
Geometry and Symmetry

Chapter  3
Barry H Dayton

                          https : // barryhdayton.space

This  is a continuation  of my  Geometry  and  Symmetry  book.   This  is not  self  contained  but  assumes  

material  from  Chapter  2 of my  Geometry  and  Symmetry  book,  Chapters1-2  of https://barryhdayton.s-

pace/GSChapters1-2.pdf.

Transformation  Function Groups on the Sphere

We  will  start  with  the  sphere  in R3 as there  are  interesting  finite  groups.   These  groups  are  associated   

with  the  5 platonic  solids  so we  will  discuss  these.   We  will  concentrate  on  rigid  motions,  these  are  

sometimes  synonymous  with  isometries,  here  we  use  the  term  do  describe  direct  isometries,  that  is 

ones  where  the  orthogonal  part  has  determinant  1.  Since  we  are  limiting  to finite  groups  this  means  

that  we  are  only  considering  rotations.   While  mathematically  your  le�  foot  is a  reflection  of your  right  

foot  there  is no  way  physically  to make  it into  a le�  foot.    So  we  are  only  considering  those  transforms  

which  can  be physically  made  on  a ball.  



We  will  use  the  following  code  for  a set  of points  o�en  so we  give  it a name,  the  spherical  centroid.

In[  ]:= spcentroid [P_ ]:=If Norm [Total [P]]>.0001 ,Normalize [Total [P]],{0,0,0}

3.1 Rotation  Groups of the Platonic  Solids

We  will  consider  our  polygons  to be spherical,  that  is all  vertices  are  on  the   unit  sphere  and  the  cen -

troid  is the  origin.   Rotations  will  have  axes  through  the  center  and  will  intersect  the  unit  at 2 points,  

however  it is sufficient  to pick  one  of these  points  and  use  notation

In[  ]:= RotationTransform [θ, p]

where  θ is an  angle  in radians  and   p is a point  on  the  unit  sphere.

3.1.1  The Tetrahedron

Mathematica  has  the  data  available  to find  the  coordinates  of a regular  tetrahedron  inscribed  in the  

unit  sphere

In[  ]:= Tet1 = Normalize [#] & /@ N[CanonicalizePolyhedron [Tetrahedron [1]]]〚1〛
Out[  ]= {{0., 0., 1.}, {-0.471405 , -0.816497 , -0.333333 },

{-0.471405 , 0.816497 , -0.333333 }, {0.942809 , 0., -0.333333 }}

Notice  the  centroid  is  the  origin.

In[  ]:= spcentroid [Tet1 ]

Out[  ]= {0, 0, 0}

In[  ]:= Table [Norm [Tet1〚i〛 - Tet1〚j〛], {i, 3}, {j, i + 1, 4}]

Out[  ]= {{1.63299, 1.63299, 1.63299 }, {1.63299, 1.63299 }, {1.63299 }}

all  the  sides  are  of equal  length  so this  is a regular  tetrahedron  inscribed  in the  unit  sphere.

In[  ]:= Graphics3D [{EdgeForm [{Black, Thickness [.01]}], Tetrahedron [Tet1 ]},

Boxed → False, ImageSize → Small ]

Out[  ]=

We  see  there  is a 3 - fold   rotation  about  the  axis  from  the  vertex  through  the  origin.  For  example,  note  

that  from  time  to time  we  will  redefine  various  Greek  letters.

2     GSChapter3.nb



In[  ]:= κ = N[RotationTransform [2 Pi / 3, {0, 0, 1}]]

λ = RotationTransform [2 Pi / 3, Tet1〚2〛]

Out[  ]= TransformationFunction 

-0.5 -0.866025 0. 0.

0.866025 -0.5 0. 0.

0. 0. 1. 0.

0. 0. 0. 1.



Out[  ]= TransformationFunction 

-0.166667 0.866025 -0.471405 0.

0.288675 0.5 0.816497 0.

0.942809 1.11022 × 10-16 -0.333333 0.

0. 0. 0. 1.



In[  ]:= κ@ Tet1

Out[  ]= {{0., 0., 1.}, {0.942809 , 0., -0.333333 },

{-0.471405 , -0.816497 , -0.333333 }, {-0.471405 , 0.816497 , -0.333333 }}

This  just  permutes  the  vertices  .  λ will  do  the  same.   So  these  are  symmetries  of the  tetrahedron.

We  check  that  they  generate  a finite  group

In[  ]:= Gtet = finiteTransGroup [1 → κ, 2 → λ, {2.316, -1.347, .3712 }, 4]

» number of group elements calculated 12

Out[  ]= {{1}, {2}, {1, 1}, {1, 2}, {2, 1}, {2, 2}, {1, 1, 1},

{1, 1, 2}, {1, 2, 1}, {1, 2, 2}, {1, 1, 2, 1}, {1, 1, 2, 2}}

The  orders  of the  elements  can  be calculated  by the  following  function

In[  ]:= orderAssoc [G_, tas_, tp_, n_] := Table [k → orderTF [TasTF [k, tas], tp, n], {k, G}]

In[  ]:= ordAssTet = orderAssoc [Gtet, 1 → κ, 2 → λ, {2.316, -1.347, .3712 }, 4]

Out[  ]= {1} → 3, {2} → 3, {1, 1} → 3, {1, 2} → 3, {2, 1} → 3, {2, 2} → 3, {1, 1, 1} → 1,

{1, 1, 2} → 2, {1, 2, 1} → 2, {1, 2, 2} → 2, {1, 1, 2, 1} → 3, {1, 1, 2, 2} → 3

So we  have  the  identity  and  8 3-fold  rotations,  two,  a 1/3  turn  and  a 2/3  turn,   about  each  vertex  and  3 

half  turns.   One  of the  half  turns  is 

In[  ]:= ϕ121 = TasTF [{1, 2, 1}, 1 → κ, 2 → λ]

Out[  ]= TransformationFunction 

-0.666667 0.57735 -0.471405 0.

0.57735 -1.11022 × 10-16 -0.816497 0.

-0.471405 -0.816497 -0.333333 0.

0. 0. 0. 1.



To find  a non  - zero  point  on  the  axis  do

In[  ]:= v121 = NSolveValues [ϕ121 [{x, y, z}] ⩵ {x, y, 1}, {x, y, z}]〚1〛
Out[  ]= {-0.707107 , -1.22474, 1.}

To check  that  this  actually  gives  a fixed  point

GSChapter3.nb    3



In[  ]:= ϕ121@ v121

Out[  ]= {-0.707107 , -1.22474, 1.}

In[  ]:= Show [ContourPlot3D [x^2 + y^2 + z^2 ⩵ 1, {x, -1.1, 1.1}, {y, -1.1, 1.1},

{z, -1.1, 1.1}, Mesh → None, ContourStyle → Directive [Opacity [.3], LightYellow ]],

Graphics3D [{{Red, Thickness [.01], InfiniteLine [{{0, 0, 0}, v121}]},

{Green, Thickness [.01], InfiniteLine [{{0, 0, 0}, {0, 0, 1}}]}, {LightBlue , Opacity [.6],

EdgeForm [{Thickness [.01], Black }], Tetrahedron [Tet1 ]}}], Boxed → False, Axes → False ]

Out[  ]=

The  green  line  passes  through  the  vertex  {1,0,0}  and  the  centroid  of the  opposite,  bottom,  side.   The  red  

line  passes  through  the  midpoint  of one  of the  vertical  sides  and  the  midpoint  of the  opposite  horizon -

tal  side.   So  we  conclude,  you  might  want  to check,  that  the  other  3-fold  turns  go through  a vertex  

centroid  of a side  whereas  the  other  two  half  turns  also  go through  the   midpoint  of a vertical  side  and  

midpoint  of the  opposite  sides.  

Looking  at the   tetrahedron  you  might  have  noticed  the  half  turn  symmetries  but  they  are  compositions  

of the  obvious  symmetries.   This  is one  reason  why  finding  the  full  group  is useful.

Above  we  used  the  Mathematica  primitive  to plot  the  tetrahedron  .  Later  we  want  to be  able  to draw  

more  complicated  polyhedra  or spherical  paneling.   We  can  use  our  routine  groupAssoc  to do  this.   

The  trick  here,  where  all  sides,  panels,  are  congruent  by a group  transformation,  is to find  the  vertices  

and  centroid  of  one  panel.   By  using  the  centroid  as our  test  point   groupAssoc will  pick  out  one   

transformation  to take  that  centroid   to the  centroid   of each  panel.   Then  we  can  write  a routine  to 

draw  the  polyhedron.   In the  case  of the  tetrahedron  we  start  with  the  lower  panel

4     GSChapter3.nb



In[  ]:= tPanel1 = Take [Tet1, -3]

Out[  ]= {{-0.471405 , -0.816497 , -0.333333 },

{-0.471405 , 0.816497 , -0.333333 }, {0.942809 , 0., -0.333333 }}

In[  ]:= centtPanel1 = spcentroid [tPanel1 ]

Out[  ]= {0., 0., -1.}

In[  ]:= spcentroid [tPanel1 ]

Out[  ]= {0., 0., -1.}

In[  ]:= tCentA = groupAssoc [Gtet, 1 → κ, 2 → λ, centtPanel1 ]

Out[  ]= {1} → {0., 0., -1.}, {2} → {0.471405 , -0.816497 , 0.333333 },

{1, 2} → {0.471405 , 0.816497 , 0.333333 }, {2, 2} → {-0.942809 , 0., 0.333333 }

Our  panels  are  then

In[  ]:= tPanels = Table [TasTF [key, 1 → κ, 2 → λ]@ tPanel1, {key, Keys [tCentA ]}]

Out[  ]= {{0.942809 , 0., -0.333333 }, {-0.471405 , -0.816497 , -0.333333 },

{-0.471405 , 0.816497 , -0.333333 }}, {-0.471405 , -0.816497 , -0.333333 },

0.942809 , -1.11022 × 10-16, -0.333333 , 2.77556 × 10-17, 5.55112 × 10-17, 1.,
0.942809 , -5.55112 × 10-17, -0.333333 , {-0.471405 , 0.816497 , -0.333333 },

-5.55112 × 10-17, 0., 1., {-0.471405 , -0.816497 , -0.333333 },

-1.11022 × 10-16, 5.55112 × 10-17, 1., {-0.471405 , 0.816497 , -0.333333 }

The  values  are  the  vertices  of the  4 panels  .  We  might  decide  to color  the  panels  with  the  following  

fixed  colors

The  following  simple  Graphics3D   directives  will  give  our  tetrahedron  .

