Explicit Regular Quadratic Surface
Intersection Curves

Barry H Dayton
http://barryhdayton.space

Quadratic Surface Intersection Curves, QSIC, can be defined implicitly as the solution set of 2 real quadratic equations in three
unknowns. The question of describing them explicitly by a parametric equation is a classical problem. Only recently has this
been solved in general. L.Dupont, D.Lazard, S.Lazard and S . Petitjean [J . Symbolic Computing, 3 (43), 2008] presented a
black box algorithm using exact computations. They give a 65 page discussion. This has been implemented but requires integer
coefficients although the integers can be large enabling numerical solutions or examples to be approximated.

In 2013 I published a paper, see http://barryhdayton.space/RQSIC.pdf giving a probabilistic numerical approach. This is
implemented by Mathematica in my Space Curve book http://barryhdayton.space/ The present implementation uses the
WeierstrassP functions rather than quadratic rational functions. The complicated formulas are hidden in Mathematica func -
tions, however it is not black box, there are decisions required of the user .

The method consists of three parts, first we give a carefully constructed, partly random projection that takes the intersection
curve to a plane cubic. Then the cubic is, again partly randomized, transformed to a cubic in Weierstrass normal form. Both of
these transforms have right indices. The third step is to parameterize the normal form cubic and then map this parameteriza -
tion back to R3 using the inverses.

This version is meant as a stand-alone paper specifically for readers who are not regular Mathematica users. I mention, for
those not familiar with Mathematica, that ordered pairs or triples use {a,b} or {a,b,c}. Mathematica is the platform I use and
there will be some snipits of code throughout the paper, but the full code will be in the appendix. A Mathematica Notebook
version of this paper is available at my Mathematica community page https://community.wolfram.com/web/bhdayton/home
(use attached corrected notebook to my reply).

1. Preliminaries
1.1 Projective Linear Transformations and Transformation Functions

The most important concept in working with geometry is to understand the functions which give the equivalence between
various objects of study. Unfortunately most discussions of geometry give short shrift to this important part of of the subject.
For our purposes projective quadric surfaces and curves are equivalent if there is a an invertible projective linear transformation
which takes one to the other.

In this paper we will need to use projective linear transformations from real projective n space P" to projective m space P™.

Here we can think of projective d space P? given by vectors of length (d+1) under the equivalence relation rv = v for any real
r # 0.Such a transformation can be given by an (n+1)X(m+1) real matrix A which operates by matrix-vector multiplication as
this respects scalar multiplication. The transformation is invertible if and only if the matrix A is invertible.

Unfortunately working with equivalence classes is awkward, and often computationally in P¢ we prefer working with affine
points, that is vectors of length d where the affine point {x;, ..., x4} represents the projective point {xi, ..., x4, 1}.S.S
Abhyankar devotes Chapter 2 of his book [Algebraic Geometry for Scientists and Engineers, AMS , 1990] to what he calls Frac-
tional Linear Transformations Mathematica uses Transformation Functions to achieve this. As an example given the matrix

Q; QA Qa3 ag
In[«]= A= bl bz b3 b4
C; Cy C3 Cy

ouf - - {{a1, az, as, as}, {b1, bz, bz, by}, {c1, c2, c3, C4}}

we get a projective linear transformation from P3 - P? taking the affine point p = {x;, x5, x3}

to

2| ExplicitRegularQSICprint.nb

{a4+a1x1+a2x2+a3x3 b4+b1x1+b2x2+b3x3}
)
C4+Cy X;+Cy Xg+C3 X3 Cu+Cqp Xy +CyXy+C3 X3

(1) €3]

I will use the notation flitMD[p, A] for this, Mathematica has a built in function for this
fitMD[p_, A_] := TransformationFunction[A][p]

For projective points {x;, xp, X3, x4} with x, # 0 this is the same as applying the projective linear transformation with the same

N X X X
matrix since projective {x;, Xz, X3, X4} corresponds to affine { =, =2, = }
Xg Xg X4

Note however that the domain of this transformation is the set of vectors {x;, x5, X3} where c4 + c; X; + €, X, + c3 x3 # 0. Those
affine points where c4 + c; X1 + c3 X + €3 x3 =0 go to infinite, that is non affine, points of the range under the corresponding
projective linear transformation.
An important fact about these transformations is that matrix multiplication on the transformation matrix gives composition of
functions

fitMD[p, A B] = fitMD[fltMDI[p, BI, Al
In particular this implies that for an invertible matrix A then the fractional linear transformation fltMD|[p,A] is invertible with
inverse fltMD|[q,Inverse[A]]

Given a polynomial equation f=0 in the range of fractional linear transformation by substituting a formula such as (1) with

specific values for a;, b;, c; with the domain variables and then simplifying we can get a formula for the inverse image of f=0.
If our fractional linear transformation is invertible, the inverse image of of the inverse transformation is a formula for the range
of a polynomial equation in the domain. We have code for this push forward operator in the appendix under the name FLT3D.

A technical warning is in order. These transformations are affine versions of projective transformations, as such the transforma -
tion matrices should be seen as projective, that is a non-zero constant multiple of the transformation matrix gives the same
transformation. For this reason, especially if the matrix has machine numbers entries then converting to a rational function
may not behave as in equation (1) above, rather one may get equivalent, but not equal, fractions. We will see this below.

1.2 Quadratic Surfaces
Quadric surfaces are defined from our affine point of view by an equation
ayx? +a, Xy +azy’+a, XZ+asy Z+agz +ay; X+ag Y+agZ +a9 =0

The following chart from my Surface Story http://barryhdayton.space/SurfaceBook/SurfaceStoryPartIl.pdfgives the possibilities.

