
Explicit Regular Quadratic Surface 

Intersection Curves

Barry H Dayton

http://barryhdayton.space

Quadratic  Surface  Intersection  Curves,  QSIC,  can  be defined  implicitly  as the  solution  set  of 2 real  quadratic  equations  in three  

unknowns.   The  question  of describing  them  explicitly  by a parametric  equation  is a classical  problem.    Only  recently  has  this  

been  solved  in general.    L . Dupont, D . Lazard, S . Lazard and  S . Petitjean  [J . Symbolic  Computing,  3 (43),  2008]  presented  a 

black  box  algorithm  using  exact  computations.   They  give  a 65 page  discussion.   This  has  been  implemented  but  requires  integer  

coefficients  although  the  integers  can  be large  enabling  numerical  solutions  or examples  to be approximated.

In 2013  I published  a paper,  see  http://barryhdayton.space/RQSIC.pdf   giving  a probabilistic  numerical  approach.   This  is 

implemented  by  Mathematica  in my   Space  Curve  book   http://barryhdayton.space/ The  present  implementation  uses  the  

WeierstrassP  functions  rather  than  quadratic  rational  functions.  The  complicated  formulas  are  hidden  in Mathematica func -

tions,  however  it is not  black  box,  there  are  decisions  required  of the  user  .

The  method  consists  of  three  parts,  first  we  give  a  carefully  constructed,  partly  random  projection  that  takes  the  intersection

curve  to  a plane  cubic.   Then  the  cubic  is,  again  partly  randomized,  transformed  to  a cubic  in  Weierstrass  normal  form.  Both  of

these  transforms  have  right  indices.   The  third  step  is  to  parameterize  the  normal  form  cubic  and  then  map  this  parameteriza -

tion  back  to ℝ3 using  the  inverses.

This  version  is meant  as  a stand-alone   paper  specifically  for  readers  who  are  not  regular  Mathematica  users.   I mention,  for  

those  not  familiar  with  Mathematica,  that  ordered  pairs  or triples  use  {a,b}  or {a,b,c}.  Mathematica  is the  platform  I use  and  

there  will  be  some  snipits  of code  throughout  the  paper,  but  the  full  code  will  be  in the  appendix.  A Mathematica  Notebook

version  of this  paper  is available  at my  Mathematica  community  page  https://community.wolfram.com/web/bhdayton/home  

(use  attached  corrected  notebook  to my  reply).

1. Preliminaries

1.1 Projective  Linear  Transformations  and  Transformation  Functions

The  most  important  concept  in working  with  geometry  is to understand  the  functions  which  give  the  equivalence  between  

various  objects  of study.   Unfortunately  most  discussions  of geometry  give  short  shrift  to this  important  part  of of the  subject.   

For  our  purposes  projective  quadric  surfaces  and  curves  are  equivalent  if there  is a  an invertible  projective  linear  transformation   

which  takes  one  to the  other.   

In this  paper  we  will  need  to use  projective  linear  transformations  from   real  projective  n space  ℙn to projective  m  space  ℙm.  

Here  we  can  think  of projective  d  space  ℙd given  by vectors  of length  (d+1)  under  the  equivalence  relation   r v ≡ v  for  any  real  

r ≠ 0. Such  a transformation  can  be given  by an (n+1)×(m+1)   real  matrix   A which  operates  by matrix-vector  multiplication  as 

this  respects  scalar  multiplication.   The  transformation  is invertible  if and  only  if the  matrix  A is invertible.

Unfortunately  working  with  equivalence  classes  is awkward,  and  often  computationally  in ℙd  we  prefer  working  with  affine  

points,  that  is vectors  of length  d where  the  affine  point  {x1, …, xd}  represents  the  projective  point   {x1, …, xd , 1} . S.S  

Abhyankar  devotes  Chapter  2 of his  book  [Algebraic  Geometry  for  Scientists  and  Engineers,  AMS  , 1990]  to what  he calls  Frac-

tional  Linear  Transformations   Mathematica  uses  Transformation  Functions  to achieve  this.    As  an example  given  the  matrix

In[  ]:= A =

a1 a2 a3 a4

b1 b2 b3 b4

c1 c2 c3 c4

Out[  ]= {{a1, a2, a3, a4}, {b1, b2, b3, b4}, {c1, c2, c3, c4}}

we get  a projective  linear  transformation  from  ℙ3 → ℙ2 taking  the  affine  point  p = {x1, x2, x3}

to




a4 + a1 x1 + a2 x2 + a3 x3

c4 + c1 x1 + c2 x2 + c3 x3
,
b4 + b1 x1 + b2 x2 + b3 x3

c4 + c1 x1 + c2 x2 + c3 x3
 (1) (1)

I will  use  the  notation  fltMD[p,  A]  for  this,   Mathematica  has  a built  in function  for  this

fltMD[p_,  A_]  := TransformationFunction[A][p]

 For  projective  points  {x1, x2, x3, x4} with  x4 ≠ 0  this  is the  same  as applying  the  projective  linear  transformation  with  the  same  

matrix  since   projective  {x1, x2, x3, x4}  corresponds  to affine    x1

x4
,

x2

x4
,

x3

x4
.

Note  however  that  the  domain  of this  transformation  is the  set  of vectors  {x1, x2, x3}  where  c4 + c1 x1 + c2 x2 + c3 x3 ≠ 0.  Those  

affine  points  where  c4 + c1 x1 + c2 x2 + c3 x3 = 0  go to infinite,  that  is non  affine,  points  of the  range  under  the  corresponding  

projective  linear  transformation.  

An important  fact  about  these  transformations  is that  matrix  multiplication  on  the  transformation  matrix   gives  composition  of 

functions

fltMD[p,  A B]  = fltMD[fltMD[p,  B],  A]

In particular  this  implies  that  for  an invertible  matrix  A then  the  fractional  linear  transformation  fltMD[p,A] is invertible  with  

inverse  fltMD[q,Inverse[A]]

Given  a polynomial  equation  f=0  in the  range  of fractional  linear  transformation  by substituting  a formula   such  as (1)  with  

specific  values  for  ai , bi , ci  with  the  domain  variables  and  then  simplifying  we  can  get  a formula  for  the  inverse  image  of f = 0.   

If our  fractional  linear  transformation  is invertible,  the  inverse  image  of of the  inverse  transformation  is a formula  for  the  range  

of a polynomial  equation  in the  domain.    We  have  code  for  this  push  forward  operator  in the  appendix  under  the  name  FLT3D.

