Geometry and Symmetry
Chapter 4

Plane Tessellations

Chapter 4: Plane Tessellations

In this chapter | will return to plane isometries and tessellations. We will see that this is actually harder
than working on the sphere which is compact. Not only will we need to use infinite symmetry groups
but we will be working with all 4 isometry types. Our symmetry groups will be generated by actual
isometries which makes our discussion different than than the classical discussion. There are two uses

for symmetry groups the construction groups and full symmetry groups.

In this book | will use stone pavers and floor tiles rather than wallpaper patterns to avoid problems
caused by the artistry. The pavers and tiles will assumed to be polygons for simplicity but may have

many sides to approximate smooth curves as in the graphic above.

| expect the reader to review Chapter 2 of my Transformation and Symmetry book. A pdf version is
available on my website, a Mathematica notebook is available from my page in the Wolfram Commu -
nity. In particular the reader should be familiar with Transformation Functions as a data type in

Mathematica.

To review, the 4 isometry types are Translations and Rotations which are given by Mathematica’s built-
in functions, Reflections and Glide reflections also have built-in functions but | prefer my own func-

tions. First a hidden subroutine getTF2D from Chapter 2.

Inf + Ji= reflectionTF2D [{v_, w_}] := Module[{p, pp},
p = N[v - w];
pp = {pl2], -pl1l};
getTF2D[{v, w, V +pp}, {v, w, V- pp}l]
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m- - glideReflectionTF2D [{v_, w_}] := reflectionTF2D [{v, w}]@* TranslationTransform [w - v]

| also note that to invert TransformationFunctions one should use my function because Mathematica’s

Inverse[] does not work well for transformation functions.

m-1- InverseTF[A_] := TransformationFunction [Inverse[TransformationMatrix [A]]]

In this chapter we will name translations starting with 7, reflections with p, glide reflections with yand
rotations with o except for half turns, rotations in 7t (180°) will be considered a special category and

denoted by names beginning in n.

4.1 An Example

I will start with an example: the square tiling. This is one of the most common paving or tiling you will
see and in one sense the simplest. On the the other hand we will see its symmetry group is one of the

largest. This tessellation theoretically tiles the entire real plane, a small piece looks like.

In[ « ]=

Our base or home tile is given by the square

o= S ={{1, 1}, {1, -1}, {-1, -1}, {-1, 1}}
our- - {{1, 1}, {1, -1}, {-1, -1}, {-1, 1}}
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Graphics[{{LightOrange , Polygon[S]},
{Black, Text["{1,1}", {1, 1}], Text["{1,-1}", {1, -1}, Text["{-1,-1}", {-1, -1}],
Text["{-1,1}", {-1, 1}]}, {Red, PointSize[.1], Point[{0, O}}}, ImageSize - Tiny]
-1,1} (1.1}

{-1,-1} {1,-1}
The centroid is the origin {0, 0} .
The simplest symmetries are the translations we will call

tv2 = TranslationTransform [{2, 0}]
th2 = TranslationTransform [{0, 2}]
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To see how this works, here are 6 transforms of our base polygon in the center.

Graphics[{EdgeForm[{Gray, Thickness[.015]}], {Cyan, Polygon[S]}, {Orange, Polygon[tv2@ S]},
{Green, Polygon[th2@S]}, {Yellow, Polygon[InverseTF[tv2]@ S]},
{Pink, Polygon[InverseTF [th2]@S]}, {Brown, Polygon[rv2@x th2@ S},
{Purple, Polygon[rv2@* InverseTF [th2]@S]}}, ImageSize - Small]

Continuing this way it is easy to see that each tile can be constructed by applying a element of the

group generated by {rv2, rh2} we can get any tile in the tessellation.

Even though we will not get a finite group of transformations we can still use our finite transformation
group code in Chapter 2 to approximate the infinite groups. Later in this chapter I will give a better

alternative.
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n - Gl =
finiteTransGroup [¢|1 - tv2, 2 » InverseTF[rv2], 3 » th2, 4 - InverseTF[rh2]|>, {0, 0}, 4]
41
our- - {{1}, {2}, {3}, {4}, {1, 1}, {1, 2}, {1, 3}, {1, 4}, {2, 2}, {2, 3}, {2, 4}, {3, 3}, {4, 4}, {1, 1, 1},
{1, 1, 3}, {1, 1, 4}, {1, 3, 3}, {1, 4, 4}, {2, 2, 2}, {2, 2, 3}, {2, 2, 4}, {2, 3, 3},
{2’ 4’ 4}’ {3’ 3’ 3}’ {4’ 4’ 4}’ {l’ l, l’ l}’ {l’ l’ l’ 3}’ {l’ l’ l’ 4}’ {l’ l’ 3’ 3}’
{1, 1, 4, 4}, {1, 3, 3, 3}, {1, 4, 4, 4, {2, 2, 2, 2}, {2, 2, 2, 3}, {2, 2, 2, 4},
{2, 2,3, 3}, 12, 2, 4, 4,1{2, 3, 3, 3}, {2, 4, 4, 4}, {3, 3, 3, 3}, {4, 4, 4, 4}}

A technical comment is that since translations and glide reflections have infinite order this procedure
will not find the inverses, therefore we have to add the inverses as generators. We will see later that
often if half turns or reflections are also generators then the inverses of translations and glide reflec -

tions will be compositions of the generators so specifically adding the inverses may not be necessary.

A second technical comment is that the second argument of the finiteTransGroup function is a test
point. Using one such as {0,0} above only gets that part of the group that is in the orbit of {0,0}. To get

all elements of the group use a pseudo random test point, one such as {2152, .1483 } is sufficiently
random in our context.

In this chapter a useful routine for constructing tessellations is
m-1- groupTessellate [G_, tas_, P_, col_, bcol_] := Module[{tab},

tab = Table[TasTF[g, tas]@P, {g, G}I;
Graphics[{col, EdgeForm[{Thickness[.005], bcol}], Polygon[tab]}]]



Chapter4Final.nb | 5

m- - groupTessellate [
Gl, <|1 - tv2, 2 5> InverseTF[tv2], 3 » th2, 4 » InverseTF[th2]|>, S, Brown, Gray]

outf « J=

So I say group G1 is a construction group for the square tessellation.

But there are other symmetries . We note the entire section above has rotation symmetries, in particu -
lar a 4 fold rotation about the center, {0,0}. If we look more closely we see that the point {1,0}, on the

base square is the center of a half turn.

n- - o4 1= RotationTransform [Pi/2, {0, 0}]
RotationTransform [Pi, {1, 0}]

nl :

n - - Graphics [{EdgeForm[{Gray, Thickness[.015]}], {Cyan, Polygon[S]},
{Orange , Polygon[nl @S]}, {Green, Polygon[oc4@*nl @ S]}}, ImageSize - Small]

outf « J=

We could guess that these two transformations could also construct the group.
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m- - G2 = finiteTransGroup [¢<|1 » 04, 2 > nl|>, {2.3214, 3.571}, 6]
» number of group elements calculated 38

our - - {{1}, {2}, {1, 1}, {1, 2}, {2, 1}, {2, 2}, {1, 1, 1}, {1, 1, 2}, {1, 2, 1}, {2, 1, 1}, {2, 1, 2},
{1,1,1,2},{1,1,2, 1},{1, 2,1, 1},4{1,2,1,2},{2,1,1, 1},{2,1,1, 2}, {2,1, 2, 1},
{1,1,1, 2, 1}, {1, 1,2, 1, 1},{1,1, 2,1, 2},{1,2,1, 1, 1}, {1, 2,1, 1, 2},
{1,2,1,2,1},{2,1,1,2, 1},{2,1,2,1,1},{2,1,2,1,2},{1,1,1, 2,1, 1},
{1,1,1,2,1,2},{1,1,2,1,1, 1},{1,1,2,1,1,2},{1,1,2,1,2,1},{1,2,1,1, 2, 1},
{1,2,1,2,1, 1},{2,1,1,2,1,1},4{2,1,1,2,1,2},{2,1,2,1,1, 1},4{2,1,2,1, 1, 2}

n - - groupTessellate [G2, <|1 > 04, 2> nl|> , S, Orange, Gray]

outf « J=

Again we construct a square tessellation, but the squares shown are somewhat different from our first
attempt.

Both of these construction groups contain only directisometries, that is, isometries which are orienta -
tion preserving or alternatively, have the upper left 2x2 block in the transformation matrix with determi -
nant 1. But we can see that this tessellation also has reflection symmetry. Three obvious reflections

are

m- - ph = reflectionTF2D [{{-1, 0}, {1, 0}}]
pv := reflectionTF2D [{{0, -1}, {0, 1}}]
pd := reflectionTF2D [{{-1, -1}, {1, 1}}]

These are all reflections of the square. Note that
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- pd@* ph

- TransformationFunction [

while

- 04 = RotationTransform [Pi /2]

O -11]0
- TransformationFunction [ 1 0|0 ]
0 0 |1

so g4 will be contained in any group containing ph and pd

Also note

- 04@* ph@* InverseTF [04]

- TransformationFunction [

is the same as

= PV

- TransformationFunction [

so if ph and pd are in a group then so is pv.

Unfortunately all these transformations leave {0,0} fixed so we will only get a finite group. So we need
another reflection

;- p1=reflectionTF2D [{{1, -1}, {1, 1}}]

I TransformationFunction[ 0. 1. ]0. ]

Now consider

- G3 = finiteTransGroup [¢|1 - pv, 2 5 pd, 3 > pl|>, {2.3214, 3.571}, 5]
41

{1}, {2}, {3}, {1, 1}, {1, 2}, {1, 3}, {2, 1}, {2, 3}, {3, 2}, {1, 2, 1}, {1, 2, 3}, {1, 3, 2},
{2, 1, 2}, {2, 1, 3}, {2, 3, 2}, {3, 2, 1}, {3, 2, 3}, {1, 2, 1, 2}, {1, 2, 1, 3},
{1, 2, 3, 2}, {1, 3, 2, 1}, {1, 3, 2, 3}, {2, 1, 2, 3}, {2, 1, 3, 2}, {2, 3, 2, 1},
{2,3,2,3},{3,2,1, 2},{3,2,1,3},{1,2,1,2,3}{1,2,1,3,2},{1,2,3,2,1},
1,2,3,2,3},{1,3,2,1,2},{1,3,2,1, 3} {2,1,2, 3, 2},{2,1, 3, 2, 1},
{2,1,3,2,3},{2,3,2,1,2},{2,3,2,1,3},{3,2,1, 2,3} {3,2,1, 3, 2}
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Inf e Ji=

Outf « =

groupTessellate [G3, ¢|1 - pv, 2 » pd, 3 > pl|>, S, Orange, Gray]

which appears to be an additional square tessellation of the plane . These groups are different, cer-
tainly G2, G3 are bigger than G1 but since G3 contains reflections it is different from G2 which only has
direct isometries. We will see G2 is contained in G3 which we will find is the complete group of of
symmetries of the square tessellation. In particular it will contain translations and glide reflections,
rotations of order 4 around all vertices and half turns about all edge midpoints.

Given this example we can now look at the theory .

Section 4.2 The Theory

In this long section | give the basic theory of symmetry of plane tessellations

4.2.1 Discrete and complete plane tessellations

Following Yale, a group of plane transformations G is discrete if given any bounded set W of the plane
and any point p in the plane the G-orbit of p contains only finitely many points in W.

In practice, working with isometries, we can use any circular disc about the origin for W and any conve -
nient point p to demonstrate this. In particular all construction groups of isometries will be discrete, a

non-discrete group would just give a mess.

A complete plane tessellation group is one in which the tessellation, if continued would fill up the whole
plane. Groups G1,G2 and G3 in section 4.1 will be discrete complete tessellation groups if we just
follow one point of the square. The group association routine can be used to demonstrate. For
example
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j- G2A = groupAssoc [G2, ¢|1 > o4, 2 > nl|>, {0, 0}]

- <|{1} » {0, 0}, {2} » {2, 0}, {1, 2} > {0, 2}, {1, 1, 2} > {-2, O},
2,1, 2}->{2,-2},{1,1,1, 2}>{0, -2}, {1, 2, 1, 2} > {2, 2}, {2, 1, 1, 2} > {4, O},
{,1,2,1, 2}»>{-2, 2},{1,2, 1,1, 2}>{0, 4},{1, 1,1, 2,1, 2} > {-2, -2},
{17 l; 2; l, l) 2}_){_4, O}) {25 ly 17 2’ l; 2}_){4) _2}5 {27 17 2; l, l: 2}_){25 _4}|>

;- Graphics[{Blue, PointSize[.03], Point[Values[G2A]]}, ImageSize - Small]
[ )

° [ ] (]
- @ L] ° [ ] [
[ [ ] (] [

This plot shows no clustering and a definite 2 dimensional picture which if continued would fill up the
plane.
On the other hand, consider, again using the transformation functions defined in 4.1 the group
/- HL = finiteTransGroup [¢|1 -» tv, 2 - ph|>, {0, 0}, 4]
8

- {1}, {23, {1, 1}, {2, 1}, {1, 1, 1}, {2, 1, 1}, {1, 1, 1, 1}, {2, 1, 1, 1}

-

)=~ H1A = groupAssoc [H1, |1 -» 7v, 2 -5 ph|>, {0, 0}]

F<{1} » {2, 0}, {2} » {0., 0.}, {1, 1} » {4, 0}, {2, 1} > {-2., 0.}, {1, 1, 1} » {6, O},
{2,1,1}>{-4.,0.},{1, 1,1, 1} > {8, 0}, {2, 1, 1, 1} > {-6., O.}]>

- Graphics[{Blue, PointSize[.03], Point[Values[H1A]]}, ImageSize - Small]

- @ [ ] [ [ ] [ ] [ [ [

Here the points give a 1 dimension set so we will not get a complete tessellation group .
On the other hand consider
- 03 := N[RotationTransform [2 Pi/3, {1, 0}]]

- H2 = finiteTransGroup [¢|1 » o4, 2 » 03]|>, {0, 0}, 6];

37
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- - H2A = groupAssoc [H2, <|1 > o4, 2 > o3]|>, {0, 0}];
Graphics[{Blue, PointSize[.03], Point[Values[H2A]]}, ImageSize - Small]

° [ ]
[ ] [ ]
[ ] [ ]
[ ]
[ [ ] °
[ ]
[ ] o o [ ] [ ]
[ ] [ ] °
outl « ]= ° °
[ ] [ ]
°
°
[ ] [ ] [ ] [ ]
[ ]
[ ] [ ]

We are getting a jumble . This group is not discrete. It would be complete as a 2-dimensional set but

we will not get a symmetric tessellation out of this.

4.2.2 An algorithm for discrete groups

So far we have taken the view that if we use our finiteTransGroup procedure then the we will get our
group elements but unlike the the finite case this will not stabilize as n gets large, but continue to grow.
This is actually the correct idea. But in this Chapter we will use an enhanced procedure, based on

finiteTransGroup, which gives us more information and options.

m-1- Options[discreteTransGroup ] =
{plot » True, returnGroup - False, returnAssoc - False};
discreteTransGroup [tas_, tp_, r_, n_, OptionsPattern []] := Module[{G, A, B, ncpts},

G = finiteTransGroup [tas, tp, n];
If[OptionValue [returnGroup], Return[G]];
A = groupAssoc [G, tas, tp];
If[OptionValue [returnAssoc], Return[A]]l;
B = Reap[Do[If[Norm[Values[A][il] < r, Sow[Values[A][il]l, {i, Length[Values[Al]}]I[2, 1I;
If[Length[B]== 0, Echo["No c-points'"],

Echo[Length[B], "number c-points"]];
If[OptionValue [plot], Graphics[{{Orange, Circle[{0, 0O}, r]},

{Blue, PointSize[.03], Point[Values[A]]}}, Axes » True, ImageSize - Small]]]

Without specifying a group name or options it returns the pictures in 4.2.1

n- - discreteTransGroup [¢|1 > 04, 2 5> nl1|>, {0, 0}, 2.5, 3]
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outf « J=

This shows a circle of radius 2.5 about the origin with 4 points inside and one outside .

n- - discreteTransGroup [¢|1 > 04, 2 > nl1|>, {0, 0}, 2.5, 4]
8

Now there are 5 points inside, c points . But if we increase nto 7

n - - discreteTransGroup [<|1 > 04, 2 > nl|>, {0, O}, 2.5, 7]

18

outf « J-

there are still only 5 points inside the circle, now with a larger number of points outside the circle. Thus
the number or elements calculated does not stabilize, the number of c-points does so this graphic
shows that we have a complete discrete group. Notice also that the points show a nice lattice so could

get nice tessellations .

