i〛, tas]@P, pcentroid [TasTF [G〚i〛, tas]@P]}, {i, n}];

If[OptionValue [returnAssoc ], Return [tabA ]];

Show [Table [Graphics [{{Black, Thickness [.005 ], Line [tabA [i]〚1〛]},
{Black, Text [Style [i, 10], tabA [i]〚2〛]}}], {i, n}]]]

For  our  first  example  we  use  the  parallelograms  of our  first  example  for  Group  I.   Note  our  cell  is line  

style,  that  the  first  and  last  points  are  the  same.

In[  ]:= {p, q} = {{-1.8337165994212103` , 2.736646713237377` },

{1.7521455008048097` , 0.2910803142189895` }}

Out[  ]= {{-1.83372, 2.73665 }, {1.75215, 0.29108 }}

In[  ]:= par = {{0, 0}, p, p + q, q, {0, 0}}

Out[  ]= {{0, 0}, {-1.83372, 2.73665 }, {-0.0815711 , 3.02773 }, {1.75215, 0.29108 }, {0, 0}}

In[  ]:= τp = TranslationTransform [p];

τq = TranslationTransform [q];

In[  ]:= c = pcentroid [par]

Out[  ]= {-0.0407855 , 1.51386 }

In[  ]:= G1a = discreteTransGroup [1 → τp, 2 → InverseTF [τp], 3 → τq, 4 → InverseTF [τq],

c, 2, 5, returnGroup → True ]

» number of group elements calculated 61

Out[  ]= {{1}, {2}, {3}, {4}, {1, 1}, {1, 2}, {1, 3}, {1, 4}, {2, 2}, {2, 3}, {2, 4}, {3, 3}, {4, 4}, {1, 1, 1},

{1, 1, 3}, {1, 1, 4}, {1, 3, 3}, {1, 4, 4}, {2, 2, 2}, {2, 2, 3}, {2, 2, 4}, {2, 3, 3},

{2, 4, 4}, {3, 3, 3}, {4, 4, 4}, {1, 1, 1, 1}, {1, 1, 1, 3}, {1, 1, 1, 4}, {1, 1, 3, 3},

{1, 1, 4, 4}, {1, 3, 3, 3}, {1, 4, 4, 4}, {2, 2, 2, 2}, {2, 2, 2, 3}, {2, 2, 2, 4},

{2, 2, 3, 3}, {2, 2, 4, 4}, {2, 3, 3, 3}, {2, 4, 4, 4}, {3, 3, 3, 3}, {4, 4, 4, 4},

{1, 1, 1, 1, 1}, {1, 1, 1, 1, 3}, {1, 1, 1, 1, 4}, {1, 1, 1, 3, 3}, {1, 1, 1, 4, 4},

{1, 1, 3, 3, 3}, {1, 1, 4, 4, 4}, {1, 3, 3, 3, 3}, {1, 4, 4, 4, 4}, {2, 2, 2, 2, 2},

{2, 2, 2, 2, 3}, {2, 2, 2, 2, 4}, {2, 2, 2, 3, 3}, {2, 2, 2, 4, 4}, {2, 2, 3, 3, 3},

{2, 2, 4, 4, 4}, {2, 3, 3, 3, 3}, {2, 4, 4, 4, 4}, {3, 3, 3, 3, 3}, {4, 4, 4, 4, 4}}

Note  that  the  group  elements  are  all  n-tuples,  n ≤ 5, of the  integers  1,2,3,4.
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In[  ]:= groupATessL [G1a, 1 → τp, 2 → InverseTF [τp], 3 → τq, 4 → InverseTF [τq], par]

Out[  ]=

1

2

3
4

5

6

7
8

9

10
11

12

13

14

15
16

17

18

19

20
21

22

23

24

25

26

27
28

29

30

31

32

33

34
35

36

37

38

39

40

41

42

43
44

45

46

47

48
49

50

51

52
53

54

55

56

57

58

59

60

61

To get  a nice  parallelogram  tessellations  we  choose  cells

In[  ]:= Sa = {50, 32, 18, 8, 1, 7, 17, 31, 49, 41, 25,

13, 4, 6, 3, 12, 24, 40, 59, 39, 23, 11, 2, 10, 22, 38, 58}

Out[  ]= {50, 32, 18, 8, 1, 7, 17, 31, 49, 41, 25, 13,

4, 6, 3, 12, 24, 40, 59, 39, 23, 11, 2, 10, 22, 38, 58}

We  now  use  the  group  association  to give  a custom  tessellation  .