In[  ]:= Graphics3D [Table [{EdgeForm [{Black, Thickness [.01]}], Polygon [tPanels 〚i〛]}, {i, 4}],

ImageSize → Small, Boxed → False ]

Out[  ]=

3.1.2  The Octahedron

The  spherical  octahedron  is quite  simple.   From  Mathematica  

GSChapter3.nb    5



In[  ]:= Oct = CanonicalizePolyhedron [Octahedron [Sqrt [2]]]〚1〛
Out[  ]= {{0, 1, 0}, {1, 0, 0}, {0, -1, 0}, {-1, 0, 0}, {0, 0, 1}, {0, 0, -1}}

In[  ]:= Graphics3D [{EdgeForm [{Black, Thickness [.01]}], Octahedron [Sqrt [2]]},

Boxed → False, ImageSize → Small, ViewPoint → Above ]

Out[  ]=

We  see  a 4-fold  rotation   at each  vertex.   Taking  two  of these  we  get  rotations   (re-initialize  Rotation  

Transforms   in each  section  as I may  reuse  names.)

In[  ]:= μ = RotationTransform [Pi / 2, {0, 0, 1}]

Out[  ]= TransformationFunction 

0 -1 0 0

1 0 0 0

0 0 1 0

0 0 0 1



In[  ]:= ν = RotationTransform [Pi / 2, {1, 0, 0}]

Out[  ]= TransformationFunction 

1 0 0 0

0 0 -1 0

0 1 0 0

0 0 0 1



Our  group  generated  by these  transformations  is,  suppressing  the  result  for  now

In[  ]:= GOct = finiteTransGroup [1 → μ, 2 → ν, {2.316, -1.347, .3712 }, 5];

» number of group elements calculated 24

The  order  of GOct,  24,   is actually  a well  known  number.  (See  [Yale])

We  would  like  to find  the  orders  of the  rotations  so we  find  the  order  association

In[  ]:= GAOord = orderAssoc [GOct, 1 → μ, 2 → ν, {2.316, -1.347, .3712 }, 6]

Out[  ]= {1} → 4, {2} → 4, {1, 1} → 2, {1, 2} → 3, {2, 1} → 3, {2, 2} → 2, {1, 1, 1} → 4, {1, 1, 2} → 2,

{1, 2, 1} → 2, {1, 2, 2} → 2, {2, 1, 1} → 2, {2, 2, 1} → 2, {2, 2, 2} → 4, {1, 1, 1, 1} → 1,

{1, 1, 1, 2} → 3, {1, 1, 2, 1} → 3, {1, 1, 2, 2} → 2, {1, 2, 1, 1} → 3, {1, 2, 2, 2} → 3,

{2, 1, 1, 1} → 3, {2, 2, 2, 1} → 3, {1, 1, 1, 2, 1} → 4, {1, 2, 1, 1, 1} → 4, {1, 2, 2, 2, 1} → 2

Counting  by hand  or using  Select   we  find  that  there  are  six  rotations  of order  4, eight  of order  3,  nine  of 

order  2 and  one,  the  identity,  of order  1.  

The  order  4  rotations  come  from  rotation  at the  vertices,  the  vertices,  by  inspection  form  3 antipodal  

pairs  so the  rotations  of each  pair  have   the  same  axis,  so each  axis  will  support  a group  of 4 rotations,  

6     GSChapter3.nb



two  mutually  inverse  rotations  of order  4, the  common  square  which  has  order  2 and  the  identity.   So  

these  explain  the  six  order  4 rotations  and  3 of the  order  2 rotations.   The  rotations  of order  3 have  axes  

going  through  the  centroids  of the  sides.   Again  the  8 sides  make  up  4 antipodal  pairs  so their  will  be  a 3 

axes  each  with  a subgroup  of 3  elements  one  being  the  identity  and  the  other  2 of order  3.    So  this  

explains  the  order  3 rotations.    

The  order  2 rotations  are  of two  types,  the  3 squares  of order  4 rotations  and   6 others.   One  of these  is 

given  by the  list  {1,1,2}.   We  can  find  the  axis  by  

In[  ]:= ξ = TasTF [{1, 1, 2}, 1 → μ, 2 → ν]

Out[  ]= TransformationFunction 

-1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1



We  can  find  a non-zero  point  on  the  axis  by  

In[  ]:= NSolveValues [ξ@{x, y, z} ⩵ {x, y, 1}, {x, y, z}]

Out[  ]= {{0., 1., 1.}}

The  line  through  {0,  1, 1} and  {0,  0, 0} intersects  two   antipodal  edges  of the  octahedron  .   Since  there  

are  12 edges  in the  octahedron  they  pair  up  in 6 antipodal  pairs.   This  exp1ains  the  6 remaining  order  2 

rotations  and  the  third  kind  of rotation.   Here  is a picture   of the  three  different  rotations  and  their  axes.

In[  ]:= Graphics3D Opacity [.5], EdgeForm [{GrayLevel [0], Thickness [0.01` ]}], Octahedron  2 ,

{Green, Thickness [.015 ], InfiniteLine [{{0, 0, 0}, {0, 0, 1}}]},

{Red, Thickness [.015 ], InfiniteLine [{{0, 0, 0}, {1 / 3, 1 / 3, 1 / 3}}]},

{Blue, Thickness [.015 ], InfiniteLine [{{0, 0, 0}, {0, 1 / 3, 1 / 3}}]},

Boxed → False, ImageSize → Small 

Out[  ]=

The  green  axis  is an example  of an axis  of an order  4 rotation,  it intersects  two  antipodal  vertices.   The  

red  line  passes  through  the  centroids  of two  sides  giving  an order  3 rotation.   And  the  blue  line  passes  

through  the  midpoints  of 2 edges  giving  a half  turn.

As with  the  tetrahedron  we  can  use  our  group  to draw  the  octahedron  without  resorting  to Mathemati -

ca’s  primitive.   One  panel  has  centroid.

GSChapter3.nb    7



In[  ]:= oPanel1Cent = {1. / 3, 1. / 3, 1. / 3}

Out[  ]= {0.333333 , 0.333333 , 0.333333 }

We  find  unique  rotations  sending  this  centroid  to the  other  side  centroids.

In[  ]:= OctCentA = groupAssoc [GOct, 1 → μ, 2 → ν, oPanel1Cent ]

Out[  ]= {1} → {-0.333333 , 0.333333 , 0.333333 }, {2} → {0.333333 , -0.333333 , 0.333333 },

{1, 1} → {-0.333333 , -0.333333 , 0.333333 }, {1, 2} → {0.333333 , 0.333333 , 0.333333 },

{2, 2} → {0.333333 , -0.333333 , -0.333333 }, {1, 2, 2} → {0.333333 , 0.333333 , -0.333333 },

{2, 1, 1} → {-0.333333 , -0.333333 , -0.333333 },

{1, 1, 2, 2} → {-0.333333 , 0.333333 , -0.333333 }

The  panel  we  started  with  has  vertices

In[  ]:= oPanel1 = {{1, 0, 0}, {0, 1, 0}, {0, 0, 1}};

We  could  have  done  this  by  hand  but  using  the  above  rotation  our  panels  are  

In[  ]:= oPanels = Table [TasTF [key, 1 → μ, 2 → ν]@ oPanel1, {key, Keys [OctCentA ]}]

Out[  ]= {{{0, 1, 0}, {-1, 0, 0}, {0, 0, 1}}, {{1, 0, 0}, {0, 0, 1}, {0, -1, 0}},

{{-1, 0, 0}, {0, -1, 0}, {0, 0, 1}}, {{0, 1, 0}, {0, 0, 1}, {1, 0, 0}},

{{1, 0, 0}, {0, -1, 0}, {0, 0, -1}}, {{0, 1, 0}, {1, 0, 0}, {0, 0, -1}},

{{-1, 0, 0}, {0, 0, -1}, {0, -1, 0}}, {{-1, 0, 0}, {0, 1, 0}, {0, 0, -1}}}

To draw  the  octahedron

In[  ]:= Graphics3D [Table [{EdgeForm [{Black, Thickness [.01]}], Polygon [oPanels 〚i〛]}, {i, 8}],

Boxed → False, ImageSize → Small ]

Out[  ]=

3.1.3   The Hexahedron  AKA the Cube.

The  spherical  cube  is given  by 

8     GSChapter3.nb



In[  ]:= hexs = {{-1, 1, 1}, {1, 1, 1}, {1, -1, 1}, {-1, -1, 1},

{1, -1, -1}, {1, 1, -1}, {-1, 1, -1}, {-1, -1, -1}} / Sqrt [3.]

Out[  ]= {{-0.57735, 0.57735, 0.57735 }, {0.57735, 0.57735, 0.57735 },

{0.57735, -0.57735, 0.57735 }, {-0.57735, -0.57735, 0.57735 },

{0.57735, -0.57735, -0.57735 }, {0.57735, 0.57735, -0.57735 },

{-0.57735, 0.57735, -0.57735 }, {-0.57735, -0.57735, -0.57735 }}

It is easily  seen  that  the  rotations   μ, ν of  the  octagon  are  also  symmetries  of the  hexahedron.  

In[  ]:= μ@ hexs

Out[  ]= {{-0.57735, -0.57735, 0.57735 }, {-0.57735, 0.57735, 0.57735 },

{0.57735, 0.57735, 0.57735 }, {0.57735, -0.57735, 0.57735 },

{0.57735, 0.57735, -0.57735 }, {-0.57735, 0.57735, -0.57735 },

{-0.57735, -0.57735, -0.57735 }, {0.57735, -0.57735, -0.57735 }}

and  the  same  for  ν .  The  group  GOct  is actually  the  full  group  of symmetries  of the  hexahedron.   In this  

case  we  are  not  just  talking  isomorphism  but  has  the  exact  same  transformation  functions.

So rather  than  use  the  Mathematica  primitive  Hexahedron  we  can  directly  draw  the  cube  .  The  top  

panel  is 

In[  ]:= hPanel1 = {{-1, 1, 1}, {1, 1, 1}, {1, -1, 1}, {-1, -1, 1}} / Sqrt [3.]