If instead we use a random test point we will get more points
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n - - discreteTransGroup [¢<|1 > 04, 2 > nl|>, {2.321, 3.576}, 1.5, 7]

outf
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n - - discreteTransGroup [¢<|1 > 04, 2 > nl|>, {2.321, 3.576}, 1.5, 9]
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n - - discreteTransGroup [<|1 > 04, 2 » nl|>, {2.321, 3.576}, 1.5, 10]

Outf » ]

98

We get a messier picture but the c-points are stabilizing at 4. This is a better approximation of the

actual group defined with these generators.

In the next subsection we will be using the group Association of a group . This can be found by using

discreteTransGroup using option returnAssoc->True

. If you also set returnGroup->True then that
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will override the return association. If you want both use return Association->True as the group can be
recovered as the Keys of the association. With either or both options chosen you will not get the plot.
However this can be also be recovered as the values of the association. Here is an example

n - - G2A = discreteTransGroup [<|1 > 04, 2 > nl|>, {0, 0}, 1.5, 4, returnAssoc - True]
8
our- - <[{1} » {0, 0}, {2} » {2, 0}, {1, 2} » {0, 2}, {1, 1, 2} » {-2, O},
{2,1,2}»>{2,-2},{1, 1,1, 2}>{0, -2}, {1, 2, 1, 2} » {2, 2}, {2, 1, 1, 2} > {4, O} ]>

- - G2 = Keys[G2A]
our - = {{1}, {2}, {1, 2}, {1, 1, 2}, {2, 1, 2}, {1, 1,1, 2},{1, 2,1, 2},{2,1, 1, 2}}

n - - Graphics[{{Orange, Circle[{0, 0}, 2]}, {Blue, PointSize[.03], Point[Values[G2A]]}},
Axes - True, ImageSize - Small]

ouf + J=

4.2.3 Subgroups and equality of groups

Since we are working with actual transformations the term subgroup will only apply when the actual
transformations of the smaller group are members of the larger group. Since we are defining groups by
non-unique generators it is enough to show that the generators of the smaller group are members of

the larger group.

It will not be necessary to actually compute part of the smaller group . But it will be necessary to
compute a group association for the larger group at possibly a large size n using a random test point tp.
Here random is important is that we want to associate all elements with a test value, not just elements
in the smaller orbit belonging to a non-random test point. See the last few examples to see the differ -

ence. We use the following algorithm.

mn - - Clear[a]

m- = Options[AFindKeys] = {tol - 1.x"-5};
AFindKeys[A_, a_, tp_, OptionsPattern []] := Module[{S, R},
V=a@tp;
S = Normal[A];
R = Reap[Do[If[Norm[s[2] - v] < OptionValue [tol], Sow[s[1]1], {s, S}I;
If[ Length[RI[2]] > 6, Return[R[2, 1]], Return["Key not found"]]]

Given a transformation function aand a group G to show ais an element of G do the following
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1. Calculate the group association GA for G with a reasonably large n with random test point tp.
2. Execute AFindKeys with the same test point tp. If it gives an error message ais not found.

Example : Check if the vertical translation of length 2 is contained in the group G2 above and in Section
2.1

- th
1 0f0
- TransformationFunction [ 0 12 ]
0 01
J= G2A =

discreteTransGroup [¢<|1 > 04, 2> nl|>, {1.7655, 2.0243}, 1.5, 4, returnAssoc - Truel;

18
- AFindKeys [GA, th, {1.7655, 2.0243}]
+« Do : Iterator {s, S$21091 } does not have appropriate bounds .

- Key not found

Lets test to see if the inverse to this in this group.
;- AFindKeys [G2A, InverseTF[rh], {1.7655, 2.0243}]
- Key not found
This does not mean InverseTF[ th]is not in the group. Perhaps we need a larger n.

- G2A =
discreteTransGroup [¢<|1 > 04, 2 > nl|>, {1.7655, 2.0243}, 1.5, 6, returnAssoc - True];

38

- AFindKeys [G2A, InverseTF[rh], {1.7655, 2.0243}]

{2, 1, 2,1, 2}}
Of course, by definition of group if Tvis in the group so is its inverse, but the key may be much longer.
Note also tvis in the group.

- AFindKeys [G2A, tv, {1.7655, 2.0243}]

{2, 1, 1}
Therefore we conclude that the group G1 generated by tv,7h and their inverses is a subgroup of G2.

Of course G2 is not a subgroup of G1 which contains only translations. Suppose we augment G1 by
adding the rotation g4but not the half turn nl. We call this G11. This will also be contained in G2.

j- G11A = discreteTransGroup [¢]|1 » v, 2 » th, 3 > o4|>,
{1.7655, 2.0243}, 2, 4, returnAssoc - True];

49
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n - 1- AFindKeys [G11A, nl1, {1.7655, 2.0243}]
our - - {{1, 3, 3}

So nl and g4are in G11 so G2 is contained in G11 . Hence G11 = G2 since containment goes both ways.

4.2.5 Conjugation in transformation groups
If we take a different square we expect to get essentially the same symmetry group. So suppose

m- - ¢ = TransformationFunction [{{1, -1, 8}, {1, 1, 8}, {0, 0, 4.}}]

1 -1. 1|8
ouf « = Transformat‘ionFunction[ . . . ]

n-1-§S=f@S
our - - 2., 2.5}, {2.5, 2.}, {2., 1.5}, {1.5, 2.}}

n - - Graphics [{{Orange, Polygon|[S]}, {Cyan, Polygon[{9]}}, ImageSize - Small]

outf « ]=

This will also give a tessellation, but with different transformation functions.

We want to compare the groups but they are clearly not equal.

In group theory there is the concept of isomorphic groups. These are groups with different elements
but the same group structure. So to a group theorist isomorphic groups are the “same”. Technically an
isomorphism is a function f of any sort which has an inverse and preserves group structure, that is
fla=b] = fla]=f[b] for all a,b in the domain. If an isomorphism exists the groups are isomorphic. But
this is too weak for us since the function could be any strange thing, we want the geometry preserved.

Within the set of all invertible transformation functions, there is a special type of function called an
inner isomorphism, which is invertible and multiplication preserving. We pick a particular invertible
transformation function, say k, and define

mn- - Clear[a, B, K]

Inf - J= Qla_] := k@*a@=*InverseTF[k]
It is an easy exercise in algebra to show that Q preserves multiplication and has inverse

Inf« J= Ola_] := InverseTF[kK]@*a@x*k
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where ais any transformation function. So any group G of invertible transformation functions is
isomorphic to its image Q[G]. This operation is called conjugation and the images would form conju -
gate groups.

The problem that arises is that if ais an isometry in general Q[a] may not be. A simple example is

n - - kK = TransformationFunction [RandomInteger [{-9, 9}, {3, 3}]1/10.]
-0.3 -0.7] 0.1

our - - TransformationFunction [ -0.4 0.4 |-0.2 ]
0.9 -0.5]0.3

- - K@#* TVv@* InverseTF [k]
5.8 23.4 12.
our - - TransformationFunction [ 6.4 32.2 | 1e6. ]
-14.4 -70.2 |-35.

This is neither a translation or even an isometry . For our purposes we will stick to similarity transforms
of the form

m-1-{{a, by, c}, {d, e, f}, {0, O, s}} // MatrixForm

Outf » }/MatrixForm=

a b c
[d e f]
0 0 s

where the upper left 2x2 matrix is orthogonal and s> 0. The only difference from our isometries is that
the lower right entry is s instead of 1. Then polygons are sent to similar polygons, not necessarily
congruent. For example in the graphic above the orange square is sent to the cyan square by

e =&

our - - TransformationFunction [

Note if 0 <s <1 then the image will be larger but if s > 1 then the image will be smaller.

Let

m- - ¢i= InverseTF[{]
0.5 0.5] -2.
our - - TransformationFunction [ -0.5 0.5 0. ]
0. 0. [0.25

Our symmetries in the example of §4.1 then are mapped to
v 1V, Th > t¢hwhere
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- V= {@*TV@* {1

5
=

1. 0. ]0.5
our - - TransformationFunction [ 0. 1. (0.5 ]
0. 0.

- tth= @+ th@* i

5
=

1. 0. ]-0.5
our - - TransformationFunction [ 0. 1. 0.5 ]
0. 0. 1.

Notice that translations stay as translations .

Our reflections pv, ph,pl are mapped

1= PV = {@x pv@x ¢

5
=

our - - TransformationFunction [[

Note that this is a reflection, in fact pd.

1= p{d= ¢ @* pd@x ¢ i

our - - TransformationFunction [[

- pll=d@*xpl@* 1

our - - TransformationFunction [[

which are also easily seen as reflections. Here is a picture of the mirror lines

o - - Graphics [{{Orange , Polygon[S]}, {Cyan, Polygon[{ 9]},
{Blue, Thickness[.005], Line[{{-1.1, 0}, {1.1, 0}}], Line[{{-1.1, -1.1}, {1.1, 1.1}}],
Line[{{1, -1.1}, {1, 1.1}1}, {Red, Thickness[.005], Line[(@{{-1.1, 0}, {1.1, O},
Line[(@{{-1.1, -1.1}, {1.1, 1.1}}], Line[f@{{1, -1.1}, {1, 1.1}}]}}, ImageSize - Small]

outf + J=

Finally note our rotations
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nop-nfl= @ nl@x ¢

our - - TransformationFunction [

is clearly a half turn while.

- 0f4=@xocd4@* 1

our - - TransformationFunction [

Note this last symmetry preserves (S.

In[ « ]:= (S
our- - {{2., 2.5}, {2.5, 2.}, {2., 1.5}, {1.5, 2.}}

in fact

In[ « J:= U(4@(S
o - {{1.5, 2.}, {2., 2.5}, {2.5, 2.}, {2., 1.5}

is a 71/2 (90°) rotation of {S.
Note also

m-1- G{2=discreteTransGroup [¢|1 » o{4, 2 » n{1|>, {2.3214, 3.571}, 2, 6, returnGroup - True]
38

our - - {{1}, {2}, {1, 1}, {1, 2}, {2, 1}, {2, 2}, {1, 1, 1}, {1, 1, 2}, {1, 2, 1}, {2, 1, 1}, {2, 1, 2},
{,1,1, 2}, {1, 1,2, 1},{1, 2,1, 1},{1,2,1, 2},{2, 1,1, 1},{2,1, 1, 2}, {2,1, 2, 1},
{1,1,1,2,1},{1,1,2,1, 1},{1,1,2, 1, 2},{1,2,1,1, 1},{1, 2, 1, 1, 2},
{1,2,1,2,1},{2,1,1,2, 1}, {2,1,2,1, 1},{2,1,2,1, 2},{1,1,1,2, 1, 1},
{1,1,1,2,1,2},{1,1,2,1,1, 1},{1,1,2,1,1, 2},{1,1,2,1,2,1},4{1,2,1,1, 2, 1},
{1,2,1,2,1,1},{2,1,1,2,1, 1},4{2,1,1,2,1, 2},4{2,1,2,1,1, 1},{2,1,2,1, 1, 2}}

Compare with

mn- - G2 = finiteTransGroup [<|1 » 04, 2 - nl|>, {2.3214, 3.571}, 6]
38

our - - {{1}, {2}, {1, 1}, {1, 2}, {2, 1}, {2, 2}, {1, 1, 1}, {1, 1, 2}, {1, 2, 1}, {2, 1, 1}, {2, 1, 2},
{,1,1, 2}, {1, 1,2, 1}, {1, 2,1, 1}, {1, 2, 1, 2}, {2, 1,1, 1},{2, 1, 1, 2}, {2, 1, 2, 1},
{1,1,1,2, 1},{1,1,2,1,1},{1,1,2,1, 2},{1,2,1, 1, 1},{1, 2,1, 1, 2},
{1,2,1,2,1},{2,1,1, 2, 1},{2,1,2,1, 1}, {2,1,2,1, 2},{1, 1,1, 2,1, 1},
{1,1,1,2,1, 2},{1,1,2,1,1,1},{1,1,2,1,1,2},{1,1,2,1,2,1},{1,2,1,1, 2, 1},
{1,2,1,2,1,1},{2,1,1, 2,1, 1},4{2,1,1,2,1, 2},4{2,1,2,1,1, 1},{2,1, 2,1, 1, 2}}

We see that this transformation is actually compatible with our group algorithms.
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outf « ]=

In[ « ]=

Inf  J=
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groupTessellate [G{2, ¢|1 > 0{4, 2 » n{1|>, {S, Brown, Gray]

Important Notation: For the rest of this chapter we will use the term isometry of groups, or just

isometry, to mean an isometry given by conjugation of a similarity transformation.

4.2.6 Finding the type of an isometry

Unfortunately this is too restrictive for mathematicians studying symmetry. For example consider
parallelograms

PG1 = {{0, 0}, {1, 1}, {2, 1}, {1, O}};
PG2 = {{3, 0}, {5, 1}, {7, 1}, {5, O}};

Graphics[{{Orange, Polygon[PG1]}, {Cyan, Polygon[PG2]}}]

The tiling they would determine would both have translations and half turns but no reflections. The
difference is the angles so these are not similar but would give essentially the same groups. But they
would not be conjugate by a similarity transform. So as to not have an infinite number of types of

tilings then mathematicians rely on describing the types of symmetries, not the actual symmetries.