In[  ]:= Aa = groupATessL [

G1a, 1 → τp, 2 → InverseTF [τp], 3 → τq, 4 → InverseTF [τq], par, returnAssoc → True ];
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In[  ]:= Graphics [{Cyan, EdgeForm [{Gray, Thickness [.01]}], Polygon [Table [Aa[i]〚1〛, {i, Sa}]]}]

Out[  ]=

Here  is a more  complicated  example  with  a compound  tessellation.

τd = TranslationTransform [{1, 1.}];

In[  ]:= oct = {{0.7071067811865475` , -0.2928932188134522` },

{0.7071067811865475` , 0.2928932188134525` },

{0.2928932188134524` , 0.7071067811865475` }, {-0.2928932188134526` ,

0.7071067811865475` }, {-0.7071067811865477` , 0.29289321881345237` },

{-0.7071067811865475` , -0.2928932188134526` }, {-0.29289321881345226` ,

-0.7071067811865477` }, {0.29289321881345276` , -0.7071067811865475` },

{0.7071067811865475` , -0.2928932188134522` }};

In[  ]:= sqr = {{0.7071067811865475` , -0.2928932188134522` },

{1.2928932188134525` , -0.2928932188134522` },

{1.2928932188134525` , 0.2928932188134525` }, {0.7071067811865475` ,

0.2928932188134525` }, {0.7071067811865475` , -0.2928932188134522` }};

In[  ]:= G3 = discreteTransGroup [1 → τd, 2 → InverseTF [τd], 3 → ρh,

{0, -0}, 2, 6, returnGroup → True ];

» number of group elements calculated 63
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In[  ]:= Show [groupTessellate [G3, 1 → τd, 2 → InverseTF [τd], 3 → ρh,

oct, GrayLevel [.7], GrayLevel [.3]], groupTessellate [

G3, 1 → τd, 2 → InverseTF [τd], 3 → ρh, sqr, GrayLevel [.5], GrayLevel [.3]]]

Out[  ]=

In[  ]:= groupATessL [G3, 1 → τd, 2 → InverseTF [τd], 3 → ρh, oct]

Out[  ]=

1

2

3

4

5
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8

9
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21
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59
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In[  ]:= S = Range [1, 63];

S1 = Delete [S, Partition [{44, 35, 54, 56, 58, 60, 62, 53, 63, 61, 59, 57, 55, 35}, 1]]

Out[  ]= {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,

18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33,

34, 36, 37, 38, 39, 40, 41, 42, 43, 45, 46, 47, 48, 49, 50, 51, 52}

In[  ]:= groupATessL [G3, 1 → τd, 2 → InverseTF [τd], 3 → ρh, sqr, returnAssoc → False ]

Out[  ]=
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In[  ]:= S2 = Delete [S,

Partition [{53, 44, 35, 54, 56, 58, 60, 62, 28, 45, 47, 49, 51, 62, 62, 63, 42}, 1]]

Out[  ]= {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25,

26, 27, 29, 30, 31, 32, 33, 34, 36, 37, 38, 39, 40, 41, 43, 46, 48, 50, 52, 55, 57, 59, 61}

In[  ]:= A1 = groupATessL [G3, 1 → τd, 2 → InverseTF [τd], 3 → ρh, oct, returnAssoc → True ];

In[  ]:= A2 = groupATessL [G3, 1 → τd, 2 → InverseTF [τd], 3 → ρh, sqr, returnAssoc → True ];
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In[  ]:= Graphics [{{Cyan, EdgeForm [{Black, Thickness [.005 ]}], Polygon [Table [A1[i]〚1〛, {i, S1}]]},

{Yellow, EdgeForm [{Black, Thickness [.005 ]}], Polygon [Table [A2[i]〚1〛, {i, S2}]]}}]

Out[  ]=

This  is much  nicer.

We  want  to clean  up  our  example  for  group  11.

