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Introduction

We describe briefly some work done recently on subintegrality and its re-
lationship with the Picard group and invertible modules. Part of the work
was done jointly with L. Reid and L. G. Roberts.

All rings are assumed to be commutative with 1.

We begin by recalling from Swan [10] the notions of subintegrality and
seminormalization.

An elementary subintegral extension is an extension A C B (of rings)
such that B = A[b] for some b with b?,b® € A.

An extension A C B is said to be subintegral if it satisfies any one of the
following two equivalent conditions (see [10]):

(1) A C B is integral, Spec (B) — Spec (A) is bijective and the induced
residue field extensions are trivial, i.e. k(AN P) = k(P) for every
P € Spec (B).

(2) A C B is a ‘filtered union’ of elementary subintegral extensions, i.e.
for each b € B there exists a finite sequence 4 = Ag C A3 C --- C
A, C B of subrings such that 4; C A;;; is elementary subintegral
foreachi,0<i<r—1,and be A,.

A ring A is said to be seminormel if it is reduced and satisfies the fol-
lowing condition, where K is the total quotient ring of A: (t € K, ¢2,t° €
A) = t € A. The condition is equivalent to saying that A has no nontrivial
subintegral extension contained in K.

Suppose now that A is reduced, and let K be its total quotient ring.
Then the seminormalization of A |, denoted 'A, is the smallest seminor-
mal subring of K containing A. Equivalently, A is the largest subintegral
extension of A contained in K.

The following relationship between seminormality and the Picard group
appears in Swan [10]:

(0.1) Theorem (Swan). For a ring A the following three conditions are
equivalent:

(1) Pic(A4) = Pic(A[Xy,...,X,]) for somen > 1.
(2) Pic(A) = Pic(A[X;,...,X},]) for all n.

(3) Areq is seminormal.
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In 1989 Dayton [1] found an interesting relationship between the Picard
group and seminormalization in the case of a reduced finitely generated
graded algebra over a field of characteristic zero:

(0.2) Theorem (Dayton). Let A = @,>0An be a reduced positively
graded ring such that Ao 1s o field of characteristic zero and A is finitely

generated as an Ag-algebra. Then there exists a functorial isomorphism of
groups 6 : Pic (A) & tA/A.

The above result of Dayton was the starting point of our investigation. An
obvious question is what happens if some of the hypotheses are dropped,
particularly the ones on A being graded and on the characteristic being
zero. We divide a discussion on this question into three cases:

Case (1) Drop the hypothesis on A being graded, but keep characteristic
ZEr0.

Case (2) Keep A graded, but allow the characteristic to be arbitrary.
Case (3) General case.

We generalize Dayton’s theorem, after reformulating it suitably, to Cases
(1) and (2) (Theorems (1.2), (2.1) and (2.2)). In the process of doing this,
we find an elementwise characterization of subintegrality in Case (1) (The-
orem (1.4)), and this leads to some interesting new examples of affine al-
gebras (Theorems (1.6)-(1.9)). The elementwise characterization extends,
with some modification, to the general case (Theorem (3.1)).

An analogue of Theorem (1.2) and Theorem (2.1) in the general case is

discussed in a forthcoming paper.

We end the Introduction by observing that Dayton’s theorem does not
hold as stated in any of the cases listed above.

Since Pic(4) = 0 for a local ring A and there exist non-seminormal
Jocal rings, the result does not hold as stated in Case (1). In a different
direction, note that there exist Dedekind domains A (which are normal,
hence seminormal) for which Pic (4) # 0.

As for Case (2), we have the following

(0.3) Example. Let A = [P+l 242, t*PT1], where k is a field of
characteristic p > 0 and ¢ is an indeterminate. This is graded and satisfies
all conditions of Dayton’s theorem except the one on characteristic. One
can show (see [9, (3.6)]) that there is an element in Pic (A4) which is not
killed by p. On the other hand, the group +4/A is killed by p. So Pic(4)
cannot be isomorphic to TA/A.