It is easy to decide the type of an isometry a. If the upper left 2x2 square is the identity, we have a
translation. If the determinant of the upper left hand square is -1 we have a reflection if a@= ais the
identity otherwise a glide reflection. The remaining case where the upper left hand square has determi -
nant 1 but is not the identity we have a rotation, the order will be 2,3,4 or 6 for a full paneling. We can
find this with orderTF, note we don’t need to know the center. Here is an algorithm, it is meant to
construct an association so in the rare case it doesn’t work it sends answer “O” for “other” rather than

an error message. |If it works the possible results are “T” for translation, note the identity is classified as
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a translation, “R” for reflection, “G” for glide reflection, H for half turn and ”R3”,”R4”,”R6” for rotations
of higher order than 2, the number giving the order. Here is the algorithm

m-1- IsoClassifierTF2D [a_] := Module[{M, M2, 1, n},
M = Chop[N[TransformationMatrix [a]l];
If[MI3, 11+ 0 ||M[3, 2] = O || MI[3, 3] # 1., Return["0"1];
M2 = Take[M, 2, 2];
1={{1., 0}, {0, 1.}};
If[Chop[M2.Transpose[M2]] # {{1., 0}, {06, 1.}}, Return["0"]];
If[M2 == 1, Return["T"]];
If[Det[M2] == -1.,
If[Chop[M.M] == {{1., ©, 0}, {0, 1., 0}, {0, 0, 1.}}, Return["RF"], Return["G"]]];
n = orderTF[a, RandomReal [{-1, 1}, 2], 7]}
Which[n == 2, Return["H"], n == 3, Return["R3"],
n == 4, Return["R4"], n == 6, Return["R6"], True, Return["0"]];
Return]|
"o"]]

If the algorithm returns “O” the user should look at that case by hand. What we are really after is

m- - disoClassifierA[G_, tas_] := ¢|Table[k » IsoClassifierTF2D [TasTF[k, tas]], {k, G} |>

Here is an example
n- - 63 = discreteTransGroup [¢|1 > pVv, 2 » 04, 3 » yh]>,
{.3214, .5713}, 1, 4, returnGroup - True]l;
64
mn-1- G3TA = isoClassifierA|[G3, ¢|1 - pv, 2 > 04, 3> yh]>]

our- - <|{1} > RF, {2} > R4, 3} > G, {1, 1}> T, {1, 2} > RF, {1, 3} > H, {2, 1} > RF,
{2,2}->H,{2,3}->6G, {3, 1}>H,{3,2}->6G, {3,3}~>T, {1, 2, 1} > R4, {1, 2, 2} > RF,

{1, 2, 3} > R4, {1, 3, 1}> G, {1, 3, 2} > R4, {1, 3, 3} > RF, {2, 1, 3} > R4,

{2, 2, 3} > RF, {2, 3, 1} > R4, {2, 3, 2} > RF, {2, 3, 3} > R4, {3, 1, 2} »> R4,

{3, 2, 1} > R4, {3, 2, 2} > RF, {3, 2, 3} » R4, {3, 3, 1} » RF, {3, 3, 2} > R4,
{3,3,3}-»6G,{1,2,1,3}»6G,{1,2,2,3}>T,{1,2,3,1->6G,{1,2,3,2}->H,
1,2, 3,3}>6G,{1,3,1,2}»G,{1,3,2,1->G,{1,3,2,2}>T,{1, 3, 2, 3} > RF,
1,3, 3, 1}->T,{1,3,3,2}-»G,{1,3,3,3}->H,{2,1,3,1->6G, {2,1,3,2}>T,
{2,1,3,3}>G,{2,2,3,3}»>H,{2,3,1,2}>T,{2,3,2,3}>T,{2,3,3,1->0G,
{2,3,3,2}->H,{2,3,3,3}-6G,{3,1,2,1}->6G,{3,1,2,3}->6G, {3,2,1,3}->0G,
{3,2,3,1}>RF,{3,2,3,2}>T,{3,2,3,3}->6G,{3,3,1, 2>G, {3, 3, 2, 1} > G,
{3,3,2,2}->H,{3,3,2,3}-6G,{3,3,3,1}->H,{3,3,3,2}->G,{3,3,3,3}->T|]

So this group contains every type except rotation of order 3 or 6.

One thing we can do is select the translation Transforms in this group and find their translation vector.
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- SG3TA = Select[G3TA, H == "T" &]
F<{l, 11> T,{3,3}»T,{1,2,2,3>T,{1,3,2,2)>T,{1,3, 3, 1}>T,
2,1,3,2)>T7,{2,3,1,2}>T,{2,3,2,3}-T7,{3,2,3,2}>T,{3,3,3,3>T]

- Table[TasTF[k, <|1 - pv, 2 » 04, 3 > yh]>]@{0, 0}, {k, Keys[SG3TA]}]
-{0.,0.},{2.,0.},{1., 0.}, {~1., 0.},
{-2.,0.},{6., -1.},{0., 1.}, {1., 1.}, {1., -1.}, {4., 0.}}
This will be useful information for the classification of groups. The translations of vector {1,0} and {0,1}
appear to generate the translation subgroup.
Likewise we can find the locations of the half turns .
- SG3R2A = Select[G3TA, H == "H" &]

F<{l, 3} > H, {2, 2} > H, {3, 1} > H, {1, 2, 3, 2} > H, {1, 3, 3, 3} > H,
{2,2,3,3>H,{2,3,3,2}>H,{3,3,2,2}>H,{3, 3,3, 1}>H]>

- n=TasTF[{1, 3, 3, 3}, ¢<|1 > pVv, 2 5 04, 35 yh|>]

- TransformationFunction [

;- SolveValues [n@{x, Yy} == {X, Yy}, {x, y}l1]
~{-1.5,0.}

j- Table[SolveValues [TasTF[k, <|1 » pv, 2 » 04, 3 » yh]p1@{x, Y} == {x, Yy}, {x, yHNi1l,
{k, Keys[SG3R2A1}]

- {{-0.5, 0.}, {0, 0}, {08.5, 0.}, {0., 0.5}, {~1.5, 0.}, {~1., 0.}, {6., 1.}, {1., 0.}, {1.5, 0.}}



22 | Chapter4Final.nb

4.3 Symmetry groups of symmetric strip patterns

This is the one dimensional case. |1don’t know what the proper definition of a strip pattern is, but
Mathematicians are sure that there are 7 of them. In practice there are probably infinitely many.
Unlike the two dimensional case it is not clear how group theory is helpful here but there are seven
groups of transformations that have been identified. Essentially these are the subgroups of the finite
rectangle group with a translation and maybe glide reflection added. The generators follow

1. Horizontal translation only

2. Horizontal translation and horizontal glide reflection, no horizontal reflection

3. Horizontal translation and horizontal reflection with x-axis mirror

4. Horizontal translation and vertical reflection with y-axis mirror

5. Horizontal translation and half turn.

6. Horizontal translation, half turn, vertical reflection, horizontal glide reflection

7. Horizontal translation, half turn, vertical reflection, horizontal reflection.

or, less boring

| >0 >0>0>0>00~(
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4 Groups of symmetry groups of tilings.

Here we classify only by types of isometries present. In later sections we will go into more details and
examples. Note however that certain choices allow additional symmetries present, for example every
plane tessellation group contains 2 independent translations, or a translation and glide reflection.
Remember, different generator systems often give the same group and, even if not the same group the
same kinds of isometries. For example the full triangle group gives rotations of order 6 due to rotations
of order 2 and 3, since powers of the rotation of order 6 give rotations of orders 2 and 3 we see that
assuming a generator of order 6 gives no further examples than we had with rotations of orders 2and 3.
We also not distinguish the types of “cell” giving tessellations. Another distinction made by the
crystallographers is whether there is only one family of reflections or more than one. But the composi -
tion of two non-parallel reflections is a rotation so that is not a distinct case.

This will be discussed in further subsections. Thus we have only 11 types of groups instead of the usual
17 crystallographic types.

It is important to note that our isometries by similarities preserve type so any group isometric to one of
our 11 groups is in that class of groups. In particular if P1, P2 are similar polygons then their symmetry
groups will be of the same class.

The following explicit transformations will be standard, others will be defined as needed. The types
are {RF, G, H, R3, R4, R6}

- 12 := TransformationFunction [IdentityMatrix [3]]

th:
TV @
1d @
ph:
pVv
yh:
no :
nl :
o3 :
o4 :
06 :

TranslationTransform [{1, 0}]
TranslationTransform [{0, 1}]

th@x tv

reflectionTF2D [{{-1, 0}, {1, O}}]
reflectionTF2D [{{0, -1}, {0, 1}}]
glideReflectionTF2D [{{0, 0}, {1, 0}}]

RotationTransform [P1i]

RotationTransform [Pi, {1, 0}]
RotationTransform [2 Pi /3]

RotationTransform [Pi /2]

RotationTransform [Pi /3]
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I. Independent translations
<|1 > th, 2 > InverseTF[rh], 3 > 7V, 4 > InverseTF[TV|> .
T
I1. Translations and Glide Reflection
n- - y2=glideReflectionTF2D [{{0, 0}, {1, .7}}];
<|1 - th, 2 » InverseTF[rh], 3 » y2, 4 » InverseTF[y2]|>
T,G
III .Translations, reflections and glide reflections .
<|1-> td, 2 » InverseTF[zd], 3 > ph|>
Types T, RF, G
IV. Translations and half turns only.
<|1 > th, 2> 1v, 3510 >
Types T,H
V. Translations, and reflections , glide reflections, half turns
<|1 - th, 2> 1v, 35 ph, 45 pv|»
Alternate

yh2 = glideReflectionTF2D [{{.5, 1}, {1.5, 1}}];

TV2 = TV@* TV,

<|]1->yh2, 25 1v2, 35 ph, 45 pv|>

Types T, G, RF, H

VI. Orthogonal Translations and order 2, 4 rotations only
<|1 - th, 2 > og4]»

Types T, G, RF, H, R4

VII. Orthogonal Translations and order 2, 4, rotations and selected reflections, glide reflections.
(Full Square Group).

|1 > tv, 25 04, 35 pVv]>
Types T, RF, G, H, R4
VIII. Translations and rotations of order 3 only .

<|1 > th, 2> 03]

Types T, R3
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IX. Translations, reflections, glide reflections, rotations of order 3 only .

<|1-> th, 25 03, 3> ph]»

Types T, RF,G, R3,

X.Translations, half turns, rotations of order 2, 3, and 6.

<{|1>th, 25 03,3->5n0)>

Types T, H, R3, R6

XI.Translations, reflections and rotations order 2,3,6 and glide reflections. (full Triangle group)
<{|1>th, 25 03,3510, 4> pv)]>

T, RF, G, H, R3, R6

4.4.1 Notes on calculation

We assume, with no loss of generality that the translation th is in every tessellation group. By conjuga -
tion and other compositions there will be many translations. Enumerating this does not seem to add

information, there will be some mention in the discussion in 4.5.

We then have 6 other types of isometries which may be in a tessellation symmetry group of a tiling,
abbreviated RF, G, H, R3, R4, R6, recall H is the half-turn otherwise known as R2. We classify these
groups by which of these are present. There are 2° = 64 possible combinations and | have checked
each to see if they give a discrete group different from others. There are two basic rules which allow me
to discard possible groups quickly.

The inclusionary rule, “inclusion” , has the following

If there is an R4 there must be an H, its square.
If there is an R6 there must be an H and an R3 the square and cube.
If there is an H and a R3 there is an R6, even with different centers.

The exclusionary rule, “exclusion” says

There cannot be both an R3 and R4 in the same group.
There cannot be both an R6 and R4 in the same group.

The reason for these is that the upper left hand 2x2 matrix in a rotation transform is an orthogonal
matrix of determinant 1. The 2x2 rotations commute. Therefore the order of the composition of two
rotations is the product of the orders.

One thing we will notice is that group II contains glide reflections but not reflections, whereas group
III which contains reflections also has glide reflections. If one has a reflection then conjugation will



26 | Chapter4Final.nb

generally give a translation in the same direction so there will be a glide reflection. But to make a
reflection from a given glide reflection requires not only a translation in the same direction but of the
same length. This may not happen.

4.5 Examples and properties of the groups

4.5.1 Group I, two independent translations
This is the most general and perhaps then the most useful group, especially when used as a construc -
tion group rather than a full symmetry group.

The group is always uncomplicated, group theoretically it is simply the product of two copies of the
integers. So if p, g are two points, viewed as 2- vectors they define two translations

tp = TranslationTransform|p]

tq= TranslationTransform[q]

Then the, necessarily discrete, group they define consists simply of translations
TranslationTransform[mp +nq]

The parallelogram

par = {0, 0}, p, p+q, q}

is a cell for a tessellation.

as arandom example

w - {p, q} = {{~-1.8337165994212103" , 2.736646713237377" },
{1.7521455008048097" , 0.2910803142189895" }}

our - {{-1.83372, 2.73665}, {1.75215, 0.29108}

n - par ={{0, 0}, p, p+q, q}
o - {0, O}, {-1.83372, 2.73665}, {-0.0815711 , 3.02773}, {1.75215, 0.29108}}

n- - € = pcentroid[par]

our - - {-0.0407855, 1.51386}

n - - Graphics [{{Cyan, Polygon[par]}, {Black, Text["{0,0}", {0, 0}], Text["p", pI],
Text["p+q", p+q], Text["q", q], Text["c", c]}}, BaseStyle - {FontSize - 12}]

pP+9

outf « J= Cc

{0,0}



The centroid is shown

m- - tp= TranslationTransform [p]

tq = TranslationTransform [q]

1. -1.83372
our - - TransformationFunction [ 0. 1. | 2.73665 ]
0. 1.
1. 1.75215
our - - TransformationFunction [ 0. 1. (0.29108 ]
0. 1.
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One special concern is with translations and glide reflection the inverses are not products. But groups

should be closed under inverses, so they must be given. Without inverses we have

n - - discreteTransGroup [¢|1 » tp, 2 » 7q|>, c, 2, 5]

20
< Part: Part 1 of {} does not exist.

3

we should have gotten

n - - discreteTransGroup [¢|1 - tp, 2 » InverseTF[rq]l, 3 » q, 4 » InverseTF[rq]|>, c, 2, 5]

36

1
. 15t
L. e o}
ouf- =, . et "

b et

Q.\.. |

-5 5

When half turns, or certain reflections or rotations, are available the inverses are come from composi -

tions so don’t need to be listed as generators, but here they must be.

For the full group we should use a random test point, but in this case it does not matter, for tessella -
tions the centroid of the cell is what we should use.
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m- - Gla = discreteTransGroup [<|1 -» tp, 2 » InverseTF[rp]l, 3 » 1q, 4 » InverseTF[zq]|>,
{.1376, .2107}, 2, 4, returnGroup - True]

» number of group elements calculated 41
our - = {{1}, {2}, {3}, {4}, {1, 1}, {1, 2}, {1, 3}, {1, 4}, {2, 2}, {2, 3}, {2, 4}, {3, 3}, {4, 4}, {1, 1, 1},

{1, 1, 3}, {1, 1, 4}, {1, 3, 3}, {1, 4, 4}, {2, 2, 2}, {2, 2, 3}, {2, 2, 4}, {2, 3, 3},
{2, 4,4},{3,3,3}{4,4,4},{,1,1, 1},{1, 1,1, 3}, {1, 1,1, 4,{1, 1, 3, 3},
{1, 1, 4, 4}, {1, 3, 3, 3}, {1, 4, 4, 4}, {2, 2, 2, 2}, {2, 2, 2, 3}, {2, 2, 2, 4},
{2, 2,3, 3},1{2, 2, 4, 4}, {2, 3, 3, 3}, {2, 4, 4, 4}, {3, 3, 3, 3}, {4, 4, 4, 4}

Notice we get all combinations of the indices 1,2,3,4

Our tessellation is then

n- - groupTessellate [

Gla, <¢|1 - tp, 2 » InverseTF[rp], 3 - tq, 4 » InverseTF[tq]|>, par, Orange, Gray]

ouff « J=

Now for this example, the half turn about the centroid is also a symmetry of the tessellation. So this
group is not the full symmetry group but is the best construction group which will be group IV.

We can find a cell which has this group as a symmetry group by a little surgery .
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par2 = {{0, -0}, p, .95p+.2q, .93p+.4q, .93p+.6q,
.95p+.8q, p+q, q, {1.7521455008048097" , 0.2910803142189895" },
{1.4934022306149084" , 0.09603191571332276" },
{1.1796474624423705 , -0.016917081395222716" },
{0.8292183622814087" , -0.0751331442390206" },
{0.44211493013202247" , -0.07861627281807096" }, {0, 0}}

our - {{0, 0}, {~-1.83372, 2.73665}, {~1.3916, 2.65803}, {-1.0045, 2.66151},
{-0.654069 , 2.71973}, {-0.340314 , 2.83268}, {-0.0815711, 3.02773},
{1.75215, 0.29108}, {1.75215, 0.29108}, {1.4934, 0.0960319},
{1.17965, -0.0169171}, {0.829218 , -0.0751331}, {0.442115, -0.0786163}, {0, O}

m - 1= npc = RotationTransform [Pi, c];
pl=reflectionTF2D [{p+q/2, q/2}];
p2=reflectionTF2D [{p/2, p/2+q}];

n - - Graphics [{{Orange, Polygon[par2]}, {Blue, Thickness[.01], Line[nc @par2]},
{Red, Thickness[.01], Line[pl@par2]},
{Green, Thickness[.01], Line[p2@par2]}, {Black, Thickness[.005], Dashed,
InfiniteLine[{p+q/2, q/2}], InfiniteLine[{p/2, p/2+q}]}}, ImageSize - Small]

The graphic shows this plane figure has no symmetry. Then the tessellation
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m- - groupTessellate [

Gla, |1 - tp, 2 » InverseTF[rp], 3 » tq, 4 - InverseTF[rq]|>, par2, Orange, Gray]

Out[ » ]=

has only translation symmetry . These graphics may be somewhat misleading but because your eyes
may see these as a 3D pattern but they are only 2D so the tessellation has no reflection symmetry there

are no glide reflections.