A technical  warning  is in order.   These  transformations  are  affine  versions  of  projective  transformations,  as  such  the  transforma -

tion  matrices  should  be  seen  as  projective,  that  is  a  non-zero  constant  multiple  of  the  transformation  matrix  gives  the  same

transformation.   For  this  reason,  especially  if  the  matrix  has  machine  numbers  entries  then  converting  to  a  rational  function

may  not  behave  as in equation  (1)  above,  rather  one  may  get  equivalent,  but  not  equal,  fractions.   We  will  see  this  below.

1.2 Quadratic  Surfaces

Quadric  surfaces  are  defined  from  our  affine  point  of view  by an equation

a1 x
2

+ a2 x y + a3 y
2
+ a4 x z + a5 y z + a6 z

2
+ a7 x + a8 y + a9 z + a10 = 0

The  following  chart  from  my  Surface  Story   http://barryhdayton.space/SurfaceBook/SurfaceStoryPartII.pdf gives  the  possibilities.

Projective Real Quadric Surfaces

Type Not Surface Degenerate Cone Ellipsoid Hyperboloid

Possible

Picture

example (y-2x)2+(z+3x)2=0 xz=0 z2=x2+y2 x2+y2+z2=1 x2+y2-z2=1

singularity ? All line point none none

ruled? no two parts single none double

Affine

Variants

empty set

point,line

plane squared

parallel-

planes

cylinder

Cone

parabolic

hyperbolic

elliptic

saddle-

Surface

The  only  possibilities  for  a real  smooth  projective  surface  are  the  the  ellipsoid  and  hyperboloid.   However  note  that  the  

paraboloid,  for  example  z = x2 + y 2, and  hyperbolic  ellipsoid,  otherwise  known  as hyperboloid  of 2 sheets  , for   example   

x2 - y 2 - z2 = 1, are  projectively  equivalent  to the  standard  ellipsoid.   In affine  geometry  the  hyperboloid  in the  chart  is 

known  as the  elliptic  hyperboloid,  and  the  the  hyperbolic  hyperboloid  is otherwise  known  as the  saddle  surface,  for  example  

z = x y .  Again  projectively  they  are  the  same.   For  details  see  my  Surface  Story  , Chapter  2.  The  main  difference  between  the  

hyperboloid  and  ellipsoid  is that  at every  point  the  hyperboloid  contains  two  lines  through  that  point,  but  the  ellipsoid  contains  

no lines  at all.    Actually  each  point  of an ellipsoid  does  contain  two  complex  lines  in the  complex  ellipsoid  so in complex  
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geometry  all  smooth  quadratic  surfaces  are  projectively  equivalent.   But  this  post  is only  concerned  with  real  quadratic  surfaces.

2. The main Reduction

We  give  an algorithm  to find  parametric  functions  capable  of plotting  the  intersection  curve  of 2 quadratic  surfaces   given  by 

affine  quadratic  polynomials.   This  algorithm  will  be  probabilistic  in that  random  choices  are  made  which  most  likely  will  work  

given  that  the  two  surfaces  are  not  singular  and  the  intersection  curve  is non-planar  of genus  1.  Ideally  we  would  check  our  

surfaces  first  and  eliminate  the  many  cases  where  this  does  not  happen  but  one  nice  feature  of this  not  being  a black  box  

algorithm  is that  we  can  plow  ahead  but  check  our  progress  and  if is not  working  we  can  try  different  random  choices  or perhaps  

now  check  that  our  assumptions  on  the  QSIC  are  correct.     While  the  skeptical  mathematician   will   have  no  trouble  finding  

counter  examples,  the  probability  is that  we  will  get  a solution  unless  we  are  deliberately  looking  for  counter  examples.

The  first  step  is our  main  reduction  where  we  model  the  intersection  curve  with  a plane  non-singular,  hence  genus  1, cubic  

curve.   In this  paper  I give  this  as a mathematical  algorithm,  but  Mathematica  code  is in the  Appendix.

Algorithm  nsQSIC

Input  : Two  quadric  polynomials  Q1, Q2  in three  variables  x, y, z and  a point  p  in the  intersection.   This  point  p could  be 

chosen  by the  Mathematica  algorithm  findQpts in the  Appendix.

Output: A cubic  plane  curve  with  equation  h, hopefully  non  singular  (check!),  a fractional  linear  transformation  

Ω : ℝ3 → ℝ2 so that  for  each  point  s  of  the  intersection  Ω(s) is a point  of h, and  a rational  polynomial  function  

℧ : ℝ2 → ℝ3 which  is a right  inverse  of Ω,  that  is for  each  point q  of h, ℧(q)  is in the  QSIC  and Ω(℧(q))  = q.

Step  1 :  We  append  1 to p to get  a vector  of length  4 and  normalize  to norm  1,  and  then  append  a random  real  3×4  matrix  to 

obtain  a 4×4  matrix  which  we  then  orthogonalize  and  reverse  the  order  of rows.   This  gives  an orthogonal  matrix  with  a 

projective  equivalent  of p as last  row  which  we  will  call  A.   This  will  cause  the  point  p to be transformed  to an infinite  point  on  

h by the  fractional  linear  transformation  determined  by A.  The  linear  fractional  transformation  given  by the   3×4  matrix  of 

the  first  3 rows  of A will  be  the  output Ω.

Step  2:  The  QSIC,  that  is the  two  quadratics,   are  transformed  to quadratics   F1, F2  so that   the  fractional  linear  transforma -

tion  determined  by matrix  A sends  all  points  on  Q1, Q2 to points on  F1, F2 respectively.   These  quadratics  can  be calculated  

essentially  by taking  the  preimage  of the  transformations  to Q1, Q2 given  by  A-1.  This  trick  which   can  only  be done  by 

invertible  transformations  is implemented  by the  code   FLT3D  in the  appendix.   With  probability  1 the  quadratics  F1, F2  will  

have  non-zero  coefficient  for  each  monomial  in x, y and  z of degree  3 or less.

Step  3 :  The  sum  of all  terms  of total  degree d  of  a polynomial  will  be  called  the  Form  of degree  d.  We  let

L be the  form  of degree  1 of F1

M be the  form  of degree  1 of F2

R be the  form  of degree  2 of F1

S be the  form  of degree  2 of F2

Then  h  will  be  the  expansion  of L⨯S-R⨯M  with  variable  z evaluated  to 1.  Since  each  term  of L⨯S,  R⨯M will  be  a product  of of a 

polynomial  of degree  1 times  a polynomial  of degree  2 it will  be  of at most  degree  3, so h will  be  of degree  h with  probability  1.  