Projective Real Quadric Surfaces
Type Not Surface Degenerate Cone Ellipsoid Hyperboloid
Possible ‘
Picture
example (y-2x)2+(z+3x)%=0 xz=0 z2=x2+y? x2+y2ez2=1 x2+y2-z2=1
singularity ? All line point none none
ruled? no two parts single none double
empty set elliptic
Affine p Y . parallel- cylinder parabolic P
X point, line R saddle-
Variants planes Cone hyperbolic
plane squared Surface

The only possibilities for a real smooth projective surface are the the ellipsoid and hyperboloid. However note that the
paraboloid, for example z = x? + y?, and hyperbolic ellipsoid, otherwise known as hyperboloid of 2 sheets , for example
x? — y? — z? = 1, are projectively equivalent to the standard ellipsoid. In affine geometry the hyperboloid in the chart is
known as the elliptic hyperboloid, and the the hyperbolic hyperboloid is otherwise known as the saddle surface, for example

z = x y. Again projectively they are the same. For details see my Surface Story , Chapter 2. The main difference between the
hyperboloid and ellipsoid is that at every point the hyperboloid contains two lines through that point, but the ellipsoid contains

no lines at all. Actually each point of an ellipsoid does contain two complex lines in the complex ellipsoid so in complex

ExplicitRegularQSICprint.nb |3

geometry all smooth quadratic surfaces are projectively equivalent. But this post is only concerned with real quadratic surfaces.

2. The main Reduction

We give an algorithm to find parametric functions capable of plotting the intersection curve of 2 quadratic surfaces given by
affine quadratic polynomials. This algorithm will be probabilistic in that random choices are made which most likely will work
given that the two surfaces are not singular and the intersection curve is non-planar of genus 1. Ideally we would check our
surfaces first and eliminate the many cases where this does not happen but one nice feature of this not being a black box
algorithm is that we can plow ahead but check our progress and if is not working we can try different random choices or perhaps
now check that our assumptions on the QSIC are correct. While the skeptical mathematician will have no trouble finding
counter examples, the probability is that we will get a solution unless we are deliberately looking for counter examples.

The first step is our main reduction where we model the intersection curve with a plane non-singular, hence genus 1, cubic
curve. In this paper Igive this as a mathematical algorithm, but Mathematica code is in the Appendix.

Algorithm nsQSIC

Input : Two quadric polynomials Q;, Q; in three variables X, y, z and a point p in the intersection. This point p could be
chosen by the Mathematica algorithm findQpts in the Appendix.

Output: A cubic plane curve with equation #, hopefully non singular (check!), a fractional linear transformation
Q:R3 - R? so that for each point s of the intersection €(s) is a point of h, and a rational polynomial function
U :R? - R3 which is a right inverse of (), that is for each point g of 7, U(q) is in the QSIC and Q(U(q)) =q.

Step 1: We append 1 to p to get a vector of length 4 and normalize to norm 1, and then append arandom real 3X4 matrix to
obtain a 4x4 matrix which we then orthogonalize and reverse the order of rows. This gives an orthogonal matrix with a
projective equivalent of p as last row which we will call A. This will cause the point p to be transformed to an infinite point on
h by the fractional linear transformation determined by A. The linear fractional transformation given by the 3x4 matrix of
the first 3 rows of A will be the output ().

Step 2: The QSIC, that is the two quadratics, are transformed to quadratics F;, F, so that the fractional linear transforma -
tion determined by matrix A sends all points on Q;, Q, to points on Fj, F, respectively. These quadratics can be calculated
essentially by taking the preimage of the transformations to Q;, Q, given by A~!. This trick which can only be done by
invertible transformations is implemented by the code FLT3D in the appendix. With probability 1 the quadratics F; F, will

have non-zero coefficient for each monomial in x, y and z of degree 3 or less.

Step 3 : The sum of all terms of total degree d of a polynomial will be called the Form of degree d. We let

L be the form of degree 1 of F;
M be the form of degree 1 of F,
R be the form of degree 2 of F;
S be the form of degree 2 of F,

Then h will be the expansion of LxS-RxM with variable z evaluated to 1. Since each term of LxS, RxM will be a product of of a
polynomial of degree 1 times a polynomial of degree 2 it will be of at most degree 3, so h will be of degree h with probability 1.
It is less obvious that () will take all points of the original QSIC to & but this is the trick that classical mathematicians discov -
ered. This is something that should be checked.

Step 4: There is a complicated formula defining U best described by Mathematica code. in the Appendix.

4| ExplicitRegularQSICprint.nb

Take [Inverse [A].Join[#1, {1, —E /. Thread[{x, y, z} » Append [H1, 1]]}], 3]

In[«]:= O =
Last[Inverse [A].Join[H1, {1, —E /. Thread [{x, y, z} » Append [H#1, 1]]}]]

Take[Inverse [A].Join[ttl, {l, —% /. Thread [{x, y, z} » Append [&1, l]]}], 3]

Outf »]=

Last[Inverse [A].Jo-in[l:tl, {1, —I—Fj /. Thread [{x, y, z} » Append [&1, 1]]}]]

The motivation for this algorithm comes from a classical computation where the input QSIC already had generic coefficients.
This was done in the projective setting where was simply the projection of P® » [P? evaluating zto 1 and U inserted a I after vy.

Because this algorithm depends on choosing a point p of the QSIC and the somewhat random construction of matrix A each
time the code is evaluated there are different values of the output. The output must be saved for the rest of the rest of the
calculation of the QSIC as they can’t be replicated.