4.5.2 Group II Translations and Glide Reflections

It is possible in a tessellation group to have glide reflections and not reflections. In our discussion on

Group Il we will note that it is not possible to have reflections and no glide reflections.

Our example is the group generated by <|1 - th, 2 - InverseTF [th], 3 > y2, 4 - InverseTF [y2]|> where
y2 = glideReflectionTF2D [{{0, O}, {1, .7}}]

Calculating the discrete group at a random test point we get

mn- - discreteTransGroup [<|1 - th, 2 5 y2, 3 - InverseTF[rh], 4 - InverseTF[y2]]>,
{.2387, .1943}, 1.01, 5]
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199

shows not a jumble but a well organized set of points . Further levels show this to be a discrete group .
m- - G2 = discreteTransGroup [¢|1 -» th, 2 » y2, 3 - InverseTF[rh], 4 - InverseTF[y2]]>,
{.2387, .1943}, 1.01, 4, returnGroup - True];

105

m- - isoClassifierA [G2, <|1 - th, 2 » y2, 3 - InverseTF[rh], 4 » InverseTF[y2]|>]

ouf- - <[ {1} > T, {2} > G, 3}» T, {4}>6G, {1, 1}» T, {1, 2}>G, {1, 3}>T, {1, 4}- G,
{2, 1}» G, {2,2}>T,{2,3}>G,{3,2}»G, {3,3}->T, {3, 4->6G, {4, 1} > G,
{4,3}-G,{4,4->T,{1,1,1}>T,{1,1,2}>G, {1, 1,4->G, {1, 2, 1}-> G,

{1,2,2}»>7T7,{1,2,3}>G,{1,4,1}>G,{1,4,3}>G,{1,4,4->T,{2,1, 1}>G,
{2,1,2}->T,{2,1,4->T,1{2,2,2}->G,{2,2,3}>T,{2,3,2}>T, {2, 3, 3}->0G,
{2,3,4->T7,{3,2,1}>G,{3,2,3}->G,{3,3,2}>G,{3,3,3}>T, {3, 3, 4->G¢G,
{3,4,1}->G,{3,4,3}>G,{3,4,4->T,{4,1,1}>G,{4,1,4->T, {4, 3, 3}->0G,
{4,3,4->T,{4,4,4>G,{1,1,1,1}>T,{1,1,1,2}>G,{1,1,1,4}->0G,
{1,1,2,1}->6G,{1,1,2,2}>T,{1,1,2,3}->G,{1,1,4,1}->G, {1, 1, 4, 3}>G,
{1,1,4,4->T,{1,2,1,1}>G,{1,2,1,2}>T,4{1,2,1,4->T,{1,2,2,2}>0G,
{1,2,3,2}>T7,{1,2,3,3}->G,{1,2,3,4->T,{1,4,1,1}->G,{1,4,1,4->T,
{1, 4,3,3}>G,{1,4,3,4->T,{1,4,4,4->G,{2,1,1,1}>G,{2,1,1,2}>T,
{2,1,1,4->T,4{2,1,2,2}>G,{2,1,2,3}->T,4{2,1,4,3}->T,{2,2,2,2}>T,
{2,2,2,3}->G,{2,2,3,2}»G,{2,2,3,3}-T,42,3,2,3}>T,{2,3,3,2}>T,
{2,3,3,3}-6G,{2,3,3,4->T,{2,3,4,3}-T,{3,2,1,1}->6G, {3,2,3,3}->0G,
{3,3,2,1}->G,{3,3,2,3}->G,{3,3,3,2}>G,({3,3,3,3}»T,{3,3,3,4->60G,
{3,3,4,1->6G,{3,3,4,3}->G,{3,3,4,4->T,{3,4,1,1}->G,{3,4,1,4->T,
{3,4,3,3}-G,{3,4,3,4->T,4{3,4,4,4->G,{4,1,1,1}>G,{4,1,1,4}->T,
{4,1,4,4->G,{4,3,3,3}>G,{4,3,3,4->T,{4,3,4,4,->G,{4,4,4,4->T)>

shows we get only translations and glide reflections, no reflections or rotations .

Rather than demonstrate a tessellation with this group we claim that there is a general family of tessella -
tions, isosceles triangles. We give a pseudo random example
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no- strio={{1, 2}, {3, 6}, {5, 2}}
outf « |= {{1, 2}’ {3’ 6}7 {5! 2}}

We use one side to be the base of a glide reflection

mn- - ys = Chop[glideReflectionTF2D [{{1, 2}, {3, 2}}]]

our - - TransformationFunction [

m- - ts = TranslationTransform [{0, 4}]

1 0f0
our - - TransformationFunction [ 0 1|4 ]
0 01

n - - Graphics [{{Cyan, Polygon[stri]},
{Blue, Thickness[.01], Arrowheads [.06], Arrow[{{1, 2}, {3, 2}}], Arrow[{{3, 2}, {3, 6}}]},
{Black, Text["{1,2}", {.9, 1.8}], Text["{5,2}", {5.1, 1.8}], Text["{3,6}", {2.9, 6.2},
Text["ys", {2, 1.8}], Text["rs", {3.2, 4}]}}, ImageSize - Small]

{3.6}
A
ouff + J= s
—_—
{1,2} ys {5,2}

n- - Gs = finiteTransGroup [¢|1 » ts, 2 - InverseTF[rs], 3 » ys, 4 » InverseTF[ys]|>, {1, 2}, 5];

61
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m- - groupTessellate [
Gs, ¢<|1 > ts, 2 » InverseTF[rs], 3 » ys, 4 » InverseTF[ys]|>, stri, Orange, Gray]

Out[ » ]=

In section 4.6 .1 we will see that this group is useful for checkerboards.

4.5.3 Group III Translation and reflection

As mentioned above, when there is a reflection one can expect glide reflections also. This is true of our
standard example

td := TranslationTransform [{1, 1}]

n - - discreteTransGroup [<|1 - td, 2 » InverseTF[zd], 3 » ph|>, {0, -0}, 2, 4]
» number of group elements calculated 27

» number c points 5

-
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m- - G3 = discreteTransGroup [¢|1 - 7d, 2 » InverseTF[rd], 3 » ph|>,

{06, -0}, 2, 4, returnGroup - True]
» number of group elements calculated 27
our - - {1}, {2}, {3}, {1, 1}, {2, 2}, {3, 1}, {3, 2}, {1, 1, 1}, {1, 3, 1}, {1, 3, 2}, {2, 2, 2}, {2, 3, 1},
2,3, 2}, (3,1, 1}, (3,2, 2},{1,1,1, 1},{1,1, 3, 1}, {1, 1, 3, 2}, {1, 3, 1, 1}, {1, 3, 2, 2},
{2,2,2,2,1{2,2,3,1},{2,2,3, 2,{2,3,1, 1},{2, 3, 2, 2}, {3, 1, 1, 1}, {3, 2, 2, 2}}

m- - isoClassifierA [G3, <|1 - td, 2 » InverseTF[zd], 3 » ph|>]

ouf - - | {1}y > T, {2}> T, {3} > RF, {1, 1} > T, {2, 2} > T, {3, 1} > G, {3, 2} > G,
{1, 1, 1}>T,{1, 3, 1} > G, {1, 3, 2} > RF, {2, 2, 2} > T, {2, 3, 1} » RF,
{2,3,2}->6G6G,{3,1,1}>6G,{3,2,2}»>6G,{1,1,1,1}>T,{1, 1, 3, 1} > G,
{1, 1,3,2}-»G,{1,3,1, 1}»G,{1,3,2,2}>G,{2,2,2,2}>T,{2,2,3, 1->G,
{2,2,3,2}-»6G,{2,3,1, 1}->G,{2,3,2,2}->6G,{3,1,1,1}>G, {3, 2,2, 2}>G|>

It is not surprising that there are glide reflections even though the defining reflection does not have a
mirror parallel to the translation.

As our example we use for our cell paver3 which consists of an octagon with a square attached to one

side.

ou- - {{0.707107 , -0.292893}, {1.29289 , -0.292893},
{1.29289, 0.292893}, {0.707107 , 0.292893}, {0.292893 , 0.707107},
{-0.292893, 0.707107}, {-0.707107 , 0.292893}, {-0.707107 , -0.292893},
{-0.292893, -0.707107}, {0.292893 , -0.707107}, {0.707107 , -0.292893 }}

n - - Graphics[{Cyan, Polygon[paver3]}, ImageSize - Tiny]

ouff « J=

This is commercially available, for example
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Our tessellation gives

n- - groupTessellate [G3, ¢|1 > trd, 2 » InverseTF[zd], 3 » ph|>, paver3, Brown, Black]

outf « J=

This is somewhat different from the commercial picture . In practice the square added to the octagon
is separated from the octagon by a false joint. This is evident in the photo if you look for it. We will see

this again and in the next section where we consider compound cells.

4.5.4 Translations and half turns
This is a group known for for parallelogram and scalene triangles tessellations.

n - - discreteTransGroup [<|1 - th, 2 > td, 3> n0 |5, {1, .5}, 2, 5]
» number of group elements calculated 56

» number c points 12

ﬁ?o-oooc
outf « J= o ¢ o e o o o o o
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n- - G4 = discreteTransGroup [¢|1 > th, 2 > td, 3510 |5, {1, .5}, 2, 4, returnGroup - True]
» number of group elements calculated 37
our- - {1}, {2}, {3}, {1, 1}, {1, 2}, {1, 3}, {2, 2}, {2, 3}, {3, 1}, {3, 2}, {3, 3},
{1, 1, 1}, {1, 1, 2}, {1, 1, 3}, {1, 2, 2}, {1, 3, 2}, {2, 2, 2}, {2, 2, 3},
{2, 3,1}, {3, 1, 1}, 3, 1, 2}, {3, 2, 2},{1,1,1, 1}, {1, 1, 1, 2}, {1, 1, 1, 3},
1,1, 2, 2},{1,1, 3, 2},{1, 2,2, 2},{1,3,2,2}{2,2,2,2},{2,2,2,3},
{2,2,3,1},{2,3,1, 1}, {3,1, 1, 1},{3,1,1, 2}, {3, 1, 2, 2}, {3, 2, 2, 2}}

m- - isoClassifierA [G4, <|1 > th, 2 5> td, 3 > no |>]

o - <|{1} > T, {2} > T, {3}>H, {1, 1}>T,{1,2}>T,{1,3}>H, {2,2}>T, {2, 3} > H, {3, 1} » H,
{3,2}»>H,{3,3»>T,{1,1,1}>T,{1,1,2}>T,{1,1,3}>H,{1,2,2}>T,{1, 3, 2}>H,
2,2,2y>T,{2,2,3}>H,{2,3,1}>H,{3,1,1}>H, {3,1, 2y>H, {3, 2, 2} > H,
{1,1,1, 1}-»>7T,{1,1,1,2}->T,{1,1,1,3}-»>H,{1,1,2,2}~>T,{1,1,3,2}>H,
{1,2,2,2}>T,{1,3,2,2}>H,{2,2,2,2}>T,{2,2,2,3}>H,{2,2,3,1}->H,
{2,3,1,1}->H,{3,1,1, 1}>H,{3,1, 1, 2}>H,{3,1,2,2}->H,{3,2,2,2}>H]

So we just have translations and half turns, but many half turns.
Our example of a tessellation is the parallelogram with centroid {0,0}

n - - par4 = {{6, .5}, {1, .5}, {6, -.5}, {-1, -.5}}

our- - {{0, 0.5}, {1, 0.5}, {0, -0.5}, {~1, -0.5}}

mn - - Graphics[{Cyan, Polygon[par4]}, ImageSize - Tiny]

outf « J=

n- - groupTessellate [G4, <|1 > th, 2 > td, 3 5> nO |», par4, Orange, Gray]

outf « J=
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On the other hand, given a scalene triangle we can define this group using just half turns. Consider half

the rectangle where the midpoints of the sides,
- trid = {{0, 0.5}, {1, 0.5}, {0, -0.5"}}

- {0, 0.5}, {1, 0.5}, {0, -0.5)

- mid12 = Midpoint[{{0, .5}, {1, .5}}]
mid1l3 = Midpoint[{{0, .5}, {0, - .5}}]
mid23 = Midpoint[{{1, .5}, {®, - .5}}]

1
]f{—, 0.5}
2

- Graphics[{{Cyan, Polygon[par4]}, {Magenta, Polygon[tri4]},

{Blue, PointSize[.03], Point[{midl2, mid13, mid23}]}}, ImageSize - Small]

- n12 = RotationTransform [Pi, mid12];
n23 = RotationTransform [Pi, mid23];

j- G4a = discreteTransGroup [<|1 -» n®, 2 » n12, 3 -» n23|>, {1, .5}, 1, 4, returnGroup - True]

21

{1}, {2} {3}, {1, 1}, {2, 1}, {2, 3}, {3, 1}, {3, 2}, {1, 2, 1},

{1, 2, 3}, {1, 3, 1}, {1, 3, 2}, {2, 3, 2}, {3, 2, 3}, {2, 1, 2, 1}, {2, 1, 2, 3},
{2, 1,3, 1},{2,3,2,3},{3,1,3, 1},{3, 1, 3, 2}, {3, 2, 3, 2}}

;- isoClassifierA[G4a, <|1 - nd, 2 » n12, 3 -» n23|>]

-«</{1}>H, {2} > H, {3} >H,{1,1}>T,{2,1}>T,{2,3}->T,{3,1}->T,
{3,2}»T,{1,2,1}>H,{1,2,3}->H,{1,3, 1}>H, {1, 3, 2} > H,
{2,3,2}->H,{3,2,3}>H,{2,1,2,1}>T,{2,1,2,3}->T,{2,1,3,1}->T,
{2,3,2,3}->T7,{3,1,3,1}->T,{3,1,3,2}->T,{3,2,3,2}->T)

Once again we get translations and half turns. Recall from elementary transformational geometry that

the composition of 2 half turns is a translation which is shown by the 5 translations, {1,1} being the

identity, given above by a doubleton.

The following computation shows that G4a is contained in G4.
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n - - G4A = discreteTransGroup [¢<|1 > th, 2 > 7d, 3510 |>,
{.2135, .1057}, 3, 4, returnAssoc - True];
AFindKeys [G4A, n12, {.2135, .1057}]
AFindKeys [G4A, n23, {.2135, .1057}]

47
ouf - - {{{2, 3}}}
ouf - - {{{1, 3}}}
Conversely

n - - G4aA = discreteTransGroup [<|1 - n@, 2 - n12, 3 - n23|>,
{.2135, .1057}, 1, 4, returnAssoc - True];
AFindKeys [G4aA, th, {.2135, .1057}]
AFindKeys [G4aA, td, {.2135, .1057}]

31

O

i = {35 13

O

= {2, 13

shows that G4 is contained in G4a . Thus these two infinite discrete groups are equal because they

contain each others generators. Hence Group IV isalso a group defined by 3 half turns.