It is less  obvious  that  Ω will  take  all  points  of the  original   QSIC  to h but  this  is the  trick  that  classical  mathematicians  discov -

ered.   This  is something  that  should  be checked.  

Step  4:  There  is a complicated  formula  defining   ℧ best  described  by Mathematica  code.  in the  Appendix.  
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In[  ]:= ℧ =

Take Inverse [A].Join #1, 1, -
R

L
/. Thread [{x, y, z} → Append [#1, 1]], 3

Last Inverse [A].Join #1, 1, -
R

L
/. Thread [{x, y, z} → Append [#1, 1]]

&

Out[  ]=

Take Inverse [A].Join #1, 1, -
R

L
/. Thread [{x, y, z} → Append [#1, 1]], 3

Last Inverse [A].Join #1, 1, -
R

L
/. Thread [{x, y, z} → Append [#1, 1]]

&

The  motivation  for  this  algorithm  comes  from  a classical  computation  where  the  input  QSIC  already  had  generic  coefficients.   

This  was  done  in the  projective  setting  where  Ω was  simply  the  projection  of ℙ3 → ℙ2  evaluating  z to 1 and  ℧ inserted  a 1 after  y.

Because  this  algorithm  depends  on  choosing  a point  p  of  the  QSIC  and  the  somewhat  random  construction  of matrix  A each  

time  the  code  is evaluated  there  are  different  values  of the  output.   The  output  must  be saved  for  the  rest  of the  rest  of the  

calculation  of the  QSIC  as they  can’t  be replicated.

We  do an example  of the  output  of nsQSIC  for  

In[  ]:= Q = {x y - z, (x - 1)^2 + (y + 1)^2 + (z + .9 )^2 - 3.6 };

The  contour  plot  of the  surfaces  is

In[  ]:= ContourPlot3D {Q〚1〛 ⩵ 0, Q〚2〛 ⩵ 0}, {x, - 4, 4}, {y, - 4, 4}, {z, - 4, 4}, Mesh → None ,

ImageSize → Small , ContourStyle → {Orange , Green }, Axes → False , Boxed → False 

Out[  ]=

Our  point  is 

    p0  ={-0.445491,  -0.499856,  0.222681}

Then  running  nsQSIC  and  saving  our  values  under  the  names  p0,  A0,  h0,   Ω0,  ℧0

In[  ]:=

h0 = 0.0134767 + 2.68149 x - 0.966728 x2 - 0.178344 x3 +

0.212614 y + 2.02179 x y + 2.06994 x2 y + 0.0498793 y2 + 0.0173951 x y2 + 0.831885 y3;
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In[  ]:= ContourPlot h0 ⩵ 0, {x, - 10, 10}, {y, - 10, 10}, ImageSize → Small 

Out[  ]=

-10 -5 0 5 10

-10

-5

0

5

10

In[  ]:=

A0

Out[  ]= {{0.865333 , 0.184098 , 0.108445 , 0.453372 }, {- 0.000329302 , - 0.0169023 , 0.974095 , - 0.225508 },

{- 0.344536 , 0.893878 , 0.079216 , 0.275683 }}

Ω0 [{x, y, z}]

Out[  ]= 
0.453372 + 0.865333 x + 0.184098 y + 0.108445 z

0.275683 - 0.344536 x + 0.893878 y + 0.079216 z
,

- 0.225508 - 0.000329302 x - 0.0169023 y + 0.974095 z

0.275683 - 0.344536 x + 0.893878 y + 0.079216 z


Note  that  we  expected  the  numbers  above  to  come  from  the  matrix  A0  but  Mathematica  normalized  somewhat,  this  gives  an

equivalent   transformation  to    Ω0[{x,y,z}]  = fltMD[{x,y},A0].   Next

℧0 [{x, y}] = 
0.0470403 + 1.31717 x2 - 0.471226 y - 0.223932 y2 + x (- 0.500068 + 2.2469 y)

- 0.52182 + 2.30415 x + 1. x2 - 0.171647 y - 0.410038 x y + 0.0298039 y2
,

1.12363 + 0.178448 x2 + x (0.895565 + 0.849293 y) + 2.13362 y - 0.285813 y2

- 0.52182 + 2.30415 x + 1. x2 - 0.171647 y - 0.410038 x y + 0.0298039 y2
,

0.101291 - 0.548793 x - 0.235047 x2 - 0.855663 y - 1.616 x y - 2.14746 y2

0.52182 - 2.30415 x - 1. x2 + 0.171647 y + 0.410038 x y - 0.0298039 y2


We  now  check  our  assertions  using  Mathematica,  first  Ω0 should  send  p0 to an infinite  point

In[  ]:= Ω0 [p0 ]

Power : Infinite expression
1

0.

encountered .

Power : Infinite expression
1

0.

encountered .

Out[  ]= ComplexInfinity , ComplexInfinity 

Next  we  show  a somewhat  random  point   p1  on  our  QSID  maps  to h

In[  ]:= p1 = findQpts [Q, {x, y, z}, 2]〚2〛

Out[  ]= {- 0.333333 , 0.00867049 , - 0.00289016 }

Evaluating  h at Ω0(p1)  we  get  a very  small  residue
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In[  ]:= h0 /. Thread [{x, y} → Ω0 [p1 ]]

Out[  ]= 5.55112 × 10-17

Now  picking  a random  point  on  h0 we  show  ℧0 sends  h to the  QSIC

q0 = - 10.185851944205135` , 0.38297149894397153` 

In[  ]:= p3 = ℧0 [q0 ]

Out[  ]= {1.50186 , 0.27477 , 0.412667 }

In[  ]:= Q /. Thread [{x, y, z} → p3 ]

Out[  ]= 1.11022 × 10-16, 4.44089 × 10-16

And  finally  

In[  ]:= Ω0 [p3 ] = - 10.18585194420513` , 0.3829714989439713` 

Out[  ]= {- 10.1859 , 0.382971 }

which  was  q0 so our  requirements  were  met.

Picking  one  pseudo-random  point  to test  is not  a proof,  but  it is a strong  indication  that  the  algorithm  is working  on  this  

example  so we  can  proceed.   If there  is failure  on  one  of the  above  tests  possibly  run  the  algorithm  again,  it might  have  been  a 

bad  choice  of random  points.   Repeated  failures  indicates  this  algorithm  is not  going  to work  on  this  QSIC,  perhaps  this  QSIC  is 

not  of genus  1,  maybe   singular  or planar.