We do an example of the output of nsQSIC for
n-1=Q={xXy-z, (X=-1)"2+(y+1)"2+(z+ .9)"2-3.6};

The contour plot of the surfaces is

Inf + Ji= ContourPlot3D [{Q[[l]] == 0, QI2] == 0}, {x, -4, 4}, {y, -4, 4}, {z, -4, 4}, Mesh - None,

ImageSize - Small, ContourStyle - {Orange , Green}, Axes - False, Boxed - Fa'Lse]

outf « J=

Our point is
p0 ={-0.445491, -0.499856, 0.222681}

Then running nsQSIC and saving our values under the names p0, A0, h0, 0, U0

In[+]=
ho = 0.0134767 +2.68149 x - 0.966728 x> -0.178344 x>+

0.212614 y +2.02179 Xy +2.06994 x?y +0.0498793 y2+0.0173951 x y?+0.831885 y>;

ExplicitRegularQSICprint.nb |5

i - - ContourPlot [h® == 0, {x, -10, 10}, {y, -10, 10}, ImageSize - Small]

10]

0 7/\/____._7
Out[»]=

In[«]=

A0
ouf - - {{0.865333 , 0.184098 , 0.108445 , 0.453372 }, {-0.000329302 , -0.0169023 , 0.974095 , -0.225508 },
{-0.344536 , 0.893878 , 0.079216 , 0.275683 }}
QO[{x, y, z}]

0.453372 +0.865333 x+0.184098 y +0.108445 z

outf « J= {

)
0.275683 -0.344536 x +0.893878 y +0.079216 z
-0.225508 - 0.000329302 x-0.0169023 y + 0.974095 z

0.275683 -0.344536 x +0.893878 y +0.079216 z }

Note that we expected the numbers above to come from the matrix A0 but Mathematica normalized somewhat, this gives an
equivalent transformation to QO[{x,y,z}] = fltMD[{x,y},A0]. Next

0.0470403 +1.31717 x2-0.471226 y - 0.223932 y2+ x (-0.500068 + 2.2469 vy)

volix, v = {

)

-0.52182 +2.30415 x+1. x2-0.171647 y - 0.410038 xy + 0.0298039 y?
1.12363 +0.178448 x%+ x (0.895565 + 0.849293 y)+2.13362 y - 0.285813 y?

3

-0.52182 +2.30415 x+ 1. x*-0.171647 y - 0.410038 xy + 0.0298039 y?

0.101291 - 0.548793 x - 0.235047 x2 - 0.855663 y - 1.616 x y - 2.14746 y>

0.52182 -2.30415 x-1. x?>+0.171647 y+0.410038 xy - 0.0298039 y? }

We now check our assertions using Mathematica, first (20 should send p0 to an infinite point

- - QO[pO]
1
+ Power : Infinite expression — encountered
0.
1
+ Power : Infinite expression — encountered
0.

ouf - - {ComplexInfinity , ComplexInfinity }
Next we show a somewhat random point pl on our QSID maps to h

- - pl = findQpts [Q, {x, ¥y, z}, 2][2]

ouf - - {-0.333333 , 0.00867049 , -0.00289016 }

Evaluating h at 20(p1) we get a very small residue

6| ExplicitRegularQSICprint.nb

m - 1= h0 [. Thread [{x, y} » QO[pl]]

ouf- - 5.55112 x 1077

Now picking a random point on h0 we show U0 sends h to the QSIC

qo {— 10.185851944205135° , 0.38297149894397153" }

n = p3 00[q0]

our- - {1.50186 , 0.27477 , 0.412667 }

m- - Qfl. Thread [{x, y, z} » p3]

our- - {1.11022 x 107*%, 4.44089 x 107'%)
And finally

n - - QO[p3] = {-10.18585194420513° , 0.3829714989439713" }
ouf - - {-10.1859 , 0.382971}

which was q0 so our requirements were met.

Picking one pseudo-random point to test is not a proof, but it is a strong indication that the algorithm is working on this
example so we can proceed. If there is failure on one of the above tests possibly run the algorithm again, it might have been a
bad choice of random points. Repeated failures indicates this algorithm is not going to work on this QSIC, perhaps this QSIC is
not of genus 1, maybe singular or planar.

3. Transforming the cubic to Weierstrass Normal form.
The Weierstrass Normal form for a cubic is

y? = 4x’-gyx - g;

In my Plane Curve Book [A Numerical Approach to Real Algebraic Curves with the Wolfram Language, Wolfram Media, 2018,
https://wolfr.am/Dayton] I discussed this in Chapter 7. All regular cubics are fractional linearly equivalent to a cubic in Weier -
strass normal form, but the form is not unique. Again the key thing is not just the equation but the transformation taking the
curve h above to this form. This is again given by a transformation function. One issue is that since I was working numerically
in that book the coefficient 4 which made some hand calculations easier did not seem necessary. However our implementation
of this assures that the coefficient of x* is 4. Our code in the Appendix slightly changed from my book to give the correct
equation which will also then changes the coefficients g, gs. Itis actually these numbers, not the equation, that will be impor -
tant, so the new algorithm displays the equation but returns the pair {g, g3} which are called the Weierstrass Invariants.

In addition to the cubic h, one must input a choice of inflection point for the curve. Since & is assumed to be a non-singular
real cubic there will be areal inflection point, in fact 3, if one counts multiplicity. For the reader’s convenience Iinclude a
Mathematica function in the appendix to find these along with the normal form transformation.