4.5.5: Translations, Reflections, half Turns

Here we don' t need to explicitly give the inverses of the translations as generators because the half
turn is a generator and the inverse of any isometry is its conjugate by the half turn. Note also that ph is
just ne@xpv so that is also included.

n- - discreteTransGroup [¢|1 - th, 2 5 v, 3 > pv, 45 n0|>, {0, O}, 2, 5]

a7

Out[ « =

G5

discreteTransGroup [¢|1 > th, 2 » v, 35 pv, 45 n0|>, {06, O}, 2, 5, returnGroup - True];

a7
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mn- - isoClassifierA[G5, <|1 - th, 2 5 1tv, 35 pVv, 45 n0|>]
our- - | {1}y > T, {2} > T, 3} > RF, {1, 1} > T, {1, 2} > T, {2, 2} > T, {3, 1} > RF,
{4,2}»>H,{1,1,1}>T,{1,1,2}>T,{1,2,2}>T,{1,4,2}>H,{2,2,2}>T,
{2,3,1}->6G,{3,1,1}>RF, {4, 1, 2}>H,{4,2,2}>H,{1,1,1,1}>T,
{1,1,1,2}y-»>T,{1,1,2,2}>T,{1,1,4,2}y->H,{1,2,2,2}->T,{1, 4,2, 2}>H,
{2,2,2,2}y->7T,{2,2,3,1}->G, {2,3,1, 1}>G, {3, 1, 1, 1} > RF,
{4,1,1,2}y->H,{4,1,2,2}>H,{4,2,2,2}->H,{1,1,1,1,1}>T,
{1,1,1,1,2}»>T,{1,1,1,2,2}>T,{1,1,1,4,2}>H,{1,1,2,2,2}>T,
{1, 1,4,2,2}»>H,{1,2,2,2,2}->T,{1,4,2,2,2}->H,{2,2,2,2,2}>T,
{2,2,2,3,1->6G,{2,2,3,1,1}->6G,{2,3,1,1,1}->6G, {3,1,1,1, 1} > RF,
{4,1,1,1,2}>H,{4,1,1,2,2}>H,{4,1,2,2,2}->H,{4,2,2,2,2}>H]

In addition to the listed translations, reflections and half turns we see another example of the glide

reflections created by reflections and translations.

For our example we modify this a tiny bit. Let

m- = tdl = TranslationTransform [{1., .5}]

our - - TransformationFunction [

We use the group

n- - G5M = discreteTransGroup [<|1 -» tdl, 2 » ph, 3> n0|>, {0, 0}, 2, 4, returnGroup - True]

» number of group elements calculated 18

our - = {{1}, {2}, {1, 1}, {2, 1}, {3, 1}, {1, 1, 1}, {1, 2, 1}, {2, 1, 1}, {2, 3, 1}, {3, 1, 1}, {1, 1, 1, 1},
{1, 1, 2, 1}, {1, 2, 1, 1}, {1, 2, 3, 1}, {2, 1, 1, 1}, {2, 3, 1, 1}, {3, 1, 1, 1}, {3, 1, 2, 1}}

Our cell is the diamond

diamond = {{-1, 0}, {0, .5}, {1, 0}, {06, -.5}}

Then we get the tessellation

n - - groupTessellate [G5M, <|1 -» tdl, 2 » ph, 3 » nO|>, diamond , Orange, Gray]

outf « J=

We note that this group is also the group of symmetries of a rectangle . Whereas in the diamond the
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In[ ]:=

Inf « ]=

»

Inf  Ji=

outf « |=

mirrors are the diagonal lines between opposite vertices, in a rectangle the mirrors are between oppo -

site midpoints. Here is an example

rect5 = {{- .5, .25}, {.5, .25}, {.5, -.25}, {-.5, -.25}};
tvr = TranslationTransform [{0, .5}];

G5M2 = discreteTransGroup [¢|1 > th, 2 5 tvr, 35 pv, 45 1n0|>,

{0, 0}, 2, 4, returnGroup - True];

number of group elements calculated 30

groupTessellate [G5M2, |1 » th, 2 > tvFr, 3> pVv, 45 n0|>, rect5, Orange, Gray]

Because of this tessellation | may later call this group the rectangle group.

So far we have not used rotations other than half turns, the next group will have rotations of order 3, 4,
and 6.

Later, when we consider compound cells we use an alternate version of Group V. Probably group
theorists would classify this as a different type because it is probably not isomorphic to our standard
example but since we are classifying by the types in the actual group rather than generators this still
has T, G, RF ,H. The original group is generated by translations and reflections with glide reflections a
consequence of these. This variation has a different glide reflection which is given as a generator.

yh2 = glideReflectionTF2D [{{.5, 1}, {1.5, 1}}];
VK =

<|]1 > yh2, 2 5 1v2, 3 5 ph, 45 pv|>.

G5a = discreteTransGroup [<|1 -» yh2, 2 5 tv2, 3 » ph, 4 5 pVv|>,
{.2135, .33132}, 2, 6, returnGroup - True];

We get a different tessellation with our cell rect5.
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n- - groupTessellate [G5a, <|1 » yh2, 2 » 7rvr, 3 » ph, 4 5 pVv|>, rect5, Orange, Gray]

outf « J= .

See section 4.6 for more details

4.5.6 Translations and order 4 rotations

This is not a particularly useful group but must be included for completeness

n- - discreteTransGroup [<]|1 - th, 2 » o4|>, {06, 0}, 2, 5]

» number of group elements calculated 26

» number c points 9

K1 E /2 "

=2

n- - G6 = discreteTransGroup [¢|1 > th, 2 » o4|>, {.2136, .1948}, 2, 5, returnGroup - True];

»

¥

number of group elements calculated 53

m- - isoClassifierA [G6, <|1 -» th, 2 5 04|>]

our- - ¢<|{1} > T, {2} > R4, {1, 1} > T, {1, 2} > R4, {2, 1} > R4, {2, 2} > H, {1, 1, 1} > T, {1, 1, 2} > R4,
{1, 2, 1}->R4,{1,2,2}>H, {2,1, 1} > R4, {2, 1, 2}>H, {2, 2, 1} > H, {2, 2, 2} > R4,
{1,1,1,1}->T,{1,1,1,2}>R4,{1,1, 2, 1}>R4,{1,1, 2, 2} >H, {1, 2,1, 1} > R4,
{1, 2,1, 2}>H,{1,2,2,2}>R4,{2,1,1, 1}->R4,{2,1,1, 2}>H,{2,1, 2, 1}>H,

2,1, 2
{1, 1,1
{1, 1,2
{1, 2,1,
2,1,1
2,1,2

2,1

We see beside the generator types we also get half turns ne

we get the inverse of th so we don’t need to include that as a generator.

, 2}>R4,{2,2,1,1}>H,{2,2,1,2}>R4,{2,2,2,1}>R4,{2,2,2,2}>T,
i,1}->»>T,{1,1,1,1,2}->R4,{1,1,1,2,1}->R4,{1,1,1,2, 2} >H,
1,1} ->R4,{1,1,2,1,2}y>H,{1,1,2,2,2}>R4,{1,2,1,1, 1} > R4,
1,2}-»>H,{1,2,1,2,2}>R4,{1,2,2,2,1}>R4,{2,1,1,1, 1} > R4,

,1,2}»>H,{2,1,1,2, 1} >H,{2,1,1,2,2}>R4,{2,1,2,1, 1} > H,
1,2}->R4,{2,1,2,2,2}>T,{2,2,1,1, 1}->H,{2,2,1,1, 2} > R4,
2,1}->R4,{2,2,1,2,2}>T,{2,2,2,1,1}>R4,{2,2,2,1,2}>T)

o4@+o4 and others. Given half turns

But there are no reflections or
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glide reflections. On the other hand all the translations are parallel to or orthogonal to th. We get tv by

wo - TasTF{2, 1, 2, 2, 2}, <|1 - th, 2 » 04|>]

1 00
our - - TransformationFunction [ 0 1|1 ]
0 01
or
n- - c4@* Th@* nO @* o4
1 00
our - - TransformationFunction [ 0 1|1 ]
0 01

To get a tessellation without introducing reflections we use
m- - Th2 = tTh@* thy

w1~ Q6 ={{1, 1}, {0.75", 1}, {0.5°, 0.8}, {0.2°, 0.8}, {0. , 1."}, {-0.2", 1.2}, {-0.5", 1.2},
(-0.75", 1.}, {~-1.>, 1.}, {~-1.>, 1.}, {-1., 0.75"}, {-0.8", 0.5}, {-0.8", 0.2"},
-1.",0.'},{-1.2",-0.2"}, {-1.2°, -0.5"}, {-1.", -0.75"}, {~1.", -1."}, {-1.", -1."},
{-0.75", -1."},{-0.5", -0.8"}, {-0.2, -0.8"}, {0.", -1."}, {0.2", -1.2"},

{0.5°, -1.2"},{0.75", -1.}, {1.>, -1."},{1. , -1."}, {1.", -0.75}, {0.8", -0.5"},
(0.8, -0.2"},{1.°, 0.}, {1.2°, 0.2}, {1.2°, 0.5}, {1.7, 0.75"}, {1.", 1. }};
We modify G6 slightly

n- - G6M = discreteTransGroup [¢|1 » th2, 2 5 oc4|>, {0, 0}, 2, 5, returnGroup - True];

» number of group elements calculated 26

n - - groupTessellate [G6M, <|1 » th2, 2 » o4|>, Q6, Orange, Gray]

outf « ]=

Note that there are no reflection symmetries
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inf - = Row[
Graphics[{{Cyan, Polygon[Q6]}, {Black, Thickness[.01], Line[pv@Q6]}}, ImageSize - Small],
Graphics[{{Cyan, Polygon[Q6]}, {Black, Thickness[.01], Line[pd@Q6]}}, ImageSize - Small]]

outf + J= ROW[

Thus G6M is not just a construction group but the symmetry group of the tessellation .

4.5.7 Group VII Translations, Rotations of order 4 and reflections
Our standard example is
<|1-> th, 25 04, 3> pv]>

We picked pv as our reflection but note

- - PV@* 04
0. 1. ]|o0.
ouf - - TransformationFunction [[l 0. 0_]]
0. 0. |1
- - pd
0. 1.]0
ouf - - TransformationFunction [[l 0. 0_]]
0. 0. |1
- - c4@* o4
-1 0 |0
ouf - - TransformationFunction [[ 0 -1 _O]]
0 0|1

inf - = NO

-1 0 |0
our - - TransformationFunction [ 06 -1]0 ]
0 0 |1
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- - NO @ pVv
1. 0. |0,
oui - - TransformationFunction [ 0. -1. O_ ]
0. 0. |1.
- - ph
1. 0. |0,
our - - TransformationFunction [ 0. -1. O_ ]
0. 0. |1.

So we also have the half turn and reflections ph and pd and the other diagonal as well. We can also
construct horizontal, vertical and diagonal glide reflections also. We get the other translation 7vand
since we have half turns we also get their inverses so we do not need to list these as generators.

The following association is as expected, translations, half turns, reflections, glide reflections and, of
course order 4 rotations.

mn- 1= GT = discreteTransGroup [¢|1 -» th, 2 » 04, 3 » pVv]|>,
{.21331, .1592}, 1, 4, returnGroup - True];
64
m- - isoClassifierA[G7, <|1 - tv, 2 » 04, 3 > pV|>]

our- - ¢<| {1} > T, {2} > R4, {3} > RF, {1, 1} > T, {1, 2} » R4, {1, 3} » G, {2, 1} > R4, {2, 2} > H,
{2, 3} > RF, {3, 1}>G, {3, 2}>RF, {3,3}>T,{1,1, 1} > T, {1, 1, 2} > R4,

{1,1,3}-»6G,{1,2, 1} >R4,{1, 2, 2}>H,{1,2,3}->G, {1, 3, 2} > G,
{2,1,1}->R4,{2,1,2}>H,{2,1,3}>6G, {2, 2, 1} > H, {2, 2, 2} > R4,

{2,2,3}>RF, {2,3,1->6G,{3,1, 1}->6G, {3,1, 2}->G, {3,1,3}->T, {3, 2, 1} » G,
{1,1,1,1}>T,{1,1,1,2}>R4,{1,1,1,3}>6G,{1,1,2, 1}>R4,{1, 1, 2, 2} > H,
{1,1,2,3}-»6G,{1,1,3,2}»G,{1,2,1, 1} >R4,{1,2,1, 2}>H, {1, 2,1, 3} » G,
{1, 2,2,2}>R4,{1,2,2,3}>RF,{1,2,3,1->6G,{1,3,2,1>G, {2, 1, 1, 1} > R4,
{2,1,1,2}>H,{2,1,1,3}>6G, {2,1,2,1}->H,{2,1,2,2}->R4,{2,1, 2, 3} > G,
{2,1,3,2}y->RF, {2,2,1, 1} > H, {2,2, 1, 2} > R4, {2, 2, 1, 3} > RF,
{2,2,2,1->R4,{2,3,1,1->6G6,{2,3,1,2}->RF,{2,3,1,3}>R4,{3,1,1, 1} > G,
3,1,1,2}-»G,{3,1,1,3}>T,{3,1,2,1}->G,{3,1,3,2}>R4,({3,2,1, 1}>G|>

o= sq={{-.5, .5}, {.5, .5}, {.5, -.5}, {-.5, -.5}};
As expected our tessellation is

mn- - GT = discreteTransGroup [¢|1 - th, 2 » 04, 3 5 pVv]|>, {0, 0}, 1, 6, returnGroup - Truel;

46
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n - - Show[groupTessellate [G7, ¢|1 » th, 2 » 04, 3 » pV|>, sq, Orange, Gray],
Graphics[{{GrayLevel[.7], Polygon[sql},
{GrayLevel[.9], Dashed, Thickness[.01], Line[{{.5, 4.5}, {.5, =3.5}1}}]

outf « ]=

Our original cell sqis shown and all the vertical and horizontal mirrors of reflections are evident, one

vertical mirror is shown, itis

m- - pvl = reflectionTF2D [{{.5, -3.5}, {.5, 4.5}}];

Note

- = PVT@%* pV

our - - TransformationFunction [

is the translation th with inverse

- = PV@* pVT

our - - TransformationFunction [

Thus an alternate set of generators for G7 is
<|1-> pv, 2 » pd, 35 pv8|>

We are done with order 4 rotations, the remaining groups concern order 3 and 6 which may have half

turns but no order 4 rotations .
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4.5.8 Group VIII, Order 3 rotations and translations only.
Our standard example is

<|1 > th, 2 > InverseTF[th], 2 » o3>

where we need to include the inverse of our translation as a generator .

n - - discreteTransGroup [<|1 -» th, 2 5> ¢3|> , {.1238, .2617}, 1, 6]

78

12

Outl « ]= [ ) ;

fﬁ

This does look discrete . Note that

- - Chop[o3@* tTh@* o3@* tTh@* 03]

our - - TransformationFunction [

n- - G8 = discreteTransGroup [¢|1 -» th, 2 » o3|> , {.1238, .2617}, 1, 5, returnGroup - Truel];

48



ChapterdFinal.nb | 47

n - - isoClassifierA [G8, <|1 - th, 2 » InverseTF[rh], 3 > o3|> ]

our- - <|{1}> T, {2} > T, {3} >R3, {1, 1}>T,{1,2}>T, {1, 3}>R3, {2, 2> T, {2, 3} » R3,
{3, 1}>R3, {3, 2}>R3,{3,3>R3,{1,1,1}>T, {1, 1, 3} > R3, {1, 3, 1} » R3,
{1, 3, 2}>R3,{1,3,3}>R3,{2,2,2}>T, {2, 2, 3} > R3, {2, 3, 1} » R3, {2, 3, 2} » R3,
{2,3,3}->R3,{3,1, 1} > R3, {3, 1, 3} »R3, {3, 2, 2} » R3, {3, 2, 3} > R3,