3. Transforming  the cubic to Weierstrass  Normal form.

The  Weierstrass  Normal  form  for  a cubic  is 

y2 = 4 x3 - g2 x - g3

In my  Plane  Curve  Book   [A Numerical  Approach  to Real  Algebraic  Curves  with  the  Wolfram  Language,  Wolfram  Media,  2018,  

https://wolfr.am/Dayton] I discussed  this  in Chapter  7.  All  regular  cubics  are  fractional  linearly  equivalent  to a cubic  in Weier -

strass  normal  form,  but  the  form  is not  unique.  Again  the  key  thing  is not  just  the  equation  but  the  transformation  taking  the  

curve h above  to this   form.   This  is again  given  by a transformation  function.   One  issue  is that  since  I was  working  numerically  

in that  book  the  coefficient  4 which  made  some  hand  calculations  easier  did  not  seem  necessary.   However  our  implementation  

of this  assures  that  the  coefficient  of x3  is 4.  Our  code  in the  Appendix  slightly  changed  from  my  book  to give  the  correct  

equation  which  will  also  then  changes  the  coefficients  g2, g3.  It is actually  these  numbers,  not  the  equation,  that  will  be  impor -

tant,  so the  new  algorithm  displays  the  equation  but  returns  the  pair  {g2, g3} which  are  called  the  Weierstrass  Invariants.  

In addition  to the  cubic h,  one  must  input  a choice  of inflection  point  for  the  curve.   Since  h is assumed  to be a  non-singular  

real   cubic  there  will  be  a real   inflection  point,   in fact  3, if one  counts  multiplicity.   For  the  reader’s  convenience  I include  a 

Mathematica  function  in the  appendix  to find  these  along  with  the  normal  form  transformation.

For  the  example  in the  previous  section  we  can  pick  the  inflection  point

In[  ]:= infPt1 = - 0.646618667877992` , 0.2880193877589238` ;

Then  running  our  example,  possibly  several  times  to get  a real  normal  form,  important  for  plotting.

In[  ]:= {wg, B2} = weierstrassNormalForm h, infPt1 , x, y;

Normal Form - 0.481377 + 4.36185 x + 4. x3 - 1. y2

So the  Weierstrass  invariants  are

6   ExplicitRegularQSICprint.nb



In[3]:= wg

Out[3]= {- 4.36185 , 0.481377 }

and  B2 is

Out[1]//MatrixForm=

- 2.09677 - 1.20156 1.34248

- 7.13704 1.30653 - 3.98131

- 1.33852 3.05905 2.4188

Again  we  save  our  output  for  the  rest  of this  example  since  repeated  runs  will  give  different  values.   In particular  some  runs  may  

give  complex  invariants  which  we  want  to avoid,  so we  may  wish  to run  this  several  times  until  we  get  nice  real  invariants  which  

we then  save.   Also  save  the  corresponding  transformation.

Note  that  in the  affine  plane  the  plot  of a normal  form  curve  can  be in the  topological  shape  of one  of the   two  examples.

Out[5]=

y2=4x3+4.36 -0.48
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y2=4x3-18x-1
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10

In the  first  case  we  have,  in the  real  affine  plane,  one  topological  component  which  has  only  one  infinite  point  giving  a loop  in 

the  real  projective  plane.   In the  second  case  we  get  two  affine  topological  components  which  become  two  loops  in the  projec -

tive  plane.   Thus  a regular  QSIC  curve  can  have  one  or two  topological  components  only  and  this  will  be  reflected  in the  normal  

form  of the  cubic  produced  by algorithm  nsQSIC.

4. Parameterizing  the normal form

The  importance  of the  normal  form  is that  we  can  easily  parameterize  cubics  in normal  form.   One  way  that  I used  in earlier  

versions  of my  QSIC  investigations  is with  is square  roots  in the  numerator  and  denominator.   In this  case  the  parameterization  

of y2 = 4 x3 - g2 x - g3  is 

x, ± 4 x^3 - g2 x - g3 
One  may  then  worry  about   which  sign  to take  for  what  x and  what  part  of the  curve.   Piecewise  parameterization  will  be  needed.   

This  gets  particularly  messy  in the  next  section  where  we  lift  this  parameterization  to the  QSIC  with  our  rational  functions.

In this  paper  I instead  propose  the  use  of the  Weierstrass  P functions  which  are  conveniently  and  quickly  implemented  by 

Mathematica.  The  reader  not  familiar  with  these  functions  may  wish  to explore  elsewhere  for  the  construction  and  calculation  

of these  functions,  here  we  will  only  explain  how  to use  them.   These  are  complex  functions  of a single  complex  variable   that  are  

periodic  with  two  real  independent  complex  periods  and  a pole  at the  origin.   These  functions  are  themselves  parameterized  by  

Weierstrass  invariants.    Fortunately  Mathematica  also  has  built-in  procedures  to calculate  the  periods  from  the  invariants,  from  

the  periods  we  can  describe  fundamental  period  parallelograms  which  completely  determine  the  function.   Unlike  some  

theoretical  expositions  we  put  the  pole  in the  middle  of  fundamental  parallelogram  rather  than  the  corners.  

With  Mathematica  we  can  parameterize  real  cubics  in real  Weierstrass  Normal  form.     The  Mathematica  syntax  is 

In[  ]:= μ [t_, {g2_, g3_ }] := Re WeierstrassP [t, {g2, g3}], WeierstrassPPrime [t, {g2, g3}]

for  the  curve  y2 = 4 x3 - g2 x - g3 .  The  domain  for  t is the  entire  complex  plane  but  it is enough  to use  only  the  fundamen -

tal  period  parallelogram  to obtain  the  entire  complex  curve  as this  parameterization  is also  periodic  with  the  same  periods.   We  

are  only  interested  in real  values  of the  normal  form  curve  and  if t,  g2,  g3 are  all  real  then  we  will  get  a real  value.   However  we  

will  see  that  to get  all  real  values  of the   normal  form  curve  we  will  have  to use  some  complex  points  in the  fundamental  period  

as well,  especially  for  normal  curves  with  2 topological  components.   One  technicality  with  the  Mathematica implementation  is 
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that  the  WeierstrassP functions  use  a numerical  method  to do the  calculations  and  t must  be a  Mathematica  machine  number,  

that  is a decimal  number.   One  could  replace  t by  N[t]  in the  formula  above  if this  is a problem.    If we  plan  to use  this  with  

ParametricPlot or  ParametricPlot3D the  parameter  there  must  be real.   In some  cases  below  we  need  complex  parame -

ters  but  fortunately  the  imaginary  part  is constant  so that  constant  can  be added  to real  t in the  formula  above.