Out[  ]= {{-0.57735, 0.57735, 0.57735 }, {0.57735, 0.57735, 0.57735 },

{0.57735, -0.57735, 0.57735 }, {-0.57735, -0.57735, 0.57735 }}

with  centroid  

In[  ]:= hPanel1Cent = spcentroid [hPanel1 ]

Out[  ]= {0., 0., 1.}

The  group  association  associated  with  this  centroid  is

In[  ]:= HexCent = groupAssoc [GOct, 1 → μ, 2 → ν, {0, 0, Sqrt [3.] / 3}]

Out[  ]= {1} → {0., 0., 0.57735 }, {2} → {0., -0.57735, 0.}, {1, 2} → {0.57735, 0., 0.},

{2, 2} → {0., 0., -0.57735 }, {1, 1, 2} → {0., 0.57735, 0.}, {1, 1, 1, 2} → {-0.57735, 0., 0.}

It is interesting  that  this  routine  can  decide  given  this  different  test  point  that  the  cube  has  6 sides,  not  

8.  We  can  now  calculate  all  panels

GSChapter3.nb    9



In[  ]:= hPanels = Table [TasTF [key, 1 → μ, 2 → ν]@ hPanel1, {key, Keys [HexCent ]}]

Out[  ]= {{{-0.57735, -0.57735, 0.57735 }, {-0.57735, 0.57735, 0.57735 },

{0.57735, 0.57735, 0.57735 }, {0.57735, -0.57735, 0.57735 }},

{{-0.57735, -0.57735, 0.57735 }, {0.57735, -0.57735, 0.57735 },

{0.57735, -0.57735, -0.57735 }, {-0.57735, -0.57735, -0.57735 }},

{{0.57735, -0.57735, 0.57735 }, {0.57735, 0.57735, 0.57735 },

{0.57735, 0.57735, -0.57735 }, {0.57735, -0.57735, -0.57735 }},

{{-0.57735, -0.57735, -0.57735 }, {0.57735, -0.57735, -0.57735 },

{0.57735, 0.57735, -0.57735 }, {-0.57735, 0.57735, -0.57735 }},

{{0.57735, 0.57735, 0.57735 }, {-0.57735, 0.57735, 0.57735 },

{-0.57735, 0.57735, -0.57735 }, {0.57735, 0.57735, -0.57735 }},

{{-0.57735, 0.57735, 0.57735 }, {-0.57735, -0.57735, 0.57735 },

{-0.57735, -0.57735, -0.57735 }, {-0.57735, 0.57735, -0.57735 }}}

In[  ]:= Graphics3D [Table [{EdgeForm [{Black, Thickness [.01]}], Polygon [hPanels 〚i〛]}, {i, 6}],

Boxed → False, ImageSize → Small ]

Out[  ]=

Since  all  the  rotations  are  the  same  they  have  the  same  orders  and  axes  here  as for  the  octagon.    In the  

following  graphics  the  green,  red  and  blue  axes  are  the  same

10     GSChapter3.nb



In[  ]:=

Out[  ]=

but  now  the  red  axes  connect  opposite  vertices  instead  of opposite  side  centroids  while  the  green  now  

connect  the  side  centroids  instead  of opposite  vertices.   The  blue  lines  which  are  half  turns  still  connect  

midpoints  of edges.

3.1.4  The Icosahedron

We  can  get  the  spherical  icosahedron  from  Mathematica  by 

In[  ]:= s = 1 / 0.9510565162951536` ;

iCos = CanonicalizePolyhedron [Icosahedron [s]]〚1〛

Out[  ]= {{0., 0., -1.}, {0., 0., 1.}, {-0.894427 , 0., -0.447214 }, {0.894427 , 0., 0.447214 },

{0.723607 , -0.525731 , -0.447214 }, {0.723607 , 0.525731 , -0.447214 },

{-0.723607 , -0.525731 , 0.447214 }, {-0.723607 , 0.525731 , 0.447214 },

{-0.276393 , -0.850651 , -0.447214 }, {-0.276393 , 0.850651 , -0.447214 },

{0.276393 , -0.850651 , 0.447214 }, {0.276393 , 0.850651 , 0.447214 }}

GSChapter3.nb    11



In[  ]:= Graphics3D [{EdgeForm [{Black, Thickness [.01]}], Icosahedron [s]},

Boxed → False, ImageSize → Small ]

Out[  ]=

There  is an obvious  5-fold  rotation  about  any  vertex  so we  choose

In[  ]:= σ = N[RotationTransform [2 Pi / 5, {0, 0, 1}]]

Out[  ]= TransformationFunction 

0.309017 -0.951057 0. 0.

0.951057 0.309017 0. 0.

0. 0. 1. 0.

0. 0. 0. 1.



Picking  adjoining  vertices  about  vertex  {0,  0, 1} we  get  a face,  panel,  by  

In[  ]:= iPanel1 = {iCos〚2〛, iCos〚4〛, iCos〚11〛}
Out[  ]= {{0., 0., 1.}, {0.894427 , 0., 0.447214 }, {0.276393 , -0.850651 , 0.447214 }}

The  centroid  of this  panel  is 

In[  ]:= iPanel1Cent = spcentroid [iPanel1 ]

Out[  ]= {0.491123 , -0.356822 , 0.794654 }

All  sides  of an icosahedron  are  equilateral  triangles  so we  have  another  symmetry   

In[  ]:= τ = RotationTransform [2 Pi / 3, iPanel1Cent ]

Out[  ]= TransformationFunction 

-0.138197 -0.951057 0.276393 0.

0.425325 -0.309017 -0.850651 0.

0.894427 0. 0.447214 0.

0. 0. 0. 1.



This  enables  us to find  the  group  of rotations  of the  icosahedron  .  This  is well  known,  there  are  60 

rotations,  but  we  can  give  it as  an actual  group  of Transformation  Functions.

In[  ]:= τ = RotationTransform [2 Pi / 3, iPanel1Cent ]

Out[  ]= TransformationFunction 

-0.138197 -0.951057 0.276393 0.

0.425325 -0.309017 -0.850651 0.

0.894427 0. 0.447214 0.

0. 0. 0. 1.



The  transformation  group  of the  icosahedron  is then

12     GSChapter3.nb



In[  ]:= GIcos = finiteTransGroup [1 → σ, 2 → τ, {2.316, -1.347, .3712 }, 10];

» number of group elements calculated 60

This  agrees  with  the  known  order.   We  can  now  calculate  the  vertices  of the  20 panels  by  

In[  ]:= ICosCentA = groupAssoc [GIcos, 1 → σ, 2 → τ, iPanel1Cent ];

In[  ]:= Length [iCosCentA ]

Out[  ]= 0

In[  ]:= iPanels = Table [TasTF [key, 1 → σ, 2 → τ]@ iPanel1, {key, Keys [ICosCentA ]}];

We  can  now  draw  the  icosahedron

In[  ]:= Graphics3D [Table [{EdgeForm [{Black, Thickness [.01]}], Polygon [iPanels 〚i〛]}, {i, 20}],

Boxed → False, ImageSize → Small ]

Out[  ]=

We  can  calculate  the  orders  of the  rotations  and  find  that  there  are  24 rotations  of order  5.  This  corre -

sponds  with  the  fact  that  there  are  6 pairs  of antipodal  vertices  each  pair  giving  a five  fold  rotation.   

There  are  then  4 distinct  non-identity  rotation  for  each  of the  6 axes.  

There  are  20 order  3 rotations  .  There  are  20 faces  giving  10 pairs  of antipodal  faces.   The  axis  through  

the  centroids  of each  pair  gives  10 axes.   About  each  axis  there  are  2 non-identity  rotations,  actually  

inverses  of each  other.    This  explains  the  10×2   = 20 order  3 rotations.

Finally  there  are  30 edges,  again  forming  15 antipodal  pairs.   Connecting  the  midpoints  of members  of a 

pair  gives  a 2-fold,  half-turn,  rotation  with  axis  between  the   midpoints.   There  is only  one  per  pair  

giving   15 axes  and  15 rotations.   

Adding  the  identity,  his  explains  the  24 + 20 + 15 + 1 = 60 members  of the  rotation  group.

The  three  types  of rotation  axis  are  shown  below  .  The  green  axis  is a 5-fold  axis,  the  red  is a threefold  

axis  and  the  blue  is a half-turn  axis  

GSChapter3.nb    13



Out[  ]=

We  noted  above  that  there  were  6 axes  for  5 fold  rotations,  10 for  3 fold  rotations  and  15 for  2-fold  

rotations,  altogether  31.   Since  our  icosahedron  is inscribed  in the  unit  sphere  we  can  think  of each  axis   

as being  a line  between  two  antipodal  points  on  a sphere.   There  would  then  be 62 of these.   In my  

earlier  non-technical  paper  entitled  Soccer  Balls   I illustrated  these  points   as  they  were  useful  in design -

ing  panels  for  soccer  balls,  but  I never  gave  coordinates.  For  later  in this  chapter  these  points  may  

come  in handy   so I catalog  them  now  in full  precision.  

In[  ]:= axisPoints5 =

{{0, 0, 1}, {-0.7236067977499789` , 0.5257311121191335` , 0.4472135954999581` }, {0, 0,

-1}, {-0.8944271909999157` , 1.3352805415370576`*^-16 , -0.4472135954999577` },

{0.7236067977499789` , -0.5257311121191335` , -0.4472135954999581` },

{0.7236067977499789` , 0.5257311121191335` , -0.4472135954999581` },

{-0.276393202250021` , -0.8506508083520395` , -0.4472135954999581` },

{0.8944271909999157` , -1.3352805415370576`*^-16 , 0.4472135954999577` },

{-0.7236067977499789` , -0.5257311121191335` , 0.4472135954999581` },

{0.276393202250021` , -0.8506508083520399` , 0.4472135954999575` },

{0.276393202250021` , 0.8506508083520395` , 0.4472135954999581` },

{-0.276393202250021` , 0.8506508083520399` , -0.4472135954999575` }};