{3,3,1}->R3,{3,3,2}->R3,{1,1,1,1}->T,{1, 1,1, 3}»>R3, {1, 1, 3, 1} > R3,
{1,1,3,2}->R3,{1,1,3,3}->R3,{1,3,1,1}->R3,{1, 3,2, 2}>R3,{1, 3, 2, 3} » R3,
{1, 3,3, 2}>R3,{2,2,2,2}>T,{2,2,2,3->R3, {2, 2,3, 1}>R3, {2, 2, 3, 2} > R3,
2,2,3,3}->R3,{2,3,1, 1}->R3,{2,3,1,3}->R3,{2,3,2,2}>R3,{2,3, 3, 1} »R3,
{3,1,1,1}->R3,{3,1,1,3}>R3,{3,1, 3, 2}>R3,{3,1,3,3}->T, {3, 2, 2, 2} > R3,
3,2,2,3}-R3,{3,2,3,1}->R3,{3,2,3,3}->T,{3,3,1,1}->R3,{3,3,1,3}->T,
{3,3,2,2}-R3,{3,3,2,3->T,{1,1,1,1, 1}->T,{1, 1,1, 1, 3} > R3,
{1,1,1,3,1}->R3,{1,1,1,3,2}»>R3,{1,1,1,3,3}->R3,{1,1, 3,1, 1} » R3,
{1,1,3,2,2}>R3,{1,1,3,2,3->R3,{1,1, 3,3, 2}>R3,{1, 3,1, 1, 1} > R3,
{1,3,2,2,2}-R3,{1,3,2,2,3->R3,{1,3,2,3,3}-»T,({1, 3, 3, 2, 2} >R3,
{1,3,3,2,3}>T,4{2,2,2,2,2}>T,{2,2,2,2,3->R3,{2,2,2,3, 1}>R3,
2,2,2,3,2}-R3,{2,2,2,3,3->R3,{2,2,3,1, 1}>R3,{2,2, 3,1, 3} - R3,
{2,2,3,2,2}-R3,{2,2,3,3,1}>R3,{2,3,1,1, 1} > R3, {2, 3,1, 1, 3} > R3,
2,3,1,3,3}»T,{2,3,2,2,2}-R3,{2,3,3,1,1}->R3,{2,3,3,1,3}->T,
{3,1,1,1,1}->R3,{3,1,1,1,3}->R3,{3,1,1,3,2}>R3,{3,1,1, 3, 3}->T,
3,1,3,2,2}-R3,{3,1,3,2,3->T,{3,2,2,2,2}-R3,{3,2,2,2, 3}->R3,
{3,2,2,3,1}->R3,{3,2,2,3,3->T,{3,2,3,1,1}->R3,{3,2,3,1,3}->T,
3,3,1,1,1}->R3,{3,3,1,1,3}->T,{3,3,2,2,2}-R3,{3,3,2,2,3}->T)]»

We see no other types appear to be present . Our tessellation example is given in the closed cell

- tri8

our - {{-2.94668 x 107*°, -0.57735}, {0.4, -0.23094}, {0.5, -0.288675}, {0.5, -0.288675},
{0.6, -0.23094}, {0.5, 0.288675}, {0.5, 0.288675}, {1.01581 x 107*°, 0.46188},
{3.72924 x 107, 0.57735}, {4.68608 x 1067*", 0.57735}, {-0.1, 0.635085},
(-0.5, 0.288675}, {-0.5, 0.288675}, {-0.4, -0.23094}, {-0.5, -0.288675},
{-0.5, -0.288675}, {-0.5, -0.404145}, {-1.25117 x 107*°, -0.57735}}
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n - - Graphics[{Cyan, Polygon[tri8]}, ImageSize - Small]

outf « J=

This has no symmetries other than an order 3 rotation . Its tessellation is

n - - groupTessellate [G8, ¢|1 -» th, 2 » InverseTF[rh], 3 » 03|>, tri8, Orange, Gray]

outf « J=

4.5.9 Group IX Translations, reflections and order 3 rotations
What makes this different from VIII and Xis that it has a reflection but no half turn. Our example is
<|1-> th, 25 03, 3> ph]»

n - - discreteTransGroup [¢|1 -» th, 2 » ¢3, 3 » ph|>, {0, 0}, .5, 6]
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38

We see this is an organized set of points so our group is discrete . As in Group VIII the inverse of of th

will appear so it is not necessary to include this as a generator.

n - - G9 = discreteTransGroup [<|1 > th, 2 » 03, 3 » ph|>,
{.2143, .1592}, .5, 4, returnGroup - True];

46

mn- - isoClassifierA [G9, ¢|1 -» th, 2 5 03, 3 » ph|>]

our- - ¢<|{1} > T, {2} » R3, {3} > RF, {1, 1} > T, {1, 2} > R3, {1, 3} > G, {2, 1} > R3, {2, 2} > R3,
{2, 3} > RF, {3, 2}>RF, {3,3}>T,{1,1,1}->T,{1, 1, 2} >R3,{1, 1, 3} > G, {1, 2, 1} » R3,
{1, 2, 2}>R3,{1,2,3}->6G, {1, 3,2}>G, {2, 1, 1} > R3, {2, 1, 2} > R3, {2, 1, 3} > G,
{2,2,1}->R3,{3,2,1>6G,{1,1,1, 1}>T,{1,1,1, 2y >R3,{1,1,1, 3}>G,
1,1, 2, 1}->R3,{1,1,2, 2}>R3,{1,1,2,3}>G,{1,1, 3, 2}>G, {1, 2, 1, 1} > R3,
{1,2,1,2}y>R3,{1,2,1,3}>6G, {1,2,2,1}>R3,{1,3,2,1->6G, {2,1, 1, 1} > R3,
{2,1,1,2}>R3,{2,1,1,3}>6G,{2,1,2, 1}>R3,{2,1,2,2}>T,{2,1, 2, 3} > G,
{2,1,3,2}>6G,{2,2,1,1}->R3,{2,2,1,2}>T,{3,2,1,1}->G, {3,2,1,2}->G|»

Other than the generators of types T, R3,RF we have only G which is expected to appear when there is

an RF. In particular there is no H.

A nice example of a tessellation with just these symmetries follows.

i - - Chop[panel9]

our - {{0, -0.57735}, {0, -0.46188}, {0.4, —-0.23094}, {0.5, -0.288675}, {0.6, -0.23094},
{0.6, 0.23094}, {0.5, 0.288675}, {0.4, 0.23094}, {0, 0.46188}, {0, 0.57735}, {0, 0.57735},
{-0.1, 0.635085}, {-0.5, 0.404145}, {-0.5, 0.288675}, {-0.4, 0.23094}, {-0.4, -0.23094},
{-0.5, -0.288675}, {~-0.5, -0.288675}, {-0.5, -0.404145}, {-0.1, -0.635085}, {0, -0.57735}}
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m - - Graphics [{{Cyan, Polygon[panel9]}, {Red, Dashed, Thickness[.005],
InfiniteLine [{{-1, 0}, {1, 0}}1, InfiniteLine [e3@{{-1, 0}, {1, O},
InfiniteLine[c3@*o3@{{-1, 0}, {1, 0}}1}}, ImageSize - Small]

It is seen to have an order 3 rotation about its centroid {0,0} and three reflections one being ph. More-

over there is a nice tessellation using this cell.

m- - G9 = discreteTransGroup [¢|1 > th, 2 » 03, 3 » ph|>, {0, 0}, .5, 6, returnGroup - True];

» number of group elements calculated 38

n - - groupTessellate [G9, <|1 > th, 2 » 03, 3 5 ph|>, panel9, Orange, Gray]

outf « |=

4.5.10 Group X Translations, rotations of order 2,3,6.
This group will be called the direct hexagon group , it is the group of direct isometries of the hexagon .

Our basic example is
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<|1 > th, 25 06>

Note that an alternate generating set is

<|1 > th, 2503, 35 00>

In the second case the second two generators are powers of g6 while in the first no@+o3@+03 = 06

Also note that the inverse of this also a consequence of these generators as seen by the points {-2,0},
{-1,0} are in the orbit of {0,0}.

n - - discreteTransGroup [<|1 -» th, 2 5> o6]>, {06, 0}, 1.5, 6]

42
;
i ™
n
° ° ® ° ° °
sL
° o [ o ™ ™ ™
oL
° ° ° ° ° ° °
ouff « J- [
° ° e'[ @ ° ° ° °
-° oo 'S o——e ° ® ® o
-2 [ 2 4 6
° o [ o
° i

also we see the points of norm 1in the orbit of {0,0} form a hexagon

m - 1- hexl = RecurrenceTable [{p[i + 1] == o6@p[il, p[1l] == {1, O}}, p, {i, 6}]

1 43 1 43 1 43, 1 43
corfwon s, by o hene b is -l

m- - G10 = discreteTransGroup [¢|1 > v, 2 » 06>, {.2138, .1392}, 1.5, 4, returnGroup - Truel;

29

m- - isoClassifierA [G10, <|1 > th, 2 » 06]>]

ouf- - <|{1}> T, {2} > R6, {1, 1} > T, {1, 2} > R6, {2, 1} > R6, {2, 2} > R3, {1, 1, 1} > T, {1, 1, 2} > R6,
{1, 2, 1}>R6, {1, 2, 2} > R3, {2, 1, 1} > R6, {2, 1, 2} > R3, {2, 2, 1} > R3, {2, 2, 2} > H,
{1, 1,1, 1}>T,{1,1,1,2}>R6,{1,1,2, 1} > R6, {1, 1, 2, 2} > R3, {1, 2, 1, 1} > R6,
{1, 2,1, 2y>R3,{1,2,2,2}>H,{2,1,1,1}>R6,{2, 1,1, 2}>R3, {2,1, 2, 1} > R3,
{2,1,2,2}y>H,{2,2,1, 1} »R3,{2,2, 1, 2}>H,{2,2,2,1}>H, {2, 2,2, 2} >R3>

So we just get translations and rotations of order 2, 3, 6.

The well known hexagon tessellation is not



52 | Chapter4Final.nb

n - - groupTessellate [G10, ¢|1 » th, 2 5 06]|> , hexl, Orange, Gray]

outf « J=

Rather we let

thex := TranslationTransform [{0, '\/3_}]

n- - G1Ov = discreteTransGroup [¢|1 - thex, 2 » 063, 3> nO|>, {1, 0}, 2, 4, returnGroup - Truel;

» number of group elements calculated 46
Then

n- - groupTessellate [G10v, <|1 - thex, 2 5 03, 3> nd|>, hexl, Orange, Gray]

outf « J=
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is the well known hexagonal tessellation of the plane.

This tessellation has reflections also so G10v is not the symmetry group. We can modify our cell in the
usual way. We give the graphic only, the actual coordinates are in the hidden cell. Note this is fixed by
06, but not by reflections pv, ph.

- - Row[{Graphics[{{Cyan, Polygon[newHex]},
{Black, Thickness[.01], Line[newHex], Line[c6@ newHex]}}, ImageSize - 150],
Graphics[{{Cyan, Polygon[newHex]}, {Black, Thickness[.01], Line[pv@ newHex]}},
ImageSize - 150], Graphics|[
{{Cyan, Polygon[newHex]}, {Black, Thickness[.01], Line[ph@newHex]}}, ImageSize - 140]}]

s

m- - groupTessellate [G10v, <|1 - thex, 2 » 03, 3 -» nd|> , newHex , Orange, Gray]

outf « |=
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4.5.11 Group XI reflections, and rotations of order 2,3, 6.

This is known as the full equilateral triangle group giving all the symmetries of the triangle tessellation
below. It also gives all symmetries of the hexagon tessellation above with reflections. In fact this group
includes all isometry types except for order 4 rotations. The group of all isometries is not a discrete

group.
Our standard example of the group is
<|1>th, 25 03,3510, 4> pv)]>

n - - discreteTransGroup [<|1 > th, 2 5> 03, 3> n0, 4 » pv|>, {0, O}, 2, 5]

Outf » ]=

34
13
) [
3L
° o | °
2;
° ° ° °
° o'l @ ™ °

-4 -2
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°
@
°
°

m-1- G1l1l = discreteTransGroup [<|1 > th, 2 5 03, 35100, 4 pVv|>,
{.2137, .1987}, 2, 3, returnGroup - True]l;

44

n- - isoClassifierA[Gll, ¢<|1 > th, 25 03,3510, 4> pv|>]

our- - <| {1}y > T, {2} > R3, {3} > H, {4} > RF, {1, 1} > T, {1, 2} » R3, {1, 3} > H, {1, 4} > RF,
{2, 1} > R3, {2, 2} > R3, {2, 3} > R6, {2, 4> RF, {3, 1} > H, {3, 3}> T, {3, 4} > RF,
{4, 1} > RF, {4, 2> RF, {1, 1, 1}>T, {1, 1, 2} > R3, {1, 1, 3} > H, {1, 1, 4} > RF,
{1, 2, 1}>R3, {1, 2, 2}>R3,{1, 2,3}>R6,{1, 2, 4>G, {1, 3, 41> G, {1, 4, 2} > G,
{2,1, 1}>R3, {2, 1, 2} > R3, {2, 1, 3} > R6, {2, 1, 4}> G, {2, 2, 1} » R3,
{2,2,3}>R6,{2, 3, 1}>R6,{2, 3, 4->RF,{2,4,1}>G, {3,1,1}>H, {3,1, 2}>R6,
{3,1,3}>T,{3,1,4->6G, {3,4,2)>RF, {4, 1, 1} > RF, {4, 1, 2} > G, {4, 2, 1} > G|>

wo - etri = {{0, 0}, {1, 0}, {.5, Sqrt[3.]/2}, {0, O}
our - {{0, 0}, {1, 0}, {0.5, 0.866025}, {0, O}
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wo - {{0, 0}, {1, 0}, {0.5" , 0.8660254037844386" },}
our- - {{0, 0}, {1, 0}, {0.5, 0.866025}, Null}

m- - Gl1l = discreteTransGroup [<|1 » th, 2 » 03, 35 n0, 4 » ph|>,
{.2213, .3124}, 2, 5, returnGroup - Truel;

» number of group elements calculated 179

n - - groupTessellate [G11, ¢|1 > th, 2 5> 03, 3> n0, 4 » ph|>, etri, Orange, Gray]

outf « J=

4.6 Examples of Compound Tessellations

One can use our tessellation groups to tessellate the plane using more than one cell. Generally one
should use a group that provides symmetry of all the cells and the union, however in most cases if there
is no reason to use a bigger group one may use group I, translations. lillustrate with a number of my

favorite examples.

4.6.1 Checkerboards

Our first example is the standard checker board .

n- 1= S1 ={{0@, 0}, {6, 1}, {1, 1}, {1, O}};
s2 ={{1, 0}, {2, 0}, {2, 1}, {1, 1}};

The union is

n - 1= Graphics [{{Blue, Polygon[S1]}, {Yellow, Polygon[S2]}}, ImageSize - Tiny]

Out[ » ]=

We use group II, we will define specific translation and glide reflection.
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Outf

Outf

In[

In[

outf « J=

J= TV2 = TV@#* TV
yh2 = glideReflectionTF2D [{{.5, 1}, {1.5, 1}}]
1 0|0

- TransformationFunction [ 0 1|2 ]
0 01

- TransformationFunction [

j- G2A = discreteTransGroup [<|1 - yh2, 2 » tv2, 3 -5 InverseTF[rv2], 4 -» InverseTF[yh2]|>,
{0, 0}, 2, 4, returnGroup - True];

41

It is easily checked that as in the specific example there are translations and glide transformations only.

We get our tessellation.

- Show[groupTessellate [G2A, <|1 -» yh2, 2 5 tv2, 3 5 InverseTF[rv2], 4 » InverseTF[yh2]|>,
S1, Blue, Black], groupTessellate [
G2A, ¢|1 > yh2, 2 5 rv2, 3 » InverseTF[rv2], 4 » InverseTF[yh2]|>, S2, Yellow, Black]]

_l

Since we are using group tessellation then we are using group elements at level 4. If we wanted just a

standard 8 x 8 checker board we would use a higher level and just choose the group elements to use.