To help  find  the  correct  parameter  ranges  for   given  Weierstrass   invariants  I have  a Mathematica  procedure  called  wpgram -

Plot[wpar]  with  code  in the  Appendix.   Unlike  my  earlier  algorithms  this  is deterministic  so one  will  get  the  same  result  each  

time  it is run  with  the  same  invariants.   For  the  example  above  we  get

In[25]:= wpgramPlot - 4.3618451810711205` , 0.48137714411463256` 

» hps {{0.870595 , 0.93462 }, {- 0.870595 , 0.93462 }}

» corners 2.22045 × 10-16, 1.86924 , {1.74119 , 0. }, - 2.22045 × 10-16, - 1.86924 , {- 1.74119 , 0. }

» x-axis points {{0.0457074 , 1.86924 }}

In this  example  the  fundamental  parallelogram  is given  in black,  the  white  regions  surround  the  poles  and  the  other  colors  are  

determined  by the  argument  of the  WeierstrassP  function  at that  point.   We  don’t  really  care  about  these  arguments  but  they  do 

help  illustrate  the  periodicity.   Note  how  opposite  sides  of the  fundamental  parallelogram  have  the  same  coloring,  this  is 

because  periodicity  requires  opposite  points  to be the  same.   We  saw  in the  plots  in the  last  section  that  Weierstrass  normal  

form  cubics  will  intersect  the  x-axis  in one  or three  points.   A preimage  on  the  boundary  of the  parallelogram  of each  of these  

points  is shown  as a black  dot.   The  values  of the  half  periods,  corner  points  of the  parallelogram  and  the  pre-images  of the  x-

axis  points  are  given  approximately  and  will  be  useful.   Note  in this  example  the  x-axis  point  is one  of the  corners,  approxi -

mately,  but  by periodicity  then  all  the  corners  will  map  to that  same  real  value.

Since  we  are  plotting  a real  curve  in this  case  we  will  get  all  real  values  of the  curve  using  real  points  of the  parameter.   So  we  can  

read  off  the  value  of the  two  real  corner  points  from  the  information  above.   Since  plotting  will  only  needs  to be accurate  to 3 

decimal  points   we  can  get  away  with  approximate  values  ,  our  interval  is  -1.1963 ≤ t ≤ 1.1963  we  use  slightly   larger  range  for  

the  plotting  routine.    Here  we  add  our  parameter  interval  to our  graphic  as a dashed  line  and  show  the  parametric  plot.   We  give  

the  code  here

In[27]:= Row 

Show wpgramPlot [{- 4.36184 , 0.481377 }], Graphics Black , Dashed , Line [{{- 1.8, 0}, {1.8, 0}}],

" ", ParametricPlot μ [t, {- 4.36184 , 0.481377 }], {t, - 1.8, 1.8 },

PlotRange → 5, ImageSize → 150 

» hps {{0.870595 , 0.93462 }, {- 0.870595 , 0.93462 }}

» corners {{0., 1.86924 }, {1.74119 , 0. }, {0., - 1.86924 }, {- 1.74119 , 0. }}

» x-axis points {{0.0457075 , 1.86924 }}
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There  are  4 other  cases  we  need  to consider.   Again  we  show  the  code

In[  ]:= Row 

Show wpgramPlot [{2, 3}], Graphics Black , Dashed , Line - 1.19722` , 0, 1.19722` , 0,

" ", ParametricPlot μ [t, {2, 3}], {t, - 1.214 , 1.214 }, PlotRange → 4, ImageSize → 150 

» hps {{1.19722 , 0. }, {0.59861 , 1.17514 }}

» corners {{1.79583 , 1.17514 }, {0.59861 , - 1.17514 }, {- 1.79583 , - 1.17514 }, {- 0.59861 , 1.17514 }}

» x-axis points {{1.21402 , 0. }}

Out[  ]=

-4 -2 2 4

-4

-2

2

4

In[  ]:= Row 

Show wpgramPlot [{- 2, - 3}],

Graphics Black , Dashed , Line - 2.06563 , 0.` , 2.06563 , 0.` , " ",

ParametricPlot μ [t, {- 2, - 3}], {t, - 2.06563 , 2.06563 }, PlotRange → 4, ImageSize → 150 

» hps {{1.03282 , - 0.674662 }, {1.03282 , 0.674662 }}

» corners 2.06563 , 4.44089 × 10-16, {0., - 1.34932 }, - 2.06563 , - 4.44089 × 10-16, {0., 1.34932 }

» x-axis points 2.09029 , - 6.66134 × 10-16

Out[  ]=

-4 -2 2 4

-4

-2

2

4

This  next  one  requires  three  plots  to keep  the  parameter  in the  fundamental  period  parallelogram.   We  show  the  parts  using  

different  colors.
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In[  ]:= impart = 1.19722` ;

In[  ]:= Row 

Show wpgramPlot [{2, - 3}],

Graphics Black , Dashed , Line - 1.175 , impart , 0, impart ,

Line [{{- 1.175 , 0}, {1.175 , 0}}], Line 0, - impart , 1.175 , - impart ,
Black , PointSize [.02 ],

Point - 1.175 , impart , - 0, impart , {- 1.175 , 0}, {1.175 , 0}, 0, - impart ,

1.175 , - impart , ImageSize → 200 , " ",

Show ParametricPlot Re μt + impart I, {2, - 3}, {t, - 1.175 , 0}, PlotStyle → Orange ,

PlotRange → 4, ParametricPlot [Re [μ [t, {2, - 3}]], {t, - 1.175 , 1.175 },

PlotStyle → Blue , PlotRange → 4],

ParametricPlot Re μt - impart I, {2, - 3}, {t, 0, 1.175 }, PlotStyle → Green ,

PlotRange → 4, ImageSize → 150 

» hps {{0., - 1.19722 }, {1.17514 , - 0.59861 }}

» corners {{1.17514 , - 1.79583 }, {- 1.17514 , - 0.59861 }, {- 1.17514 , 1.79583 }, {1.17514 , 0.59861 }}

» x-axis points {{0.0168172 , - 1.19722 }}

Out[  ]=

-4 -2 2 4

-4

-2

2

4

In this  case  we  can  consolidate  to one  real  interval  if we  can  go outside  our  fundamental  parallelogram.