14     GSChapter3.nb



In[  ]:= axisPoints3 =

{{0.18759247408507987` , 0.5773502691896258` , -0.7946544722917661` },

{0.6070619982066862` , 0, -0.7946544722917661` },

{0.1875924740850798` , -0.5773502691896257` , -0.7946544722917662` },

{0.30353099910334314` , 0.9341723589627159` , -0.18759247408507984` },

{-0.7946544722917661` , 0.5773502691896258` , -0.18759247408507979` },

{-0.30353099910334297` , 0.9341723589627156` , 0.18759247408508006` },

{0.30353099910334297` , -0.9341723589627156` , -0.18759247408508004` },

{-0.7946544722917661` , -0.5773502691896258` , -0.18759247408507992` },

{-0.30353099910334314` , -0.9341723589627158` , 0.18759247408507987` },

{-0.1875924740850798` , -0.5773502691896257` , 0.7946544722917661` },

{0.4911234731884231` , -0.35682208977309005` , 0.7946544722917661` },

{-0.1875924740850798` , 0.5773502691896257` , 0.7946544722917662` },

{-0.9822469463768461` , 0, 0.18759247408507998` },

{0.49112347318842303` , 0.35682208977308993` , 0.7946544722917661` },

{0.7946544722917661` , -0.5773502691896258` , 0.18759247408507973` },

{0.9822469463768461` , 0, -0.18759247408507998` },

{-0.6070619982066862` , 0, 0.7946544722917661` },

{-0.4911234731884231` , 0.35682208977309016` , -0.7946544722917661` },

{-0.49112347318842303` , -0.35682208977308993` , -0.7946544722917661` },

{0.7946544722917661` , 0.5773502691896257` , 0.18759247408507987` }};

GSChapter3.nb    15



In[  ]:= axisPoints2 =

{{0.5257311121191336` , 0, 0.85065080835204` },

{0.1624598481164532` , 0.5`, 0.8506508083520399` },

{0.6881909602355866` , 0.49999999999999994` , 0.5257311121191336` },

{-0.42532540417601994` , 0.30901699437494734` , 0.8506508083520401` },

{-0.42532540417601994` , -0.30901699437494734` , 0.8506508083520401` },

{-0.2628655560595666` , 0.8090169943749473` , 0.5257311121191337` },

{-0.8506508083520399` , 0, 0.5257311121191337` },

{-0.26286555605956663` , -0.8090169943749473` , 0.5257311121191336` },

{0.16245984811645328` , -0.5000000000000001` , 0.85065080835204` },

{0.6881909602355869` , -0.5000000000000001` , 0.5257311121191335` },

{0.9510565162951536` , -0.30901699437494745` , 0},

{0.5877852522924731` , -0.8090169943749475` , 0},

{0.9510565162951536` , 0.30901699437494734` , 0},

{0.5877852522924731` , 0.8090169943749476` , 0},

{-0.5257311121191336` , 0, -0.85065080835204` },

{-0.1624598481164532` , -0.5`, -0.8506508083520399` },

{-0.6881909602355866` , -0.49999999999999994` , -0.5257311121191336` },

{0.42532540417601994` , -0.30901699437494734` , -0.8506508083520401` },

{0.42532540417601994` , 0.30901699437494734` , -0.8506508083520401` },

{0.2628655560595666` , -0.8090169943749473` , -0.5257311121191337` },

{0.8506508083520399` , 0, -0.5257311121191337` },

{0.26286555605956663` , 0.8090169943749473` , -0.5257311121191336` },

{-0.16245984811645328` , 0.5000000000000001` , -0.85065080835204` },

{-0.6881909602355869` , 0.5000000000000001` , -0.5257311121191335` },

{-0.9510565162951536` , 0.30901699437494745` , 0},

{-0.5877852522924731` , 0.8090169943749475` , 0},

{-0.9510565162951536` , -0.30901699437494734` , 0},

{-0.5877852522924731` , -0.8090169943749476` , 0}, {0, 1, 0}, {0, -1, 0}};

16     GSChapter3.nb



In[  ]:= Show [ContourPlot3D [x^2 + y^2 + z^2 ⩵ 1, {x, -1.1, 1.1},

{y, -1.1, 1.1}, {z, -1.1, 1.1}, ContourStyle → LightYellow , Mesh → None ],

Graphics3D [{PointSize [.025 ], {Green, Point [axisPoints5 ]}, {Red, Point [axisPoints3 ]},

{Blue, Point [axisPoints2 ]}}], Boxed → False, Axes → None ]

Out[  ]=

3.1.5  The Dodecahedron

Just  like  the  octahedron  and  Hexahedron  share  symmetry  groups  so do  the  icosahedron  and  dodecahe -

dron.   The  vertices  of the  dodecahedron  are  the  centroids  of the  icosahedron  and  the  the  centroids  of 

faces  of the  dodecahedron.   They  share  centroids  of the  30 edges,  but  not  the  edges  themselves.

We  can  immediately  draw  this

Out[  ]= {{-0.187592 , -0.57735, 0.794654 },

{0.491123 , -0.356822 , 0.794654 }, {0.491123 , 0.356822 , 0.794654 },

{-0.187592 , 0.57735, 0.794654 }, {-0.607062 , 0, 0.794654 }}

In[  ]:= dPanel1

Out[  ]= {{-0.187592 , -0.57735, 0.794654 },

{0.491123 , -0.356822 , 0.794654 }, {0.491123 , 0.356822 , 0.794654 },

{-0.187592 , 0.57735, 0.794654 }, {-0.607062 , 0, 0.794654 }}

In[  ]:= DcentA = groupAssoc [GIcos, 1 → σ, 2 → τ, {0, 0, 1}];

In[  ]:= dPanels = Table [TasTF [key, 1 → σ, 2 → τ]@ dPanel1, {key, Keys [DcentA ]}];

GSChapter3.nb    17



In[  ]:= Graphics3D [Table [{EdgeForm [{Black, Thickness [.01]}], Polygon [dPanels 〚i〛]}, {i, 12}],

Boxed → False, ImageSize → Small ]

Out[  ]=

The  rotations  are  of the  3 types.  One  axis  type  goes  through  opposite  centroids  of panels,  a  second  

goes  through  opposite  vertices  and  the  third  goes  between  opposite  edge  midpoints.

In[  ]:= vert = axisPoints3 〚11〛
mide = axisPoints2 〚6〛

Out[  ]= {0.491123 , -0.356822 , 0.794654 }

Out[  ]= {-0.262866 , 0.809017 , 0.525731 }

18     GSChapter3.nb



In[  ]:= Graphics3D [

{Table [{Opacity [.3], EdgeForm [{Black, Thickness [.01]}], Polygon [dPanels 〚i〛]}, {i, 12}],

{Green, Thickness [.02], Line [{{0, 0, 1.2}, {0, 0, -1.2}}]},

{Red, Thickness [.02], Line [{1.3 vert, -1.3 vert}]},

{Blue, Thickness [.02], Line [{1.3 mide, -1.3 mide}]}}, Boxed → False, ImageSize → Medium ]

Out[  ]=

3.2  Paneling  the Sphere -- Soccer Balls

In my  general  audience  paper  Soccer  Balls  barryhdayton.space/SoccerBalls.pdf  I promised  to give  the  

actual  code  used.   This  subsection  will  do  this,   however  it will  not  be necessary  to read  that  paper  first.   

Before  beginning  I give  several  routines  which  will  allow  me  to work  on  the  sphere  instead  of polygons.

The  main  routine  is 

GSChapter3.nb    19

https://barryhdayton.space/SoccerBalls.pdf


In[  ]:= Options [sphereLn ] = {len → False, del → .1};

sphereLn [p_, q_, OptionsPattern []] := Module [{r, t, d, length },

If[.96 > Norm [p] || Norm [p] > 1.02 || .98 > Norm [q] || Norm [q] > 1.04,

Echo ["sphereLn error,points must be on sphere of radius 1"];

Abort []];

d = OptionValue [del];

r = Norm [p];

T = Table [r (p + t (q - p)) / Norm [(p + t (q - p))], {t, 0, 1, d}];

length = Total [Table [Norm [T〚i + 1〛 - T〚i〛], {i, Length [T] - 1}]];

If[OptionValue [len] ⩵ False, Return [T]];

If [OptionValue [len] ⩵ True, Return [length ]];

Echo [length, "length"]; T]

spLn [p_, q_] := sphereLn [p, q]

spLen [p_, q_] := sphereLn [p, q, len → True ]

This  routine  returns  a list  of points  del  apart  from  p to q .  The  actual  line  will  be  Line[spLn[p,q]]  inside  a 

Graphics3d  routine.

This  has  two  short  forms,   spLn[p,q]  gives  the  spherical  line  from  p to q, spLen[p,q]  gives  the  length  of 

that  line  as a curve  in 3-space.

We  have  a special  routine  to find  the  midpoint  of a spherical  line  .  Warning:   if the  option  del of  

sphereLn is used  then  the  new  middle  point  of sphereLn should  be used.

In[  ]:= spMid [a_, b_] = spLn [a, b]〚6〛;

Since  I will  have  many  graphics  with  a sphere  a quick  syntax  will  be  

In[  ]:= StandardSphere := ContourPlot3D [x^2 + y^2 + z^2 ⩵ 1, {x, -1.2, 1.2}, {y, -1.2, 1.2},

{z, -1.2, 1.2}, Mesh → None, ContourStyle → LightYellow , Axes → False ]

In[  ]:= Show [StandardSphere , Graphics3D [{Blue, Thickness [.005 ], Line [ spLn [{1, 0, 0}, {0, 0, 1}]]}],

Boxed → False, ImageSize → Small ]

Out[  ]=

The  length  is approximately  

20     GSChapter3.nb



In[  ]:= spLen [{1, 0, 0}, {0, 0, 1}]

Out[  ]= 1.56899

For  a better  approximation  compare  the  precise  answer

In[  ]:= sphereLn [{1, 0, 0}, {0, 0, 1}, del → 1.*^-5, len → True ]

Out[  ]= 1.5708

In[  ]:= 1.570796326776746`

Out[  ]= 1.5708

In[  ]:= N[Pi / 2]

Out[  ]= 1.5708

In[  ]:= 1.5707963267948966`

Out[  ]= 1.5708

We  also  wish  to draw  and  color  a spherical  polygon  . If we  just  want  the  outline  we  have  the  following  

routine  which  is used  inside  the  graphic  primitive  Polygon.