For the example in the previous section we can pick the inflection point
inf - = infPtl = {—0.646618667877992‘ , ©0.2880193877589238" };

Then running our example, possibly several times to get a real normal form, important for plotting.
n - J- {wg, B2} = weierstrassNormalForm [h, infPtl, x, y];

- 0.481377 +4.36185 x+4. x>-1. y?

So the Weierstrass invariants are

ExplicitRegularQSICprint.nb |7

In3= Wg

ougl- {-4.36185, 0.481377 }

and B2 is

-2.09677 -1.20156 1.34248
Out{1}//MatrixForm= -7.13704 1.30653 -3.98131
-1.33852 3.05905 2.4188

Again we save our output for the rest of this example since repeated runs will give different values. In particular some runs may
give complex invariants which we want to avoid, so we may wish to run this several times until we get nice real invariants which
we then save. Also save the corresponding transformation.

Note that in the affine plane the plot of a normal form curve can be in the topological shape of one of the two examples.

y2=4x3+4.36-0.48 y2=4x3-18x-1
107 ‘ ‘ ‘ b 10F ‘ ‘ ‘ i
5 5F
out[s]= 0 or
-5¢] -5¢
-10 & L L L d -10 b L L L |
-10 -5 0 5 10 -10 -5 0 5 10

In the first case we have, in the real affine plane, one topological component which has only one infinite point giving a loop in

the real projective plane. In the second case we get two affine topological components which become two loops in the projec -
tive plane. Thus a regular QSIC curve can have one or two topological components only and this will be reflected in the normal
form of the cubic produced by algorithm nsQSIC.

4. Parameterizing the normal form

The importance of the normal form is that we can easily parameterize cubics in normal form. One way that I used in earlier
versions of my QSIC investigations is with is square roots in the numerator and denominator. In this case the parameterization
ofy? = 4x>-g, x - gyis

{x, t\/4x"3—g2x—g3}

One may then worry about which sign to take for what x and what part of the curve. Piecewise parameterization will be needed.
This gets particularly messy in the next section where we lift this parameterization to the QSIC with our rational functions.

In this paper I instead propose the use of the Weierstrass P functions which are conveniently and quickly implemented by
Mathematica. The reader not familiar with these functions may wish to explore elsewhere for the construction and calculation
of these functions, here we will only explain how to use them. These are complex functions of a single complex variable that are
periodic with two real independent complex periods and a pole at the origin. These functions are themselves parameterized by
Weierstrass invariants. Fortunately Mathematica also has built-in procedures to calculate the periods from the invariants, from
the periods we can describe fundamental period parallelograms which completely determine the function. Unlike some
theoretical expositions we put the pole in the middle of fundamental parallelogram rather than the corners.

With Mathematica we can parameterize real cubics in real Weierstrass Normal form. The Mathematica syntax is
n - MIt_, {82_, g3_} := Re[{WeierstrassP [t, {g2, g3}], WeierstrassPPrime [t, {g2, g3}l}]

for the curve y® = 4 x> - g2 x - g3. The domain for tis the entire complex plane but it is enough to use only the fundamen -
tal period parallelogram to obtain the entire complex curve as this parameterization is also periodic with the same periods. We
are only interested in real values of the normal form curve and ift, g2, g3 are all real then we will get a real value. However we
will see that to get all real values of the normal form curve we will have to use some complex points in the fundamental period
as well, especially for normal curves with 2 topological components. One technicality with the Mathematica implementation is

8| ExplicitRegularQSICprint.nb

that the WeierstrassP functions use a numerical method to do the calculations and t must be a Mathematica machine number,
that is a decimal number. One could replace t by NI[t] in the formula above if this is a problem. If we plan to use this with
ParametricPlot or ParametricPlot3D the parameter there must be real. In some cases below we need complex parame -
ters but fortunately the imaginary part is constant so that constant can be added to real t in the formula above.

To help find the correct parameter ranges for given Weierstrass invariants I have a Mathematica procedure called wpgram -
Plot[wpar] with code in the Appendix. Unlike my earlier algorithms this is deterministic so one will get the same result each
time it is run with the same invariants. For the example above we get

nesi- wpgramPlot [{-4.3618451810711205" , 0.48137714411463256° }]
» hps {{0.870595 , 0.93462}, {-0.870595 , 0.93462 }}
» comers {{2.22045 x 107'°, 1.86924}, {1.74119 , 0.}, {-2.22045 x 107'°, -1.86924}, {-1.74119 , 0.}}

» x—axis points {{0.0457074 , 1.86924}}

In this example the fundamental parallelogram is given in black, the white regions surround the poles and the other colors are
determined by the argument of the WeierstrassP function at that point. We don’t really care about these arguments but they do
help illustrate the periodicity. Note how opposite sides of the fundamental parallelogram have the same coloring, this is
because periodicity requires opposite points to be the same. We saw in the plots in the last section that Weierstrass normal
form cubics will intersect the x-axis in one or three points. A preimage on the boundary of the parallelogram of each of these
points is shown as a black dot. The values of the half periods, corner points of the parallelogram and the pre-images of the x-
axis points are given approximately and will be useful. Note in this example the x-axis point is one of the corners, approxi -
mately, but by periodicity then all the corners will map to that same real value.