Case (1): the case of Q-algebras

Consider the following example, in which A is the most elementary example
of 2 non-seminormal ring: A = k[t2,£5] C B = k[t] with k = Q and ¢ an
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indeterminate. In this example A is graded and satisfies all the conditions of
Dayton’s theorem, and we have T4 = B. So, by Dayton’s result, Pic (4) =
B /A k. Localizing and completing at the origin, we get A = .k[[i&2 9] €

= k[[t]] and B/A = k. But Pic(A) is trivial, since A is local. Now, the
ongm is the only singularity of A, hence the only non-seminormal point. So
one would expect the isomorphism Pic (A) = B/A to be reflected somehow
at the local level. Note that while localizing kills Pic, it introduces new
units. And units and Pic are related by the following exact sequence (see
[7, (2.4)]), where J(A, B) denotes the group of all invertible A-submodules
of B:

1 A* - B* - J(A, B) — Pic(A) — Pic(B).

In the special case when A satisfies the conditions of Dayton’s theorem
and B = *A, B is also positively graded [2], By = Ay and Pic (B) is trivial
[11]. Consequently, A* = A§ = Bj = B* whence 7(4, B) = Pic (A).

On the other hand, in the example A C B above, we have (B)*/(A)* =
and Pic (A) = 0 whence J (A, B) = (B)*/(A)* 2= k = B/A

Thus in Dayton’s situation as well as in the example A C B above, we
have J(A,B) = B/A, where B = *4. So a possible way to generahze
Dayton’s result would be to ask for an isomorphism 7 (A4, ¥4) = TA/A.

Our first aim is to describe such an isomorphism (4, B) & B/A for an
arbitrary subintegral extension A C B of Q-algebras.

We look first for a group homomorphism £ : B — J(A4, B) such that
A C ker(§). Now, B is additive and J (A, B) is multiplicative, and the
addition and multiplication arise from the same ring B. The most natural
way to obtain a group homomorphism in this situation seems to be via the
exponential. So, roughly speaking, we should set £(b) = Ae® N B, where A
is a suitable completion of A. The most obvious completion is the b-adic
one. However, this is not always available, for example, if b is a unit. One
can get around this problem by defining £(b) = I(b)|r—1, where T is an
indeterminate and I(b) = A[[T]]e*” N B[T). We need here the condition
that A contains Q. The first (and, as it turns out, the main) question
here is whether £(b) is invertible as an A-submodule of B. Or, asking for a
little more, whether I(b) is invertible as an A[T]-submodule of B[T]. If I(b)
is invertible, a natural candidate for its inverse is I(—b). Now, obviously
I(b)I(—b) C A[T] always, but in general we do not have equality. For
example, if b is transcendental over A then I(b) = 0, as is checked easily.
As it turns out, the invertibility of I(b) holds under precisely the right
conditions, namely we have

(1.1) Theorem. I(b) € J(A[T], B[T]) if and only if the extension A C
A[b] is subintegral.

Proof [7, (4.8) and (4.17)] and [8, (1.4

We needed just the ‘if’ part, and that is what we proved initially. The
equivalence came as a pleasant surprise later.
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Assume now that the extension A C B (of Q-algebras) is subintegral.
(If A is reduced, this is equivalent to saying that A C FA.) Then A C A[d]
is subintegral for every b € B. Therefore the above theorem gives us a
map I : B = J(A[T], B[T]). It is now an easy matter to check that this
map is a homomorphism of groups with A contained in its kernel. Writing
£(b) = I(b)|r=1, we get a group homomorphism £ : B — J(4, B) with
A C ker (€), and this induces a group homomorphism

m/a: B/[A— J(4A,B),

which is evidently functorial. With this notation we can state the main
result in Case (1):

(1.2) Theorem. Let A C B be a subintegral extension of Q-algebras.
Then the homomorphism £y : B/A — J(A, B) is an isomorphism.

Proof [7, (5.6)] and [4, (2.3)].

As noted above, we have J (4, TA) = Pic(A) under the hypothesis of
(0.2). Therefore (1.2) yields Dayton’s theorem as a special case:

(1.3) Corollary. Dayton’s Theorem (0.2).