In[  ]:= rpart = 2 * 1.1751`

Row Show wpgramPlot [{2, - 3}], Graphics Black , Dashed , Line [{{- rpart , 0}, {rpart , 0}}],

" ", ParametricPlot μ [t, {2, - 3}], {t, - 2.4, 2.4 }, PlotRange → 4, ImageSize → 150 

Out[  ]= 2.3502
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» hps {{0., - 1.19722 }, {1.17514 , - 0.59861 }}

» corners {{1.17514 , - 1.79583 }, {- 1.17514 , - 0.59861 }, {- 1.17514 , 1.79583 }, {1.17514 , 0.59861 }}

» x-axis points {{0.0168172 , - 1.19722 }}

Out[  ]=

-4 -2 2 4

-4

-2

2

4

Finally  we  come  to the  case  where  the  normal  form  conic  has  2 real  components.   In this  case  we  are  forced  to use  2 intervals,  

one  being  complex.

In[  ]:= Row 

Show wpgramPlot [{8, 1}],

Graphics White , Dashed , Line [{{- 1.07255 , 1.0726 }, {1.07255 , 1.0726 }}],
Black , Dashed , Line [{{- 1.07255 , 0}, {1.07255 , 0}}],
Black , PointSize [.03 ],

Point [{{- 1.07255 , 1.0726 }, {1.07255 , 1.0726 }, {- 1.07255 , 0}, {1.07255 , 0}}],

" ", Show ParametricPlot μ [t, {8, 1}], {t, - 1.07255 , 1.07255 }, PlotRange → 4,

ImageSize → 150 , ParametricPlot Re [μ [t + 1.14063 I, {8, 1}]], {t, - 1.07255 , 1.07255 },

PlotRange → 4, ImageSize → 150 

» hps {{1.07255 , 0}, {0., 1.14063 }}

» corners {{1.07255 , 1.14063 }, {1.07255 , - 1.14063 }, {- 1.07255 , - 1.14063 }, {- 1.07255 , 1.14063 }}

» x-axis points {{0.014966 , 1.14063 }, {1.04616 , 1.14063 }, {1.08396 , 0}}

Out[  ]=

-4 -2 2 4

-4

-2

2

4

5. Parameterizing  the QSIC

So we  have  broken  the  problem  down  to 3 steps,  first  use  algorithm  nsQSIC  to get  a plane  cubic  h and  rational  function  ℧.   The  

fractional  linear  transformation  Ω is useful  for  checking  our  work.   Then  we  transform  h to normal  form  saving  the  Weierstrass  

Invariants  wg and   transformation  matrix  B2.   We  thirdly  get  our  parameter  intervals  by finding  and  analyzing  the  fundamental  

domain  of our  invariants.   In some  cases  we  may  need  to do this  piecewise  with  several  different  intervals.   In each  case  the  

parametric  function  is given  simply  in Mathematica  notation

℧[fltMD [μ[t + ipart ⅈ, wg ], Inverse [B2 ]]]

where  ipart is the  constant  imaginary  part  on  this  interval,  if any.

ExplicitRegularQSICprint.nb  11



In our  running  example  Q = {x y-z,  (x - 1)2 + (y + 1)2 + (z + .9)2 -3.6}  we  have

ParametricPlot3D ℧0 fltMD [μ [t, wg ], Inverse [B2 ]], {t, - 1.8, 1.8 }, PlotRange → Full ,

ImageSize → 200 

Out[  ]=

Plotting  with  the  surfaces

In[  ]:= Show ContourPlot3D [{Q〚1〛 ⩵ 0, Q〚2〛 ⩵ 0}, {x, - 4, 4}, {y, - 4, 4}, {z, - 4, 4}, Mesh → None ,

ContourStyle → {Orange , Green }],

ParametricPlot3D ℧0 fltMD [μ [t, wg0 ], Inverse [B2 ]], {t, - 1.26 , 1.26 }, PlotRange → Full ,

PlotStyle → Directive Thickness [.01 ], Black , Axes → None , Boxed → False 

Out[  ]=

5.1 Some  more  examples

We  summarize  the  results  for  two  more  examples  .  The  next  is the  intersection  of an ellipsoid  and  a paraboloid  that  is some -

what  off  center.

In[  ]:= Q2 = {(x - .3 )^2 / 4 + (y + .8 )^2 / 9 + (z - 2)^2 - 1, z - (2 x^2 + 2 y^2)};

We  first  run  our  nsQSIC  routine  getting  the  following

12   ExplicitRegularQSICprint.nb



h2 = - 1.70891 - 4.90155 x - 0.436806 x2 + 2.76916 x3 -

3.04504 y - 5.54903 x y - 1.11613 x2 y + 1.42088 y2 + 1.73389 x y2 + 0.493294 y3

           ℧2[{x,  y}]  =


- 0.44385 - 0.00288317 x2 + x (- 0.386849 + 0.878168 y) + 0.857298 y + 0.26742 y2

1.28184 + 2.20131 x + 1. x2 + 0.568622 y + 0.519988 x y + 0.124632 y2
,

0.00937192 - 1.2944 x - 1.23691 x2 + 0.287652 y - 0.16422 x y + 0.00183044 y2

1.28184 + 2.20131 x + 1. x2 + 0.568622 y + 0.519988 x y + 0.124632 y2
,

1.40069 + 2.20899 x + 1.02232 x2 + 0.461645 y + 0.439683 x y + 0.21522 y2

1.28184 + 2.20131 x + 1. x2 + 0.568622 y + 0.519988 x y + 0.124632 y2


In[33]:= wg2 = 23.827403750302487` , 20.15211351942233` 

Out[33]= {23.8274 , 20.1521 }

In[29]:= B22 // MatrixForm

Out[29]//MatrixForm=

- 3.2832 - 1.09932 - 2.61352

- 3.67212 2.19815 - 0.965365

1.88915 0.418749 2.00441

In[34]:= wpgramPlot [wg2, ep → .2 ]

» hps {{0.769421 , 0}, {0., 1.10583 }}

» corners {{0.769421 , 1.10583 }, {0.769421 , - 1.10583 }, {- 0.769421 , - 1.10583 }, {- 0.769421 , 1.10583 }}

» x-axis points {{0.0302383 , 1.10583 }, {0.733416 , 1.10583 }, {0.775188 , 0}}

We  see  that  we  will  have  two  components  so the  curve  will  require  two  parametric  plots,  one  with  complex  parameters.   The  

curve  itself  looks  like

Show ParametricPlot3D ℧2 fltMD [μ [t, wg2 ], Inverse [B22 ]], {t, - .77, .77 },

PlotRange → {{- 3, 3}, {- 3, 3}, {0, 3}}, PlotStyle → Directive Thickness [0.015 ], Black ,