Since we are plotting a real curve in this case we will get all real values of the curve using real points of the parameter. So we can
read off the value of the two real corner points from the information above. Since plotting will only needs to be accurate to 3
decimal points we can get away with approximate values , our interval is —1.1963 =< ¢ < 1.1963 we use slightly larger range for
the plotting routine. Here we add our parameter interval to our graphic as a dashed line and show the parametric plot. We give
the code here

In[27]:= Row[{
Show [wpgramPlot [{-4.36184 , 0.481377 }], Graphics [{Black , Dashed , Line[{{-1.8, 0}, {1.8, o}1}]],
" ", ParametricPlot [u[t, {-4.36184 , 0.481377}], {t, -1.8, 1.8},
PlotRange - 5, ImageSize - 150]}]

» hps {{0.870595 , 0.93462}, {-0.870595 , 0.93462 }}
» corners {{0., 1.86924}, {1.74119 , 0.}, {0., -1.86924}, {-1.74119 , 0.}

» x-axis points {{0.0457075 , 1.86924 }}

ExplicitRegularQSICprint.nb |9

-3 -2-10 1 2 3

There are 4 other cases we need to consider. Again we show the code

i - - Row|[
{Show [wpgramPlot [{2, 3}], Graphics [{{Black , Dashed , Line[{{-1.19722" , e}, {1.19722" , o}}]}}]],
" ", ParametricPlot [u[t, {2, 3}, {t, -1.214, 1.214}, PlotRange - 4, ImageSize - 150]}]

» hps {{1.19722 , 0.}, {0.59861 , 1.17514 }}
» comers {{1.79583 , 1.17514}, {0.59861 , -1.17514}, {-1.79583 , -1.17514}, {-0.59861 , 1.17514 }}

» x-—axis points {{1.21402 , 0.}}

4F T r - 4

-2 H

nf e J= Row[
{Show[wpgramPlot [{-2, -3}],
Graphics [{Black , Dashed , Line[{{-2.06563 , 0.}, {2.06563 , 0. }}]}]], " ",
ParametricPlot [u[t, {-2, -3}], {t, -2.06563 , 2.06563 }, PlotRange - 4, ImageSize - 150]}]

» hps {{1.03282 , -0.674662 }, {1.03282 , 0.674662 }}
» corners {{2.06563 , 4.44089 x 107'°}, {0., -1.34932}, {-2.06563 , -4.44089 x 107'°}, (0., 1.34932}}

» x-axis points {{2.09029 , -6.66134 x 107'°}}

2l
o [
outf + J- & . . , ,
1 -4 -2 \ 2 4
_2 u
_2F

-3 -2 -1 0 1 2 3 s

This next one requires three plots to keep the parameter in the fundamental period parallelogram. We show the parts using
different colors.

10| ExplicitRegularQSICprint.nb

- = impart = 1.19722°

i - - Row|[
{Show [wpgramPlot [{2, -3}],
Graphics [{{Black , Dashed , Line[{{-1.175, impart}, {0, impart}}],
Line[{{-1.175, 0}, {1.175, @}}], Line[{{o, -impart}, {1.175, -impart}}]},
{Black , PointSize [.02],
Point[{{-1.175, impart}, {-0, impart}, {-1.175, 0}, {1.175, 0}, {0, -impart},
{1.175, -impart }}]}}], ImageSize - 200], " ",
Show[ParametricPlot [Re[u[t + impart I, {2, -3}]], {t, -1.175, 0}, PlotStyle - Orange,
PlotRange - 4], ParametricPlot [Re[p[t, {2, -3}]], {t, -1.175, 1.175},
PlotStyle - Blue, PlotRange - 4],
ParametricPlot [Re[p[t - impart I, {2, -3}]], {t, 0, 1.175}, PlotStyle - Green,
PlotRange - 4], ImageSize - 150]}]

» hps {0., -1.19722}, {1.17514 , -0.59861 }}
» comers {{1.17514 , -1.79583}, {-1.17514 , -0.59861}, {-1.17514 , 1.79583}, {1.17514 , 0.59861 }}

» x-axis points {{0.0168172 , -1.19722}}

T

47

Out[»]=

-4k n n n d
-4 -2 0 2

In this case we can consolidate to one real interval if we can go outside our fundamental parallelogram.

m - = rpart = 2% 1,1751°
Row[{Show[wpgramPlot [{2, -3}], Graphics [{Black , Dashed , Line[{{-rpart, 0}, {rpart, o}I}]],
" ", ParametricPlot [u[t, {2, -3}], {t, -2.4, 2.4}, PlotRange - 4, ImageSize - 150]}]

ouf - - 2.3502

ExplicitRegularQSICprint.nb |11

» hps {0., -1.19722}, {1.17514 , -0.59861 }}
» corners {{1.17514 , -1.79583}, {-1.17514 , -0.59861}, {-1.17514 , 1.79583}, {1.17514 , 0.59861 }}

» x-axis points {{0.0168172 , -1.19722 }}

4F

Out[»]=

2

-4 -2 ‘ 2 4
—4 1

-4 -2 0 2 4 -4+

Finally we come to the case where the normal form conic has 2 real components. In this case we are forced to use 2 intervals,
one being complex.