However, the two isomorphisms are slightly different. To be more precise,
suppose the hypotheses of (0.2) are satisfied. Then we have an isomorphism

E4a/at TAJA = T (A, TA) = Pic(4)
given by (1.2), and also an isomorphism
671 : tA/A — Pic(A)

given by (0.2). These two isomorphisms differ by the group automorphism
of /A induced by the negative Euler derivation of the graded ring A,
i.e. the derivation which multiplies a homogeneous element a of A by

—deg (a).

Returning to the general case of (1.2), the fact that the map £g/4 is an
isomorphism is proved in two stages. It is proved first for an excellent ring
A of finite Krull dimension, using induction on dimension. Then the case
of a general A is reduced to that of a finitely generated Q-algebra.

The heart of the matter in this proof is Theorem (1.1), or rather its ‘if’
part.

Note that unlike the case of normalization, neither the definition nor the
characterizations of seminormalization given above describe which elements
of the total quotient ring of a reduced ring A belong to its seminormaliza-
tion 7A. In a more general context, given an extension A C B of rings,
the definition and characterizations of subintegrality given above do not
describe which elements b of B are such that A C A[b] is subintegral. As a
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first step towards proving the ‘if’ part of Theorem (1.1) we find it necessary
to develop a characterization of these elements b. Such an elementwise char-
acterization is found over any Q-algebra A, not necessarily reduced, and is
given in the next theorem. Let us call an element b of B to be subintegral
over A if the extension A C A[b] is subintegral.

(1.4) Theorem. Let A C B be an extension of Q-algebras, and let b € B.
Then b is subintegral over A if and only if there exist c1,...,cp € B (for
some p > 0) such that b + 37 (P)eib" " € A for all n >> 0.

Proof [7, (4.8) and (4.17)).

We illustrate the above theorem by discussing the ‘if’ case with p = 0
(the essentially trivial case) and an example of the ‘only if’ case in which
p =1 (the first nontrivial case).

To say that an element b satisfies the criterion with p = 0 means that
b® € A for n >> 0. It is clear in this case that A[b] is obtained from A by
a finite sequence of elementary subintegral extensions.

As an example of the ‘only if’ case, consider the extension R C S,
where S = Q|z,y, z,t] is the polynomial ring in four variables and R =
Q[z,y, 1,15, 2° + xt,z> + yt]. The extension R C S is subintegral. In
fact, it is the composite of two elementary subintegral extensions, namely
R C R[t] and R[t] C R[t][z] = S. One can show (see [7, (6.6)]) that
2" + n(xt/2z)2"! € A for n > 8. This means that the element b = z,
when viewed as an element of B = S[z7!], satisfies the criterion of Theo-
rem (1.4) over A = R with p=1 and ¢; = zt/2=.

Note that R C S is, in fact, the generic example of a subintegral extension
obtained as a composite of two elementary subintegral extensions.

In order to prove Theorems (1.1) and (1.4) we analyze first, in line with
the above example, the generic situation. Namely, let p > 0, N > 1 be fixed
integers and consider the extension

R= Q["YHIHZN] QS: Q[mlv"'vzp:z]y

where i, .. .,Zp, z are indeterminates and v, = 2™ + Y 0 _; (M)z;2"*. Let

S =0z, 55 2])

and let R C S be the completion of R. In this setup we prove
(1.5) Lemma. (SN Re*)(SN Re *) = R and z is subintegral over R.
Proof Follows from [7, (3.8)].

This lemma is one of the main steps in the proof of Theorems (1.1) and
(1.4). We remark that the equality (S N Re*)(S N Re™?) = R is similar to
the equality I(z)I(—z) = R[T.
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Next, in order to reduce the proof of Theorem (1.2) to the case of a
finitely generated Q-algebra, we need to show that the subintegrality of
an element, which appears a priori as an infinite condition in Theorem
(1.4), is actually a finite condition. This is done by proving that the ring
R = Q[vn | n > N] is a finitely generated Q-algebra. More precisely,

(1.6) Theorem. R = Q[y, | N <n <2N +2p—1].
Proof [4, (1.5)].