This will be discussed in the next Section.
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Here is my version of part of an actual pavement

In[ « ]=

It is sort of a checkerboard. The basic shape is
m- - 02 = RotationTransform [-Pi /2, {1, 1}];
- - bCheckl = {{0.", 1.}, {0.2°, 0.75"}, {0.25", 0.5}, {0.2°, 0.25"}, {6., 0.},
{0.25°, -0.2"}, {0.5 , -0.25"}, {0.75", -0.2"}, {1.”, 0.7}, {6.8", 0.25"},
{0.75", 0.5}, {0.8", 0.75°},{1., 1.}, {0.75°, 1.2}, {0.5 , 1.25"}, {0.25", 1.2 }};
n- - bCheck2 ={{1.%, 2.}, {0.75", 1.8}, {0.5", 1.75°}, {0.25", 1.8}, {6.", 2.},

{-0.2, 1.75"}, {~-0.25", 1.5}, {-0.2", 1.25"}, {0.", 1.}, {0.25 , 1.2},
(0.5, 1.25'}, {0.75 , 1.2}, {1. , 1.}, {1.2", 1.25"}, {1.25, 1.5}, {1.2", 1.75" }};

n - - Graphics [{{Cyan, Polygon[oc2@bCheckl]}, {Yellow, Polygon[oc2@bCheck2]},
{Black, Thickness[.005], Dashed, Line[{{0, 2}, {1, 2}, {1, 1}, {0, 1}, {0, 2}}],
Line[{{0, 2}, {2, 2}, {2, 1}, {1, 1}}I}}, ImageSize - Small]

outf + J=

We see this is basically our checkerboard above . So using the same group
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n - - Show[groupTessellate [
G2A, ¢|1 > yh2, 2 5 tv2, 3 » InverseTF[rv2], 4 » InverseTF[yh2]|>, bCheck2, Cyan, Gray],
groupTessellate [G2A, ¢|1 -» yh2, 2 » 1v2, 3 » InverseTF[rv2], 4 » InverseTF[yh2]]>,
bCheckl, LightYellow , Gray]]

outf + J=

Again we get our original picture by using a large enough level and picking cells .

We notice in both of these checkerboards that we have vertical and horizontal reflections through the
centers of the cells. These in turn compose to form half turns about the midpoints of the cells. So the

actual symmetry of these compound tessellations is Group V.

n- - ph5 = reflectionTF2D [{{-1, .5}, {1, .5}];
pv5 = reflectionTF2D [{{.5, -1}, {.5, 1}}];

n- - G5a = discreteTransGroup [<|1 - yh2, 2 5 tv2, 3 5 ph5, 4 5 pv5, 5 - InverseTF[tv2]|>,
{.1394, .2015}, 3, 3, returnGroup - True]l;

» number of group elements calculated 48
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n - - isoClassifierA [G5a, <|1 > yh2, 2 » 1v2, 3 » ph5, 4 » pv5, 5 5 InverseTF[tv2]|>]

our- - <| {1} > G, {2} > T, 3} > RF, {4} > RF, {5}> T, {1, 1}> T, {1, 2} > G, {1, 3} > T, {1, 4} > H,
{1,5}>G, {2,2}>T,{2,3}>RF,{2,4>G,{2,5}>T,{3,1}>T, {3, 2} > RF, {3, 4> H,
{4, 1} > H, {4, 5}>G, {5, 5}»>T,{1,1, 1} » G, {1, 1,2}>T,{1,1, 3} » G, {1, 1, 4} > RF,
{1,1,5}-»>T,{1,2,2}>G,{1,2,4>H,{1,3,1}>G,{1,3,2}>T,{1, 3, 4->G,
{1, 4, 5}>H, {1, 5,5}>6G, {2,2,2}>T,{2, 2, 3}>RF, {2, 2, 4->G, {2, 3, 4->H,
{2,4,1}>H,{3,1,4->G,{3,1,5}>T,{3,2,2}>RF, {3,2,4->H,{3,4, 1}->0G,
{4, 1, 1}>RF, {4, 1,2} >H, {4, 1, 3}>G,{4,1,4->G,{4,5,5}->G,{5,5,5}->T)

n - - Show[groupTessellate [G5a, <|1 > yh2, 2 5 tv2, 3 5 ph5, 4 » pv5, 5 - InverseTF[tv2]|>,
bCheckl, LightYellow, Gray],
groupTessellate [G5a, <|1 -» yh2, 2 » tv2, 3 » ph5, 4 » pv5, 5 » InverseTF[rv2]]>,
bCheck2 , Cyan, Gray], Graphics[{Red, Thickness[.005], Dashed,
InfiniteLine [{{0, .5}, {1, .5}}], InfiniteLine [{{.5, 0}, {.5, 1}

outf « ]=

4.6.2 Bricks

Without alternating color or orientation we can make a brick wall by Groups IV or V.

n-1- G5b = discreteTransGroup [¢<|1 - th2, 2 » v, 3 5 ph, 45 pVv|>,
{.1252, .2212}, 3, 4, returnGroup - True]l;

68
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m- - brickl = {{-1, -.5}, {1, -.5}, {1, .5}, {-1, .5}};
brick2 = {{0, .5}, {2, .5}, {2, 1.5}, {0, 1.5}};

n - - Show[groupTessellate [G5b, <|1 > th2, 2 » tv2, 3 » ph, 4 5 pVv]>,
brickl, LightRed, GrayLevel[.7]], groupTessellate [
G5b, <|1 - th2, 2 » tv2, 3 » ph, 4 5 pv|>, brick2, LightRed, GrayLevel[.7]l]

e L ¢ I [ [ | |

We saw above if we did not alternate we had

n- - G5¢ = discreteTransGroup [<|1 -» th2, 2 5 v, 35 pv, 45 n0|>,
{.1249, .2137}, 2, 5, returnGroup - True]l;

» number of group elements calculated 546

n - - groupTessellate [G5¢c, <|1 -» th2, 2 5 v, 35 pv, 45 n0|>, brickl, Orange, Gray]

Outf « J=

We can use this with a more complicated brick .
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w RO =.5{-1.5, 0}, {~-1.55, .35}, {~-1.6, .5},
{-1.75, .75}, {-2, 1}, {-1.5, .8}, {-1, .7}, {-.5, .65}, {0, .6}}
our - {{-0.75, 0.}, {-0.775, 0.175}, {-0.8, 0.25}, {-0.875, 0.375},
{-1., 0.5}, {-0.75, 0.4}, {-0.5, 0.35}, {-0.25, 0.325}, {6., 0.3}

n - - Graphics [{{LightYellow , Polygon[brickl]}, {Blue, Polygon[RO]}}]

Outf « -

- - groupTessellate [G5¢c, <|1 > th2, 2 5 v, 3 5 pv, 45 nO|>, RO, Blue, Blue]

outf « J=

This gives us some ideas. For this we prefer not to have the border so we use

groupTessellateNB [G_, tas_, P_, col_] := Module[{tab},
tab = Table[TasTF[g, tas]@P, {g, G}I;
Graphics[{col, Polygon[tab]}]]

Roa = {{-1.', 0.5}, {-0.75", 0.4"}, {-0.5", 0.35°}, {-0.25", 0.325"}, {0.", 0.3}

R2 = Append[Join[RPa, Reverse[pv@R0a]], {-1, .5}]

R3a = Append[{{-0.75", 0.}, {-0.775", 0.175"}, {-0.8", 0.25"}, {-0.875", 0.375"}}, {-1, .5}]
R3 = Append[Join[Reverse[R3a], ph@R3a], {-1, .5}]

R4 = {{-.75, 0}, {0, .3}, {.75, 0}, {6, -.3}}
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n - - Show[groupTessellateNB [G5c, <|1 - th2, 2 5 v, 3 » pv, 45 n0|>, RO, Blue],
groupTessellateNB [G5c, <|1 > th2, 2 > v, 35 pv, 4> n0|>, R2, Green],
groupTessellateNB [G5¢c, ¢|1 -» th2, 2 » v, 3 5 pv, 4> n0|>, R3, Green],
groupTessellateNB [G5c, ¢|1 > th2, 2 » v, 35 pv, 45 n0|>, R4, Orange],

ImageSize - Large]

outf « J=

4.6.4 More Bricks

A very popular use of rectangular paving stones sometimes goes by the name Holland. Your author
had this on a section of his driveway. Itis a nice example of Group IV.

n- - Brickl = {{-2, 1}, {2, 1}, {2, -1}, {-2, -1}};
Brick2 ={{-2, 1}, {-2, 5}, {0, 5}, {0, 1}};
Let

m- = td2 := TranslationTransform [{2, 2}]
tdm4 := TranslationTransform [{-4, 4}]
Again, to do a tessellation one needs a version of the group with a random test point. Also conjugating
any translation by a half turn gives its inverse so the main importance of the half turns to get inverses
for the translations. But it also shows our tessellations have half turn symmetry.

n- - G4B = discreteTransGroup [<|1 - td2, 2 » tdm4, 3 5 nO >,
{.2187, .1326}, 2, 5, returnGroup - True]l;

» number of group elements calculated 77
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n - - Show[groupTessellate [G4B, <|1 -» td2, 2 » rdm4, 3 5 nO@|>, Brickl, Brown, Black],
groupTessellate [G4B, <|1 -» td2, 2 » rdm4, 3 5 no |>, Brick2, Gray, Black]]

Out[ » ]=

Often this is seen diagonally

m- - BricklD = c6@Brickl;
Brick2D = c6@Brick2;
D2 = c6@* 1d2@+* InverseTF [06];
Dm4 = 06@* tdm4 @+ InverseTF [06];

n - - Show[groupTessellate [G4B, <|1 » tD2, 2 » tDm4, 3 » no|>, BricklD, Brown, Black],
groupTessellate [G4B, <|1 -» D2, 2 -» Dm4, 3 - nO|> , Brick2D, Brown, Black]]

outf « ]=

Note we did not need to recalculate the group since we are just conjugating. |changed the color of
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brick 2 so all bricks are the same as on my old driveway

4.6.5 Octagonal paver

This is commercially available, for example and similar to group III.

But here we regard the octogons and the squares separately .

n- - oct = {{0.7071067811865475" , -0.2928932188134522" },
{0.7071067811865475" , 0.2928932188134525" },
{0.2928932188134524" , 0.7071067811865475" }, {-0.2928932188134526" ,
0.7071067811865475" }, {-0.7071067811865477" , 0.29289321881345237" },
{-0.7071067811865475" , -0.2928932188134526" }, {-0.29289321881345226" ,
-0.7071067811865477" }, {6.29289321881345276" , -0.7071067811865475" },
{0.7071067811865475" , -0.2928932188134522" }};

n- - sqr = {{0.7071067811865475° , -0.2928932188134522" },
{1.2928932188134525" , -0.2928932188134522" }, {1.2928932188134525" ,
0.2928932188134525" }, {0.7071067811865475" , 0.2928932188134525" }};

Recall
m- 1= td = TranslationTransform [{1, 1}];

n-1- G3 = discreteTransGroup [¢|1 - td, 2 » InverseTF[rd], 3 » ph|>,
{0, -0}, 2, 4, returnGroup - True];

» number of group elements calculated 27
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n - - Show[groupTessellate [G3, ¢|1 » td, 2 » InverseTF[rd], 3 » ph|>,
oct, GrayLevel[.7], GrayLevel][.3]], groupTessellate [
G3, <|1 - td, 2 » InverseTF[zd], 3 » ph|>, sqr, GrayLevel[.5], GrayLevel][.3]]]

outf « J=

4.7 Further comments on plane tessellations

This last section concerns practical considerations on actually working on tessellations so many read -
ers may end here. Our group tessellation algorithm gives cells as they are generated in the group, this
can depend on the generators. But they most likely do not give a nice display. So our first section

below shows how to plot a user defined portion of a tessellation.

Our second section concerns the case when a practical tiling method does not give good borders,
unlike as in the graphic above where borders define adjacent octagonal cells. We can distinguish cells
by color with adjacent cells a different color. There is some mathematics here, specifically the four
color theorem which says that 4 colors will suffice for any polygonal tessellation. We will see that

unless triangles are involved 3 colors should be enough.

4.7.1 Choosing cells in a tessellation

The following algorithm will tessellate with a number at the centroid of each cell .
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Options[groupATessL ] = {returnAssoc - False};
groupATessL [G_, tas_, P_, OptionsPattern []] := Module[{tabA, n},
n = Length[G];
tabA = ¢| Table[i » {TasTF[G[i], tas]@P, pcentroid[TasTF[G[il, tas]@Pl}, {i, n}|> ;
If[OptionValue [returnAssoc], Return[tabA]];
Show[Table[Graphics [{{Black, Thickness[.005], Line[tabA[i]l1]]},
{Black, Text[Style[i, 10], tabA[i][2I1}}1, {i, n}I]

For our first example we use the parallelograms of our first example for Group I. Note our cell is line
style, that the first and last points are the same.

wo - {p, q} = {{-1.8337165994212103" , 2.736646713237377" },
{1.7521455008048097" , 0.2910803142189895" }}

our- - {{-1.83372, 2.73665}, {1.75215, 0.29108}}

n - par ={{0, 0}, p, p+qd, q, {0, 0}}
our - - {{®, O}, {-1.83372, 2.73665}, {-0.0815711, 3.02773}, {1.75215, 0.29108}, {0, O}

m- - tp= TranslationTransform [p];

tq = TranslationTransform [q];

- ¢ = pcentroid[par]

our - {~0.0407855 , 1.51386)

m- - Gla = discreteTransGroup [<|1 - tp, 2 » InverseTF[rp], 3 » tq, 4 -» InverseTF[zq]|>,
c, 2, 5, returnGroup - True]
61
o= {1}, {2}, {3}, {4}, {1, 1}, {1, 2}, {1, 3}, {1, 4}, {2, 2}, {2, 3}, {2, 4}, {3, 3}, {4, 4}, {1, 1, 1},
{1, 1, 3}, {1, 1, 4}, {1, 3, 3}, {1, 4, 4}, {2, 2, 2}, {2, 2, 3}, {2, 2, 4}, {2, 3, 3},
{2, 4, 4}, {3, 3, 3}, {4, 4, 4}, {1, 1,1, 1},{1,1, 1, 3}, {1, 1,1, 4}, {1, 1, 3, 3},
{1, 1, 4, 4}, {1, 3, 3, 3}, {1, 4, 4, 4}, {2, 2, 2, 2}, {2, 2, 2, 3}, {2, 2, 2, 4},
{2, 2, 3, 3}, {2, 2, 4, 4}, {2, 3, 3, 3}, {2, 4, 4, 4}, {3, 3, 3, 3}, {4, 4, 4, 4},
{1,1,1,1, 1},{1,1,1,1,3},{1,1,1, 1, 4},{1,1,1, 3, 3}, {1, 1,1, 4, 4},
1,
2,
2,

e}

{1, 1,3,3,3},{1,1,4,4,4},{1,3,3,3,3) {1, 4, 4,4, 4,1{2,2,2,2, 2},
{2,2,2,2,3},1{2,2,2,2,4,1{2,2,2,3,3},{2, 2,2, 4, 4,1{2,2,3, 3, 3},
{2,2,4,4,4,1{2,3,3,3,3}1{2,4,4,4, 4}, {3, 3, 3, 3, 3}, {4, 4, 4, 4, 4}}

Note that the group elements are all n-tuples, n <5, of the integers 1,2,3,4.
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- - groupATessL [Gla, <|1 > tp, 2 » InverseTF[tp], 3 » tq, 4 » InverseTF[zq]|>, par]

To get a nice parallelogram tessellations we choose cells
n- - Sa = {50, 32, 18, 8, 1, 7, 17, 31, 49, 41, 25,
13, 4, 6, 3, 12, 24, 40, 59, 39, 23, 11, 2, 10, 22, 38, 58}
our- - {50, 32, 18,8, 1, 7, 17, 31, 49, 41, 25, 13,
4,6,3,12, 24, 40, 59, 39, 23, 11, 2, 10, 22, 38, 58}
We now use the group association to give a custom tessellation .