In[  ]:= spOutline [P_] := Module [{P1, n},

n = Length [P];

P1 = Append [P, P〚1〛];
Flatten [Table [spLn [P1〚j〛, P1〚j + 1〛], {j, n}], 1]]

For  example  dPanel1  on  the  spherical  decahedron  is

In[  ]:= Show [StandardSphere , Graphics3D [{Blue, Thickness [.02], Polygon [spOutline [dPanel1 ]]}],

Boxed → False, ImageSize → Small ]

Out[  ]=

To fill  polygons   have  subroutines  

GSChapter3.nb    21



In[  ]:= subdivide3 [{a_, b_, c_}] := Module [{d, s12, s21, s13, s31, s23, s32},

d = spcentroid [{a, b, c}];

s12 = {a, d, spMid [a, b]};

s21 = {b, d, spMid [b, a]};

s13 = {a, d, spMid [a, c]};

s31 = {c, d, spMid [c, a]};

s23 = {b, d, spMid [b, c]};

s32 = {c, d, spMid [c, b]}; {s12, s21, s13, s31, s23, s32}]

subdividePolygon1 [P_] := Module [{n, P1, cP, Q},

n = Length [P];

If[n ⩵ 3, Return [subdivide3 [P]]];

P1 = Append [P, P〚1〛];
cP = spcentroid [P];

Table [{P1〚j〛, cP, P1〚j + 1〛}, {j, n}]

]

In[  ]:= spPolygon [P_] := subdividePolygon [subdividePolygon [subdividePolygon [P]]]

In[  ]:= subdividePolygon [P_] := Module [{k, n, P1, cP},

If[Depth [P] ⩵ 3, Return [subdividePolygon1 [P]]];

Flatten [Table [subdividePolygon1 [P〚i〛], {i, Length [P]}], 1]]

For  small  polygons  the  following  may  be sufficient

In[  ]:= spPolygon2 [P_] := subdividePolygon [subdividePolygon [P]]

In[  ]:= Show [StandardSphere , Graphics3D [

{Blue, EdgeForm [{Blue, Thickness [.02]}], Thickness [.02], Line [spPolygon [dPanel1 ]]}],

Boxed → False, ImageSize → Small, ViewPoint → Above ]

Out[  ]=

To color  the  entire  spherical  dodecahedron

22     GSChapter3.nb



In[  ]:= dcol = Join [{Orange, Yellow, Green, Cyan},

{Orange, Yellow, Green, Cyan}, {Orange, Yellow, Green, Cyan}]

Out[  ]= { , , , , , , , , , , , }

In[  ]:= Graphics3D [Table [

{Thickness [.02], EdgeForm [{dcol〚i〛, Thickness [.03]}], Polygon [spPolygon [dPanels 〚i〛]],
Line [1.02 spOutline [dPanels 〚i〛]]}, {i, 12}], Boxed → False, ImageSize → Small ]

Out[  ]=

For  the  purpose  of paneling  soccer  balls  dodecahedral  paneling  is o�en  used,  especially  by  Nike .

In[  ]:=

3.1 More  on the group  GIcos,   the Copa America  Ball

All  the  elements  of the  group  GIcos,  other  than  the  identity,  are  given  by a power  of a RotationTransfor -

m[θ ,a]  where  a is any  one  of the  62 axis  points  given  in 3.1.4  and θ = 2 π /n where  n is the  order  of the  

group  element,  n = 2, 3 or 5. There  are  of course  duplicates  since  these  62 points  are  composed  of 31 

pairs  of antipodal  points.   If  b is antipodal  to α the  RotationTransform[θ ,β ]  is the  inverse  of Rotation -

Transform[θ ,α],  same  θ .  Since  these  rotations  have  finite  order  the  inverse  is a power.

Further,  note  that  the  group  GIcos  also  acts  on  this  set  of axis  Points,  in fact  on  each  of the  3 subsets  

separately.   This  makes  the  set  useful  for  constructing  panelings  of the  sphere.   An  example  follows.

A strange  soccer  ball  was  designed  by Puma  to be used  in the  2024  Copa America.    The  important  thing  

is the  group  GIcos  which  has  a 5 fold  rotation.   Since  we  are  only  accepting  direct  isometries  which  can  

be physically  applied  to a soccer  ball,   there  are  no  reflections.   Thus  our  panels   must  have  a rotational  

symmetry  but  need  not  be symmetric.   The  Copa America  ball,  made  by Puma,  takes  advantage  of this  

as the  ball  is designed  to have  symmetry  group  GIcos.  

GSChapter3.nb    23



 Construction  of a replica  ball  is a good  example  of the  use  of our  explicit  description  of GIcos.

 

 We  recall  in 3.1.4

In[  ]:= σ = N[RotationTransform [2 Pi / 5, {0, 0, 1}]];

We  start  with  a 3 - fold  axis  point

In[  ]:= a = axisPoints3 〚10〛
Out[  ]= {-0.187592 , -0.57735, 0.794654 }

We  then  construct  a specific,  but  somewhat  arbitrary  point  b using  a rotation  in GIcos..

In[  ]:= b1 = spLn [axisPoints3 〚10〛, axisPoints5 〚10〛]〚4〛;
τ = RotationTransform [2 Pi / 3, axisPoints3 〚10〛];
b = τ@ b1

Out[  ]= {-0.137372 , -0.422788 , 0.895756 }

Now  we  rotate  that  point  about  a half  turn  in GIcos

In[  ]:= o = axisPoints2 〚5〛;

In[  ]:= ρ = RotationTransform [Pi, o];

c = ρ@ b

Out[  ]= {-0.671641 , -0.164995 , 0.722271 }

and  end  at another  3 - fold  axis  point

In[  ]:= d = d = axisPoints3 〚17〛
Out[  ]= {-0.607062 , 0, 0.794654 }

24     GSChapter3.nb



In[  ]:= Show [StandardSphere , Graphics3D [{{Yellow, PointSize [.04],

Point [{axisPoints3 〚10〛, axisPoints2 〚5〛, axisPoints3 〚17〛, b, c}]},

{Black, Text [Style ["a", 14], {axisPoints3 〚10〛}], Text [Style ["o", 14], axisPoints2 〚5〛],
Text [Style ["d", 14], axisPoints3 〚17〛], Text [Style ["b", 14], b],

Text [Style ["c", 14], c], Text [Style ["{0,0,1}", 14], Normalize [{.3, .1, 1}]]},

{Gray, Thickness [.01], Line [spLn [a, b]], Line [spLn [b, c]], Line [spLn [c, d]]},

{Red, PointSize [.02], Point [{0, 0, 1.1}]}}], Boxed → False ]

Out[  ]=

We  compare  with  the  panel  on  the  Puma  Copa America  ball

GSChapter3.nb    25



In[  ]:=

Out[  ]=

Now  we  have  our  base  panel

In[  ]:= capPanel0 = Reverse [RecurrenceTable [{s[i + 1] ⩵ σ@ s[i], s[1] ⩵ {a, b, c, d}}, s, {i, 5}], 1];

In[  ]:= ncapPanel0 = Normalize [#] & /@ Flatten [capPanel0 , 1];

26     GSChapter3.nb



In[  ]:= Show [StandardSphere ,

Graphics3D [{{Green, PointSize [.03], Point [1.03 axisPoints5 ]}, {Blue, PointSize [.03],

Point [1.03 axisPoints2 ]}, {Red, PointSize [.03], Point [1.05 axisPoints3 ]},

{Green, PointSize [.03], Point [1.03 axisPoints5 ]}, {Blue, PointSize [.03],

Point [1.03 axisPoints2 ]}, {Red, PointSize [.03], Point [1.05 axisPoints3 ]},

{Black, Thickness [.01], Line [spOutline [ncapPanel0 ]]}}], Boxed → False ]

Out[  ]=

We  note  that  the  group  association  we  need   is just  that  of the  dodecahedron  so we  panel  our  ball.

In[  ]:= DcentA = groupAssoc [GIcos, 1 → σ, 2 → τ, {0, 0, 1}];

capPanels = Table [TasTF [Keys [DcentA ]〚i〛, 1 → σ, 2 → τ]@ ncapPanel0 , {i, 12}];

GSChapter3.nb    27



In[  ]:= Show [StandardSphere , Graphics3D [

{Black, Thickness [.01], Table [Line [spOutline [capPanels 〚i〛]], {i, 12}]}], Boxed → False ]

Out[  ]=

3.2.1   The traditional  Soccer  Ball

This  ball  motivated  this  chapter.   Originally  these  were  hand  sewed  with  32 panels,  12 black  pentagons  

and  20 white  hexagons.   Here,  as in the  rest  of this  section,  there  will  be,  unlike  the  platonic  solids,  two  

or more  spherical  polygonal  shaped  panels.

A rotation  transform  will  be  a panel  symmetry  if it takes  panels  to like  panels.   The  set  of panel  symme -

tries  of a paneled  sphere  is clearly  a group.   In this  case,  if embedded  correctly  in 3-space  the  group  of 

panel  symmetries  will  be  the  group  GIcos.   As  we  will  see,  there  are  many  possible  paneling  with  this  

group.

Here  is how  we  can  plot  a traditional  soccer  ball  using Mathematica .

28     GSChapter3.nb



We  use  σ , τ  from  section  3.1.4,  let  

In[  ]:= hexCent = {0.3902734644166457` , -0.28355026945067996` , 0.6314757303333052` }

Out[  ]= {0.390273 , -0.28355, 0.631476 }

In[  ]:= σ = N[RotationTransform [2 Pi / 5, {0, 0, 1}]];

τ = RotationTransform [2 Pi / 3, hexCent ];

These  generated  the  group

In[  ]:= GIcos = finiteTransGroup [1 → σ, 2 → τ, {2.316, -1.347, .3712 }, 10];

» number of group elements calculated 60

Sparing  the  reader  the  details  we  define  a pentagon

In[  ]:= PentPanel0 = {{0.3432786130319566` , 1.0904807614249159`*^-17 , 0.9392336204772782` },

{0.10607892523233595` , -0.32647736182880455` , 0.9392336204772784` },

{-0.27771823174831395` , -0.20177410616759894` , 0.9392336204772789` },

{-0.2777182317483142` , 0.2017741061675989` , 0.9392336204772782` },

{0.10607892523233588` , 0.3264773618288047` , 0.9392336204772782` }}

Out[  ]= 0.343279 , 1.09048 × 10-17, 0.939234 ,
{0.106079 , -0.326477 , 0.939234 }, {-0.277718 , -0.201774 , 0.939234 },

{-0.277718 , 0.201774 , 0.939234 }, {0.106079 , 0.326477 , 0.939234 }

and  a hexagon

In[  ]:= HexPanel0 = {{0.3432786130319566` , 1.0904807614249159`*^-17 , 0.9392336204772782` },

{0.10607892523233595` , -0.32647736182880455` , 0.9392336204772784` },

{0.21215785046467175` , -0.6529547236576094` , 0.7270757700126067` },

{0.5554364634966286` , -0.6529547236576096` , 0.5149179195479349` },

{0.7926361512962496` , -0.32647736182880477` , 0.5149179195479349` },

{0.6865572260639138` , 4.11934439063236`*^-16 , 0.7270757700126069` }}

Out[  ]= 0.343279 , 1.09048 × 10-17, 0.939234 , {0.106079 , -0.326477 , 0.939234 },

{0.212158 , -0.652955 , 0.727076 }, {0.555436 , -0.652955 , 0.514918 },

{0.792636 , -0.326477 , 0.514918 }, 0.686557 , 4.11934 × 10-16, 0.727076 

These  are  le�  unchanged  by σ , τ respectively.   