ParametricPlot3D ℧2 fltMD [μ [t + 1.10583 I, wg2 ], Inverse [B22 ]], {t, - .77, .77 },

ImageSize → 200 
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The  curve  with  the  quadric  surfaces  is

Show ContourPlot3D [{(x - .3 )^2 / 4 + (y + .8 )^2 / 9 + (z - 2)^2 ⩵ 1, z ⩵ 2 x^2 + 2 y^2},

{x, - 2, 3}, {y, - 4, 4}, {z, 0, 4}, Mesh → None ],

ParametricPlot3D ℧2 fltMD [μ [t, wg2 ], Inverse [B22 ]], {t, - .77, .77 }, PlotRange → 3,

PlotStyle → Directive Thickness [0.015 ], Black ,

ParametricPlot3D ℧2 fltMD [μ [t + 1.0583 I, wg2 ], Inverse [B22 ]], {t, - .77, .77 },

PlotStyle → Directive Thickness [0.015 ], Black , Axes → False , Boxed → False 

This  last  example  is an unbounded  curve  with  4 affine  components  consisting  with  the  intersection  of a hyperboloid  and  a 

hyperbolic  ellipsoid.

In[  ]:= Q3 = {x^2 + y^2 - z^2 - 9, 2 (x - 1)^2 - (y - .25 )^2 - z^2 - .5};

A point  on  Q3  is 

In[  ]:= q3pt

Out[  ]= {2.46923 , - 1.70379 , 0. }

Applying  nsQSIC

In[  ]:= h3

Out[  ]= - 0.249469 - 8.22993 x - 2.67636 x2 + 0.567963 x3 - 18.5466 y -

30.8386 x y + 2.22249 x2 y - 41.7577 y2 - 21.0204 x y2 - 24.7859 y3
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In[  ]:= ℧3 [{x, y}]

Out[  ]= 
- 18.1272 + 0.823429 x2 + x (- 31.8909 - 20.0303 y) - 64.4707 y - 60.9937 y2

10.4881 - 3.18625 x + 1. x2 + 31.085 y + 5.91174 x y + 20.2212 y2
,

34.1146 - 10.7836 x - 3.34171 x2 + 60.4533 y - 34.7029 x y + 23.2529 y2

10.4881 - 3.18625 x + 1. x2 + 31.085 y + 5.91174 x y + 20.2212 y2
,

22.4144 + 22.7967 x + 1.68673 x2 + 13.2424 y + 27.4305 x y - 24.1011 y2

10.4881 - 3.18625 x + 1. x2 + 31.085 y + 5.91174 x y + 20.2212 y2


We  now  find  the  Weierstrass  Normal  Form

In[  ]:= wg3

Out[  ]= {37.0854 , - 33.4408 }

In[  ]:= B23

0.578932 - 2.02309 - 0.722756

1.79988 10.5295 9.75449

- 0.376334 - 1.02545 - 0.0287017

So far  our  work  is not  replicable  because  of random  choices,  but  our  complex  plot  of WeierstrassP  is.

In[  ]:= wpgramPlot [wg3, ep → .3 ]

» hps {{0., - 0.695683 }, {0.901368 , 0. }}

» corners

{{0.901368 , - 0.695683 }, {- 0.901368 , - 0.695683 }, {- 0.901368 , 0.695683 }, {0.901368 , 0.695683 }}

» x-axis points {{0.0057994 , - 0.695683 }, {0.877145 , - 0.695683 }, {0.919792 , 0. }}

It does  indicate  there  are  two  components  .  

Note  that  the  blue  and  black  give  projectively  one  loop  while  the  green  and  orange   give  the  other.

Adding  our  quadratic  surfaces  to the  right  hand  plot  we  get

Show ParametricPlot3D ℧3 fltMD [μ [t, wg3 ], Inverse [B22 ]], {t, - .903 , .903 },

PlotRange → 16 , ParametricPlot3D ℧3 fltMD [μ [t - .695683 I, wg3 ], Inverse [B22 ]],

{t, - .903 , .903 }, PlotRange → 16 , ImageSize → 250 
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Plotting  this  with  our  surfaces  gives  

6. Conclusion

The  QSIC  problem  is hard  because  of the  many  different  cases  and  the  complexity  of the  parameterizations  in the  genus  1 cases  

.  To  actually  do  examples  requires  using  a computer.   Although  there  are  4 different  cases  just  within  the  genus  1 cases  all  of 

these  use  the  same  basic  parameterized  function

℧fltMD μt + ipart ⅈ, wg, Inverse [B2]

although  in some  cases  we  must  use  several  uses  of this  with  different  parameter  intervals  to get  a piecewise  parameterization.

This  method  at present  does  leave  demands  on  the  user  to monitor  the  probabilistic  randomized  routines  and  to make  the  

proper  choices  on  parameter  values.   If the  method  does  not  pass  its  tests  it may  be that  the  QSIC  is rational,  then  the  various  

rational  cases  must  be determined.   An  advantage  of our  use  of Mathematica  is that  all  of the  difficult  computations  are  done  

with  built-in  functions  that  are  fast.   The  rational  cases  also  can  be also  handled  relatively  easily  on  this  platform.   Perhaps  in the  

future  AI  can  be taught  to do all  the  user  work  to get  a black  box  solution  to this  problem  using  our  methods.
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Appendix  to Explicit  Regular  QSIC
Here  is the  code  for  Mathematica  functions,  other  than  those  built  in to Mathematica,   discussed  in the  body  of this  paper,  

mostly  without  comment  here.   Also  included  are  subroutines  necessary  for  these  functions.   If you  will  be  using  Mathematica 

to use  or experiment  with  this  code  the  notebook  version  of my  original  paper  available  at the  end  of the  web  version  at https://-

community.wolfram.com/web/bhdayton/home  is a better  choice  to use.