This completes a description of how the proof of the main result (1.2) is
organized.

In the process, we have obtained the example of a ring R which is an
affine algebra over Q in view of (1.6) and hence represents a geometric
object. Note that R depends upon two integral parameters p > 0,N > 1,
and that R is a graded subring of Q[z,,..., 2, 2] with weighted gradation
given by degz = 1 and degz; = i for every 1.

Investigating the structure of R, we prove first the following theorem on
the relations among the ’s:

(1.7) Theorem.

(1) Letn > 2p be an integer, and let
0<d; <d2<"'<dp+1571/2

be any p+ 1 distinct integers. Let d be any integer with 0 < d < n/2
and distinct from the d;. Then there exist rationel numbers ay,...,

ap+1 such that
P+l

YdVn—d = Z @i Yd; Yn—d; -

i=1
(2) The above quadratic relations generate all relations among the v’s.
Proof [5, (1.1) and (2.2)].

A careful analysis of the quadratic relations described above yields a
computation of the Poincaré series of R:

(1.8) Theorem. Let P(T) be the Poincaré series of R, i.e.,

(o]

P(T) =) (dimgR,) T,

n=0
where R, is the homogeneous component of R of weighted degree n. Then

=gk
R I T e o P s

P(T) =

Proof [5, (2.8)].
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The knowledge of the Poicaré series leads to a determination of the struc-
ture of R:

(1.9) Theorem.

(1) R has Krull dimension p+ 1 and embedding dimension N + 2p, and
has a minimal presentation with N + 2p homogeneous generators and
(N; p) homogeneous relations.

(2) R is Cohen-Macaulay for all p, N.

(3) R is Gorenstein < R is a complete intersection < N +p < 2.
Proof [5, (3.2), (3.5) and (3.6)].

Case (2): the case of graded algebras over an arbitrary field

As noted in Example (0.3), Dayton’s theorem does not hold in positive
characteristic. The same example shows that Theorem (1.2) also fails for
algebras over a field of positive characteristic. However, in the graded situa-
tion it is possible to generalize these results, after a suitable reformulation,
even to the case of positive characteristic. Theorems (2.1) and (2.2) of this
section describe such a generalization.

The question of extending the elementwise characterization (1.4) to the
case of positive characteristic is discussed in the next section.

Let A=@,-qAn C B =@, Bn be an extension of positively graded
rings with Ay a field. Let -

| o if char (4) =0,
P= { char (4¢) if char (4g) > 0.
Put FuB = B and F;B =A+ Zn>p,- By for i > 1. Then F = (F;B)i>o
is a decreasing filtration on B consisting of A-subalgebras of B. Writing
FiJ(A,B) = J(A, F;B), we get a decreasing filtration (F;7 (A, B))i>q of
subgroups on 7 (A, B) with associated graded

grJ(A,B) = (D FiJ (A, B)/Fiz1J (A, B).
i>0

Note that if char(Ag) = 0 then the filtration degenerates and we get
gr J(4,B) = J(A, B).

(2.1) Theorem. Let A C B be a subintegral extension of positively graded
rings with Ag a field and Byg = Ag. Then there exists a natural isomorphism
£p/a + BJA — gr J(A, B) of groups. If char (Ay) = 0 then the filiration
degenerates, gr J(A, B) = J(A, B), and the isomorphism

513/.4 : B/A —* grj(AaB) = j(AeB)

coincides with the isomorphism {p/4 : BJA — J (A, B) of (1.2).
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Proof [9, (4.4)].

As a special case, suppose A is reduced and finitely generated as an Ag-
algebra. Then 74 is positively graded and contains A as a graded subring
(see [2]). Writing F;Pic (A) = ker (Pic (A) — Pic (F; ")), we get on Pic (A4)
a decreasing filtration (F;Pic(A));>o of subgroups, with associated graded

gr Pic (4) = (P FiPic (A)/Fi41Pic (A).

i>0

(2.2) Theorem. Let A be a reduced positively graded ring with Ao a field
and A finitely generated as an Ag-algebra. Then there exists a natural iso-
morphism €4 @ TAJA — grPic(A) of groups. If char (Ap) = 0 then the
filtration degenerates, gr Pic (A) = Pic(A) and the isomorphism

£4: TA/A — grPic(A) = Pic(A)

differs from the isomorphism =1 of (0.2) by the group auiomorphism of
*A/A induced by the negative Euler derivation of TA.