In[  ]:= etri = {{0, 0}, {1, 0}, {.5, Sqrt [3.] / 2}, {0, 0}};

In[  ]:= G11 = discreteTransGroup [1 → τh, 2 → σ3, 3 → η0, 4 → ρh,

{.2213, .3124 }, 2, 5, returnGroup → True ];

» number of group elements calculated 179

In[  ]:= groupTessellate [G11, 1 → τh, 2 → σ3, 3 → η0, 4 → ρh, etri, Orange, Gray ]

Out[  ]=
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In[  ]:= groupATessL [G11, 1 → τh, 2 → σ3, 3 → η0, 4 → ρh, etri ]

Out[  ]=
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This  is very  messy  as there  are  several  group  elements  giving  the  same  cell  .  G11  is the  symmetry  group  

but  we  can  use  a simpler  construction  group.   We  find  another  translation  in G11

In[  ]:= τe = Chop [TasTF [{2, 1, 2, 2}, 1 → τh, 2 → σ3, 3 → η0, 4 → ρh]]

Out[  ]= TransformationFunction 
1. 0. -0.5

0. 1. 0.866025

0. 0. 1.



Then  the  level  7 group

In[  ]:= G11rev = discreteTransGroup [1 → τh, 2 → τe, 3 → η0,

{.1259, .2134 }, 3, 7, returnGroup → True ];

» number of group elements calculated 161

gives  
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In[  ]:= groupATessL [G11rev, 1 → τh, 2 → τe, 3 → η0, etri ]

Out[  ]=
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In[  ]:= B1 = groupATessL [G11rev, 1 → τh, 2 → τe, 3 → η0, etri, returnAssoc → True ];

It is a help  picking  out  cells  to first  construct  a working  diagram  which  would  look  like  this.

In[  ]:= S3 = {153, 107, 148, 109, 41, 67, 101, 73, 21, 9, 3, 71, 43, 23, 39,

20, 8, 16, 104, 68, 40, 2, 65, 38, 19, 33, 55, 146, 102, 66, 7, 15, 99,

64, 37, 59, 89, 144, 100, 18, 32, 98, 97, 135, 63, 142, 93, 36, 131, 58};
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In[  ]:= Graphics [{{Orange, EdgeForm [{Gray, Thickness [.01]}], Polygon [Table [B1[i]〚1〛, {i, S3}]]},

{Black, Table [Text [i, B1[i]〚2〛], {i, S3}]}}]

Out[  ]=
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146 102 66 7 15

99 64 37 59 89

144 100 18 32

98

97 135

63

142

93

36

131

58

We  have  3 missing  cells  in the  graphic  we  want.   We  could  go to level  8, but  an alternate  strategy  is to 

use  our  association  B1  which  identifies  the  numbered  cells.   We  notice  that  the  missing  cells  are  trans -

lates  of cells  we  have  so the  missing  cells  are  given  by 

In[  ]:= τhi = InverseTF [τh]

Out[  ]= TransformationFunction 
1 0 -1

0 1 0

0 0 1



In[  ]:= c1 = τhi@ B1[144]〚1〛
Out[  ]= {{-4.5, 2.59808 }, {-3.5, 2.59808 }, {-4., 3.4641 }, {-4.5, 2.59808 }}

In[  ]:= c2 = τhi@ B1[142]〚1〛
Out[  ]= {{-4., 3.4641 }, {-3., 3.4641 }, {-3.5, 4.33013 }, {-4., 3.4641 }}

In[  ]:= c3 = τh@ B1[135]〚1〛
Out[  ]= {{-0.5, 4.33013 }, {-1.5, 4.33013 }, {-1., 3.4641 }, {-0.5, 4.33013 }}

In[  ]:= c4 = τhi@ B1[146]〚1〛
Out[  ]= {{-5., 1.73205 }, {-4., 1.73205 }, {-4.5, 2.59808 }, {-5., 1.73205 }}

In[  ]:= Now  the  desired  graphic  is 
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In[  ]:= Graphics [{{Orange, EdgeForm [{Gray, Thickness [.01]}],

Polygon [Table [B1[i]〚1〛, {i, S3}]], Polygon [{c1, c2, c3, c4}]}}]

Out[  ]=

4.7.2   Coloring  part  of a tessellation.

For  some  applications  the  cell  edges  are  either  not  desirable  or possible.   One  such  example  is using  a 

stencil  to place  a graphic  on  a t-shirt  as in the  picture  below  of your  author’s  daughter,  the  maker  of the  

shirt  (www.makewithtanya.com ).