mn - - Aa = groupATessL [

Gla, |1 -» tp, 2 » InverseTF[zp], 3 » 7q, 4 » InverseTF[rq]|>, par, returnAssoc - True];
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n - - Graphics[{Cyan, EdgeForm[{Gray, Thickness[.01]}], Polygon[Table[Aa[ill1], {i, Sa}1}l

Out[ » ]=

Here is a more complicated example with a compound tessellation.
td = TranslationTransform [{1, 1.}];

n- - oct = {{0.7071067811865475" , -0.2928932188134522" },
{0.7071067811865475" , 0.2928932188134525" },
{0.2928932188134524" , 0.7071067811865475" }, {-0.2928932188134526" ,
0.7071067811865475" }, {-0.7071067811865477" , 0.29289321881345237" },
{-0.7071067811865475" , -0.2928932188134526" }, {-0.29289321881345226" ,
-0.7071067811865477" }, {0.29289321881345276" , -0.7071067811865475" },
{0.7071067811865475" , -0.2928932188134522" }};

wo - sqr = {{0.7071067811865475  , -0.2928932188134522" },
{1.2928932188134525" , -0.2928932188134522" },
{1.2928932188134525" , 0.2928932188134525" }, {0.7071067811865475" ,
0.2928932188134525" }, {0.7071067811865475" , -0.2928932188134522" }};

mn- - G3 = discreteTransGroup [¢|1 - td, 2 » InverseTF[rd], 3 » ph|>,

{0, -0}, 2, 6, returnGroup - True];

» number of group elements calculated 63
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n - - Show[groupTessellate [G3, ¢|1 » td, 2 » InverseTF[rd], 3 » ph|>,
oct, GrayLevel[.7], GrayLevel][.3]], groupTessellate [
G3, <|1 - td, 2 » InverseTF[zd], 3 » ph|>, sqr, GrayLevel[.5], GrayLevel][.3]]]

Outf « |=

- - groupATessL [G3, <|1 - td, 2 » InverseTF[zd], 3 » ph|>, oct]

2 L0
[ | | | [ | l°l°
0:0:0:0:0
0:0:0:0:0-0
©:0:0:0:=0
0:0:0:0:0:-0
0:0:0:0:0
0:0:0:-0:0-0
01030
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m- - S =Range[l, 63];
S1 = Deletel[S, Partition[{44, 35, 54, 56, 58, 60, 62, 53, 63, 61, 59, 57, 55, 35}, 1]]

o -{1,2,3,4,5,6,7,8,9, 10, 11, 12, 13, 14, 15, 16, 17,
18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33,
34, 36, 37, 38, 39, 40, 41, 42, 43, 45, 46, 47, 48, 49, 50, 51, 52}

o - groupATessL [G3, <|1 - td, 2 » InverseTF[zd], 3 - ph|>, sqr, returnAssoc - False]
@

mn- - S2 = Delete[S,
Partition[{53, 44, 35, 54, 56, 58, 60, 62, 28, 45, 47, 49, 51, 62, 62, 63, 42}, 1]
ow -{1,2,3,4,5,6,7,8,9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25,
26, 27, 29, 30, 31, 32, 33, 34, 36, 37, 38, 39, 40, 41, 43, 46, 48, 50, 52, 55, 57, 59, 61}
n - - Al = groupATessL [G3, ¢|1 » 7d, 2 » InverseTF[rd], 3 » ph|>, oct, returnAssoc - True];

n - - A2 = groupATessL [G3, ¢|1 » 7d, 2 » InverseTF[rd], 3 » ph|>, sqr, returnAssoc - True];



ChapterdFinal.nb | 71

n - - Graphics[{{Cyan, EdgeForm[{Black, Thickness[.005]}], Polygon[Table[A1l[i][1], {i, S1}II},
{Yellow, EdgeForm[{Black, Thickness[.005]}], Polygon[Table[A2[1][1], {i, S2}I}}]

outf « J=

This is much nicer.
We want to clean up our example for group 11.
no- etri = {{0, 0}, {1, 0}, {.5, Sqrt[3.]1/2}, {0, O}};

m- - Gll = discreteTransGroup [<|1 » th, 2 » 03, 35 n0, 4 - ph|>,
{.2213, .3124}, 2, 5, returnGroup - Truel;

» number of group elements calculated 179

n - - groupTessellate [G11, ¢|1 > th, 2 5> 03, 3 > n0, 4 » ph|>, etri, Orange, Gray]

outf « J=
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n - - groupATessL [G11, <|1 > th, 2 5> 03, 3> n0, 4 » ph|>, etri]

This is very messy as there are several group elements giving the same cell . G11 is the symmetry group

but we can use a simpler construction group. We find another translation in G11

n- - 1€ = Chop[TasTF[{2, 1, 2, 2}, <|]1 > th, 2> 03, 3> n0, 4 5 ph]>]]

1. 0. -0.5
our - - TransformationFunction [ 0. 1. (0.866025 ]
0. o.] 1.

Then the level 7 group

m- - Gllrev = discreteTransGroup [¢|1 > th, 2 > te, 35 10>,
{.1259, .2134}, 3, 7, returnGroup - True]l;

161

gives
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n - - groupATessL [Gllrev, <|1 > th, 2 5> te, 35 n0|>, etri]

' fo\
VAVAVAVAVAVAY
\WWAVAVAVAVAVAVAVAN
\WWAVAVAVAVAVAVAVAVAVAY
WWAVAVAVAVAVAVAVAVAVAVAVAN
EEERAVAVAVAVAVAVAVAVAVAVAVAVAVAVAN
\VAVAVAVAVAVAVAVAVAVAVAVAV/

\VAVAVAVAVAVAVAVAVAVAV,
\VAVAVAVAVAVAVAVAV,

\VAVAVAVAVAVAV/

\ V%VAVAV

n - - Bl = groupATessL [Gl1lrev, ¢|1 > th, 2 > te, 3> nO|>, etri, returnAssoc - Truel;
It is a help picking out cells to first construct a working diagram which would look like this.
n- - $3 = {153, 107, 148, 109, 41, 67, 161, 73, 21, 9, 3, 71, 43, 23, 39,
20, 8, 16, 104, 68, 40, 2, 65, 38, 19, 33, 55, 146, 102, 66, 7, 15, 99,
64, 37, 59, 89, 144, 100, 18, 32, 98, 97, 135, 63, 142, 93, 36, 131, 58};
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n - - Graphics [{{Orange , EdgeForm[{Gray, Thickness[.01]}], Polygon[Table[B1[i][1], {i, S3}1},
{Black, Table[Text[i, B1[i][2]], {i, S3}}}

outf « J=

We have 3 missing cells in the graphic we want. We could go to level 8, but an alternate strategy is to
use our association B1 which identifies the numbered cells. We notice that the missing cells are trans -

lates of cells we have so the missing cells are given by

m- - thi = InverseTF [th]

1 0]-1
our- - TransformationFunction [[0 1|0 ]]
0O 0|1

w1~ €1 = thi@B1[144][1]
our - {{-4.5, 2.59808}, {-3.5, 2.59808}, {-4., 3.4641}, {-4.5, 2.59808}}

m- - c2 = thi@B1[142][1]
il - {{-4., 3.4641}, {-3., 3.4641}, {-3.5, 4.33013}, {-4., 3.4641}}

m- - €3 = th@B1[135][1]
o - {{-0.5, 4.33013}, {~1.5, 4.33013}, {-1., 3.4641}, {-0.5, 4.33013}}

m- - c4 = thi@B1[146][1]
it - {{=5., 1.73205}, {-4., 1.73205}, {-4.5, 2.59808}, {-5., 1.73205}}

n - - Now the desired graphic is
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n - - Graphics[{{Orange , EdgeForm[{Gray, Thickness[.01]}],
Polygon[Table[B1[i]l1], {i, S3}]], Polygon[{cl, c2, c3, c4}l}}]

outf « J=

4.7.2 Coloring part of a tessellation.

For some applications the cell edges are either not desirable or possible. One such example is using a
stencil to place a graphic on a t-shirt as in the picture below of your author’s daughter, the maker of the

shirt (www.makewithtanya.com).

Here adjacent cells must have a different color. We a saved from a lot of colors by the 4-color theorem
that says this can be done with at most 4 colors since our cells are polygonal. In fact, for most tessella -

tions 3 colors suffice. It is not clear that this holds for a symmetric coloring but in my examples it does.

We may use the groupATessL association to facilitate this.

Our first example is the hexagon above without edges using groupTessL.
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w- - Tl ={153, 109, 73, 107, 71, 43, 23, 148, 104,
68, 40, 2, 146, 102, 66, 7, 15, 144, 100, 18, 32, 142, 36, 58}
T2 = Complement [S3, T1]

n - - Graphics [{{Brown, Polygon[Table[B1[i]l1], {i, T1}]], Polygon[{cl, c2, c4}]},
{Cyan, Polygon[Table[B1[i][1], {i, T2}]], Polygon[{c3}1}}]

AAAA
AAAAA
AAAAAA
AAAAA

AAAA

AAA

Here we need only 2 colors . A tessellation needing 3 colors we have a figure | call a pseudoTriangle

with symmetry group IX. To avoid duplication of cells we will use a construction group of type group L.

1.0 e.° 0.9954"

w1~ w= TransformationFunction [ 0. 1. |0.5746944579513535" ];
0. 0. 1.
1.0 e.’ 0.

n - tu = TransformationFunction [ 0. 1.° [1.149388915902707" ];
0. 0. 1.

2
cornerl = {{-— , 0.5773502691896257" }, (-0.66", 0.4},
3
{(-0.64", 0.3}, {-0.59", 0.2"}, {-0.5", 0.1}, {-0.3333333333333333" , o.‘)};

o - 1= indent2 = ph@* c6@ cornerl

our - {{~0.333333, 0.}, {-0.17641, 0.0829016}, {-0.0798076 , 0.115581},
{0.0317949 , 0.12228}, {0.163397 , 0.0943376}, {0.333333, 0.}}

- tile® = Join[cornerl, indent2, o3@cornerl,
o3@indent2, oc3@*oc3@cornerl, o3@*o3@ indent2];

S
=

This tile has rotation symmetry g3 but also reflection pv and hence 2 other reflections.

5y
=)

;- Graphics[{Orange, Polygon[tile0]}, ImageSize - Tiny]

Out[
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n - - Gluw = finiteTransGroup [<]|1 > tw, 2 - tul|>, {.2174, 3246}, 9];

54

To use stencils to make a shirt we will need three colors, we number the cells of a level 9 tessellation.

n - - groupATessL [Gluw, <|1 -» tw, 2 » TV|>, tileO]

n - 1- APT = groupATessL [Gluw, <¢|1 - tw, 2 » tV|>, tile@, returnAssoc - True];
mw--Cl={9, 12, 16, 21, 19, 24, 30, 37, 27, 33, 40, 48}

o - {9, 12, 16, 21, 19, 24, 30, 37, 27, 33, 40, 48}

w1~ C2 ={14, 18, 23, 29, 26, 32, 39, 47}
our- - {14, 18, 23, 29, 26, 32, 39, 47}

w- - C3 ={20, 25, 31, 38, 13, 17, 22, 28}
our - {20, 25, 31, 38, 13, 17, 22, 28}
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n - - Show[Graphics [{Magenta , Polygon[Table[APT[i][1], {i, C1}I1}],
Graphics[{Green, Polygon[Table[APT[i][1], {i, C2}1},
Graphics[{Orange, Polygon[Table[APT[i]l1], {i, C3}1}I]

outf « J=

The next example comes from the entrance porch of the Ridgefield CT recreation center that | visit
frequently.

This did strike me as somewhat unusual, with only translation symmetry, but until writing this subsec -
tion 1 did not grasp the importance: to use stencils | need 4 colors. To construct this

RC1 = {{o, 0}, {0, 2}, {2, 2}, {2, O}, {0, O}};
RC2 = {{2, 1}, {2, 2}, {3, 2}, {3, 1}, {2, 1}};
RC3 = {{3, 1}, {3, 2}, {5, 2}, {5, 1}, {3, 1}};
trl := TranslationTransform [{2, -1}];

tr2 := TranslationTransform [{3, 2}];.

Since there are no rotations or reflections we need the inverses so



m- - trli = InverseTF[rrl]

tr21 = InverseTF [tr2]

our - - TransformationFunction [

our - - TransformationFunction [

We have then the transformation group of type Group I

n - - GRC = discreteTransGroup [<|1 > trl, 2 » trli, 3 > 1r2, 45 1r2i|>,
{2.1212, -3.2456}, 3, 4, returnGroup - True];

ol +

1
0

0

= ©

(o]

0
1

0

-2
1
1
-3
-2

1

» number of group elements calculated 41

Using edges this is easy
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n - - Show[groupTessellate [GRC, ¢|1 - trl, 2 > 7rli, 3 5 1r2, 4 » tr2i|>, RC1, GraylLevel[.5],

GraylLevel[.8]], groupTessellate [GRC, ¢|1 > trl, 2 » 7rli, 3> 1r2, 4> tr2i|>,

RC2, GraylLevel[.4], GrayLevel[.8]], groupTessellate [

GRC, ¢|1 > trl, 2 5> trli, 3> 1r2, 4> 1r2i|>, RC3, GrayLevel[.6], GrayLevel][.8]]]

outf « ]=

But our large squares share part of a boundary so adjacent ones need to be another color. Also we

would like a rectangular paving rather than this parallelogram. So we use groupATessL.
will be omitted here. We get an outline with numbered cells

Most details
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- - Show[groupATessL [GRC, ¢|1 - trl, 2 » trli, 3 » tr2, 4 » tr21i|>, RC1],
groupATessL [GRC, ¢|1 > trl, 2 » trli, 3 > tr2, 4 » tr2i|>, RC2],
groupATessL [GRC, <|1 > trl, 2 » trli, 3 » 1r2, 4 5 tr2i|>, RC3]]

e 38 | 4°

36 | 36 P4 | 24

el 34 36 AN E 1131 |

34 22 31
33 20 12

AIE A E 9] 20 1|

35§ 35 21 2 71 7
35 2 7

ouf + J-
21 1111 |6 i1 ] 7] 27 |

37| 37 41 4 5] 5
37 4 5

23 i3] 13 | 8 66 | ' 6| 26 |

13 16 26
39 25 | 25 18 0] 30 28
25 30

32

41

The numbers refer to the same transformation applied to the different polygons. We pick out the ones
we want but separate the larger squares in to gray and brown. We get 4 associations with slightly
different cells chosen. We put the data in a hidden cell. These can be accessed by those using the

notebook form of this chapter.

Or resulting tiling is

n - - Show[Graphics [{{Brown, Polygon[Table[RCA[i]l[1], {i, SB}},
{GrayLevel[.5], Polygon[Table[RCA[i][1], {i, SG}I}, {GrayLevel][.4],
Polygon[Table[RCB[i][1], {i, SS}I}, {GrayLevel[.6], Polygon[Table[RCC[i][1], {i, SR}

Out[ » ]=

Intuitively making this tiling more complicated should require more colors. But in fact that is not the
case. For example we could make the small square into a smaller rectangle and the rectangles larger
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so that those who meet at a vertex would have a common edge piece. Leaving out details the outline

might be
12| 12 |
12
10| 10
10
9| 9 3| 3
9 3
2 2 7 7
2 7
e| 6
6
11 11 1| 1
11 1
4| 4 5| 5 |
4 5
s| 8
8
13] 13
13

with adjacent rectangles needing to be different colors . But that can be also easily achieved more
elegantly than this example. We leave coloring this with the same translation symmetries as the

example above to the reader.