In[  ]:= σ@ PentPanel0

Out[  ]= {0.106079 , 0.326477 , 0.939234 },

0.343279 , 1.11022 × 10-16, 0.939234 , {0.106079 , -0.326477 , 0.939234 },

{-0.277718 , -0.201774 , 0.939234 }, {-0.277718 , 0.201774 , 0.939234 }

GSChapter3.nb    29



In[  ]:= τ@ HexPanel0

Out[  ]= {0.212158 , -0.652955 , 0.727076 }, {0.555436 , -0.652955 , 0.514918 },

{0.792636 , -0.326477 , 0.514918 }, 0.686557 , 1.66533 × 10-16, 0.727076 ,
0.343279 , 1.66533 × 10-16, 0.939234 , {0.106079 , -0.326477 , 0.939234 }

Actually  HexPanel0  is le�  unchanged  by 6-fold  rotation  so is a regular  hexagon.     However  there  are  

only  3 pentagons  adjacent  to a given  hexagon  on  the  soccer  ball  so there  is only  a three  fold  rotation  of 

the  soccer  ball  at the  center  of a hexagonal  panel.

In[  ]:= RotationTransform [2 Pi / 6, hexCent ]@HexPanel0

Out[  ]= {0.106079 , -0.326477 , 0.939234 }, {0.212158 , -0.652955 , 0.727076 },

{0.555436 , -0.652955 , 0.514918 }, {0.792636 , -0.326477 , 0.514918 },

0.686557 , 2.77556 × 10-16, 0.727076 , 0.343279 , 3.88578 × 10-16, 0.939234 

This  pentagon  and  hexagon  have  been  chosen  because,  just  looking  at their  outlines,  we  have  the  

following  picture.  

In[  ]:= Graphics3D [{Gray, Thickness [.01],

Line [1.02 spOutline [HexPanel0 ]], Line [1.02 spOutline [σ@ HexPanel0 ]],

Line [1.02 spOutline [σ@* σ@ HexPanel0 ]], Line [1.02 spOutline [σ@* σ@* σ@ HexPanel0 ]],

Line [1.02 spOutline [σ@* σ@* σ@* σ@ HexPanel0 ]],

Line [1.02 spOutline [PentPanel0 ]]}, Boxed → False ]

Out[  ]=

The  5 regular  hexagons  exactly  surround  the  regular  pentagon.   Remember  these  are  all  drawn  on  the  

sphere,  this  picture  cannot  be  drawn  on  the  plane  (check  angles)!

To draw  the  entire  figure

30     GSChapter3.nb



In[  ]:= GIcosHexA = groupAssoc [GIcos, 1 → σ, 2 → τ, hexCent ];

In[  ]:= Length [GIcosHexA ]

Out[  ]= 20

In[  ]:= hexPanels = Table [TasTF [key, 1 → σ, 2 → τ]@ HexPanel0 , {key, Keys [GIcosHexA ]}];

In[  ]:= GIcosPentA = groupAssoc [GIcos, 1 → σ, 2 → τ, {0, 0, 1}];

In[  ]:= Length [GIcosPentA ]

Out[  ]= 12

In[  ]:= pentPanels = Table [TasTF [key, 1 → σ, 2 → τ]@ PentPanel0 , {key, Keys [GIcosPentA ]}];

In[  ]:= Graphics3D [{Table [{Gray, Thickness [.009 ], EdgeForm [{LightOrange , Thickness [.03]}],

Polygon [spPolygon [hexPanels 〚i〛]], Line [1.02 spOutline [hexPanels 〚i〛]]}, {i, 1, 20}],

{EdgeForm [{Black, Thickness [.03]}], Table [Polygon [spPolygon [pentPanels 〚i〛]], {i, 12}]}},

Boxed → False, ImageSize → Small ]

Out[  ]=

3.2.2  Variations  on the traditional  soccer  ball  

The  traditional  ball  has  a regular  pentagon  and  hexagon.    There  is only  one  possibility  of the  ratio  of 

the  sides  of the  pentagon  vs.  the   radius  of the  ball.   However  if we  relax  the  condition  that  the  hexago -

nal  panel  is regular  to simply  having  3-fold  rotations  about  the  centroids  then  we  can  produce  an 

infinite  family  of balls.   This  can  be seen  on  many  imitation  soccer  balls.   

So we  pick  a point  p1 on the  unit  sphere  closer  to {0,0,1}  than  the  vertexes  of the  traditional  pentagon.

In[  ]:= p1 = spLn [{0, 0, 1}, PentPanel0 〚1〛]〚8〛
Out[  ]= 0.243421 , 7.73268 × 10-18, 0.969921 

We  will  have  the  pentagon

In[  ]:= smPent = RecurrenceTable [{p[i + 1] ⩵ σ@ p[i], p[1] ⩵ p1}, p, {i, 5}]

Out[  ]= 0.243421 , 7.73268 × 10-18, 0.969921 ,
{0.0752213 , 0.231508 , 0.969921 }, {-0.196932 , 0.14308, 0.969921 },

{-0.196932 , -0.14308, 0.969921 }, {0.0752213 , -0.231508 , 0.969921 }

GSChapter3.nb    31



These  small  pentagons  can  then  populate  the  sphere

In[  ]:= smPentPanels = Table [TasTF [key, 1 → σ, 2 → τ]@ smPent, {key, Keys [GIcosPentA ]}];

In[  ]:= Show [StandardSphere , Graphics3D [

{{EdgeForm [{Cyan, Thickness [.03]}], Table [Polygon [spPolygon [smPentPanels 〚i〛]], {i, 12}]}}],

ImageSize → Small, Boxed → False ]

Out[  ]=

I have  drawn  a hexagon  with  a 3-fold,  but  not  6 -fold  rotation  symmetry  around  its  centroid.

In[  ]:= smHex = {smPentPanels 〚1, 3〛, smPentPanels 〚6, 2〛, smPentPanels 〚6, 1〛,
smPentPanels 〚2, 2〛, smPentPanels 〚2, 1〛, smPentPanels 〚1, 4〛};

This  hexagon  has  centroid

In[  ]:= smHexCent = Normalize [Total [smHex ] / 6]

Out[  ]= {-0.187592 , -0.57735, 0.794654 }

which  is just  

In[  ]:= axisPoints3 〚10〛
Out[  ]= {-0.187592 , -0.57735, 0.794654 }

Then  using  our  standard  procedure  we  get  panels

In[  ]:= GIcossmHexA = groupAssoc [GIcos, 1 → σ, 2 → τ, smHexCent ];

In[  ]:= smhexPanels = Table [TasTF [key, 1 → σ, 2 → τ]@ smHex, {key, Keys [GIcossmHexA ]}];

giving  the  graphic

32     GSChapter3.nb



In[  ]:= Show [StandardSphere , Graphics3D [{{EdgeForm [{Cyan, Thickness [.03]}],

Table [Polygon [1.0 spPolygon [smPentPanels 〚i〛]], {i, 12}]},

{Gray, Thickness [.015 ], Table [Line [1.04 spOutline [smhexPanels 〚i〛]], {i, 20}]},

{EdgeForm [{Thickness [.03], LightOrange }],

Table [Polygon [.99 spPolygon [smhexPanels 〚i〛]], {i, 20}]}}], Boxed → False ]

Out[  ]=

If we  continue  shrinking  the  size  of the  pentagons  we  end  up  with

In[  ]:=

which  is essentially  an icosahedron  .

On the  other  hand  we  could  take  a larger  pentagon  than  the  traditional  one  .   We  keep  the  center  at 

{0,0,1}  but  put  one  vertex  at

In[  ]:= vlp1 = {0.4500000000000001` , 0.`, 0.8930285549745878` }

Out[  ]= {0.45, 0., 0.893029 }

In[  ]:= vlPent = RecurrenceTable [{p[i + 1] ⩵ κ@ p[i], p[1] ⩵ vlp1}, p, {i, 5}]

Out[  ]= {0.45, 0., 0.893029 }, {-0.225, 0.389711 , 0.893029 }, {-0.225, -0.389711 , 0.893029 },

0.45, 2.77556 × 10-17, 0.893029 , {-0.225, 0.389711 , 0.893029 }

GSChapter3.nb    33



Using  a similar  construction  to the  above  we  get

In[  ]:=

Continuing  enlarging  the  pentagon  we  don’t  get  a dodecahedron.   Rather  the  hexagons  will  become  

triangles,   with  one  vertex,  red,  at 

In[  ]:= vlp2 = axisPoints2 〚1〛
Out[  ]= {0.525731 , 0, 0.850651 }

This  pentagon  will  be

In[  ]:=

The  triangle  formed  by the  red  and  green  points  will  replace  the  hexagons.

In[  ]:= triPanel0 = {axisPoints2 〚1〛, axisPoints2 〚2〛, axisPoints2 〚3〛}
Out[  ]= {{0.525731 , 0, 0.850651 }, {0.16246, 0.5, 0.850651 }, {0.688191 , 0.5, 0.525731 }}

The  pentagon  will  be

In[  ]:= vlpent2 = RecurrenceTable [{q[i + 1] ⩵ σ@ q[i], q[1] ⩵ vlp2}, q , {i, 5}]

Out[  ]= {{0.525731 , 0., 0.850651 }, {0.16246, 0.5, 0.850651 }, {-0.425325 , 0.309017 , 0.850651 },

{-0.425325 , -0.309017 , 0.850651 }, {0.16246, -0.5, 0.850651 }}

34     GSChapter3.nb



In[  ]:= centerTriPanel0 = Normalize [Total [triPanel0 ] / 6]

Out[  ]= {0.491123 , 0.356822 , 0.794654 }

We  now  proceed  as before

In[  ]:= vlPentPanels = Table [TasTF [key, 1 → σ, 2 → τ]@ vlpent2, {key, Keys [GIcosPentA ]}];

In[  ]:= triPanelA = groupAssoc [GIcos, 1 → σ, 2 → τ, centerTriPanel0 ];

In[  ]:= triPanels = Table [TasTF [key, 1 → σ, 2 → τ]@ triPanel0 , {key, Keys [triPanelA ]}];

In[  ]:= Show [StandardSphere , Graphics3D [

{{EdgeForm [{Thickness [.03], Blue}], Table [Polygon [1.01 spPolygon [vlPentPanels 〚i〛]],
{i, 12}]}, {EdgeForm [{Thickness [.03], Yellow }],

Table [Polygon [spPolygon [triPanels 〚i〛]], {i, 20}], Gray, Thickness [.02],

Table [Line [1.04 spOutline [triPanels 〚i〛]], {i, 20}]}}], Boxed → False ]

Out[  ]=

The  corresponding  polyhedron  is known  as the  icosidodecahedron.