Here  adjacent  cells  must  have  a different  color.   We  a saved  from  a lot  of colors  by the  4-color  theorem  

that  says  this  can  be done  with  at most  4 colors  since  our  cells  are  polygonal.   In fact,  for  most  tessella -

tions   3 colors  suffice.   It is not  clear  that  this  holds  for  a symmetric  coloring  but  in my  examples  it does.   

We  may  use  the  groupATessL  association  to facilitate  this.

Our  first  example  is the  hexagon  above   without  edges  using   groupTessL.  
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In[  ]:= T1 = {153, 109, 73, 107, 71, 43, 23, 148, 104,

68, 40, 2, 146, 102, 66, 7, 15, 144, 100, 18, 32, 142, 36, 58}

T2 = Complement [S3, T1]

In[  ]:= Graphics [{{Brown, Polygon [Table [B1[i]〚1〛, {i, T1}]], Polygon [{c1, c2, c4}]},

{Cyan, Polygon [Table [B1[i]〚1〛, {i, T2}]], Polygon [{c3}]}}]

Out[  ]=

Here  we  need  only  2 colors  .  A tessellation  needing  3 colors  we  have  a figure  I call  a pseudoTriangle  

with  symmetry  group  IX .  To  avoid  duplication  of cells  we  will  use  a construction  group  of type  group  I.

In[  ]:= τw = TransformationFunction 
1.` 0.` 0.9954`

0.` 1.` 0.5746944579513535`

0.` 0.` 1.`

;

In[  ]:= τu = TransformationFunction 
1.` 0.` 0.`

0.` 1.` 1.149388915902707`

0.` 0.` 1.`

;

corner1 = -
2

3
, 0.5773502691896257` , {-0.66`, 0.4`},

{-0.64`, 0.3`}, {-0.59`, 0.2`}, {-0.5`, 0.1`}, {-0.3333333333333333` , 0.`};

In[  ]:= indent2 = ρh@* σ6@ corner1

Out[  ]= {{-0.333333 , 0.}, {-0.17641, 0.0829016 }, {-0.0798076 , 0.115581 },

{0.0317949 , 0.12228 }, {0.163397 , 0.0943376 }, {0.333333 , 0.}}

In[  ]:= tile0 = Join [corner1, indent2, σ3@ corner1,

σ3@ indent2, σ3@* σ3@ corner1, σ3@* σ3@ indent2 ];

This  tile  has  rotation   symmetry  σ3 but  also  reflection  ρv and  hence  2 other  reflections.

In[  ]:= Graphics [{Orange, Polygon [tile0 ]}, ImageSize → Tiny ]

Out[  ]=
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In[  ]:= G1uw = finiteTransGroup [1 → τw, 2 → τu, {.2174, 3246}, 9];

» number of group elements calculated 54

To use  stencils  to make  a shirt  we  will  need  three  colors,  we  number  the  cells  of a level  9 tessellation.

In[  ]:= groupATessL [G1uw, 1 → τw, 2 → τv, tile0 ]

Out[  ]=
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In[  ]:= APT = groupATessL [G1uw, 1 → τw, 2 → τv, tile0, returnAssoc → True ];

In[  ]:= C1 = {9, 12, 16, 21, 19, 24, 30, 37, 27, 33, 40, 48}

Out[  ]= {9, 12, 16, 21, 19, 24, 30, 37, 27, 33, 40, 48}

In[  ]:= C2 = {14, 18, 23, 29, 26, 32, 39, 47}

Out[  ]= {14, 18, 23, 29, 26, 32, 39, 47}

In[  ]:= C3 = {20, 25, 31, 38, 13, 17, 22, 28}

Out[  ]= {20, 25, 31, 38, 13, 17, 22, 28}
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In[  ]:= Show [Graphics [{Magenta, Polygon [Table [APT[i]〚1〛, {i, C1}]]}],

Graphics [{Green, Polygon [Table [APT[i]〚1〛, {i, C2}]]}],

Graphics [{Orange, Polygon [Table [APT[i]〚1〛, {i, C3}]]}]]

Out[  ]=

The  next  example  comes  from  the  entrance  porch  of  the  Ridgefield CT   recreation  center  that  I visit  

frequently.   