In[  ]:= dTol := 1.*^-12

tDegMD f_, X_  := Max Total /@ Keys CoefficientRules f, X

In[  ]:= fltMD [p_, A_ ] := TransformationFunction [A][p]

FLT3D [F_, A_, X_ ] := Module {B, d, g, h, t, n},

n = Length [X];

If Dimensions [A] ≠ {n + 1, n + 1}, Echo {n + 1, n + 1}, "need A to be of size "; Abort [];

If MatrixRank [A] ≠ n + 1, Echo "A must be invertible "; Abort [];
B = Inverse [A].Append [X, t];

Reap Do 

d = tDegMD f, X;

g = Expand t^d f /. Thread [X → X / t];
h = Expand [g /. Thread [Append [X, t] → B]];

Sow [Chop [h /. {t → 1}, 1.*^-12 ]], f, F〚2, 1〛

Note  : FLT3D  requires  F to be a list  of equations  and  A to be invertible.   This  applies  the  push  forward  to each  polynomial  in F 

separately  and  returns  a list.   For  a single  equation  f one  should  use

      FLT3D[{f},  A,  X][[1]]

In[  ]:= findQpts [Q_, X_, n_ ] := Re NX /. FindInstance [Q ⩵ 0, X, Reals , n]

formMD f_, k_, X_  := FromCoefficientRules Select CoefficientRules f, X, Total [#〚1〛] ⩵ k &,

X;

maxFormMD f_, X_  := formMD f, tDegMD f, X, X;

In[  ]:= nsQSIC [Q_, p_, {x_, y_, z_}] := Module {dTol , p0, A, F, h, L, M, R, S, Ω, ℧},

dTol = 1.*^-12 ;

p0 = Normalize [Append [p, 1]];

A = Reverse Orthogonalize [Prepend [RandomReal [{- 1, 1}, {3, 4}], p0 ]];
F = FLT3D [Q, A, {x, y, z}];

L = formMD [F〚1〛, 1, {x, y, z}];

M = formMD [F〚2〛, 1, {x, y, z}];

R = formMD [F〚1〛, 2, {x, y, z}];

S = formMD [F〚2〛, 2, {x, y, z}];

h = Expand [L * S - R * M] /. {z → 1};

Ω = Take [A, 3];

℧ = Take Inverse [A].Join [#, {1, (- R / L) /. Thread [{x, y, z} → Append [#, 1]]}], 3 

Last Inverse [A].Join [#, {1, (- R / L) /. Thread [{x, y, z} → Append [#, 1]]}] &;

{h, Ω, ℧}
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In[  ]:= allInflectionPointsC3 f_, x_, y_  := Module d, H, fh, z, l, ips, ips2 , sol ,

d = tDegMD f, {x, y};

fh = Expand z^d f /. Thread [{x → x / z, y → y / z}];

H = Det Dfh, {{x, y, z}, 2};
l = RandomReal [{- 10, 10}, 3].{x, y, z};

sol = NSolve fh, H, l - 1, {x, y, z};
If [Length [sol ] ⩵ 0, Return [{}]];

ips = {x, y, z} /. sol;

ips2 =

Chop If Abs [#1 〚3〛] > 1.*^-5 , Take [#1, 2]  #1 〚3〛, Append [Take [#1, 2], 0], 1.*^-10  & /@

ips;

DeleteDuplicatesBy ips2 , Abs [#] < 1.*^-6 

;

In[  ]:= cTransform2D f_, p_, x_, y_  := Module fh, ph, nh, t, cs, A, d,

d = tDegMD f, {x, y};

fh = Expand t^d * f /. Thread [{x, y} → {x / t, y / t}];
ph = If [Length [p] ⩵ 2, N[Append [p, 1]], N[p]];

ph = ph / Norm [ph ];

nh = Dfh, x, Dfh, y, Dfh, t /. Thread [{x, y, t} → ph ];

nh = nh / Norm [nh ];

cs = Cross [nh, ph ];

cs = cs / Norm [cs ];

A = {cs, ph, nh};
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In[  ]:= weierstrassNormalForm f_, ip_, x_, y_  :=

Module Rnm, ff, ipp, B1, B2, B3, B4, B5, B, f1, f2, f3, f4, k, cy2, wg,
Rnm = RandomReal [{- 3, 3}, {3, 3}];

ipp = fltMD ip, Rnm ;

ff = FLT3D f, Rnm, {x, y}〚1〛;

B1 = cTransform2D ff, ipp, x, y;

f1 = Chop FLT3D ff, B1, {x, y}〚1〛, 1.*^-9 ;

cy2 = Coefficient f1, y^2;

If Length [cy2 ] > 0, Print "Please check inflection point or smoothness "; Abort [];

k = Expand Coefficient f1, y  cy2  2 + y;
B2 = {1, 0, 0}, Coefficient [k, x], 1, k〚1〛, {0, 0, 1};
f2 = FLT3D f1, B2, {x, y}〚1〛;

B3 = - Coefficient f2, x^3  Coefficient f2, y^2^ (1 / 3), 0, 0, {0, 1, 0}, {0, 0, 1};

f3 = FLT3D f2, B3, {x, y}〚1〛;

f3 = - Expand f3  Coefficient f3, y^2;

B4 = 1, 0, Coefficient f3, x^2  3, {0, 1, 0}, {0, 0, 1};
B5 = {{1, 0, 0}, {0, 2, 0}, {0, 0, 1}};

f4 = Expand 4 FLT3D f3, B5.B4, {x, y}〚1〛;

Echo f4, "Normal Form ";

wg = - Coefficient f4, x, - f4 /. Thread [{x, y} → 0];
B = B5.B4.B3.B2.B1.Rnm;

{wg, B};

In[  ]:= μ [t_, {g2_, g3_ }] := Re WeierstrassP [t, {g2, g3}], WeierstrassPPrime [t, {g2, g3}]

In[  ]:= Options [wpgramPlot ] = {ep → 0.103 };

wpgramPlot {g2_, g3_ }, OptionsPattern [] :=

Module {hps, hp1, hp2, mn, x, y, zero , z, olz, opts , one, onelz , onepts },

hps = WeierstrassHalfPeriods [1. {g2, g3}];

Echo [ReIm [hps ], "hps"];

hp1 = ReIm [hps 〚1〛];
hp2 = ReIm [hps 〚2〛];
mn = 3 Max [Norm [hp1 ], Norm [hp2 ]];

Echo [{hp1 + hp2, hp1 - hp2, - hp1 - hp2, - hp1 + hp2 }, "corners "];

zero = NSolveValues y^2 ⩵ 4 x^3 - g2 x - g3 && y ⩵ OptionValue [ep ], {x, y}, Reals ;
olz = Length [zero ];

opts = Table ReIm InverseWeierstrassP zero j, {g2, g3}, j, olz ;

Echo opts , "x-axis points ";

Show ComplexPlot WeierstrassP [z, {g2, g3}], {z, - mn - mn I, mn + mn I}, ImageSize → 150 ,

Graphics Black , Line [{hp1 + hp2, hp1 - hp2, - hp1 - hp2, - hp1 + hp2, hp1 + hp2 }],

PointSize [.03 ], Point [opts ]
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