GSChapter3.nb    35



In[  ]:= Graphics3D [

{{Blue, EdgeForm [{Thickness [.015 ], Gray}], Table [Polygon [vlPentPanels 〚i〛], {i, 12}]},

{Yellow, EdgeForm [{Thickness [.015 ], Gray}],

Table [Polygon [triPanels 〚i〛], {i, 20}]}}, Boxed → False ]

Out[  ]=

So we  have  a continuum  of Archimedean  polyhedra/paneling  from  the  icosahedron  to the  icosidodeca -

hedron  which  has  the  traditional  soccer  ball  in the  middle.

In[  ]:=

Out[  ]=

3.2.3   Another  continuum

We  give  another  continua  of  polyhedra  directly  from  the  icosahedron  to the  dodecahedron,  or their  

ball  panelings  with  GIcos  as their  transformation  group.   This  will  miss  the  soccer  balls  but  clearly  show  

the  group  action.   But  they  will  be  in the  class  of prisms  and  now  we  will  have  3 types  of sides/panels.

We  will  define  the  initial  panels  by  using  the  pentagons  above  starting  with  the  traditional  soccer  ball  

36     GSChapter3.nb



pentagon.  

In[  ]:= PentPanel0

Out[  ]= 0.343279 , 1.09048 × 10-17, 0.939234 ,
{0.106079 , -0.326477 , 0.939234 }, {-0.277718 , -0.201774 , 0.939234 },

{-0.277718 , 0.201774 , 0.939234 }, {0.106079 , 0.326477 , 0.939234 }

We  apply  a rotation  about  {0,0,1},  the  centroid,  of angle   2 π/10

In[  ]:= υ = N[RotationTransform [Pi / 5, {0, 0, 1}]]

Out[  ]= TransformationFunction 

0.809017 -0.587785 0. 0.

0.587785 0.809017 0. 0.

0. 0. 1. 0.

0. 0. 0. 1.



Our  basic  panel  is then

In[  ]:= prismPanel0 = υ@ PentPanel0

Out[  ]= {{0.277718 , 0.201774 , 0.939234 },

{0.277718 , -0.201774 , 0.939234 }, {-0.106079 , -0.326477 , 0.939234 },

{-0.343279 , 0., 0.939234 }, {-0.106079 , 0.326477 , 0.939234 }}

Applying  τ to this  panel  we  get  more  copies  of this  panel  and  we  see  the  space  between  adjacent  panels  

can  be filled  by 2  rectangles  and  an equilateral  triangle.  

In[  ]:=

We  now  follow  our  basic  construction,  

In[  ]:= prismPentA = groupAssoc [GIcos, 1 → σ, 2 → τ, {0, 0, 1}];

prismPentPanels =

Table [TasTF [key, 1 → σ, 2 → τ]@ prismPanel0 , {key, Keys [prismPentA ]}];

In[  ]:= prismRect0 = {{-0.697756276176401` , -0.25754309750239746` , 0.6684367823401948` },

{-0.34327861303195667` , 0.`, 0.9392336204772782` },

{-0.10607892523233564` , -0.3264773618288047` , 0.9392336204772789` },

{-0.4605565883767806` , -0.5840204593312023` , 0.6684367823401951` }};

In[  ]:= prismRect0cent = Normalize [Total [prismRect0 ]]

Out[  ]= {-0.425325 , -0.309017 , 0.850651 }

GSChapter3.nb    37



In[  ]:= prismRectA = groupAssoc [GIcos, 1 → σ, 2 → τ, prismRect0cent ];

prismRectPanels =

Table [TasTF [key, 1 → σ, 2 → τ]@ prismRect0 , {key, Keys [prismRectA ]}];

In[  ]:= prismTriPanel0 = {{-0.10607892523233564` , -0.3264773618288047` , 0.9392336204772789` },

{0.02931949383620608` , -0.7431908471556119` , 0.6684367823401948` },

{-0.4605565883767806` , -0.5840204593312023` , 0.6684367823401951` }};

In[  ]:= prismTriPanel0cent = Normalize [Total [prismTriPanel0 ]]

Out[  ]= {-0.187592 , -0.57735, 0.794654 }

In[  ]:= prismTriA = groupAssoc [GIcos, 1 → σ, 2 → τ, prismTriPanel0cent ];

prismTriPanels =

Table [TasTF [key, 1 → σ, 2 → τ]@ prismTriPanel0 , {key, Keys [prismTriA ]}];

Now  we  can  draw  our  central  prism

In[  ]:= Graphics3D [{{Cyan, Table [Polygon [prismPentPanels 〚i〛], {i, 12}]},

{Orange, Table [Polygon [prismRectPanels 〚i〛], {i, 30}]},

{Yellow, Table [Polygon [prismTriPanels 〚i〛], {i, 20}]}}, Boxed → False, ImageSize → Small ]

Out[  ]=

Notice  we  have  62 panels.   In fact  each  panel  centroid  corresponds  to one  of our  axis  points.

38     GSChapter3.nb



In[  ]:= Graphics3D [{{LightCyan , Table [Polygon [prismPentPanels 〚i〛], {i, 12}]},

{LightOrange , Table [Polygon [prismRectPanels 〚i〛], {i, 30}]},

{LightYellow , Table [Polygon [prismTriPanels 〚i〛], {i, 20}]},

{PointSize [.03], {Green, Point [axisPoints5 ]}, {Red, Point [axisPoints3 ]},

{Blue, Point [axisPoints2 ]}}}, Boxed → False, ImageSize → Medium ]

Out[  ]=

As above  with  the  earlier  continuum  we  get  another  parameterized  by the  side  of a pentagon  running  

from  the  icosahedron  to the  dodecahedron.   The  constructions  are  the  same  as before  so are  not  given.   

The  corresponding  balls  look  like  this.

In[  ]:=

Out[  ]=

Note  the  smaller  the  pentagon  the  larger  the  triangles  until  the  pentagon  shrinks  to a point.  As  the  

pentagon  shrinks  the  rectangles  shrink  in width  until  they  become  a line  segment.     On  the  the  other  

hand  as the  pentagons  get  larger  the  triangles  shrink  until  they  become   a point  and  the  rectangles  

shrink  in length  until  they  become  a line  segment  so only  the  12 pentagons  of the  dodecahedron  

GSChapter3.nb    39



remain.

3.2.4  The polyhedral  can

In addition  to the  platonic  solids  there  is one  other  family  of solids  that  have  finite  rotation  groups.  I

call  these  cans,  they  are  cylinders  but  instead   of circular  the  vertical  panels  are  rectangles  and  the  top  

and  bottom  are  regular  polygons.   Cylinders  don’t  have  finite,  or  even  countable  transformation  groups  

but  with  a top  and  bottom  specified  they  are  compact  polyhedra  and  have  finite  transformation  

groups.   For  example  the  7 can,  can7,  with  -1 ≤ z ≤ 1  looks  like  this

In[  ]:=

The  transformation  group  is generated  by a 7 fold  rotation  about  the  z-axis   and  a half  turn  about  the  x-

axis.   

In[  ]:= θ = N[RotationTransform [2 Pi / 7, {0, 0, 1}]]

η = RotationTransform [Pi, {1, 0, 0}]

Out[  ]= TransformationFunction 

0.62349 -0.781831 0. 0.

0.781831 0.62349 0. 0.

0. 0. 1. 0.

0. 0. 0. 1.



Out[  ]= TransformationFunction 

1 0 0 0

0 -1 0 0

0 0 -1 0

0 0 0 1



40     GSChapter3.nb



In[  ]:= D7 = finiteTransGroup [1 → θ, 2 → η, {2.23, 3.31, 1.11}, 5]

» number of group elements calculated 14

Out[  ]= {{1}, {2}, {1, 1}, {1, 2}, {2, 1}, {2, 2}, {1, 1, 1}, {1, 1, 2},

{2, 1, 1}, {2, 1, 2}, {1, 1, 1, 1}, {1, 1, 1, 2}, {2, 1, 1, 1}, {2, 1, 1, 2}}

In[  ]:=

The  order  association  is 

In[  ]:= ordAss7 = Table [k → orderTF [TasTF [k, 1 → θ, 2 → η], {2.23, 3.31, 1.11}, 8], {k, D7}]
Out[  ]= {1} → 7, {2} → 2, {1, 1} → 7, {1, 2} → 2, {2, 1} → 2,

{2, 2} → 1, {1, 1, 1} → 7, {1, 1, 2} → 2, {2, 1, 1} → 2, {2, 1, 2} → 7,

{1, 1, 1, 1} → 7, {1, 1, 1, 2} → 2, {2, 1, 1, 1} → 2, {2, 1, 1, 2} → 7

So we  have  the  6 rotations  of order  7 plus  the  identity  rotation  about  the  z-axis  (red)  and  7 half  turns  

about  horizontal  axes  in the  xy plane  from  each  vertical  edge  to the  midpoint  between  vertical  edges  

opposite.  This  is certainly  a new  group  for  us.  These  are  shown

In[  ]:=

We  have  a similar  situation  for  all  integers  greater  than  2. These  groups  are  called  dihedral  groups  of 

order  2n.   If n is odd  they  have  n-1  rotations  of order  n and  the  identity  rotations  and  n half-turns   order  

2.  For  even  n there  will  be  2 rotations  of order  n and  more  than  n rotations  of order  2.   For  example  if 

n=8

In[  ]:= θ2 = RotationTransform [2. Pi / 8, {0, 0, 1}];

GSChapter3.nb    41



In[  ]:= D8 = finiteTransGroup [1 → θ2, 2 → η, {2.23, 3.31, 1.11}, 5]

» number of group elements calculated 16

Out[  ]= {{1}, {2}, {1, 1}, {1, 2}, {2, 1}, {2, 2}, {1, 1, 1}, {1, 1, 2}, {2, 1, 1}, {2, 1, 2},

{1, 1, 1, 1}, {1, 1, 1, 2}, {2, 1, 1, 1}, {2, 1, 1, 2}, {1, 1, 1, 1, 1}, {1, 1, 1, 1, 2}}

In[  ]:= Table [k → orderTF [TasTF [k, 1 → θ2, 2 → η], {2.23, 3.31, 1.11}, 8], {k, D8}]
Out[  ]= {1} → 8, {2} → 2, {1, 1} → 4, {1, 2} → 2, {2, 1} → 2, {2, 2} → 1, {1, 1, 1} → 8,

{1, 1, 2} → 2, {2, 1, 1} → 2, {2, 1, 2} → 8, {1, 1, 1, 1} → 2, {1, 1, 1, 2} → 2,

{2, 1, 1, 1} → 2, {2, 1, 1, 2} → 4, {1, 1, 1, 1, 1} → 8, {1, 1, 1, 1, 2} → 2

One  check  on  a group  being  a dihedral  group  is that  it should  be generated  by two  of its  half  turns  other  

than  using  the  vertical  axis.