This  did  strike  me  as somewhat  unusual,  with  only  translation  symmetry,  but  until  writing  this  subsec -

tion  I did  not  grasp  the  importance:  to use  stencils  I need  4 colors.   To  construct  this

RC1 = {{0, 0}, {0, 2}, {2, 2}, {2, 0}, {0, 0}};

RC2 = {{2, 1}, {2, 2}, {3, 2}, {3, 1}, {2, 1}};

RC3 = {{3, 1}, {3, 2}, {5, 2}, {5, 1}, {3, 1}};

τr1 := TranslationTransform [{2, -1}];

τr2 := TranslationTransform [{3, 2}];.

Since  there  are  no  rotations  or reflections  we  need  the  inverses  so 
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In[  ]:= τr1i = InverseTF [τr1]
τr2i = InverseTF [τr2]

Out[  ]= TransformationFunction 
1 0 -2

0 1 1

0 0 1



Out[  ]= TransformationFunction 
1 0 -3

0 1 -2

0 0 1



We  have  then  the  transformation  group  of type  Group  I

In[  ]:= GRC = discreteTransGroup [1 → τr1, 2 → τr1i, 3 → τr2, 4 → τr2i,

{2.1212, -3.2456 }, 3, 4, returnGroup → True ];

» number of group elements calculated 41

Using  edges  this  is easy

In[  ]:= Show [groupTessellate [GRC, 1 → τr1, 2 → τr1i, 3 → τr2, 4 → τr2i, RC1, GrayLevel [.5],

GrayLevel [.8]], groupTessellate [GRC, 1 → τr1, 2 → τr1i, 3 → τr2, 4 → τr2i,

RC2, GrayLevel [.4], GrayLevel [.8]], groupTessellate [

GRC, 1 → τr1, 2 → τr1i, 3 → τr2, 4 → τr2i, RC3, GrayLevel [.6], GrayLevel [.8]]]

Out[  ]=

But  our  large  squares  share  part  of a boundary  so adjacent  ones  need  to be another  color.   Also  we  

would  like  a rectangular  paving  rather  than  this  parallelogram.   So  we  use  groupATessL.    Most  details  

will  be  omitted  here.   We  get  an outline  with  numbered  cells
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In[  ]:= Show [groupATessL [GRC, 1 → τr1, 2 → τr1i, 3 → τr2, 4 → τr2i, RC1],

groupATessL [GRC, 1 → τr1, 2 → τr1i, 3 → τr2, 4 → τr2i, RC2],

groupATessL [GRC, 1 → τr1, 2 → τr1i, 3 → τr2, 4 → τr2i, RC3]]

Out[  ]=
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The  numbers  refer  to the  same  transformation  applied  to the  different  polygons.    We  pick  out  the  ones  

we want  but  separate  the  larger  squares  in to gray  and  brown.   We  get  4 associations  with  slightly  

different  cells  chosen.   We  put  the  data  in a hidden  cell.   These  can  be accessed  by those  using  the  

notebook  form  of this  chapter.

Or resulting  tiling  is 

In[  ]:= Show [Graphics [{{Brown, Polygon [Table [RCA[i]〚1〛, {i, SB}]]},

{GrayLevel [.5], Polygon [Table [RCA[i]〚1〛, {i, SG}]]}, {GrayLevel [.4],

Polygon [Table [RCB[i]〚1〛, {i, SS}]]}, {GrayLevel [.6], Polygon [Table [RCC[i]〚1〛, {i, SR}]]}}]]

Out[  ]=

Intuitively  making  this  tiling  more  complicated  should  require  more  colors.   But  in fact  that  is not  the  

case.   For  example  we  could  make  the  small  square  into  a smaller  rectangle  and  the  rectangles  larger  
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so that  those  who  meet  at a vertex  would  have  a common  edge  piece.   Leaving  out  details  the  outline  

might  be 
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with  adjacent  rectangles  needing  to be  different  colors  .  But  that  can  be also  easily  achieved  more  

elegantly  than  this  example.   We  leave  coloring  this  with  the  same  translation  symmetries  as the  

example  above  to the  reader.
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