Proof [9, (4.5)].

In the process of proving the above two theorems, we also prove the
following result, which seems to be of interest in its own right:

(2.3) Theorem. Let A C B be a subintegral extension. Then for all rings
C with A C C C B the sequence 1 = J(A,C) - J(A,B) =+ J(C,B) = 1
of natural maps is ezact.

Proof [9, (3.3)]

Case (3): the general case

As noted in the Introduction, an analogue of Theorem (1.2) and Theorem
(2.1) in the general case is discussed in a forthcoming paper. For now we
describe a result (Theorem (3.1)) which extends Theorem (1.4), with a
suitable modification, to the general case.

Let A C B be an extension of arbitrary commutative rings. Let A"
be the set of elements b of B satisfying the criterion of Theorem (1.4),
namely the following condition: There exist ¢y, ...,c, € B such that ™ +

P (M)e;b" " € Afor all n >> 0. Theorem (1.4) can be reformulated to
say that if A contains @ then A" is the subintegral closure of A in B.

In order to extend this result to the general case, let us recall the notion
of weak subintegrality: an extension A C B of rings is said to be weakly
subintegral if A C B is integral, Spec (B) — Spec (A) is bijective and the
induced residue field extensions are purely inseparable, i.e. k(P) is purely
inseparable over k(AN P) for every P € Spec (B) (cf. condition (1) defining
subintegrality in the Introduction).
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(3.1) Theorem. A" is a subring of B and is the weak subintegral closure
of A in B.

Proof [6, (6.11)].

For an extension of Q-algebras weak subintegrality is the same as subin-
tegrality, and so we recover Theorem (1.4).

REFERENCES

(1

[2]

3]

9

[10]
[11]

[12]

B. H. Dayton, The Picard group of a reduced G-algebra, J. Pure Appl.
Algebra 59 (1989) 237-253.

J. V. Leahy and M. A. Vitulli, Seminormal graded rings and weakly
normal projective varieties, Internat. J. Math. Sci. 8 (1985) 231-240.

L. Reid and L.G. Roberts, A new criterion for weak subintegrality,
Comm. Algebra 24(10) (1996) 3335-3342.

L. Reid, L. G. Roberts and B. Singh, Finiteness of subintegrality, in: P.
G. Goerss and J. F. Jardine (eds.), Algebraic K-Theory and Algebraic
Topology, NATO ASI series, Series C, Vol. 407 (Kluwer Academic
Publishers, Dordrecht, 1993) 223-227.

L. Reid, L. G. Roberts and B. Singh, The structure of generic subin-
tegrality, Proc. Indian Acad. Sci. (Math. Sci) 105 (1995) 1-22.

L. Reid, L. G. Roberts and B. Singh, On weak subintegrality, J. Pure
Appl. Algebra 114 (1996) 93-109.

L. G. Roberts and B. Singh, Subintegrality, invertible modules and the
Picard group, Compositio Math. 85 (1993) 249-279.

L. G. Roberts and B. Singh, Invertible modules and generic subinte-
grality, J. Pure Appl. Algebra 95 (1994) 331-351.

B. Singh, The Picard group and subintegrality in positive characteris-
tic, Compositio Math. 95 (1995) 309-321.

R. G. Swan, On seminormality, J. Algebra 67 (1980) 210-229.

C. A. Weibel, Mayer-Vietoris sequences and module structures on
NK,, in algebraic K-theory, Evanston 1980, Lectures Notes in Math-
ematics 854 (Springer, Berlin, 1981) 466-493.

H. Yanagihara, On an intrinsic definition of weakly normal rings, Kobe
J. Math. 2 (1985) 89-98.