3.2.5  The Main  Theorem  on rotation  groups  in ℝ3

Of course  for  any  RotationTransform  of finite  order  the  set  of powers  of this  transformation  form  a 

cyclic group.    We  can  now  list  all  finite  groups  of rotation  transforms.

Theorem  : Any  finite  group  of rotation  Transforms  in 3 dimensions  is either  a cyclic  group,  a dihedral  group  

of rotations  of a polyhedral  can,  the  group  Gtet of of rotation  transforms  of the  tetrahedron,  the  group  

GOct  of rotations  of the  octahedron,  or the  group  GIcos  of the  icosahedron.

Paul  Yale  gives  a proof  in his  book  .  Note  Gtet is not  dihedral  because  it is a group  of order  12 with  only  

3 half  turns.

In particular,  subgroups  of these  groups  must  be of one  of these  types.   In particular  the  group  of the  

icosahedron  GIcos  will  have  cyclic  subgroups  of order  2,3  and  5, but  not  4.   The  elements  of GIcos

In[  ]:= γ = RotationTransform [Pi,

{0.6881909602355869` , -0.5000000000000001` , 0.5257311121191335` }];

δ = RotationTransform [Pi, {0.42532540417601994` ,

0.30901699437494734` , -0.8506508083520401` }];

of  axis  points  half  turns  give  the  dihedral  group  D5

In[  ]:= D5 = finiteTransGroup [1 → γ, 2 → δ, {1.234, 2.431, 0.176 }, 7]

» number of group elements calculated 10

Out[  ]= {{1}, {2}, {1, 1}, {1, 2}, {2, 1}, {1, 2, 1}, {2, 1, 2}, {1, 2, 1, 2}, {2, 1, 2, 1}, {1, 2, 1, 2, 1}}

In[  ]:= orderAssoc [D5, 1 → γ, 2 → δ, {1.233, -2.134, 3.1001 }, 6]

Out[  ]= {1} → 2, {2} → 2, {1, 1} → 1, {1, 2} → 5, {2, 1} → 5, {1, 2, 1} → 2,

{2, 1, 2} → 2, {1, 2, 1, 2} → 5, {2, 1, 2, 1} → 5, {1, 2, 1, 2, 1} → 2

On the  other  hand  the  2-fold  axis  rotation

In[  ]:= κ = RotationTransform [Pi, {0.5257311121191336` , 0, 0.85065080835204` }];

And  three  point  axis  rotation

42     GSChapter3.nb



In[  ]:= λ = RotationTransform [2 Pi / 3,

{0.7946544722917661` , -0.5773502691896258` , 0.18759247408507973` }];

give

In[  ]:= H = finiteTransGroup [1 → κ, 2 → λ, {1.234, 2.431, 0.176 }, 4]

» number of group elements calculated 12

Out[  ]= {{1}, {2}, {1, 1}, {1, 2}, {2, 1}, {2, 2}, {1, 2, 1},

{1, 2, 2}, {2, 1, 2}, {2, 2, 1}, {2, 1, 2, 2}, {2, 2, 1, 2}}

In[  ]:= orderAssoc [H, 1 → κ, 2 → λ, {1.234, 2.431, 0.176 }, 4]

Out[  ]= {1} → 2, {2} → 3, {1, 1} → 1, {1, 2} → 3, {2, 1} → 3, {2, 2} → 3, {1, 2, 1} → 3,

{1, 2, 2} → 3, {2, 1, 2} → 3, {2, 2, 1} → 3, {2, 1, 2, 2} → 2, {2, 2, 1, 2} → 2

which  matches  Gtet.

3.2.6 One last soccer ball

In 2024  in honor  of the  Olympic  Games  Adidas  produced  a replica  of its  Olympic  ball  which  was  some -

what  simplified  from  its  match  ball

In[  ]:=

Like  the  Nike  balls,   this  ball  has  12 pentagonal  panels.   But  unlike  the  Nike  balls  this  panel  is not  a 

regular  pentagon,  one  side  is half  the  length  of the  other  4 sides.   So  this  pentagon  does  not  have  

rotational  symmetry.   We  do,  however  see  two  symmetries  of this  ball,  the  rotations  κ and  λ above  

where  κ is the  half  turn  about  the  top  circular  region   and  λ is the  3 fold  rotation  seen  in the  dark  blue  

area  above  right.   As  we  just  showed,  these  generate   a 12-order  group  isomorphic  to the  group  Gtet.  

Starting  with  one  given  pentagon  each  of the  others  is given  by exactly  one  Transformation  Function  in 

the  group  applied  to the  given  pentagon.

The  trick  is to find  one  base  panel.   We  start  with  a regular  pentagon

GSChapter3.nb    43



In[  ]:= PentPanel =

{axisPoints3 〚11〛, axisPoints3 〚14〛, axisPoints3 〚20〛, axisPoints3 〚16〛, axisPoints3 〚15〛}

Out[  ]= {{0.491123 , -0.356822 , 0.794654 }, {0.491123 , 0.356822 , 0.794654 },

{0.794654 , 0.57735, 0.187592 }, {0.982247 , 0, -0.187592 }, {0.794654 , -0.57735, 0.187592 }}

In[  ]:=

In[  ]:= bsideMid = spMid [axisPoints3 〚11〛, axisPoints3 〚14〛]
q1 = spMid [axisPoints3 〚11〛, bsideMid ]

q2 = spMid [bsideMid , axisPoints3 〚14〛]

Out[  ]= 0.525731 , -5.94228 × 10-17, 0.850651 

Out[  ]= {0.517007 , -0.181422 , 0.836535 }

Out[  ]= {0.517007 , 0.181422 , 0.836535 }

In[  ]:= q3 = λ@* λ@ q1

Out[  ]= 0.931914 , -1.11022 × 10-16, -0.36268 

In[  ]:= Show [StandardSphere , Graphics3D [{{Blue, Thickness [.01], Line [spOutline [PentPanel ]]},

{Red, Thickness [.01], Line [spLn [q1, q2]], Line [spLn [q1, axisPoints3 〚15〛]],
Line [spLn [q2, axisPoints3 〚20〛]], Line [spLn [axisPoints3 〚20〛, q3]],

Line [spLn [axisPoints3 〚15〛, q3]]}}], Boxed → False, ImageSize → Small ]

Out[  ]=

In[  ]:= OP0 = {q1, axisPoints3 〚15〛, q3, axisPoints3 〚20〛, q2}

Out[  ]= {0.517007 , -0.181422 , 0.836535 },

{0.794654 , -0.57735, 0.187592 }, 0.931914 , -1.11022 × 10-16, -0.36268 ,
{0.794654 , 0.57735, 0.187592 }, {0.517007 , 0.181422 , 0.836535 }

44     GSChapter3.nb



In[  ]:= Show [StandardSphere , Graphics3D [{{Blue, Thickness [.015 ], Line [spOutline [PentPanel ]]},

{Red, Thickness [.015 ], Line [spOutline [OP0]]}}], Boxed → False, ImageSize → Small ]

Out[  ]=

In[  ]:= OPanels = Table [TasTF [key, 1 → κ, 2 → λ]@ OP0, {key, H}];

In[  ]:= Show [StandardSphere , Graphics3D [

{Blue, Thickness [.015 ], Table [Line [spOutline [OPanels 〚i〛]], {i, 12}]}], Boxed → False ]

Out[  ]=

Here  is the  polyhedron  version  of the  Olympic  Replica  Ball  paneling.

GSChapter3.nb    45



In[  ]:= Graphics3D [

{EdgeForm [{Gray, Thickness [.01]}], Table [Polygon [OPanels 〚i〛], {i, 12}]}, Boxed → False ]

Out[  ]=

The  relationship  between  the  this  polyhedron  and  the  tetrahedron  can  be shown  by 

In[  ]:=

In[  ]:= HA1 = {1} → {-0.18759247408507945` , 0.5773502691896261` , 0.7946544722917663` },

{2} → {0.7946544722917659` , -0.5773502691896262` , 0.18759247408507915` },

{2, 1} → {-0.7946544722917662` , -0.577350269189626` , -0.18759247408507942` },

{1, 2, 1} → {0.18759247408508034` , 0.577350269189626` , -0.7946544722917661` }

Out[  ]= {1} → {-0.187592 , 0.57735, 0.794654 }, {2} → {0.794654 , -0.57735, 0.187592 },

{2, 1} → {-0.794654 , -0.57735, -0.187592 }, {1, 2, 1} → {0.187592 , 0.57735, -0.794654 }

46     GSChapter3.nb



In[  ]:= Graphics3D [

{{Red, Thickness [.015 ], Line [{HA1[{1}], HA1[{1, 2, 1}], HA1[{2, 1}], HA1[{1}], HA1[{2}]}],

Line [{HA1[{2, 1}], HA1[{2}], HA1[{1, 2, 1}]}]}, {EdgeForm [{Gray, Thickness [.01]}],

Opacity [.7], Table [Polygon [OPanels 〚i〛], {i, 12}]}}, Boxed → False ]

Out[  ]=

GSChapter3.nb    47