Inf+ J= Row[
{Show [wpgramPlot [{8, 1},

Graphics [{{White , Dashed , Line[{{-1.07255 , 1.0726}, {1.07255 , 1.0726 }}]},
{Black , Dashed, Line[{{-1.07255 , 0}, {1.07255 , 0}}1},
{Black , PointSize [.03],

Point[{{-1.07255 , 1.0726}, {1.07255 , 1.0726}, {-1.07255 , 0}, {1.07255 , 0}}1}}]],

" ", Show[ParametricPlot [p[t, {8, 1}], {t, -1.07255, 1.07255}, PlotRange - 4,
ImageSize - 159], ParametricPlot [Re[p[t+ 1.14063 I, {8, 1}1], {t, -1.07255, 1.07255},
PlotRange - 4, ImageSize - 150]]}]

» hps {1.07255 , 0}, {0., 1.14063 }}
» comers {{1.07255 , 1.14063}, {1.07255 , -1.14063}, {-1.07255 , -1.14063 }, {-1.07255 , 1.14063 }}

» x-axis points {{0.014966 , 1.14063}, {1.04616 , 1.14063}, {1.08396 , O}}

outf «]=

5. Parameterizing the QSIC

So we have broken the problem down to 3 steps, first use algorithm nsQSIC to get a plane cubic h and rational function U. The
fractional linear transformation () is useful for checking our work. Then we transform h to normal form saving the Weierstrass
Invariants wg and transformation matrix B2. We thirdly get our parameter intervals by finding and analyzing the fundamental
domain of our invariants. In some cases we may need to do this piecewise with several different intervals. In each case the
parametric function is given simply in Mathematica notation

O[f1tMD [p[t + ipart i, wg]l, Inverse [B2]]]

where ipart is the constant imaginary part on this interval, if any.

12| ExplicitRegularQSICprint.nb

In our running example Q = {xy-z, (x — 1) + vy + 1) + (z + .9)?-3.6} we have

ParametricPlot3D [UQ[fltMD[u[t, wg], Inverse [B2]]], {t, -1.8, 1.8}, PlotRange - Full,

ImageSize - 200]

Plotting with the surfaces

Inf e+ Ji= Show[ContourP'l.ot3D [{QI1] == 0, QI2] == 0}, {x, -4, 4}, {y, -4, 4}, {z, -4, 4}, Mesh - None,
ContourStyle - {Orange, Green}],
ParametricPlot3D [UO[fltMD[u[t, wg@], Inverse [B2]]], {t, -1.26, 1.26}, PlotRange - Full,
PlotStyle - Directive [Thickness [.01], Black]], Axes —» None, Boxed - False]

out[«]=

5.1 Some more examples

We summarize the results for two more examples . The next is the intersection of an ellipsoid and a paraboloid that is some -
what off center.

- Q2 = {(X=.3)"2/44(y+.8)A2/94+(2-2)"2-1, 2= (2X"2+2YyA2)};

We first run our nsQSIC routine getting the following

ExplicitRegularQSICprint.nb |13

h2 = -1.70891 - 4.90155 x - 0.436806 x+2.76916 x° -
3.04504 y-5.54903 xy-1.11613 x?y + 1.42088 y2+1.73389 x y?+ 0.493294 y°
U2[{x, y}l =
-0.44385 - 0.00288317 x%+ X (-0.386849 +0.878168 y)+0.857298 y + 0.26742 y>

{ ,

1.28184 +2.20131 x+ 1. x>+ 0.568622 y+0.519988 xy+0.124632 y2

0.00937192 -1.2944 x - 1.23691 x2+0.287652 y - 0.16422 x y + 0.00183044 y?

)

1.28184 +2.20131 x+ 1. x? + 0.568622 y+0.519988 xy+0.124632 y2

1.40069 +2.20899 x +1.02232 x?+ 0.461645 y+0.439683 xy+0.21522 y2

)

1.28184 +2.20131 x+ 1. x*+0.568622 y + 0.519988 Xy + 0.124632 y?

In[33]:= wg2 = {23.827403750302487‘ , 20.15211351942233"° }

ouzs- {23.8274 , 20.1521}

9= B22 /Il MatrixForm

-3.2832 -1.09932 -2.61352
Out[29])//MatrixForm= -3.67212 2.19815 -0.965365
1.88915 0.418749 2.00441

ing4- wpgramPlot [wg2, ep » .2]
» hps {{0.769421 , 0}, {0., 1.10583 }
» corners {{0.769421 , 1.10583}, {0.769421 , —-1.10583 }, {-0.769421 , -1.10583 }, {-0.769421 , 1.10583 }}

» x-axis points {{0.0302383 , 1.10583}, {0.733416 , 1.10583 }, {0.775188 , O}

=2 H

-3

-3 -2 -1 0 1 2 3
We see that we will have two components so the curve will require two parametric plots, one with complex parameters. The
curve itself looks like
Show[ParametricPlot3D [U2[fltMD [u[t, wg2], Inverse [B22]1]], {t, -.77, .77},
PlotRange - {{-3, 3}, {-3, 3}, {0, 3}}, PlotStyle - Directive [Thickness [0.015], Black]],
ParametricPlot3D [U2[fltMD[u[t + 1.10583 I, wg2], Inverse [B22]]], {t, -.77, .77},
ImageSize - 200]

14| ExplicitRegularQSICprint.nb

The curve with the quadric surfaces is

Show[ContourPlot3D [{(x - .3)A2/4+(y+ .8)A2/9+(z2-2)A2==1, z==2Xx"2+2y"2},
{x, -2, 3}, {y, -4, 4}, {z, 0, 4}, Mesh - None],
ParametricPlot3D [U2[fltMD [u[t, wg2], Inverse [B22]]], {t, -.77, .77}, PlotRange - 3,
PlotStyle - Directive [Thickness [0.015], Black]],
ParametricPlot3D [U2[fltMD[u[t +1.0583 I, wg2], Inverse [B22]]], {t, -.77, .77},
PlotStyle - Directive [Thickness [0.015], Black]], Axes -» False, Boxed - False]

This last example is an unbounded curve with 4 affine components consisting with the intersection of a hyperboloid and a
hyperbolic ellipsoid.

- Q3 = {XAN2+yA2-2zA2-9, 2(x=-1)A2-(y=-.25)A2-2zA2- 5}
A point on Q3 is

inf - = q3pt

ouf - - {2.46923 , -1.70379 , 0.}
Applying nsQSIC

n - - h3

ouf- - -0.249469 - 8.22993 X - 2.67636 x>+ 0.567963 x> - 18.5466 y -
30.8386 Xy +2.22249 x2y-41.7577 y%-21.0204 x y>-24.7859 y>

ExplicitRegularQSICprint.nb |15

inf - = O3[{x, YH

-18.1272 +0.823429 x2?+x (-31.8909 -20.0303 y)-64.4707 y -60.9937 y2
outf]:{

)

10.4881 -3.18625 x+ 1. x2+31.085 y+5.91174 xy +20.2212 y?

34,1146 -10.7836 x - 3.34171 x°+ 60.4533 y-34.7029 xy+23.2529 y2

3

10.4881 -3.18625 x+ 1. x2+31.085 y+5.91174 Xy +20.2212 y?

22.4144 +22.7967 x + 1.68673 x2?+ 13.2424 y +27.4305 xy - 24.1011 y?

10.4881 -3.18625 x+ 1. x>+31.085 y+5.91174 xy +20.2212 y? }

We now find the Weierstrass Normal Form
[= WE3

ouf - - {37.0854 , -33.4408}

- = B23

0.578932 -2.02309 -0.722756
1.79988 10.5295 9.75449
-0.376334 -1.02545 -0.0287017

So far our work is not replicable because of random choices, but our complex plot of WeierstrassP is.
- - wpgramPlot [wg3, ep » .3]
» hps {{0., -0.695683}, {0.901368 , 0.}}
» corners
{{6.901368 , -0.695683 }, {-0.901368 , -0.695683 }, {-0.901368 , 0.695683 }, {0#.901368 , 0.695683 }}

» x-axis points {{0.0057994 , -0.695683 }, {0.877145 , -0.695683 }, {0.919792 , 0.}}

It does indicate there are two components .

Note that the blue and black give projectively one loop while the green and orange give the other.

Adding our quadratic surfaces to the right hand plot we get

Show[ParametricPlot3D [U3[fltMD[u[t, wg3], Inverse [B22]]], {t, -.903, .903},
PlotRange - 16], ParametricPlot3D [U3[fltMD[u[t - .695683 I, wg3], Inverse [B22]]],
{t, -.903, .903}, PlotRange - 16], ImageSize - 250]

16 | ExplicitRegularQSICprint.nb

10

Plotting this with our surfaces gives

6. Conclusion

The QSIC problem is hard because of the many different cases and the complexity of the parameterizations in the genus 1 cases
. To actually do examples requires using a computer. Although there are 4 different cases just within the genus 1 cases all of
these use the same basic parameterized function

O[f1tMD [u[t + ipart i, wg], Inverse [B2]]]
although in some cases we must use several uses of this with different parameter intervals to get a piecewise parameterization.

This method at present does leave demands on the user to monitor the probabilistic randomized routines and to make the
proper choices on parameter values. If the method does not pass its tests it may be that the QSIC is rational, then the various
rational cases must be determined. An advantage of our use of Mathematica is that all of the difficult computations are done
with built-in functions that are fast. The rational cases also can be also handled relatively easily on this platform. Perhaps in the
future Al can be taught to do all the user work to get a black box solution to this problem using our methods.

ExplicitRegularQSICprint.nb |17

Appendix to Explicit Regular QSIC

Here is the code for Mathematica functions, other than those built in to Mathematica, discussed in the body of this paper,
mostly without comment here. Also included are subroutines necessary for these functions. If you will be using Mathematica
to use or experiment with this code the notebook version of my original paper available at the end of the web version at https://-
community.wolfram.com/web/bhdayton/home is a better choice to use.
n - dTol = 1.xM=12
tDegMD [f_, X_] := Max[Total /@ Keys[CoefficientRules [f, X]]]

m- - FLEMD[p_, A_] := TransformationFunction [A][p]

FLT3D[F_, A_, X_] := Module[{B, d, g, h, t, n},
n = Length [X];
If[Dimensions [A] # {n+1, n+1}, Echo[{n+1, n+1}, "need A to be of size"]; Abort[]];
If[MatrixRank [A] + n+ 1, Echo["A must be qinvertible "]; Abort([]];
B = Inverse [A].Append [X, t];

Reap [Do[
d = tDegMD [f, X];
g = Expand [t~ d (f /. Thread [X -» X/ t])];
h = Expand [g /. Thread [Append [X, t] - Bl];

Sow[Chop[h /. {t » 1}, 1.x"-121]], {f, F}]](2, 1I]

Note : FLT3D requires F to be a list of equations and A to be invertible. This applies the push forward to each polynomial in F
separately and returns a list. For a single equation fone should use
FLT3DI[{f}, A, XI][[1]]

n - - findQpts [Q_, X_, n_] := Re[N[X /. FindInstance [Q == 0, X, Reals, n]]]

formMD [f_, k_, X_] := FromCoefficientRules [Select [CoefficientRules [f, X], Total[®[1]] == k &],
X];
maxFormMD [f_, X_] := formMD [f, tDegMD [f, X], X];

m - 1= nsQSIC[Q_, p_, {X_, Y_, z_}] := Module [{dTo'L, p0, A, F, h, L, M, R, S, Q, U},
dTol = 1.%M-12
po = Normalize [Append [p, 111;

= Reverse [Orthogonal'ize [Prepend [RandomReal [{-1, 1}, {3, 4}], p0]]];

= FLT3D[Q, A, {x, ¥y, Z}I;

= formMD [F[1], 1, {x, y, z}];

= formMD [F[21, 1, {x, y, z}I;

formMD [FI11, 2, {x, y, z}I;

= formMD [F[21, 2, {x, y, z}I;

= Expand[L*S-R=*M] /. {z » 1};

= Take[A, 3];

g D -Twnw »m=ETr mo>
]

= Take[Inverse [A].Join[#, {1, (-R/L) /. Thread [{x, y, z} » Append [, 1]]}], 3]/
Last[Inverse [A].Join[#, {1, (-R/L) /. Thread [{x, y, z} » Append [, 1]]}]] &;
Q, U}

-~
>
-

18| ExplicitRegularQSICprint.nb

i - - allInflectionPointsC3 [f_, x_, y_] := Module[{d, H, fh, z, 1, ips, ips2, sol},
d = tDeghD [f, {x, y}|;
fh = Expand [z2d (f /. Thread [{x » x/z, y » y/z}])];
H = Det[D[fh, {{x, ¥, z}, 2}]];
1 = RandomReal [{-10, 10}, 3].{x, Yy, z};
sol = NSolve [{fh, H, 1-1}, {x, vy, z}];
If[Length [sol] == 0, Return [{}]];

ips = {x, y, z} /. sol;
ips2 =
Chop [If[Abs[#1[3]] > 1.+"-5 , Take[#1, 2] /#1[3], Append [Take[H1, 2], 0]], 1.+"-10] &/@

ips;

DeleteDuplicatesBy [ips2, Abs[H] < 1.x"-6]

15
n - - cTransform2D [f_, p_, x_, y_] := Module [{fh, ph, nh, t, cs, A, d},
d = tDegMD [f, {x, y}];

fh = Expand [tAd % (f /. Thread [{x, y} » {x/t, y/t}])];

ph = If[Length[p] == 2, N[Append [p, 111, N[pIl;

ph = ph /Norm[ph];

nh = {D[fh, x], D[fh, y], D[fh, t]}/. Thread [{x, y, t} » phl;
nh = nh /Norm[nh];

cs = Cross [nh, ph];

cs = cs/Norm[cs];

A = {cs, ph, nh}];

ExplicitRegularQSICprint.nb |19

i - - weierstrassNormalForm [f_, ip_, x_, y_] :=
Module [{Rnm, ff, ipp, B1, B2, B3, B4, B5, B, f1, f2, f3, f4, k, cy2, wg},

Rnm

RandomReal [{-3, 3}, {3, 3};
fltMD['ip, an];
FLT3D[{f}, Ram, {x, y}][11;

ipp
ff
Bl = cTransform2D [ff, ipp, x, y];

f1 = Chop [FLT3D [{ff}, B1, {x, y}][1], 1.+*-9];
cy2 = Coefficient [f1, y~2];

If[Length[cy2] > 0, Print["Please check inflection point or smoothness "]; Abort[l];
k = Expand [Coefficient [f1, y]/cy2 [2+Y];

B2 = {{1, 0, 0}, {Coefficient [k, x], 1, kI1]}, {0, 0, 1}};

f2 = FLT3D[{f1}, B2, {x, y}][1];

B3 = {{-(Coefficient [f2, x 3]/ Coefficient [f2, y~2])*(1/3), 0, 0}, {8, 1, 0}, {0, O, 1}};
f3 = FLT3D[{f2}, B3, {x, y}I1l;

f3 = -Expand [f3 [Coefficient [f3, y*2]];

B4 = {1, ©, Coefficient [f3, x"2]/3}, {0, 1, 0}, {0, 0, 1}};

B5 = {{1, 0, 0}, {0, 2, 0}, {0, 0, 1}};

f4 = Expand [4 FLT3D [{f3}, B5.B4, {x, y}][1]];

Echo[f4, "Normal Form"];

wg = {- Coefficient [f4, x], -f4 /. Thread [{x, y} -» 0]};

B =B5.B4.B3.B2.B1.Rnm;

{wg, B}];

n - - MIt_, {82_, g3_}] := Re[{WeierstrassP [t, {g2, g3}], WeierstrassPPrime [t, {g2, g3}l}]

inf - - Options [wpgramPlot] = {ep -» 0.103};
wpgramPlot [{g2_, g3_}, OptionsPattern []] :=
Module [(hps , hp1, hp2, mn, x, y, zero, z, olz, opts, one, onelz, onepts},
hps = WeierstrassHalfPeriods [1. {g2, g3}];
Echo[ReIm[hps], "hps'"];
hpl = ReIm[hps[1]];
hp2 = ReIm[hps[2]];
mn = 3 Max[Norm[hpl], Norm[hp2]];
Echo[{hpl + hp2, hpl - hp2, -hpl - hp2, -hpl + hp2}, "corners "];
zero = NSolveValues [y"2 == 4 x"3 - g2 x - g3 & y == OptionValue [ep], {X, Yy}, Reals];
olz = Length [zero];
opts = Table [ReIm[InverseWeierstrassP [zero[j], {82, g3}]], {i, olz}];
Echo[opts , "x-axis points"];
Show [ComplexPlot [WeierstrassP [z, {g2, g3}, {z, —-mn-mn I, mn +mn I}, ImageSize - 150],
Graphics [{{Black , Line[{hpl + hp2, hpl - hp2, -hpl - hp2, -hpl + hp2, hpl + hp2}],
PointSize [.03], Point[opts]}}]]]

